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Abstract: Existence and uniqueness results for stochastic differential equations (SDEs) under
exceptionally weak conditions are well known in the case where the diffusion coefficient is
nondegenerate. Here, existence and uniqueness of a strong solution is obtained in the case
of degenerate SDEs in a class that is motivated by diffusion representations for solution
of Schrödinger initial value problems. In such examples, the dimension of the range of the
diffusion coefficient is exactly half that of the state. In addition to the degeneracy, two types
of discontinuities and singularities in the drift are allowed, where these are motivated by the
structure of the Coulomb potential and the resulting solutions to the dequantized Schrödinger
equation. The first type consists of discontinuities that may occur on a possibly high-dimensional
manifold (up to codimension one). The second consists of singularities that may occur on a
lower-dimensional manifold (up to codimension two).
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1. INTRODUCTION

Existence and uniqueness results for solutions of stochastic
differential equations (SDEs) typically have weaker as-
sumptions on the smoothness of the drift than that which
is required in the case of the corresponding ordinary dif-
ferential equations (ODEs), where more specifically, these
ODEs correspond to the case where the diffusion terms
in the SDEs are removed. The results with the weakest
conditions on the drift have been those where the diffusion
coefficient is assumed to be nondegenerate, cf. Albeve-
rio, Kondratiev and Röckner (2003); Krylov and Röckner
(2005); Veretennikov (1981); Zvonkin (1974).

In some recent efforts on diffusion representations for
solutions of Schrödinger initial value problems (IVPs)
Azencott and Doss (1985); Doss (2011); McEneaney and
Zhao (2018); McEneaney (2018, 2019), the representation
dynamics take the form of complex-valued SDEs. In par-
ticular, the SDEs are given as

dξt = f(ξt) dt+
1+i√

2
σ dBt,

where Bt ∈ Rm, σ ∈ R, f : Cm → Cm, i denotes the
imaginary unit, and C denotes the complex field. Breaking
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out the real and imaginary parts, one obtains an SDE with
2m–dimensional state and an 2m×m degenerate diffusion
coefficient. Hence, we have an iconic application class for
which there were previously no solution existence and
uniqueness results. This class motivates the effort here,
and a particular example appears in Section 3. We remark
here that in the case of that specific example from the
problem class, the drift is generated by the gradient of a
solution to the dequantized form, cf. Litvinov (2007), of
the Schrödinger equation. The particular solution of that
motivating example is that which corresponds to the low-
est energy electron shell. Moreover, for the general problem
class, the 2m–dimensional real-valued formulation allows
for two types of nonsmoothness in the drift. The first con-
sists of discontinuities that may occur on a possibly high-
dimensional manifold. The second consists of singularities
that may occur on a lower-dimensional manifold. In the
our problem class, the discontinuities occur on a manifold
of codimension one in R2m, while the singularities occurs
on a manifold of codimension two in R2m.

We briefly indicate other recent results on existence and
uniqueness for degenerate SDEs, so as to situate the result
herein. Kumar (2013) considers degenerate SDEs with
non-Lipschitz coefficients and states taking values in the
positive orthant, where in the particular case where the
coefficients are Lipschitz, both existence and uniqueness
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of a strong solution is obtained. Figalli (2007) employs
known results for associated partial differential equations
(PDEs), including the Fokker–Planck equation, as an
aid in developing results on existence and uniqueness
for degenerate SDEs. Raynal also employs known results
on associated PDEs to obtain pathwise uniqueness for
degenerate SDEs with Hölder drift with exponents greater
than 2/3.

In Section 2, the class of SDEs for which the results are
obtained is indicated. Section 3 describes the motivational
application. In Section 4, mollifiers, indexed by δ > 0, are
applied to the drift term in the dynamics, and existence
and uniqueness are obtained for the mollified system.
Lastly, in Section 5, we take δ ↓ 0, and obtain the asserted
strong solution.

