
ar
X

iv
:1

80
6.

05
35

8v
3

 [
cs

.L
G

]
 2

4
Ja

n
20

19

Defending Against Saddle Point Attack in

Byzantine-Robust Distributed Learning

Dong Yin ∗1, Yudong Chen †3, Kannan Ramchandran ‡1, and Peter Bartlett §1,2

1Department of Electrical Engineering and Computer Sciences, UC Berkeley
2Department of Statistics, UC Berkeley

3School of Operations Research and Information Engineering, Cornell University

January 28, 2019

Abstract

We study robust distributed learning that involves minimizing a non-convex loss function
with saddle points. We consider the Byzantine setting where some worker machines have
abnormal or even arbitrary and adversarial behavior. In this setting, the Byzantine machines
may create fake local minima near a saddle point that is far away from any true local minimum,
even when robust gradient estimators are used. We develop ByzantinePGD, a robust first-
order algorithm that can provably escape saddle points and fake local minima, and converge to
an approximate true local minimizer with low iteration complexity. As a by-product, we give
a simpler algorithm and analysis for escaping saddle points in the usual non-Byzantine set-
ting. We further discuss three robust gradient estimators that can be used in ByzantinePGD,
including median, trimmed mean, and iterative filtering. We characterize their performance in
concrete statistical settings, and argue for their near-optimality in low and high dimensional
regimes.

1 Introduction

Distributed computing becomes increasingly important in modern data-intensive applications. In
many applications, large-scale datasets are distributed over multiple machines for parallel process-
ing in order to speed up computation. In other settings, the data sources are naturally distributed,
and for privacy and efficiency considerations, the data are not transmitted to a central machine.
An example is the recently proposed Federated Learning paradigm [49, 38, 37], in which the data
are stored and processed locally in end users’ cellphones and personal computers.

In a standard worker-server distributed computing framework, a single master machine is in
charge of maintaining and updating the parameter of interest, and a set of worker machines store
the data, perform local computation and communicate with the master. In this setting, messages
received from worker machines are prone to errors due to data corruption, hardware/software
malfunction, and communication delay and failure. These problems are only exacerbated in a
decentralized distributed architecture such as Federated Learning, where some machines may be
subjected to malicious and coordinated attack and manipulation. A well-established framework for
studying such scenarios is the Byzantine setting [40], where a subset of machines behave completely
arbitrarily—even in a way that depends on the algorithm used and the data on the other machines—
thereby capturing the unpredictable nature of the errors. Developing distributed algorithms that
are robust in the Byzantine setting has become increasingly critical.

In this paper we focus on robust distributed optimization for statistical learning problems.
Here the data points are generated from some unknown distribution D and stored locally in m
worker machines, each storing n data points; the goal is to minimize a population loss function

∗dongyin@berkeley.edu
†yudong.chen@cornell.edu
‡kannanr@berkeley.edu
§peter@berkeley.edu

1

http://arxiv.org/abs/1806.05358v3

F :W → R defined as an expectation over D, where W ⊆ R
d is the parameter space. We assume

that α ∈ (0, 1/2) fraction of the worker machines are Byzantine; that is, their behavior is arbitrary.
This Byzantine-robust distributed learning problem has attracted attention in a recent line of
work [3, 10, 17, 26, 61, 62, 69]. This body of work develops robust algorithms that are guaranteed
to output an approximate minimizer of F when it is convex, or an approximate stationary point
in the non-convex case.

However, fitting complicated machine learning models often requires finding a local minimum
of non-convex functions, as exemplified by training deep neural networks and other high-capacity
learning architectures [59, 28, 29]. It is well-known that many of the stationary points of these
problems are in fact saddle points and far away from any local minimum [35, 29]. These tasks hence
require algorithms capable of efficiently escaping saddle points and converging approximately to a
local minimizer. In the centralized setting without Byzantine adversaries, this problem has been
studied actively and recently [27, 32, 12, 33].

A main observation of this work is that the interplay between non-convexity and Byzantine
errors makes escaping saddle points much more challenging. In particular, by orchestrating their
messages sent to the master machine, the Byzantine machines can create fake local minima near a
saddle point of F that is far away from any true local minimizer. Such a strategy, which may be
referred to as saddle point attack, foils existing algorithms as we elaborate below:

• Challenges due to non-convexity: When F is convex, gradient descent (GD) equipped
with a robust gradient estimator is guaranteed to find an approximate global minimizer (with
accuracy depending on the fraction of Byzantine machines) [17, 69, 3]. However, when F is
non-convex, such algorithms may be trapped in the neighborhood of a saddle point; see Example
1 in Appendix A.

• Challenges due to Byzantine machines: Without Byzantine machines, vanilla GD [42], as
well as its more efficient variants such as perturbed gradient descent (PGD) [32], are known to
converge to a local minimizer with high probability. However, Byzantine machines can manipu-
late PGD and GD (even robustified) into fake local minimum near a saddle point; see Example
2 in Appendix A.

