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Abstract

Since the initial success of genome-wide association studies (GWAS) in
2005, tens of thousands of genetic variants have been identified for hundreds
of human diseases and traits. In a GWAS, genotype information at up to
millions of genetic markers are collected from up to hundreds of thousands
of individuals, together with their phenotype information. Several scientific
goals can be accomplished through the analysis of GWAS data, including
the identification of variants, genes, and pathways associated with diseases
and traits of interest; the inference of the genetic architecture of these traits;
and the development of genetic risk prediction models. In this review, we
provide an overview of the statistical challenges in achieving these goals and
recent progress in statistical methodology to address these challenges.
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1. INTRODUCTION

Since Hoh and colleagues (1) first identified the association between the complement factor H
gene and age-related macular degeneration through a genome wide association study (GWAS),
this study design has been used to find associations between tens of thousands of genetic vari-
ants and thousands of human traits and diseases. Figure 1 shows the for the rapid increase in
the number of single-nucleotide polymorphisms (SNPs) identified in the NHGRI-EBI (Na-
tional Human Genome Research Institute–European Bioinformatics Institute) GWAS Catalog
(https://www.ebi.ac.uk/gwas/) from 2008 to 2019. Following their success in identifying these
replicable association signals, researchers have recently expanded their efforts to finely map the
implicated chromosomal regions to identify disease-causing variants/genes, dissect the genetic
architecture of various traits, and translate these findings to improve disease prevention and
treatment strategies.With the generation of whole-exome sequencing (WES) and whole-genome
sequencing (WGS) data from up to millions of individuals over the next several years, coupled
with detailed health records from these individuals, it is likely that researchers will uncover more
association signals for both common variants (the focus of GWAS) and rare variants (through
WES and WGS data), as well as how these variants interact together with other risk factors to
impact human health. In this review, we focus on statistical methods that have been developed to
address the unique challenges in the analysis of GWAS data, most notably the very large number
of genetic variants that need to be studied (with the problem of very high dimensionality) and
the rich information accumulated from diverse sources about the human genome that can be
used in GWAS analysis (for the problem of data integration).We organize our discussion around
three scientific goals of GWAS: the identifications of genetic association signals, the inference of
genetic architecture of complex traits, and the development of genetic risk prediction models. For
each goal, we introduce the biological problems, describe the statistical challenges, and review
statistical methods that have been proposed to jointly analyze millions of genetic variants and
integrate various data sources to achieve the goals. Figure 2 provides an overview of a typical
GWAS analysis pipeline; we cover some of these methods in the following sections.
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Figure 1

Number of reported significant trait–SNP (single-nucleotide polymorphism) associations in the NHGRI-
EBI (National Human Genome Research Institute–European Bioinformatics Institute) GWAS Catalog
(https://www.ebi.ac.uk/gwas/) from 2008 to 2019.
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Figure 2

A typical GWAS pipeline for genome-wide association analysis. Abbreviations: eQTL, expression QTL; pQTL, protein QTL;
QC, quality control; QTL, quantitative trait loci.

2. IDENTIFICATIONS OF GENETIC ASSOCIATION SIGNALS

In a typical GWAS analysis pipeline, several quality control steps are taken before performing
association analysis. These steps help identify and remove low-quality genetic markers (such as
those with a high missing genotype rate across the samples, a significant departure from Hardy–
Weinberg equilibrium, low minor allele frequency, and low imputation quality) and low-quality
samples (such as those with a high missing genotype rate across the markers, chromosomal aber-
rations, related samples, Mendelian errors, and mismatched sex) (2). Principal component analy-
sis (PCA) is routinely used to infer population structure in the studied samples, and the leading
principal components are used as covariates in association analysis to control for population strat-
ification. In the following discussion, we assume that appropriate measures have been taken to
minimize false-positive findings due to these potential confounding factors from data quality is-
sues and genetic background heterogeneity across samples.

With appropriate control of confounding factors, the major challenge for detecting true as-
sociation signals in GWAS analysis is the very large number of genetic variants to be studied.
Because GWAS considers millions of markers, researchers use stringent thresholds for statistical
significance to control for false positives. For example, if there are one million SNPs studied, a
statistical significance threshold of 5 × 10−8 is needed if the goal is to control the overall family-
wise false-positive rate at 5% with Bonferroni correction. At this stringent significance level, only
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SNPs with large effect sizes can be detected with adequate statistical power, and tens of thousands
of samples are likely needed for uncovering SNPs with small to modest effect sizes. There are sev-
eral statistical tools that are commonly used to analyze GWAS data, including PLINK (3), GCTA
(4), GEMMA (5), and BOLT-LMM (6, 7), among others.

Realizing the need for very large sample sizes to detect SNPs truly associated with traits, re-
searchers have formed many large international consortia for common diseases to increase the
sample size to meet the rigorous demand for statistical significance. Indeed, as sample sizes for
GWAS continue to grow, the number of identified associations has continued to increase, but the
effect sizes of newly identified loci are mostly very weak (8). Boyle and colleagues recently sum-
marized these observations using a unified, omnigenic model (9). Another observation that was
made early on and has proved to be the case is that most associated SNPs are located in noncod-
ing regions of the human genome (10). Aside from increasing sample sizes, one approach that has
received considerable attention to address this challenge is the incorporation of prior knowledge
or data sources in the analysis of GWAS data to both identify association signals and interpret the
results. Some tools have been developed, e.g., FUMA (11), to help interpret the GWAS results. In
the following, we first describe several data sources that can be integrated in GWAS analysis, and
we then discuss how these resources have been used to prioritize SNPs/genes for follow-up studies.

2.1. Data Sources that are Informative for GWAS Analysis

In this section, we discuss several data sources that have proved informative for the analysis of
GWAS data.