2. THE CLASS OF SDES

We consider SDEs on [0, T ] of the form

dηt = F (ηt, ζt) dt+ dBt, (1)

dζt = G(ηt, ζt) dt, (2)

η0 = y0 ∈ Rm, ζ0 = z0 ∈ Rm, l
.
= 2m. (3)

In order to describe the problem structure and assump-
tions, we make some additional definitions. Let h0 ∈
C(Rm;R), h1 ∈ C(Rm;R) and

H0
.
= {(y, z) ∈ Rl |h0(y)− h1(z) = 0}. (4)

Note that H0 will be a set along which the drift may have
discontinuities. There will also be a set G0 ⊂ Rl along
which the drift may have singularities. For each z ∈ Rm, we
let G̃0(z) ⊂ Rm, and define G0

.
= {(y, z) ∈ Rl | y ∈ G̃0(z)},

where more specific assumptions on G̃0 are given further
below. For δ > 0, let G̃δ(z)

.
= {y ∈ Rm | d(y, G̃0(z)) ≤ δ|z|}

and Gδ
.
= {(y, z) ∈ Rl | y ∈ G̃δ(z)}. We assume the

following.

F,G ∈ C1([G0 ∪ H0]
c). For each δ > 0, F and G

are bounded on Gc
δ . For each δ > 0, ∇(y,z)F and

∇(y,z)G are bounded on [Gδ∪H0]
c. (y0, z0) 6∈ G0∪

H0, and z0 6= 0.

(A.1)

Suppose h0 is such that for any [a, b] ⊆ [0, T ]
and any measurable ν : [0, T ] → Rm, such that
each component (say, [ν·]j for j ≤ m) has infinite
total variation on [a, b], h0(ν·) has infinite total
variation on [a, b].

(A.2)

Let L̄ denote the space of nonsingular m × m matrices,
and let Im×m ∈ L̄ denote the identity matrix.

Let I .
= [0, 1], and let p ∈ C1(Io;Rm)∩C(I;Rm).

Let ē ∈ Rm \ {0}. Let J ∈ C2(Rm \ {0}; L̄) be
given by J(z) = (1/|z|)Γ(z) where Γ : Rm \
{0} → L̄ is such that Γ(z) is orthonormal for
all z ∈ Rm \ {0}, and such that J(z)z = ē for
all z ∈ Rm \ {0}, [J(ē)]−1 = Im×m, and dJ

dz is
bounded on Rm \ Bδ(0) for all δ > 0. Finally,

suppose G0 = {(y, z) ∈ Rl | y ∈ G̃0(z) } where for

all z ∈ Rm, G̃0(z)
.
= { y ∈ Rm | ∃λ ∈ I s.t. y =

[J(z)]−1p(λ) }.

(A.3)

Remark 1. The above structure for G0, which may at first
seem unusual, was chosen for the case where the singular
set is defined in terms of ηt relative to ζt. A motivational
example where these assumptions are satisfied is given
in Section 3. In that case, m = 3, H0 = {(y, z) ∈
Rl | |y|2 − |z|2 = 0} and G0 = {(y, z) ∈ Rl | |y|2 − |z|2 =
0, and yT z = 0}. In that case, one may take ē to be
(1, 0, 0)T and p(·) to be a parameterization of the unit
circle in the plane perpendicular to ē.

Remark 2. The assumptions may be weakened to allow
for a finite number of both discontinuity and singularity
manifolds, with no fundamental change in the proofs. For
clarity of exposition, we do not include the details.

An additional assumption will appear in Section 4, and
it will be the final assumption. That assumption is more
easily indicated there, after some additional definitions.