We discuss and compare with existing work in more details in Section 2. The observations above
show that existing robust and saddle-escaping algorithms, as well as their naive combination, are
insufficient against saddle point attack. Addressing these challenges requires the development of
new robust distributed optimization algorithms.

1.1 Our Contributions

In this paper, we develop ByzantinePGD , a computation- and communication-efficient first-order
algorithm that is able to escape saddle points and the fake local minima created by Byzantine
machines, and converge to an approximate local minimizer of a non-convex loss. To the best of
our knowledge, our algorithm is the first to achieve such guarantees under adversarial noise.

Specifically, ByzantinePGD aggregates the empirical gradients received from the normal and
Byzantine machines, and computes a robust estimate ĝ(w) of the true gradient ∇F (w) of the
population loss F . Crucial to our algorithm is the injection of random perturbation to the iterates
w, which serves the dual purpose of escaping saddling point and fake local minima. Our use of
perturbation thus plays a more signified role than in existing algorithms such as PGD [32], as it also
serves to combat the effect of Byzantine errors. To achieve this goal, we incorporate two crucial
innovations: (i) we use multiple rounds of larger, yet carefully calibrated, amount of perturbation
that is necessary to survive saddle point attack, (ii) we use the moving distance in the parameter
space as the criterion for successful escape, eliminating the need of (robustly) evaluating function
values. Consequently, our analysis is significantly different, and arguably simpler, than that of
PGD.

We develop our algorithmic and theoretical results in a flexible, two-part framework, decom-
posing the optimization and statistical components of the problem.

The optimization part: We consider a general problem of optimizing a population loss function
F given an inexact gradient oracle. For each query point w, the ∆-inexact gradient oracle returns
a vector ĝ(w) (possibly chosen adversarially) that satisfies ‖ĝ(w) − ∇F (w)‖2 ≤ ∆, where ∆

2

is non-zero but bounded. Given access to such an inexact oracle, we show that ByzantinePGD
outputs an approximate local minimizer; moreover, no other algorithm can achieve significantly
better performance in this setting in terms of the dependence on ∆:

Theorem 1 (Informal; see Sec. 4.2). Within Õ(1
∆2) iterations, ByzantinePGD outputs an approx-

imate local minimizer w̃ that satisfies ‖∇F (w̃)‖2 . ∆ and λmin

(
∇2F (w̃)

)
& −∆2/5, where λmin is

the minimum eigenvalue. In addition, given only access to ∆-inexact gradient oracle, no algorithm
is guaranteed to find a point w̃ with ‖∇F (w̃)‖2 < ∆/2 or λmin

(
∇2F (w̃)

)
> −∆1/2/2.

Our algorithm is communication-efficient: it only sends gradients, and the number of parallel
iterations in our algorithm matches the well-known iteration complexity of GD for non-convex
problems in non-Byzantine setting [53] (up to log factors). In the exact gradient setting, a variant
of the above result in fact matches the guarantees for PGD [32]—as mentioned, our proof is simpler.

Additionally, beyond Byzantine distributed learning, our results apply to any non-convex opti-
mization problems (distributed or not) with inexact information for the gradients, including those
with noisy but non-adversarial gradients. Thus, we believe our results are of independent interest
in broader settings.

The statistical part: The optimization guarantee above can be applied whenever one has a
robust aggregation procedure that serves as an inexact gradient oracle with a bounded error ∆.
We consider three concrete examples of such robust procedures: median, trimmed mean, and
iterative filtering [22, 23]. Under statistical settings for the data, we provide explicit bounds on
their errors ∆ as a function of the number of worker machines m, the number of data points on
each worker machine n, the fraction of Byzantine machines α, and the dimension of the parameter
space d. Combining these bounds with the optimization result above, we obtain concrete statistical
guarantees on the output w̃. Furthermore, we argue that our first-order guarantees on ‖∇F (w̃)‖2
are often nearly optimal when compared against a universal statistical lower bound. This is
summarized below:

Theorem 2 (Informal; see Sec. 5). When combined with each of following three robust aggregation
procedures, ByzantinePGD achieves the statistical guarantees:

(i) median/; ‖∇F (w̃)‖2 . α
√
d√
n

+ d√
nm

+
√
d

n ;

(ii) trimmed mean: ‖∇F (w̃)‖2 . αd√
n
+ d√

nm
;

(iii) iterative filtering: ‖∇F (w̃)‖2 .
√
α√
n
+

√
d√

nm
.

Moreover, no algorithm can achieve ‖∇F (w̃)‖2 = o
(

α√
n
+

√
d√

nm

)
.