2.1.1. Genome annotations. Recent years have seen major efforts to annotate SNPs, including
sequence conservation across species near a SNP, genomic features (e.g., whether a SNP is in a
coding region), population genetics characteristics [e.g., a SNP’s minor allele frequency and its
linkage disequilibrium (LD) with nearby SNPs], epigenetic information, and transcription profiles
for genes near the SNP, among others.Large consortia such as the Encyclopedia ofDNAElements
(ENCODE) (12), the Roadmap Epigenomics Project (13), and the Genotype-Tissue Expression
(GTEx) project (14, 15) have generated vast amounts of transcriptomic and epigenetic data that
can be used to infer the functional roles of SNPs.Many computational and statistical frameworks
have been developed to synthesize these data into concise and interpretable annotations.

If a coding variant disrupts the function of the protein that this gene encodes, conceivably the
variant may be more likely to be functional than a variant that does not affect the protein product.
For example, PolyPhen (16) is commonly used to assess whether a candidate missense mutation
is damaging, and several methods have been developed to predict whether a coding variant may
lead to loss of function (e.g., 17).

Due to advances in both genotyping technology and imputationmethods,GWAS analyses now
typically includemore than 10million SNPs,most of which are noncoding.The high conservation
of a DNA segment in a noncoding region based on sequence alignment across multiple species
may suggest a strong purifying selection for the segment in the region, thereby hinting at its
functionality. Several methods have been developed to quantify the degree of conservation, and
thereby the potential for functionality, such as GERP (18, 19) and phyloP (20). Conserved DNA
regions are strongly enriched for heritability of complex diseases (21), suggesting the importance
of considering conservation in GWAS analysis. However, only 4.5% of the human genome is
conserved across mammals (22), which is much smaller than the percentage of transcriptomic and
epigenetic annotations. Because conservation is derived from sequence comparisons across species
at the organism level, it does not have tissue specificity and is less likely to be relevant to late-onset
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diseases such as Alzheimer’s disease (23) or human-specific traits such as substance dependence
(24).

Recently there have been major efforts to annotate the human genome through epigenetic
information, including ENCODE (12, 25) and the Roadmap Epigenomics Project (13). These
projects have assayed many epigenetic marks, such as chromatin accessibility, DNA methylation,
histone modifications, and transcription factor binding activities for many cell lines and human
tissues. It is well known that these epigenetic marks are associated with regulatory activities (12,
26, 27), and they are highly informative for GWAS downstream analyses. Because these epige-
netic markers are specific to tissue and cell type, they allow researchers to identify tissues and cell
types most relevant to a disease/trait. RegulomeDB (28) provides annotations of variants in non-
coding regions that include high-throughput results from ENCODE and other data. ANNOVAR
(29), which is often used to assess the functional relevance of candidate SNPs, compiles annota-
tion information from many sources. GWAS hits in noncoding regions are enriched for DNase
I hypersensitive sites (30, 31). When three annotation categories including genic and regulatory
features, conservation and evolutionary signatures, and chromatin states were jointly considered,
Kindt et al. (32) found that SNPs annotated with all three annotations were eight times more
likely to be trait associated than those with none of the annotations.

Because supervised machine learning methods have been successful at predicting deleterious-
ness for SNPs in protein-coding regions, it is natural to apply the same approaches (e.g., random
forests and support vector machines) to annotate variants in the noncoding regions for genomic
features, transcriptional activities, epigenetic marks, and DNA conservation. However, one major
challenge for annotating noncoding SNPs is the lack of gold standard training data. Nevertheless,
several methods have been developed, including CADD (33) and GWAVA (34), to annotate non-
coding SNPs. For training, CADD compared the variants that are almost fixed in humans with
simulated ones and used a support vector machine classifier to distinguish these two classes of
variants. In contrast, the training data from GWAVA were defined by treating the regulatory vari-
ants in the Human Gene Mutation Database as the positive set, and three sets of negative variants
were defined by considering variants with different levels of proximity to those in the positive set.
With a pair of positive and negative sets of variants, a modified random forest algorithm classifier
was used for prediction.

To address the issue of insufficient and potentially biased training data, researchers developed
DeltaSVM (35) and DeepSea (36) to predict regulatory activities using short DNA segments as
predictive features. This was made possible because of the rich data collected from ENCODE.
Although these methods do not rely on labeled training data, predefined regulatory activities in
the genome are required. Prediction results based on different epigenetic marks (e.g., binding sites
of different transcription factors) could be substantially different (36).

In addition to supervised methods, several unsupervised methods have been proposed to
address the potential biases in labeled training data to annotate the SNPs in the noncoding
regions. These unsupervised methods simultaneously consider multiple data sources (features)
and cluster SNPs into different categories based on patterns learned from these features. Several
methods were developed along this line using epigenetic marks (e.g., histone modifications),
including ChromHMM (37, 38) and Segway (39). ChromHMM used a hidden Markov model,
whereas Segway adopted a dynamic Bayesian network model. Both ChromHMM and Segway
inferred different chromatin states from joint analysis of genomic features (e.g., transcription and
heterochromatin) using ENCODE data (40). One challenge for the use of annotation results of
ChromHMM and Segway is that they may infer different numbers of chromatin states depending
on the training data. Moreover, it is not easy to interpret some of the inferred states due to a lack
of understanding of the features associated with these states.
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In comparison, only two latent states were considered by some methods to improve ro-
bustness and interpretability of the annotation results. For example, GenoCanyon (41) jointly
modeled conservation and epigenetic information through a naïve Bayes model. It used the
expectation-maximization algorithm in model fitting and provided the posterior probability for
the functionality of each nucleotide in the genome. In contrast, Eigen (42) explicitly considered
correlations among the epigenetic marks, conditioning on the (unknown) functional state, and
used a spectral method (43) to derive the annotations. Because Eigen included variant-specific
information such as allele frequencies, its annotation is at the SNP rather than nucleotide level.