3. MOTIVATION

One motivation for consideration of this large class of SDE
problems is the staticization based diffusion representa-
tion for the solution of Schrödinger initial value prob-
lems (IVPs) McEneaney and Dower (2019); McEneaney
and Zhao (2018); McEneaney (2018, 2019). The case of
the Coulomb potential was discussed in McEneaney and
Dower (2019). For x ∈ C \ {0}, define the single-valued
logarithm and square-root operations

logq(x)
.
= log(r) + iθ,

√
x

.
= exp

[
1
2 logq(x)

]
,

where r ∈ (0,∞) and θ ∈ (−π, π] are such that x = reiθ.
We specifically look at the Maslov dequantization (cf.
Litvinov (2007)) of the solution of a Schrödinger IVP
associated to the lowest energy electron shell (cf. Folland
(2008)), which may be extended to complex-valued states
as S0 : [0,∞)× C3 → C given by

S0(t, x) =
−c21
2m̄ t+ ic1

√
xTx,

where c1 = 2m̄C
(n−1)~ = m̄C

~ , m̄ denotes mass, ~ denotes

Planck’s constant, C
.
= q0q1/(4πε̄0), q0 denotes the central

charge, q1 denotes the electron charge and ε̄0 denotes the

vacuum permittivity. One may check that S0
t (r, x) =

−c21
2m̄

and S0
x(r, x) = ic1x/

√
xTx, ∆S0(r, x) = 2ic1/

√
xTx,

and further, that S0 satisfies the dequantized and time-
reversed form of the Schrödinger equation, given by

0 = St(r, x)+
i~
2m̄∆S(r, x)− 1

2m̄ (Sx(r, x))
TSx(r, x)−V (x),

where V (x) = −C/
√
xTx.

The dynamics of the diffusion process generating the
solution as the associated stationary value function are
given by McEneaney and Dower (2019)

dξr = (−1/m̄)S0
x(r, ξr) dr +

√
~/m̄

1 + i√
2

dBr,

with ξ0 = x. One may separate the three-dimensional
complex state, ξr, into its real and imaginary parts as

ξr = η̂r + iζ̂r. Similarly, letting S0(r, x) = R0(r, ŷ, ẑ) +
iT 0(r, ŷ, ẑ) with x = ŷ + iẑ, and employing the Cauchy-
Riemann equations, the SDE system becomes

dη̂r = (−1/m̄)R0
y(r, η̂r, ζ̂r) dr +

√
~
2m̄ dBr, η̂0 = ŷ,
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dζ̂r = (1/m̄)R0
z(r, η̂r, ζ̂r) dr +

√
~
2m̄ dBr, ζ̂0 = ẑ.

Performing the change of coordinates ηr = (1/
√
2)[η̂r+ζ̂r],

ζr = (1/
√
2)[−η̂r + ζ̂r] yields

dηr = (1/
√
2m̄)[−R0

y +R0
z](r,

ηr−ζr
2 , ηr+ζr

2 ) dr +
√

~
m̄ dBr,

dζr = (1/
√
2m̄)[R0

y +R0
z](r,

ηr−ζr
2 , ηr+ζr

2 ) dr,

with η0 = y0
.
= (1/

√
2)[ŷ + ẑ] and ζ0 = z0

.
= (1/

√
2)[−ŷ +

ẑ]. Using the specific form of S0 in this example, this
reduces to

dηr = F (ηr, ζr) dr + σ dBr (5)

.
=

c1

m̄
√
R̃r

[sin(θ̃r)ηr − cos(θ̃r)ζr] dr +
√

~
m̄ dBr,

dζr = G(ηr, ζr) dr (6)

.
=

−c1

m̄
√
R̃r

[cos(θ̃r)ηr + sin(θ̃r)ζr] dr,

where R̃r
.
= R̄(ηr, ζr)

.
=

[
(−2ηTr ζr)

2 + (|ηr|2 − |ζr|2)2
]1/2

,

cos(2θ̃r) =
−2ηT

r ζr
R̃r

and sin(2θ̃r) = |ηr|2−|ζr|2

R̃r
with θ̃r ∈

(−π/2, π/2].