We emphasize that the above results are established under a very strong adversary model: the
Byzantine machines are allowed to send messages that depend arbitrarily on each other and on the
data on the normal machines; they may even behave adaptively during the iterations of our algo-
rithm. Consequently, this setting requires robust functional estimation (of the gradient function),
which is a much more challenging problem than the robust mean estimation setting considered
by existing work on median, trimmed mean and iterative filtering. To overcome this difficulty, we
make use of careful covering net arguments to establish certain error bounds that hold uniformly
over the parameter space, regardless of the behavior of the Byzantine machines. Importantly, our
inexact oracle framework allows such arguments to be implemented in a transparent and modular
manner.

Notation For an integer N > 0, define the set [N] := {1, 2, . . . , N}. For matrices, denote the
operator norm by ‖ · ‖2; for symmetric matrices, denote the largest and smallest eigenvalues by
λmax(·) and λmin(·), respectively. The d-dimensional ℓ2 ball centered at w with radius r is denoted

by B
(d)
w (r), or Bw(r) when it is clear from the context.

2 Related Work

Efficient first-order algorithms for escaping saddle points Our algorithm is related to
a recent line of work which develops efficient first-order algorithms for escaping saddle points.
Although vanilla GD converges to local minimizers almost surely [42, 43], achieving convergence

3

Algorithm PGD Neon+GD Neon2+GD ByzantinePGD

Byzantine-robust? no no no yes

Purpose of perturbation escape SP escape SP escape SP
escape SP

& robustness
Escaping method GD NC search NC search inexact GD

Termination criterion decrease in F decrease in F distance in W distance in W
Multiple rounds? no no no yes

Table 1: Comparison with PGD, Neon+GD, and Neon2+GD. SP = saddle point.

Robust Aggregation Method Non-convex Guarantee
Feng et al. [26] geometric median no
Chen et al. [17] geometric median no

Blanchard et al. [10] Krum first-order
Yin et al. [69] median, trimmed mean first-order
Xie et al. [67] mean-around-median, marginal median first-order

Alistarh et al. [3] martingale-based no
Su and Xu [63] iterative filtering no

This work median, trimmed mean, iterative filtering second-order

Table 2: Comparison with other Byzantine-robust distributed learning algorithms.

in polynomial time requires more a careful algorithmic design [25]. Such convergence guarantees
are enjoyed by several GD-based algorithms; examples include PGD [32], Neon+GD [68], and
Neon2+GD [5]. The general idea of these algorithms is to run GD and add perturbation to the
iterate when the gradient is small. While our algorithm also uses this idea, the design and analysis
techniques of our algorithm are significantly different from the work above in the following aspects
(also summarized in Table 1).

• In our algorithm, besides helping with escaping saddle points, the random perturbation has the
additional role of defending against adversarial errors.

• The perturbation used in our algorithm needs to be larger, yet carefully calibrated, in order to
account for the influence of the inexactness of gradients across the iterations, especially iterations
for escaping saddle points.

• We run inexact GD after the random perturbation, while Neon+GD and Neon2+GD use negative
curvature (NC) search. It is not immediately clear whether NC search can be robustified against
Byzantine failures. Compared to PGD, our analysis is arguably simpler and more straightforward.

• Our algorithm does not use the value of the loss function (hence no need for robust function
value estimation); PGD and Neon+GD assume access to the (exact) function values.

• We employed multiple rounds of perturbation to boost the probability of escaping saddle points;
this technique is not used in PGD, Neon+GD, or Neon2+GD.

Inexact oracles Optimization with an inexact oracle (e.g. noisy gradients) has been studied in
various settings such as general convex optimization [7, 21], robust estimation [55], and structured
non-convex problems [6, 16, 11, 71]. Particularly relevant to us is the recent work by Jin et al.
[34], who consider the problem of minimizing F when only given access to the gradients of another

smooth function F̂ satisfying ‖∇F̂ (w)−∇F (w)‖∞ ≤ ∆/
√
d, ∀w. Their algorithm uses Gaussian

smoothing on F̂ . We emphasize that the inexact gradient setting considered by them is much
more benign than our Byzantine setting, since (i) their inexactness is defined in terms of ℓ∞ norm
whereas the inexactness in our problem is in ℓ2 norm, and (ii) we assume that the inexact gradient
can be any vector within ∆ error, and thus the smoothing technique is not applicable in our
problem. Moreover, the iteration complexity obtained by Jin et al. [34] may be a high-degree
polynomial of the problem parameters and thus not suitable for distributed implementation.