The methods discussed above can provide annotations for the whole organism without refer-
ence to a specific tissue or cell type. However, it may be more informative to have tissue- and cell
type–specific annotations, both because of the availability of tissue- and cell type–specific tran-
scriptomic and epigenetic data and because of the importance of tissue and cell type context for
a trait and disease of interest. Because there is relatively little information on tissue-specific func-
tional and nonfunctional variants in noncoding regions, unsupervised learning methods are more
useful. As the methods discussed above are generic, the annotation results obtained using these
methods will be tissue specific if tissue-specific data are used as input. In fact, when ChromHMM
and Segway were introduced, they were trained using cell line–specific data from ENCODE. As
for GenoCanyon and Eigen, both methods have been extended for tissue- and cell type–specific
annotations.GenoSkyline (44) was proposed for tissue-specific annotations using the same frame-
work as GenoCanyon, but it uses tissue-specific data. It was further extended to GenoSkylinePlus
by providing cell type–specific annotations for each of the 127 tissue and cell types in the Roadmap
Epigenomics Project (45). Similarly, FUN-LDA (46) provides tissue-specific annotations.

In addition to tissue- and cell type–specific annotations, disease-specific information has also
been integrated to improve the specificity of annotations by, e.g., Phevor (47) and Phen-Gen (48),
which incorporated ontology information for annotations involving protein-coding variants. As
for noncoding variants,DIVAN (49) and PINES (50) incorporated SNP–disease association infor-
mation to develop disease-specific annotations. However, one challenge in using these annotation
results for post-GWAS analyses is that GWAS results were already used in annotating the variants.

2.1.2. Gene and pathway information. After covering annotations for individual SNPs/
nucleotides, in this section we discuss the annotations for genes and pathways. Much is known
about the coding regions in the genome and the SNPs can be assigned to genes based on their
genomic coordinates. It is conceivable that multiple SNPs at a disease-associated gene may be
functional, and joint analysis of all the SNPs at or near this gene may be more powerful than an-
alyzing individual SNPs, especially for those with low allele frequencies. Furthermore, multiple
genes in the same biological pathway may be involved in disease etiology, and joint analysis of all
pathway genes may better identify disease-associated pathways, especially when individual genes
only exert modest effects on disease onset. There are rich resources in the public domain for path-
way annotations, including KEGG (Kyoto Encyclopedia of Genes and Genomes; http://www.
genome.jp/kegg/), Reactome (www.reactome.org/), and BioCarta (http://www.biocarta.
com/). Although genes in a pathway may be simply collected as a gene list, their detailed relation-
ships as shown in many pathway databases may offer additional information to identify disease-
associated genes and pathways. For example, genes close to each other in a pathwaymay havemore
similar biological functions, and therefore association signals. In addition to annotated pathways
from different databases, we can construct coexpression networks from gene expression profiles
collected from many individuals, e.g., those with or without a disease. The network structure may
be informative for GWAS analysis. In addition, network modules within the overall coexpression
network, i.e., a group of genes with very similar expression profiles, may be enriched with genes
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associated with a disease/trait (e.g., Reference 51 for autism).Moreover, instead of considering one
overall network based on expression data from all the samples,wemay construct separate networks
(e.g., one network from diseased individuals and another network from normal individuals) and
consider the differential (rewired) network to better identify GWAS signals (52).

2.1.3. Protein interaction. Protein interaction data are another useful annotation source for
relationships among genes. Protein–protein interactions (PPIs) are essential for many biological
functions. There are several databases for PPIs, such as BIND (Biomolecular Interaction Net-
work Database; 53), HPRD (Human Protein Reference Database; 54), and BioGRID (Biological
General Repository for Interaction Datasets; 55). The information in these databases is curated
from the literature, high-throughput experiments, and computational predictions. A PPI network
thus obtained may be treated similar to a gene coexpression network, and network modules (or
subnetworks) may be identified that are enriched for GWAS association signals.

2.1.4. Expression quantitative trait loci data. Gene expression profiles can be used to anno-
tate activity in the genome. Many large consortia, such as GTEx (14, 15), CommonMind (56),
and STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task; 57), have
generated gene expression data for different tissues and cell lines together with genotype infor-
mation. Among these consortia, GTEx provides comprehensive gene expression data, genotype
data, and other data for dozens of tissue types from hundreds of donors (14, 15). GTEx data have
been extensively analyzed to study the regulatory effects of SNPs, i.e., expression quantitative trait
loci (eQTL), on gene expression across human tissues, and the results have proved informative
for GWAS analysis. For example, regions that are transcribed in disease-related tissues are more
likely to harbor risk variants for that disease (58). Nicolae et al. (59) found that GWAS hits across
different diseases are 1.5 times as likely to be eQTLs. Mehta et al. (60) showed that the eQTLs
identified from whole blood are highly robust and reproducible across studies.

2.2. Statistical Methods to Incorporate Different Data Types to Detect
Association Signals

2.2.1. Incorporating single-nucleotide polymorphism annotations. As discussed above,
several computational tools, e.g., GenoCanyon, annotate a SNP to be either functional or non-
functional through joint analysis of multiple data types. In addition, results from prior studies may
also be used to group SNPs into those likely involved in a disease and those less likely involved.
In this case, different weights may be assigned to SNPs with different annotations to improve the
statistical power to identify SNPs truly associated the disease. For example, if two SNPs have the
same level of statistical significance from a GWAS, the SNP annotated to be functional should be
prioritized over the SNP that is annotated to be nonfunctional. This idea was first proposed by
Roeder et al. (61) to incorporate prior linkage results to weigh different SNPs, and the authors
showed that this method can effectively improve statistical power while appropriately controlling
the overall false-positive rate. This general approach can be adopted with other annotations of
SNPs, such as coding versus noncoding regions or functional regions from annotation tools (62).
The improvement in signal detection through this approach was studied by Hou et al. (31). Other
strategies can also be adopted, such as prioritized subset analysis proposed by Lin & Lee (63).