In this case, H0 corresponds to the branch cut induced by√
xTx, which is at |ŷ|2−|ẑ|2 < 0, ŷT ẑ = 0, or equivalently,

at yT z > 0, |y|2 − |z|2 = 0. That is, H0 = {(y, z) ∈
Rl | |y| = |z|, yT z > 0 }. In particular, one may take
h0(y) = |y| and h1(z) = |z|. From this, one may easily
verify Assumption (A.2). Also, we see that the singularities
occur on

G0 = {(y, z) ∈ Rl | R̄(y, z) = 0 }
= {(y, z) ∈ Rl | yT z = 0 and |y| = |z| }.

One easily finds that Assumption (A.1) is satisfied. Lastly,
to see that Assumption (A.3) is satisfied, note that one

may take G̃0(z)
.
= { y ∈ Rm | yT z = 0 and |y| =

|z| }. Note that if z = (1, 0, 0)T , then G̃0(z) is the unit
circle in the (z2, z3)–plane. Hence, one may take p(λ)

.
=

(0, cos(2πλ), sin(2πλ)) and ē = (1, 0, 0)T . See Figure 3 for
a depiction of this over the y-space. Then, for z ∈ Rm\{0},
one may then let

Γ(z)
.
=

uT

vT

wT

 , where u
.
=

z

|z|
, v̂

.
=

2∑
k=1

u× ek,

v =
v̂

|v̂|
, w

.
=

u× v

|u× v|
,

and ek denotes the kth standard basis vector in R3. One
may then easily verify Assumption (A.3).

We remark that another example, again associated to a
classical energy shell, is given by

S1(t, x)
.
=

−c21,1
2m t+ ic1,1

√
xTx− i~ logq(x1),

where c1,1
.
= mC

2~ . In this case there are additional disconti-
nuity and singularity manifolds. In particular, in addition
to H0 and G0 from the S0, we also have H0,1

.
= {(y, z) ∈

Rl | z1 = 0 and y1 < 0 } and G0,1
.
= {(y, z) ∈ Rl | y1 =

z1 = 0 }.

Fig. 1. Pictorial description of G̃0(z).

4. THE δ > 0 PRELIMIT

We smooth the dynamics as follows. For δ > 0, let
gδ, g̃δ/4,δ ∈ C∞(R) be given by

gδ(ρ)
.
=

1− exp
{ 1

δ2
+

1

ρ2 − δ2

}
if |ρ| ∈ [0, δ),

1 if |ρ| ≥ δ,
(7)

g̃δ/4,δ(ρ)
.
=

{
0 if |ρ| ∈ [0, δ/4],

g3δ/4(|ρ| − δ/4) if |ρ| > δ/4.
(8)

We also let
Ĝδ

.
= Gδ ∪ [Rm ×Bδ(0)].

Defining R̂(y, z)
.
= d

(
y, G̃0(z)

)
/|z| for |z| > 0, we let

F δ(y, z)
.
= gδ(R̂(y, z))F (y, z),

Gδ(y, z)
.
= g̃δ/4,δ(|z|)gδ(R̂(y, z))G(y, z)

for all (y, z) ∈ [Rm × Rm \ {0}]. Note that

F δ = F and Gδ = G on (Ĝδ)
c. (9)

Our final assumption is that for each δ > 0,

F δ, Gδ ∈ C1
(
Hc

0 ∩ [Rm × Rm \ {0}]
)
, F δ and

Gδ are bounded on [Rm × (Bδ/4(0))
c], and

∇(y,z)F
δ,∇(y,z)G

δ are bounded on Hc
0 ∩ [Rm ×

(Bδ/4(0))
c].

(A.4)

Note that (A.4) holds for the examples given in Section 3,
and that it will hold more generally when the dynamics are
bounded by the the multiplicative inverse of appropriate
polynomial forms.