4

Byzantine-robust distributed learning Solving large scale learning problems in distributed
systems has received much attention in recent years, where communication efficiency and Byzan-
tine robustness are two important topics [58, 41, 70, 10, 15, 20]. Here, we compare with existing
Byzantine-robust distributed learning algorithms that are most relevant to our work, and sum-
marize the comparison in Table 2. A general idea of designing Byzantine-robust algorithms is
to combine optimization algorithms with a robust aggregation (or outlier removal) subroutine.
For convex losses, the aggregation subroutines analyzed in the literature include geometric me-
dian [26, 17], median and trimmed mean [69], iterative filtering for the high dimensional setting [63],
and martingale-based methods for the SGD setting [3]. For non-convex losses, to the best of our
knowledge, existing works only provide first-order convergence guarantee (i.e., small gradients),
by using aggregation subroutines such as the Krum function [10], median and trimmed mean [69],
mean-around-median and marginal median [67]. In this paper, we make use of subroutines based
on median, trimmed mean, and iterative filtering. Our analysis of median and trimmed mean
follows Yin et al. [69]. Our results based on the iterative filtering subroutine, on the other hand,
are new:

• The problem that we tackle is harder than what is considered in the original iterative filtering
papers [22, 23]. There they only consider robust estimation of a single mean parameter, where
as we guarantee robust gradient estimation over the parameter space.

• Recent work by Su and Xu [63] also makes use of the iterative filtering subroutine for the
Byzantine setting. They only study strongly convex loss functions, and assume that the gradients
are sub-exponential and d ≤ O(√mn). Our results apply to the non-convex case and do not
require the aforementioned condition on d (which may therefore scale, for example, linearly with
the sample size mn), but we impose the stronger assumption of sub-Gaussian gradients.

Other non-convex optimization algorithms Besides first-order GD-based algorithms, many
other non-convex optimization methods that can provably converge to approximate local minimum
have received much attention in recent years. For specific problems such as phase retrieval [11],
low-rank estimation [16, 72], and dictionary learning [1, 64], many algorithms are developed by
leveraging the particular structure of the problems, and the either use a smart initialization [11, 65]
or initialize randomly [18, 14]. Other algorithms are developed for general non-convex optimiza-
tion, and they can be classified into gradient-based [27, 44, 68, 4, 5, 33], Hessian-vector-product-
based [12, 2, 56, 57], and Hessian-based [54, 19] methods. While algorithms using Hessian infor-
mation can usually achieve better convergence rates—for example, O(1

ǫ3/2
) by Curtis et al. [19],

and O(1
ǫ7/4

) by Carmon et al. [12]— gradient-based methods are easier to implement in practice,
especially in the distributed setting we are interested in.

Robust statistics Outlier-robust estimation is a classical topic in statistics [30]. The coordinate-
wise median aggregation subroutine that we consider is related to the median-of-means estima-
tor [52, 31], which has been applied to various robust inference problems [51, 47, 50].

A recent line of work develops efficient robust estimation algorithms in high-dimensional set-
tings [8, 22, 39, 13, 60, 45, 9, 36, 46]. In the centralized setting, the recent work [24] proposes a
scheme, similar to the iterative filtering procedure, that iteratively removes outliers for gradient-
based optimization.

3 Problem Setup

We consider empirical risk minimization for a statistical learning problem where each data point
z is sampled from an unknown distribution D over the sample space Z. Let f(w; z) be the loss
function of a parameter vector w ∈ W ⊆ R

d, where W is the parameter space. The population
loss function is therefore given by F (w) := Ez∼D[f(w; z)].

We consider a distributed computing system with one master machine and m worker machines,
αm of which are Byzantine machines and the other (1−α)m are normal. Each worker machine has
n data points sampled i.i.d. from D. Denote by zi,j the j-th data point on the i-th worker machine,
and let Fi(w) := 1

n

∑n
j=1 f(w; zi,j) be the empirical loss function on the i-th machine. The master

machine and worker machines can send and receive messages via the following communication
protocol: In each parallel iteration, the master machine sends a parameter vector w to all the

5

worker machines, and then each normal worker machine computes the gradient of its empirical
loss Fi(·) at w and sends the gradient to the master machine. The Byzantine machines may be
jointly controlled by an adversary and send arbitrary or even malicious messages. We denote the
unknown set of Byzantine machines by B, where |B| = αm. With this notation, the gradient sent
by the i-th worker machine is

ĝi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B,

(1)

where the symbol ∗ denotes an arbitrary vector. As mentioned, the adversary is assumed to have
complete knowledge of the algorithm used and the data stored on all machines, and the Byzantine
machines may collude [48] and adapt to the output of the master and normal worker machines. We
only make the mild assumption that the adversary cannot predict the random numbers generated
by the master machine.

We consider the scenario where F (w) is non-convex, and our goal to find an approximate local
minimizer of F (w). Note that a first-order stationary point (i.e., one with a small gradient) is not
necessarily close to a local minimizer, since the point may be a saddle point whose Hessian matrix
has a large negative eigenvalue. Accordingly, we seek to find a second-order stationary point w̃,
namely, one with a small gradient and a nearly positive semidefinite Hessian:

Definition 1 (Second-order stationarity). We say that w̃ is an (ǫg, ǫH)-second-order stationary
point of a twice differentiable function F (·) if ‖∇F (w̃)‖2 ≤ ǫg and λmin

(
∇2F (w̃)

)
≥ −ǫH .

In the sequel, we make use of several standard concepts from continuous optimization.