With multiple annotations available, a simple scoring scheme was proposed by Saccone et al.
(64) to rank a list of candidate SNPs based on a weighted linear score from the SNP annotations,
where each annotation category was assigned a corresponding weight. In a regression setting,
Chen&Witte (65) proposed a hierarchical model to analyzeGWASdata, using a regressionmodel
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to estimate the effect size of each SNP in the first stage, and then regressing the effect size estimates
against a set of annotations for the markers in the second stage. Heron et al. (66) considered
a similar model for binary traits. Lewinger et al. (67) proposed an empirical Bayes method in
a similar effort to incorporate prior information. For this method, it was assumed that the test
statistics follow a two-component mixture distribution, with one component corresponding to the
disease-associated markers and the other component corresponding to the non-disease-associated
markers. Functional annotation information was used to quantify the likelihood that a marker is
disease associated. Fridley et al. (68, 69) developed a full Bayesian model along this line. More
recently, a latent sparse mixed model to integrate functional annotations with GWAS data was
proposed that is scalable to millions of SNPs and hundreds of functional annotations through an
efficient variational expectation-maximization algorithm (70).

2.2.2. Gene-based association analysis. Gene-based analysis has been advocated since the
early days of GWAS to borrow information from all the SNPs at or close to a gene in order to
investigate whether there is an overall association signal between the SNP set and the disease/trait
of interest. This is motivated by the hypothesis that more than one SNP may be disease associ-
ated and joint analysis will improve statistical power by simultaneously considering all the SNPs.
A naïve approach proposed by Wang & Bucan (71) first analyzed all the SNPs for a gene indi-
vidually and used the SNP with the most significant result to represent the gene-level association
signal for this gene. It is clear that this method will favor genes with more SNPs because, even in
the absence of association with a disease, genes with more SNPs will likely have more statistically
significant findings simply by chance. Although it is natural to apply a multivariate regression to
study the relationship between a disease/trait and a set of SNPs, where the response variable is the
disease status or trait value and the independent variables are all the SNPs in this set, the strong
dependency (i.e., LD) among the SNPs may present statistical and computational challenges for
regression models. One approach to addressing this issue is through regressing the disease status
or trait value on the principal components of the SNP genotypes. This approach first calculates
the principal components of the genotype matrix, where each row corresponds to a study subject
and each column corresponds to a SNP, and the entry in this matrix is the coded genotype score,
e.g., the number of minor alleles, for the corresponding individual and SNP. After the calcula-
tions of the principal components, a (logistic) regression model is used to study the association
between disease outcome and the leading principal components. In a systematic comparison of
different gene-based association methods, Ballard et al. (72) found that the PCA-based analysis
had an overall good performance compared to other methods. This method was implemented
in MAGMA (73). Jointly considering both phenotype and genotype information in dimensional
reduction, Chun et al. (74) proposed a sparse partial least-squares method for gene-based analy-
sis to further improve statistical power. When there are many (hundreds of) markers in a gene,
the methods considered by Ballard et al. (72) may not be optimal. Kernel-based methods such as
SKAT have proved useful in this context (75, 76).

While the above methods need individual genotype data to perform gene-based association
analysis, some methods have been proposed to use summary statistics from individual SNPs to
derive gene-based tests, including VEGAS (77) and GATES (78), which only require marginal
p-values without individual genotype data. To improve computational efficiency, Bacanu (79) pro-
posed a two-stage procedure that first identifies interesting regions and then performs more re-
fined gene-based analysis in these interesting regions.

2.2.3. Pathway-based (gene set) analysis. To demonstrate the benefit of incorporating path-
way information in GWAS analysis, Dinu et al. (80) aimed to identify additional genes associated
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with age-related macular degeneration using the GWAS data from Klein et al. (1). This analysis
focused on the complement pathway because this pathway was implicated in the genome-wide sig-
nificant finding. Although none of the SNPs in this pathway passed statistical significance individ-
ually, multiple SNPs in this pathway showed marginal association signals and there was an overall
statistically significant enrichment of marginal signals for this pathway.Moreover, there was good
correspondence between marginal signals and prior linkage results. Ballard et al. (81) focused on
GWAS results for Crohn’s disease and showed that many pathways were enriched for genes with
marginal association signals, although most of these genes did not pass statistical significance on
their own. Similarly, pathway-based analysis of height GWAS results implicated several biologi-
cal pathways (82) related to height. As for statistical methods to identify disease/trait-associated
pathways, K.Wang et al. (71) adapted the gene set enrichment analysis method that was originally
developed to analyze gene expression data for the analysis of GWAS data. A hierarchical Bayesian
model was proposed by Shahbaba et al. (83) to aggregate information from multiple genes in
a pathway. A similar approach developed by L. Wang et al. (84) and Zhang et al. (85) studied
how domains are associated with different diseases. More recent developments on gene set- or
pathway-based analysis include MAGMA (73) and a method based on the generalized Berk–Jones
statistic (86).

2.2.4. Topology-based analysis. Although the methods discussed in the previous section are
effective at integrating information frommultiple genes in a pathway to identify disease-associated
pathways, they do not utilize detailed relationships, also called topological information, among
genes in a pathway. Several methods have been proposed to better utilize topological informa-
tion. Erten et al. (87) discussed three types of topological information that can be used, including
network connectivity, information flow, and topological similarity. According to the network con-
nectivity principle, genes with more connections to genes known to be disease associated should
be prioritized. To recover potential information loss due to indirect connections, the information
flow principle connects candidate genes to the seed genes that are disease associated. The topo-
logical similarity principle is built on the idea that if a gene interacts with a group of genes with
similar functions, then this gene may also have similar functions.

There are many established databases for PPIs. We can represent a PPI network by an un-
weighted, undirected graph with each node denoting a protein (gene) and each edge denoting the
interaction between two proteins (genes). If some genes in this network are disease associated,
we can assess the importance of a candidate gene based on its topographical relationships with
disease-associated genes in the network. This idea was realized by J. Chen et al. (88) by adopting
three algorithms proposed by White & Smyth (89) to rank web pages. The ToppGene Suite (90)
used the k-step Markov method, one ofWhite & Smyth’s three algorithms, to prioritize candidate
genes using PPI information. After comparing several gene prioritization methods using PPI in-
formation, Navlaka & Kingsford (91) concluded that the combination of some of these methods
may lead to improved performance. Further developments were carried out by Guney & Oliva
(92), who considered the node (gene) properties in analysis, and by Jia et al. (93), who considered
dense modules enriched for GWAS signals when there is no known disease-associated genes.