Consider the system with modified dynamics given in
integral form as

ηδt = y0 +

∫ t

0

F δ(ηδr , ζ
δ
r ) dr +Bt, (10)

ζδt = z0 +

∫ t

0

Gδ(ηδr , ζ
δ
r ), dr (11)

for t ∈ [0, T ]. We demonstrate existence and uniqueness of
a strong solution via application of the Girsanov transform
approach to first obtain existence of a weak solution,
followed by a demonstration of pathwise uniqueness to
then obtain the strong-solution assertion.

Using the infinite total linear variation of a brownian
motion versus the finite variation of the ζδ process, one
obtains the following.

Lemma 3. Suppose ηδ is a brownian motion on probability
space (Ω, F̄ , P̂ ) where Ω, F̄ and P̂ denote a sample space,
σ-algebra and probability measure, respectively, and with
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filtration denoted by F·. Let ζδ be continuous and of
bounded variation on [0, T ]. Then, for a.e. ω ∈ Ω, µ({t ∈
[0, T ] | (ηδt , ζδt ) ∈ H0}) = 0, where µ denotes Lebesgue
measure.

Lemma 4. For a.e. ω ∈ Ω, There exists absolutely contin-
uous, unique ζδ· (ω) satisfying (11).

The proof follows the standard successive approximations
approach, and we do not inlcude the details.

Using the Novikov condition and Girsanov Theorem, one
may obtain a weak solution.

Lemma 5. Let δ > 0. There exists a weak solution to (10)–
(11).

Applying the pathwise uniqueness approach, one may
obtain the strong solution.

Theorem 6. Let δ > 0. There exists a unique strong
solution to (10)–(11).

5. TAKING δ ↓ 0

We obtain the limit result in the case where the dimension
satisfies m ≥ 3. This restriction is related to the form of
G̃0, which takes the form of a curve in Rm. It is expected
that in the case where G̃0 is a point, the result would follow
for m ≥ 2.

Fix a probability space, say (Ω, F̄ , P̄ ), and brownian mo-
tion, B·, with filtration F· generated by B·. As (y0, z0) 6∈
G0, there exists δ̄ > 0 such that (y0, z0) 6∈ Gδ for all
δ ∈ [0, δ̄]. Let δn ↓ 0 with δ1 ∈ (0, δ̄). Let the corresponding
strong solutions of (10)–(11) be denoted by (ηn, ζn). Note
that Gδn(y, z) = 0 for all z ∈ Bδn/4(0), and hence

|ζnt | ≥ δn/4 ∀ t ∈ [0, T ], ω ∈ Ω, n ∈ IN. (12)

For n ∈ IN , let

An
.
= {ω ∈ Ω | 6 ∃t ∈ [0, T ] s.t.

(ηnt , ζ
n
t ) ∈ Gδn ∪ [Rm ×Bδn(0)] }. (13)

Recalling that F δ = F on Gc
δ and Gδ = G on Gc

δ∩Bδ/4(0)
c,

we see that

(ηm, ζm) = (ηn, ζn) ∀ω ∈ An and m ≥ n ≥ 1. (14)

Lastly, let

η̃nt = J(ζnt )η
n
t , (15)

ζ̃nt = J(ζnt )ζ
n
t = ē, (16)

for all t ∈ [0, T ].

Lemma 7. For each ω ∈ Ω, (ηnt , ζ
n
t )(ω) ∈ Gδ if and only if

ηnt (ω) ∈ G̃δ(ζ
n
t (ω)) if and only if η̃nt (ω) ∈ G̃|ζn

t (ω)|δ(ζ̃
n
t (ω))

if and only if there exists λn
t (ω) ∈ I such that |η̃nt (ω) −

p(λn
t (ω))| ≤ δ.