Definition 2 (Smooth and Hessian-Lipschitz functions). A function h is called L-smooth if

supw 6=w′

‖∇h(w)−∇h(w′)‖2

‖w−w′‖2
≤ L, and ρ-Hessian Lipschitz if supw 6=w′

‖∇2h(w)−∇2h(w′)‖2

‖w−w′‖2
≤ ρ.

Throughout this paper, the above properties are imposed on the population loss function F (·).

Assumption 1. F is LF -smooth, and ρF -Hessian Lipschitz on W.

4 Byzantine Perturbed Gradient Descent

In this section, we describe our algorithm, Byzantine Perturbed Gradient Descent (ByzantinePGD),
which provably finds a second-order stationary point of the population loss F (·) in the distributed
setting with Byzantine machines. As mentioned, ByzantinePGD robustly aggregates gradients
from the worker machines, and performs multiple rounds of carefully calibrated perturbation to
combat the effect of Byzantine machines. We now elaborate.

It is well-known that naively aggregating the workers’ messages using standard averaging can be
arbitrarily skewed in the presence of just a single Byzantine machine. In view of this, we introduce
the subroutine GradAGG{ĝi(w)}mi=1, which robustly aggregates the gradients {ĝi(w)}mi=1 collected
from the m workers. We stipulate that GradAGG provides an estimate of the true population
gradient ∇F (·) with accuracy ∆, uniformly across W . This property is formalized using the
terminology of inexact gradient oracle.

Definition 3 (Inexact gradient oracle). We say that GradAGG provides a ∆-inexact gradient oracle
for the population loss F (·) if, for every w ∈ W, we have ‖GradAGG{ĝi(w)}mi=1 −∇F (w)‖2 ≤ ∆.

Without loss of generality, we assume that ∆ ≤ 1 throughout the paper. In this section, we
treat GradAGG as a given black box; in Section 5, we discuss several robust aggregation algorithms
and characterize their inexactness ∆. We emphasize that in the Byzantine setting, the output of
GradAGG can take values adversarially within the error bounds; that is, GradAGG{ĝi(w)}mi=1 may
output an arbitrary vector in the ball B∇F (w)(∆), and this vector can depend on the data in all
the machines and all previous iterations of the algorithm.

The use of robust aggregation with bounded inexactness, however, is not yet sufficient to
guarantee convergence to an approximate local minimizer. As mentioned, the Byzantine machines
may create fake local minima that traps a vanilla gradient descent iteration. Our ByzantinePGD
algorithm is designed to escape such fake minima as well as any existing saddle points of F .

6

ByzantinePGD(w0, η, ǫ, r, Q,R, Tth)

w← w0

while true do

Master: send w to worker machines.
for all i ∈ [m] do in parallel

Worker i: compute ĝi(w)
send to master machine.

end for

Master:
ĝ(w)← GradAGG{ĝi(w)}mi=1.
if ‖ĝ(w)‖2 ≤ ǫ then

Master: w̃ ← w,
(esc,w, ĝ(w)) ← Escape (w̃, η, r, Q, R,

Tth).
if esc = false then

return w̃.
end if

end if

Master: w ← w− ηĝ(w).
end while

Escape(w̃, η, r,Q,R, Tth)

for k = 1, 2, . . . , Q do

Master: sample pk ∼ Unif(B0(r)),
w′ ← w̃ + pk, w

′
0 ← w′.

for t = 0, 1, . . . , Tth do

Master: send w′ to worker machines.
for all i ∈ [m] do in parallel

Worker i: compute ĝi(w
′)

send to master machine.
end for

Master: ĝ(w′)← GradAGG{ĝi(w
′)}mi=1.

if ‖w′ −w′
0‖2 ≥ R then

return (true,w′, ĝ(w′)).
else

w′ ← w′ − ηĝ(w′)
end if

end for

end for

return (false,w′, ĝ(w′)).

Algorithm 1: Byzantine Perturbed Gradient Descent (ByzantinePGD)

4.1 Algorithm

We now describe the details of our algorithm, given in the left panel of Algorithm 1. We focus on
unconstrained optimization, i.e., W = R

d. In Section 5, we show that the iterates w during the
algorithm actually stay in a bounded ℓ2 ball centered at the initial iterate w0, and we will discuss
the statistical error rates within the bounded space.

In each parallel iteration, the master machine sends the current iterate w to all the worker ma-
chines, and the worker machines send back {ĝi(w)}. The master machine aggregates the workers’
gradients using GradAGG and computes a robust estimate ĝ(w) of the population gradient ∇F (w).
The master machine then performs a gradient descent step using ĝ(w). This procedure is repeated
until it reaches a point w̃ with ‖ĝ(w)‖2 ≤ ǫ for a pre-specified threshold ǫ.