Similar to pathway-based analysis utilizing topology information, M. Chen et al. (94) found
that genes with marginal evidence of association were also likely to be neighbors. Based on this
observation, they proposed a Markov random field (MRF) model incorporating topological infor-
mation in order to better identify disease-associated genes by jointly modeling network informa-
tion and GWAS results (94). They showed that more disease-associated genes can be identified
using this MRFmodeling approach. This approach has been extended by Hou et al. (52) to jointly
model gene coexpression networks where the focus was the rewired network, i.e., the differences
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between the network constructed from the diseased individuals and that constructed from the
healthy controls.

2.2.5. Expression quantitative trait loci. eQTL naturally connects SNPs, genes, and traits.
PrediXcan (95) and FUSION (96) were recently introduced to incorporate eQTL results into
GWAS analysis. For these methods, a gene expression level prediction model (commonly called
an imputation model in this context) is first trained from an eQTL dataset (e.g., GTEx) to predict
gene expression in a given tissue (e.g., whole blood) using genotype data. Most of these methods
only consider nearby SNPs (i.e., cis-SNPs) to reduce the model search space. After the imputation
model is developed for each gene in a given tissue, the expression level for an individual in a given
tissue can be imputed based on his or her genotype data. Then we can assess whether there is an
association between the imputed gene expression levels and observed trait values. Genes with sta-
tistically significant results will be considered trait associated. Although the initial methods were
developed for individual genotype data, it was later shown that this general approach can also be
applied to summary statistics data, where the test statistic can be approximated using the param-
eters in the imputation model, GWAS summary statistics, and a reference genotype panel (96,
97). Therefore, gene-level association tests can be performed without having access to individual-
level genotype and phenotype data. These imputation-based gene-level association methods have
gained much popularity in recent years and been applied to many diseases and traits (98). Com-
pared to gene-level association tests discussed above in Section 2.2.2 that do not use eQTL in-
formation, PrediXcan and FUSION can better leverage eQTL data by assigning more informed
weights to SNPs than those purely based on LD information.

Several methods have been proposed to improve the performance of the above methods (e.g.,
99). To improve prediction accuracy, Nagpal et al. used a nonparametric Bayesian method that
assumes a data-driven nonparametric prior for cis-eQTL effect sizes (100). However, there are
several limitations to these methods. First, the sample sizes for some tissues, such as brain tissues,
are more limited than others, leading to difficulty in downstream analysis and interpretations.
Second, the relevant tissue may not even be in the training dataset; therefore, cross-tissue analy-
sis is needed to best utilize the correlation among tissues and increase statistical power. Third,
when single-tissue analysis is performed, it is nontrivial to combine results for an integrative
organism-level analysis. Recently, a cross-tissue transcriptome-wise association study framework
named UTMOST was introduced to address these limitations (101). The method first imputes
gene expression levels in multiple tissues through a penalized regression model, and then per-
forms a joint tissue association test by combining single-tissue association statistics through the
generalized Berk–Jones test. Previous work on multitissue analysis focused on inferring eQTLs
(102) instead of gene expression imputation. There has also been work to expand these methods
to incorporate other types of annotations such as splicing quantitative trait loci (103). Finally, fine-
mapping methods have been proposed to identify biologically relevant genes among coregulated
gene candidates (104).

2.2.6. Joint GWAS analysis from multiple traits. Pleiotropy is the phenomenon that the
same variant/gene may have an effect on more than one trait. Pleiotropy has been found to be
widespread in human genetics. Even before the GWAS era, phenotype similarities were used to
cluster diseases and identify genes for a query disease (105).Many genes have been found to be as-
sociated with multiple autoimmune disorders (106). Interested readers are referred to References
107 and 108 for more general reviews. To leverage shared genetics across different phenotypes,
Zhou& Stephens (109) introduced amultivariate linear mixed effects model when individual-level
genotype data and multivariate phenotypes are available. A comprehensive analysis was provided
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by Stephens (110). When only marginal SNP association significance levels are available from
GWAS for different phenotypes, a statistical framework, called GPA (genetic analysis incorpo-
rating pleiotropy and annotation), was proposed to borrow information across different GWAS
to improve association signal detections (111). When analyzing results from two traits, GPA as-
sumes that each SNP has four possible association statuses, (0,0), (0,1), (1,0), and (1,1), where (0,0)
means that the SNP is not associated with either trait, (0,1) means that the SNP is associated
with the second trait but not the first trait, etc. For each association status, GPA further assumes
that the observed statistical significance follows a specific distribution. Then GWAS summary
statistics from both studies are jointly analyzed to infer the joint association status of each SNP
with the two traits. More recently, MTAG was introduced to jointly analyze summary statistics
from multiple traits to improve statistical power (112).

3. DISSECTION THE GENETIC ARCHITECTURE
OF COMPLEX TRAITS

In the previous section, our focus was on the identifications of SNPs/genes associated with traits
of interest. Although most GWAS papers only report statistically significant SNPs, there is often
an enrichment of SNPs with small p-values, although many do not pass genome-wide statistical
significance. It is likely that many of these marginally significant SNPs are disease/trait associated.
Therefore, there is a need to understand the genetic association signal information across all the
SNPs, not just those that are significant. In a seminal GWAS paper for schizophrenia and bipolar
disorder, Purcell and colleagues could not identify any marker passing genome-wide statistical
significance (113). However, they showed that the disease risk score derived from a subset of the
data was correlated with the disease status in an independent set, suggesting the presence of as-
sociation signals in the data. The authors performed extensive simulations under various disease
models and showed that when there are hundreds of SNPs having weak associations with disease,
it is likely there may not be any genome-significant findings but we can still derive significant
risk prediction scores. This paper represents the first attempt to use results from genome-wide
SNPs to infer the underlying genetic model for diseases. There are many aspects of the genetic
architecture of complex traits, including the number of genes/variants affecting a trait, their effect
sizes, allele frequencies, relevant tissues and cell types, and correlations among different traits,
among others. In the following, we focus on three aspects of the genetic architecture that have
received great attention in the GWAS literature, including heritability, tissue/cell type specificity,
and genetic correlation between traits.