Proof. For compactness of the presentation, we suppress
the ω arguments. The first assertion is by definition.
Noting Assumption (A.3), that assertion is true if and

only if d(ηnt , G̃(ζnt )) ≤ δ|z|, or equivalently, minλ∈I |ηnt −
J−1(ζnt )p(λ)| ≤ δ|z|. Using the orthonormality of Γ(ζnt ),
one finds that this is true if and only if minλ∈I |J(ζnt )ηnt −
p(λ)| ≤ δ, which by (16), is equivalently, minλ∈I |η̃nt −
p(λ)| ≤ δ, which yields the remaining two assertions.

Lemma 8. For each n ∈ IN , there exists a probability
measure, Pn, mutually absolutely continuous with respect
to P̄ , such that ηn is a brownian motion with respect to
Pn.

Proof. By the boundedness of F δn and (10), one finds
that the Novikov condition is satisfied, and hence the
assertion follows from the Girsanov theorem, cf. Karatzas
and Shreve (1987).

Let

Ân
.
= {ω ∈ Ω | 6 ∃t ∈ [0, T ] s.t. either η̃nt ∈ G̃δn(ē)

or ζnt ∈ Bδn(0) }. (17)

Using Lemma 7 and (12), we see that

An = Ân. (18)

Lemma 9. There exists a probability measure, P̆n, mutu-
ally absolutely continuous with respect to Pn, such that

dη̃nt = J(ζnt ) dη̆
n
t ,

where η̆nt is a brownian motion under P̆n.

Proof. Applying Itô’s rule to η̃n, and noting that one has
d〈[ζn]k, [ζn]j〉t ≡ 0 for all k, j ∈ ]1,m[ , one sees that

dη̃nt = F̄n(η̃nt , ζ
n
t ) dt+ J(ζnt ) dη

n
t

= J(ζnt )
[
(J(ζnt ))

−1F̄n(η̃nt , ζ
n
t ) dt+ dηnt

]
. (19)

We examine F̄n. By Assumption (A.4), there exists M1
n <

∞ such that

|Gδn
(
[J(ζnt )]

−1η̃nt , ζ
n
t

)
| ≤ M1

n ∀ t ∈ [0, T ], ω ∈ Ω. (20)

Also, by (12) and Assumption (A.3), there exists M2
n < ∞

such that

|J(ζnt )|,
∣∣ ∂J
∂zj

(ζnt )
∣∣ ≤ M2

n ∀ j ∈ ]1,m[ , t ∈ [0, T ], ω ∈ Ω.

(21)
Lastly, by (11), (20) and Assumption (A.3) one sees that

|(J(ζnt ))−1| = |ζnt | ≤ |z0|+M1
nT

.
= M3

n < ∞ (22)

for all t ∈ [0, T ] and ω ∈ Ω. By (19)–(22), we see that there
exists M̄n < ∞ such that

|(J(ζnt ))−1F̄n(η̃nt , ζ
n
t )| ≤ M̄n|η̃nt | ∀ t ∈ [0, T ], ω ∈ Ω.

(23)

For integers 0 ≤ k ≤ K < ∞, let ∆K
.
= T/K and

tk
.
= k∆K . By (23),

E
{
exp

[
1
2

tk+1

∫
tk

|(J(ζnt ))−1F̄n(η̃nt , ζ
n
t )|2 dt

]}
≤ exp

[
(M̄n)

2/2
]
E
{
exp

[
1
2

tk+∆K

∫
tk

|η̃nt |2 dt
]}

for all 0 ≤ k ≤ K < ∞ and n ∈ IN . However, recalling that
η̃n is a brownian motion on measure Pn, this is finite for
sufficiently large K. Hence, a weak Novikov condition is
satisfied, cf. (Karatzas and Shreve, 1987, Cor. 3.5.14), and
we may apply a Girsanov transformation, yielding measure
P̆n, mutually absolutely continuous with respect to Pn,
given by dP̆n

.
= µ̃n

T dPn, where

µ̃n
T

.
= exp

[
−

T

∫
0
(vnt )

T dηnt − 1
2

T

∫
0
|vnt |2 dt

]
,

The Trial Version



with vnt
.
= (J(ζnt ))

−1F̄n(η̃nt , ζ
n
t ), and such that under P̆n,

the process η̆nt
.
=

∫ t

0
vnr dr + ηnt is a brownian motion.