At this point, w̃ may lie near a saddle point whose Hessian has a large negative eigenvalue.
To escape this potential saddle point, the algorithm invokes the Escape routine (right panel of
Algorithm 1), which performs Q rounds of perturbation-and-descent operations. In each round,
the master machine perturbs w̃ randomly and independently within the ball Bw̃(r). Let w′

0 be the
perturbed vector. Starting from the w′

0, the algorithm conducts at most Tth parallel iterations of
∆-inexact gradient descent (using GradAGG as before):

w′
t = w′

t−1 − ηĝ(w′
t−1), t ≤ Tth. (2)

During this process, once we observe that ‖w′
t −w′

0‖2 ≥ R for some pre-specified threshold R (this
means the iterate moves by a sufficiently large distance in the parameter space), we claim that
w̃ is a saddle point and the algorithm has escaped it; we then resume ∆-inexact gradient descent
starting from w′

t. If after Q rounds no sufficient move in the parameter space is ever observed, we
claim that w̃ is a second-order stationary point of F (w) and output w̃.

4.2 Convergence Guarantees

In this section, we provide the theoretical result guaranteeing that Algorithm 1 converges to a
second-order stationary point. In Theorem 3, we let F ∗ := minw∈Rd F (w), w0 be the initial
iterate, and F0 := F (w0).

Theorem 3 (ByzantinePGD). Suppose that Assumptions 1 holds, and assume that GradAGG

provides a ∆-inexact gradient oracle for F (·) with ∆ ≤ 1. Given any δ ∈ (0, 1), choose the

parameters for Algorithm 1 as follows: step-size η = 1
LF

, ǫ = 3∆, r = 4∆3/5d3/10ρ
−1/2
F , R =

7

∆2/5d1/5ρ
−1/2
F ,

Q = 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 +∆7/5d7/10)

)
, and

Tth =
LF

384(ρ
1/2
F + LF)(∆2/5d1/5 +∆3/5d3/10)

.

Then, with probability at least 1− δ, the output of Algorithm 1, denoted by w̃, satisfies the bounds

‖∇F (w̃)‖2 ≤ 4∆,

λmin

(
∇2F (w̃)

)
≥ −1900

(
ρ
1/2
F + LF

)
∆2/5d1/5 log

(10
∆

)
,

(3)

and the algorithm terminates within 2(F0−F∗)LF

3∆2 Q parallel iterations.

We prove Theorem 3 in Appendix B.1 Below let us parse the above theorem and discuss its
implications.

Focusing on the scaling with ∆, we may read off from Theorem 3 the following result:

Observation 1. Under the above setting, within Õ(1
∆2) parallel iterations, ByzantinePGD outputs

an (O(∆), Õ(∆2/5))-second-order stationary point w̃ of F (·);2 that is,

‖∇F (w̃)‖2 ≤ 4∆ and λmin(∇2F (w̃)) ≥ −Õ(∆2/5).

In terms of the iteration complexity, it is well-known that for a smooth non-convex F (·), gradient
descent requires at least 1

∆2 iterations to achieve ‖∇F (w̃)‖2 ≤ O(∆) [53]; up to logarithmic factors,
our result matches this complexity bound. In addition, our O(∆) first-order guarantee is clearly
order-wise optimal, as the gradient oracle is ∆-inexact. It is currently unclear to us whether our
Õ(∆2/5) second-order guarantee is optimal. We provide a converse result showing that one cannot
hope to achieve a second-order guarantee better than O(∆1/2).

Proposition 1. There exists a class of real-valued 1-smooth and 1-Hessian Lipschitz differentiable
functions F such that, for any algorithm that only uses a ∆-inexact gradient oracle, there exists
f ∈ F such that the output of the algorithm w̃ must satisfy ‖∇F (w̃)‖2 > ∆/2 and λmin(∇2F (w̃)) <
−∆1/2/2.

We prove Proposition 1 in Appendix D. Again, we emphasize that our results above are in
fact not restricted to the Byzantine distributed learning setting. They apply to any non-convex
optimization problems (distributed or not) with inexact information for the gradients, including
those with noisy but non-adversarial gradients; see Section 2 for comparison with related work in
such settings.

As a byproduct, we can show that with a different choice of parameters, ByzantinePGD can be
used in the standard (non-distribued) setting with access to the exact gradient ∇F (w), and the

algorithm converges to an (ǫ, Õ(√ǫ))-second-order stationary point within O(1
ǫ2) iterations:

Theorem 4 (Exact gradient oracle). Suppose that Assumptions 1 holds, and assume that for any
query point w we can obtain exact gradient, i.e., ĝ(w) ≡ ∇F (w). For any ǫ ∈ (0,min{ 1

ρF
, 4
L2

F ρF
})

and δ ∈ (0, 1), we choose the parameters in Algorithm 1 as follows: step-size η = 1/LF , Q = 1,
r = ǫ, and R =

√
ǫ/ρF , Tth = L

12ρF (R+r) . Then, with probability at least 1−δ, Algorithm 1 outputs

a w̃ satisfying the bounds

‖∇F (w̃)‖2 ≤ǫ,

λmin(∇2F (w̃)) ≥− 60
√
ρF ǫ log

(8ρF
√
d(F0 − F ∗)

δǫ2

)
,

and the algorithm terminates within 2LF (F0−F∗)
ǫ2 iterations.