3.1. Heritability

Although many genetic variants have been identified for many traits, in combination they only
account for a small proportion of phenotype variation. For example, with more than 700,000
people and over 3,200 near-independent association signals for height, SNPs only account for
24.5% of the variation in height (114), which differs substantially from the estimated 80%
heritability for height. The so-called “missing heritability” in the literature refers to the obser-
vation that association signals from early GWAS results often only explain a small proportion
of overall heritability (115). In a seminal paper (116), Yang et al. showed that although the trait
prediction model developed from significant (or top) SNPs may only be modestly predictive of
the trait in the general population, SNPs on the genotyping platforms can in fact account for a
significant proportion of the trait variation. The authors reached this conclusion by adopting the
random effects model to connect phenotypes with genotypes.Under the random effects modeling
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framework, the genotypes at each SNP are first standardized to have mean 0 and variance 1, and
the effects of all the SNPs are assumed to follow a normal distribution with mean 0 and variance
h2/m, where m is the total number of SNPs. Hence the overall genetic contribution of the SNPs
is h2. This is more formally defined as

Y =Xβ + ε,

β ∼N
(
0,
h2

m
I
)
,

ε ∼N (0, (1 − h2)I ),

whereY are the standardized trait values,X is the standardized genotype matrix, β are the genetic
effects, h2 is the overall heritability, and m is the number of SNPs. The residual maximum like-
lihood (REML) estimator can be used to infer the model parameters when individual genotype
and phenotype data are available. The heritability estimated with this approach is often called
chip-based heritability, as it does not account for variants that cannot be captured by the SNPs
on the genotyping platform. One potential issue with this model is that it is unlikely that all the
SNPs will contribute to the observed trait; therefore, the model is likely mis-specified. A more
realistic model may be that only a small proportion of the SNPs are associated with traits. In this
case, the genetic model would assume that the effect size distribution is a mixture of a point mass
of 0 for most SNPs and a normal distribution for those SNPs having some effects. Jiang et al.
(117) showed that the traditional REML estimator has excellent robustness when the model is
mis-specified, justifying its application to GWAS data analysis.

For broader applications to GWAS, the REML estimate has two limitations even with its good
robustness: It requires individual-level data, which may not be accessible for the general research
community due to privacy and other concerns, and the computational complexity makes it diffi-
cult to handle biobank-level data with hundreds of thousands of individuals. However, summary
statistics from GWAS results are more readily available (118) and may be used to infer chip-based
heritability.

The LD score regression method was first introduced as a method to distinguish polygenicity
from unadjusted confounding in GWAS analysis (119). LD score regression only requires GWAS
summary statistics and externally estimated LD as inputs. It is based on the same random effects
model defined above. When there is no unadjusted confounding in the model, that the following
can be shown:

E
(
z2j

)
= nh2

m
lj + 1,

where z j is the z-score of the j-th SNP, n is the sample size, and the LD score for the j-th SNP, l j ,
is defined as the sum of LD scores between the j-th SNP and all other SNPs:

l j =
m∑
k=1

r2jk.

When z2j is regressed on LD scores l j , the weighted least-squares estimator for the regression
coefficient can be used to estimate heritability, h2.

The LD score regression method has become one of the most commonly used approaches
for estimating heritability because it only needs summary statistics and LD information from a
reference panel as inputs. Other methods proposed for estimating heritability using summary
statistics may be statistically more efficient (120), and there is also concern about confounding
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(121). However, the original LD score regression method is still the predominantly used method
in the literature.

One limitation of the random effects model discussed so far is that all the SNPs are assumed
to have the same effect distributions. Balding and colleagues have proposed an alternative LDAK
model where the trait contribution from a SNP is a function of a number of factors, including
its allele frequency and associations with nearby markers (122–124). Based on their model spec-
ifications, they showed that the estimated heritability is higher for most traits than the standard
random effects model.

3.2. Tissue and Cell Type Specificity

Instead of using the heritability estimation approaches discussed above with all the SNPs in the
human genome, we can focus on a selected set of SNPs, such as those on a specific chromosome or
with minor allele frequency below a threshold, e.g., 1%, to ask howmuch phenotype variation can
be explained by markers on a specific chromosome or by less common variants. With this idea, it
was shown that each chromosome’s contribution to the overall height heritability is proportional
to its length, suggesting a polygenic genetic architecture for height (125). Further, it was also
shown that heritability for height and body mass index is enriched in variants with lower minor
allele frequencies, hinting at selection effects (126).

When only summary statistics are available, the LD score regression method can be extended
to estimate annotation-dependent heritability (21). With K functional annotations, the original
random effects model can be generalized as

Y =
K∑
i=1

Xiβi + ε,

βi ∼N
(
0,
h2i
mi
I
)
,

ε ∼N

(
0,

(
1 −

K∑
i=1

h2i

)
I

)
,

where Xi is the genotype matrix for mi SNPs having the i-th functional annotation, and h2i is the
proportion of phenotypic variance explained by SNPs with the i-th annotation.Under this model,
we have

E
(
z2j

)
=

K∑
i=1

nh2i
mi

l (i)j + 1,

where l (i)j is the annotation-stratified LD score, defined as

l (i)j =
∑
k∈Ai

r2jk.

If we annotate the human genome based on tissue- and cell type–specific information, we can ask
which tissue or cell type is relevant for the trait of interest by performing heritability enrichment
analysis based on LD score regression. This can be accomplished by comparing the proportion of
heritability explained by the SNPs in a functional annotation with the proportion of the genome
covered by these SNPs. Such analysis has become routine in GWAS because, when tissue-specific
functional annotations are used, such enrichment analysis can identify disease-related tissue and
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cell types (21, 44, 45, 58). For example, in the analysis of GWAS results from Alzheimer’s and the
Parkinson’s diseases, among 65 tissue and cell types, SNPs that are potentially functional inCD14+

monocytes explain most of the heritability for both diseases, suggesting that innate immunity
is involved in neurodegeneration and that these two diseases share genetics through a common
neuroinflammation pathway (45).