Recalling (19), we have dη̃nt = J(ζnt ) dη̆
n
t .

We defne {βn
t }t≥0 and {αn

s }s≥0 by

βn
t

.
=

∫ t∧T

0

dr

|ζnr |2
, αn

s
.
= inf{t ∈ [0,∞)|βn

t > s}.

We understand the infimum of empty set is ∞.

Lemma 10. There exists a Brownian motion {ws}s≥0 on

an enlarged probability space of (Ω, F̄ , P̆n), which we

denote by (Ω̃, F̃ , P̃n), such that ws = η̃nαn
s
for 0 ≤ s ≤ βn

T .
Moreover there exist 0 ≤ α ≤ ᾱ < ∞ such that αn

s+r −
αn
s ∈ [αr, ᾱr ] for all 0 ≤ s, r < ∞.

Proof. The asserted bounds on αn
· follow from Assump-

tion (A.3), (12) and (22). We extend {η̃nt }0≤t≤T and
{Ft}0≤t≤T to [0,∞) by

η̂nt
.
= η̃nt∧T , F̂t

.
= Ft∧T , t ≥ 0.

Noting that {η̂nt }t≥0 is a continuous {F̂t}-martingale and
J(ζnt )J

T (ζnt ) = |ζnt |−2Im×m for all t ∈ [0, T ], ω ∈ Ω, we
have

〈η̂n,i, η̂n,j〉t = 〈η̃n,i, η̃n,j〉t∧T = δijβ
n
t .

Thus, by (1.10) Th., Chap.V of Revuz and Yor (1999),
there exists a Brownian motion {ws}s≥0 on an enlarged

probability space of (Ω, F̄ , P̆n) satisfying ws = η̃nαn
s

for

s ∈ [0, βn
T ]. To clarify the enlargement procedure and the

construction of {ws} in the above theorem, let (Ω′,F ′, P ′)
be a probability space with a filtration {F ′

s} and {bs}s≥0

be an m-dimensional {F ′
s}-Brownian motion with b0 = 0.

Define (Ω̃, F̃ , P̃n) and {F̃s} by

Ω̃
.
= Ω× Ω′, F̃ .

= F̄ ⊗ F ′, P̃n
.
= P̆n ⊗ P ′,

F̃s
.
= F̂αn

s
⊗F ′

s.

Then {ws}s≥0 on (Ω̃, F̃ , P̃n) is given by

ws(ω̃)
.
=

{
η̂nαn

s (ω)(ω), 0 ≤ s ≤ βn
∞(ω),

η̂n∞(ω) + bs−βn
∞(ω)(ω

′), s > βn
∞(ω),

=

{
η̃nαn

s (ω)(ω), 0 ≤ s ≤ βn
T (ω),

η̃nT (ω) + bs−βn
T
(ω)(ω

′), s > βn
T (ω),

(24)

where we denote ω̃ = (ω, ω′) ∈ Ω̃ = Ω× Ω′.

For ω̃ = (ω, ω′) ∈ Ω̃, we let ζ̆ns (ω̃)
.
= ζns (ω) for all s ∈ [0, T ]

and n ∈ IN . By (24), we note that

Ân × Ω′

={ω̃ ∈ Ω̃ | 6 ∃s ∈ [0, βn
T (ω)] s.t. either η̃nαn

s (ω) ∈ G̃|ζ̆n
s (ω̃)|δn(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
={ω̃ ∈ Ω̃ | 6 ∃s ∈ [0, βn