We prove Theorem 4 in Appendix C. The convergence guarantee above matches that of the
original PGD algorithm [32] up to logarithmic factors. Moreover, our proof is considerably simpler,
and our algorithm only requires gradient information, whereas the original PGD algorithm also
needs function values.

1We make no attempt in optimizing the multiplicative constants in Theorem 3.
2Here, by using the symbol Õ, we ignore logarithmic factors and only consider the dependence on ∆.

8

5 Robust Estimation of Gradients

The results in the previous section can be applied as long as one has a robust aggregation subroutine
GradAGG that provides a ∆-inexact gradient oracle of the population loss F . In this section, we
discuss three concrete examples of GradAGG: median, trimmed mean, and a high-dimension robust
estimator based on the iterative filtering algorithm [22, 23, 60]. We characterize their inexactness
∆ under the statistical setting in Section 3, where the data points are sampled independently
according to an unknown distribution D.

To describe our statistical results, we need the standard notions of sub-Gaussian/exponential
random vectors.

Definition 4 (sub-Gaussianity and sub-exponentiality). A random vector x with mean µ is said

to be ζ-sub-Gaussian if E[exp(λ〈x − µ,u〉)] ≤ e 1
2 ζ

2λ2‖u‖2
2 , ∀ λ,u. It is said to be ξ-sub-exponential

if E[exp(λ〈x− µ,u〉)] ≤ e 1
2 ξ

2λ2‖u‖2
2 , ∀ |λ| < 1

ξ ,u.

We also need the following result (proved in Appendix E), which shows that the iterates of
ByzantinePGD in fact stay in a bounded set around the initial iterate w0.

Proposition 2. Under the choice of algorithm parameters in Theorem 3, all the iterates w in
ByzantinePGD stay in the ℓ2 ball Bw0(D/2) with D := C F0−F∗

∆ , where C > 0 is a number that
only depends on LF and ρF .

Consequently, for the convergence guarantees of ByzantinePGD to hold, we only need GradAGG

to satisfy the inexact oracle property (Definition 3) within the bounded set W = Bw0(D/2), with
D given in Proposition 2. As shown below, the three aggregation procedures indeed satisfy this
property, with their inexactness ∆ depends mildly (logarithmically) on the radius D.

5.1 Iterative Filtering Algorithm

We start with a recently developed high-dimension robust estimation technique called the iterative
filtering algorithm [22, 23, 60] and use it to build the subroutine GradAGG. As can be seen below,
iterative filtering can tolerate a constant fraction of Byzantine machines even when the dimension
grows—an advantage over simpler algorithms such as median and trimmed mean.

We relegate the details of the iterative filtering algorithm to Appendix F.1. Again, we emphasize
that the original iterative filtering algorithm is proposed to robustly estimate a single parameter
vector, whereas in our setting, since the Byzantine machines may produce unspecified probabilistic
dependency across the iterations, we need to prove an error bound for robust gradient estimation
uniformly across the parameter space W . We prove such a bound for iterative filtering under the
following two assumptions on the gradients and the smoothness of each loss function f(·; z).

Assumption 2. For each w ∈ W, ∇f(w; z) is ζ-sub-Gaussian.

Assumption 3. For each z ∈ Z, f(·; z) is L-smooth.

Let Σ(w) be the covariance matrix of ∇f(w; z), and define σ := supw∈W ‖Σ(w)‖1/22 . We have
the following bounds on the inexactness parameter of iterative filtering.

Theorem 5 (Iterative Filtering). Suppose that Assumptions 2 and 3 hold. Use the iterative filter-
ing algorithm described in Appendix F.1 for GradAGG, and assume that α ≤ 1

4 . With probability
1− o(1), GradAGG provides a ∆ftr-inexact gradient oracle with

∆ftr ≤ c
(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)
√
log(nmDL),

where c is an absolute constant.

The proof of Theorem 5 is given in Appendix F.2. Assuming bounded σ and ζ, we see that

iterative filtering provides an Õ
(√

α
n +

√
d

nm

)
-inexact gradient oracle.

9

5.2 Median and Trimmed Mean

The median and trimmed mean operations are two widely used robust estimation methods. While
the dependence of their performance on d is not optimal, they are conceptually simple and com-
putationally fast, and still have good performance in low dimensional settings. We apply these
operations in a coordinate-wise fashion to build GradAGG.