3.3. Genetic Correlation Between Traits

When individual-level data are available, the REML estimator can be used to study shared genetics
across multiple complex traits (127, 128). When only summary statistics are available, LD score
regression can be extended in a similar way (129) to study genetic correlation. The cross-trait LD
score regression is based on the following model:

Y1 = Xβ + ε, β ∼ N
(
0,
h21
m
I
)
, ε ∼ N

(
0,

(
1 − h21

)
I
)
,

Y2 = Zγ + δ, γ ∼ N
(
0,
h22
m
I
)
, δ ∼ N

(
0,

(
1 − h22

)
I
)
,

where Y1 and Y2 are the standardized phenotypes for the two traits with respective heritabilities h21
and h22, and β and γ are the respective effect sizes for them SNPs defined in standardized genotype
matrices X and Z. The effects on two different traits are assumed to be correlated:

E
(
βγT

) = ρg

m
I,

where ρg is the genetic covariance between traits Y1 and Y2. In the simple case where there are no
shared samples between the two GWAS for these two traits, we have

E
(
(z1) j (z2) j

)
=

√
n1n2ρg

m
lj ,

where n1 and n2 are the sample sizes for the two traits, respectively. Similar to single-trait analysis,
regression coefficients can be used to estimate genetic covariance, or a closely related but more
interpretable metric, genetic correlation:

corr = ρg

h1h2
.

The results can be generalized to the case where there are sample overlaps between the two
GWAS. Under the same modeling framework, GNOVA (130) used an estimator based on the
method of moments to estimate genetic covariance.Moreover, GNOVA can estimate annotation-
stratified genetic covariance through the following model

Y1 =
K∑
i=1

Xiβi + ε,

Y2 =
K∑
i=1

Ziγi + δ,

E
(
βiγ

T
i

) = ρi

mi
I,
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when there are K functional annotations, and the parameters ρi (i = 1, . . . ,K ) quantify the genetic
covariance components for each functional annotation.

Summary statistics–based methods are now commonly used to infer genetic correlations
among many complex diseases and traits (131, 132). Several methods have been developed to
estimate local genetic correlation for specific risk loci (133) and trans-ethnic genetic correlation
(134), as well as to improve genetic correlation estimates for case-control studies (135).Moreover,
online servers have been developed for researchers to estimate genetic correlations between their
data and hundreds of traits with publicly accessible summary statistics (136).

4. GENETIC RISK PREDICTION

Achieving accurate disease risk prediction using genetic information is a major goal in human
genetics research and precision medicine. Accurate prediction models can improve disease pre-
vention and early treatment strategies (137). Consider a simple additive model for quantitative
traits. There are two key aspects of a good prediction model: the selections of SNPs for predic-
tion and the estimated effect sizes for these SNPs. One naïve approach would be to only include
statistically significant SNPs in the model and use the marginal effect size estimate. However,
considering only statistically significant SNPs may lose out on potentially useful information in
the other markers, and there is also the potential issue of winner’s curse for those significant SNPs
if their marginal effect sizes are used in prediction. To improve upon this naïve approach, re-
searchers have adopted various approaches that utilize genome-wide data, including those based
on individual genotype data and those based on summary statistics.

Methods proposed for when individual genotype and phenotype data are available include
those based on machine learning (138), Bayesian sparse linear mixed models (139), an improved
best linear unbiased prediction method (140), and a kernel machine method (141). Methods have
also been proposed to leverage information from genetic correlations among traits (138–143).
Methods proposed for when only summary statistics are available include those based on pruning
and thresholding, Bayesian priors that incorporate LD information (144), empirical Bayes
estimates (145), penalized regression (146), and Bayesian regression with continuous shrinkage
priors (147). Despite the potential information loss in summary data, summary statistics–based
approaches have been widely adopted since summary statistics for large-scale association studies
are often easily accessible. However, prediction accuracies for most complex diseases remain
moderate, which is largely due to the challenges in both identifying all the functionally relevant
variants and accurately estimating their effect sizes in the presence of LD (148).

AnnoPred (149) is a principled framework to integrate functional annotation information to
improve polygenic risk prediction accuracy. A key idea in the AnnoPred framework is to utilize
functional annotation information to accurately estimate SNPs’ effect sizes.Using this framework,
researchers can estimate the enrichment for GWAS associations in a prespecified list of functional
annotations and acquire an empirically estimated informative prior of SNPs’ effect sizes based on
annotation assignment and signal enrichment. In general, SNPs located in annotation categories
that are highly enriched for GWAS signals receive a higher effect size prior. Through its appli-
cations to real GWAS data, it was shown that AnnoPred can effectively incorporate annotation
information to improve risk prediction (149). PleioPred is a method that can incorporate GWAS
summary statistics from multiple traits to further improve risk prediction accuracy (150). It was
shown that the improvement in the risk prediction accuracy is proportional to the genetic corre-
lation between traits. More recently, wt-SBLUP (151) was introduced to jointly analyze summary
statistics from multiple traits to improve risk prediction.
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Table 1 Common terms and approaches used in genome-wide association studies and associated tools that have been
developed

Term/approach Objective Selected resources and tools
Genome annotations Prioritize genes, regions, and variants based

on their potential functions
Protein-coding region: PolyPhen
Sequence conservation: GERP, phyloP
Supervised methods: CADD, GWAVA,
DeltaSVM, DeepSea