T (ω)] s.t. either ws(ω̃) ∈ G̃|ζ̆n
s (ω̃)|δn(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
⊇{ω̃ ∈ Ω̃ | 6 ∃s ∈ [0,∞) s.t. either ws(ω̃) ∈ G̃|ζ̆n

s (ω̃)|δn(ē)

or ζ̆ns (ω̃) ∈ Bδn(0) }
.
=Cn ∀n ∈ IN. (25)

For n ∈ IN , let

τn
.
= inf{s ≥ 0 | (ηns , ζns )(ω) ∈ Gδn ∪ [Rm ×Bδn(0)]},

and let

(η̄s, ζ̄s) = (ηns , ζ
n
s ) ∀ s ≤ τn,

which is

= (ηks , ζ
k
s ) ∀ k ≥ n, ∀s ≤ τn. (26)

Next, let ˘̄ζs(ω̃)
.
= ζ̄s(ω) for all ω̃ = (ω, ω′) ∈ Ω̃. Letting

Cn ={ω̃ ∈ Ω̃ | 6 ∃s ∈ [0,∞) s.t.

either ws(ω̃) ∈ G̃|ζ̆n
s (ω̃)|δn(ē)

or ˘̄ζs(ω̃) ∈ Bδn(0) } ∀n ∈ IN,

and

C̄ .
={ω̃ ∈ Ω̃ | 6 ∃s ∈ [0,∞) s.t. either ws(ω̃) ∈ G̃0(ē)

or ˘̄ζs(ω̃) = 0 },
one obtains C̄ = limn→∞ Cn.

Lemma 11. Let m ≥ 3. Pn(C̄) = 1.

Proof. (sketch) Note that

Pn({ω ∈ Ω | ∃s ∈ [0,∞) s.t. ˘̄ζs = 0 }) = 0.

One then applies classical results, cf. Doob (2001); Möters
and Peres (2010); Port and Stone (1972).

Note that Âk = Ak ⊆ An = Ân for all k ≤ n, and let
Ā .

=
⋃

n∈IN An.

Lemma 12. Let m ≥ 3. P̄ (Ā) = limn→∞ P̄ (An) = 1.

Theorem 13. Let m ≥ 3. (η̄, ζ̄) is a unique strong solution
of (1)–(3).
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N.V. Krylov and M. Röckner, “Strong solutions of stochas-
tic equations with singular time dependent drift”,
Probab. Theory Relat. Fields, 131 (2005), 154–196.

G.L. Litvinov, “The Maslov dequantization, idempotent
and tropical mathematics: A brief introduction”, J.
Math. Sciences, 140 (2007), 426–444.

W.M. McEneaney and P.M. Dower, “Staticization-based
representations for Schrödinger equations driven by
Coulomb potentials”, Proc. 3rd IFAC Workshop on
Thermodynamic Foundations of Math. Systems Th.
(2019).

W.M. McEneaney and R. Zhao, “Diffusion Process Rep-
resentations for a Scalar-Field Schrödinger Equation
Solution in Rotating Coordinates”, Numerical Methods
for Optimal Control Problems, M. Falcone, R. Ferretti,
L. Grune and W. McEneaney (Eds.), Springer INDAM
Series, Vol. 29 (2018), 241–268.

W.M. McEneaney, “Stationarity-Based Representation for
the Coulomb Potential and a Diffusion Representation
for Solution of the Schrödinger Equation”, Proc. 23rd
Intl. Symposium Math. Theory Networks and Systems
(2018).

W.M. McEneaney, “A Stochastic Control Verification The-
orem for the Dequantized Schrödinger Equation Not
Requiring a Duration Restriction”, Appl. Math. and
Optim., 79 (2019), 427–452.

W.M. McEneaney and P.M. Dower, “Staticization, its dy-
namic program and solution propagation”, Automatica,
81 (2017), 56–67.

P. Mörters and Y. Peres, Brownian Motion, Cambridge
Univ. Press, Cambridge, 2010.

M. Nagasawa, Schrödinger Equations and Diffusion The-
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