Unsupervised methods: ChromHM, Segway,
GenoCanyon, Eigen

Tissue-specific annotations: GenoSkyline,
FUN-LDA

Integration of disease information: Phevor,
Phen-Gen, PINES

Integrated resources: RegulomeDB, ANNOVAR
Meta-analysis Integrate results from different studies Stata, METAL
Pleiotropic analysis Integrate information from genetically

correlated traits
GPA, MTAG

Multilocus or gene-based
analysis

Integrate information from different markers PCA, MAGMA, SKAT, VEGAS, GATES

Pathway- and network-
based analysis

Integrate information from multiple related
genes

MAGMA, ToppGene, MRF-based analysis

Fine mapping Localize functional genes and variants PAINTOR, CAVIAR, FINEMAP
TWAS Integrate information from eQTL studies PrediXcan, FUSION, UTMOST
Heritability Estimate the overall genetic contribution

from a set of markers to a trait
GCTA, LDSC, GNOVA

Genetic correlation Estimate the genetic correlations between
traits for a set of markers

GCTA, LDSC, GNOVA

Polygenic risk score Predict disease risk based on genetic
information

P+T, LDPred, AnnoPred, PleioPred, PRS-CS

Mendelian randomization Infer the causal relationship among traits IVW,MR-Egger

Abbreviations: eQTL, expression quantitative trait loci; IVW, inverse variance weighted; MRF, Markov random field; P+T, pruning and thresholding;
PCA, principal component analysis; PRS-CS, polygenic risk score with continuous shrinkage prior; TWAS, transcriptome-wide association studies.

Table 1 summarizes the statistical methods discussed in Sections 3 and 4. Some of the corre-
sponding data resources are listed in Table 2, including results from both GWAS and functional
genomics studies.

5. DISCUSSION

This review has focused on the analysis of GWAS results where most of the SNPs are common
variants.With the decrease in sequencing cost and investment frommany funding agencies,WES
andWGS data will become more common. Compared to GWAS data,WES andWGS data offer
us the opportunity to study the effects of rare variants. However, due to their low to very low
allele frequencies and relatively smaller sample size, it is more difficult to estimate their effect
sizes. Although statistical methods are being developed to jointly analyze both common and rare
variants to infer chromosome loci associated with traits, we may benefit from extending these
methods to incorporate accurate and informative annotations. An interesting question to study
when both common and rare variants are available would be how these two types of variants
interact to affect disease outcome (152).
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Table 2 Data resources for genome-wide association studies

Resource Available data types URL
dbGaP (Database of
Genotypes and
Phenotypes)

Genetic data: SNP, CNV,WES,WGS
Expression data: microarray, RNA-seq
Epigenomic data: ChIP-seq, ATAC-seq, etc.
Demographic data, clinical data, exposure

information

https://www.ncbi.nlm.nih.gov/gap/

UK Biobank Genetic data: SNP, CNV,WES
Demographic data, clinical data, exposure

information, wearable device data, imaging
data

http://biobank.ctsu.ox.ac.uk/showcase/index.cgi

GTEx (Genotype-Tissue
Expression) Project

Genetic data: SNP, CNV,WES,WGS
Expression data: RNA-seq
Demographic information

https://www.gtexportal.org/home/

GEO (Gene Expression
Omnibus)

Expression data: microarray, RNA-seq
Sample information

https://www.ncbi.nlm.nih.gov/geo/

ENCODE (Encyclopedia
of DNA Elements)

RNA-seq, ChIP-seq, DNase-seq, ATAC-seq,
methylation, RIP-seq, ChIA-PET, 5C,
Hi-C

https://www.encodeproject.org/

Roadmap Epigenomics
Project

RNA-seq, ChIp-seq, DNase-seq, methylation https://www.roadmapepigenomics.org/

Abbreviations: 5C, chromosome conformation capture carbon copy; ATAC-seq, assay for transposase-accessible chromatin using sequencing; ChIA-PET,
chromatin interaction analysis by paired-end tag sequencing; ChIP-seq, chromatin immunoprecipitation and sequencing; CNV, copy number variation;
DNase-seq, DNase I–hypersensitive sites sequencing; Hi-C, high-throughput chromosome conformation capture; RIP-seq, RNA immunoprecipitation
and sequencing; RNA-seq, RNA sequencing; SNP, single-nucleotide polymorphism; WES, whole-exome sequencing; WGS, whole-genome sequencing.

One emerging technology that will prove informative for GWAS analysis is single-cell data.
Although transcriptome analysis has been well integrated inGWAS analysis (e.g., eQTL discussed
above), having single-cell transcriptome data may open new doors to study the genetic effects of
variants, such as cell type compositions, cell heterogeneity, and others. We also note that other
types of data, e.g., ATAC-seq (153) andHi-C (154), are being generated and curated, and such data
will undoubtedly offer useful information for the analysis and interpretation of GWAS results.

With an ever-increasing sample size and better phenotyping from large-scale GWAS, such
as UK Biobank (155), the All of Us Research Program (https://allofus.nih.gov; 156), the
Million Veteran Program (157), the BioBank Japan Project (158), and many studies at the dbGaP
(Database of Genotypes and Phenotypes; https://www.ncbi.nlm.nih.gov/gap/), a large number
of phenotypes together with individual genotypes are available from millions of samples across
these studies.There is no doubt that powerful statistical methods implemented in computationally
efficient tools will lead to the novel identification of tens of thousands of associations between ge-
netic variants and traits.Moreover, the availability of data from electronicmedical records together
with environment exposure data will present great opportunities and challenges for statisticians.
With many association signals at hand, the future focus of GWAS analysis will be on understand-
ing the molecular mechanisms of disease onset, the causal relationships among different traits, and
how genetics can inform disease heterogeneity. For example, GWAS results may point to the de-
velopment of new therapeutic strategies or repositioning of approved drugs for new indicators, as
demonstrated by Sham and colleagues (159). Another area that has seen very active research is the
inference of causal relationships among different traits, as well as gene expression traits, through
various versions of Mendelian randomization methods (160, 161). Moreover, although we have
discussed how GWAS results can help identify high-risk individuals for more effective prevention
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and treatment, risk prediction models to date do not take an individual’s health records into ac-
count, and it would be much more informative if such information were fully integrated in disease
risk prediction via access to electronic health records. In addition, with better understanding of
the functional roles of both common and rare variants, we will be able to truly benefit from the
rich information in WES andWGS data. It is critical to develop more comprehensive and robust
statistical methods to accomplish these goals.
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