Formally, for a set of vectors xi ∈ R
d, i ∈ [m], their coordinate-wise median u := med{xi}mi=1 is

a vector with its k-th coordinate being uk = med{xik}mi=1 for each k ∈ [d], where med is the usual
(one-dimensional) median. The coordinate-wise β-trimmed mean u := trmeanβ{xi}mi=1 is a vector
with uk = 1

(1−2β)m

∑
x∈Uk

x for each k ∈ [d], where Uk is a subset of {x1k, . . . , xmk } obtained by

removing the largest and smallest β fraction of its elements.
For robust estimation of the gradient in the Byzantine setting, the error bounds of median and

trimmed mean have been studied by Yin et al. [69]. For completeness, we record their results below
as an informal theorem; details are relegated to Appendix F.3.

Theorem 6 (Informal). [69] Under appropriate smoothness and probabilistic assumptions,3 with

high probability, the median operation provides a ∆med-inexact gradient oracle with ∆med . α
√
d√
n

+

d√
nm

+
√
d

n , and the trimmed mean operation provides a ∆tm-inexact gradient oracle with ∆tm .
αd√
n
+ d√

nm
.

5.3 Comparison and Optimality

In Table 3, we compare the above three algorithms in terms of the dependence of their gradient
inexactness ∆ on the problem parameters α, n, m, and d . We see that when d = O(1), the median
and trimmed mean algorithms have better inexactness due to a better scaling with α. When d is
large, iterative filtering becomes preferable.

Gradient inexactness ∆

median Õ
(
α
√
d√
n

+ d√
nm

+
√
d

n

)

trimmed mean Õ
(
αd√
n
+ d√

nm

)

iterative filtering Õ
(√α√

n
+

√
d√

nm

)

Table 3: Statistical bounds on gradient inexactness ∆.

Recall that according to Observation 1, with ∆-inexact gradients the ByzantinePGD algorithm
converges to an (O(∆), Õ(∆2/5))-second-order stationary point. Combining this general result with
the bounds in Table 3, we obtain explicit statistical guarantees on the output of ByzantinePGD.
To understand the statistical optimality of these guarantees, we provide a converse result below.

Observation 2. There exists a statistical learning problem in the Byzantine setting such that the

output w̃ of any algorithm must satisfy ‖∇F (w̃)‖2 = Ω
(

α√
n
+

√
d√

nm

)
with a constant probability.

We prove Observation 2 in Appendix F.4. In view of this observation, we see that in terms
of the first-order guarantee (i.e., on ‖∇F (w̃)‖2) and up to logarithmic factors, trimmed mean is
optimal if d = O(1), the median is optimal if d = O(1) and n & m, and iterative filtering is optimal
if α = Θ(1). The statistical optimality of their second-order guarantees (i.e., on λmin(∇2F (w̃))) is
currently unclear to us, and we believe this is an interesting problem for future investigation.

6 Conclusion

In this paper, we study security issues that arise in large-scale distributed learning because of
the presence of saddle points in non-convex loss functions. We observe that in the presence of
non-convexity and Byzantine machines, escaping saddle points becomes much more challenging.
We develop ByzantinePGD, a computation- and communication-efficient algorithm that is able
to provably escape saddle points and converge to a second-order stationary point, even in the

3Specifically, for median we assume that gradients have bounded skewness, and for trimmed mean we assume
that the gradients are sub-exponentially distributed.

10

presence of Byzantine machines. We also discuss three different choices of the robust gradient
and function value aggregation subroutines in ByzantinePGD—median, trimmed mean, and the
iterative filtering algorithm. We characterize their performance in statistical settings, and argue
for their near-optimality in different regimes including the high dimensional setting.

Acknowledgements

D. Yin is partially supported by Berkeley DeepDrive Industry Consortium. Y. Chen is partially
supported by NSF CRII award 1657420 and grant 1704828. K. Ramchandran is partially supported
by NSF CIF award 1703678. P. Bartlett is partially supported by NSF grant IIS-1619362. The
authors would like to thank Zeyuan Allen-Zhu for pointing out a potential way to improve our
initial results, and Ilias Diakonikolas for discussing references [22, 23, 24].

References

[1] Alekh Agarwal, Animashree Anandkumar, Prateek Jain, Praneeth Netrapalli, and Rashish
Tandon. Learning sparsely used overcomplete dictionaries. In COLT, pages 123–137, 2014.

[2] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Find-
ing approximate local minima for nonconvex optimization in linear time. arXiv preprint
arXiv:1611.01146, 2016.

[3] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. arXiv
preprint arXiv:1803.08917, 2018.

[4] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. arXiv preprint
arXiv:1708.08694, 2017.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. arXiv
preprint arXiv:1711.06673, 2017.

[6] Sivaraman Balakrishnan, Martin J. Wainwright, and Bin Yu. Statistical guarantees for the
EM algorithm: From population to sample-based analysis. arXiv preprint arXiv:1408.2156,
2014.

[7] Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10(3):627–642, 2000.

[8] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding.
In Advances in Neural Information Processing Systems, pages 721–729, 2015.

[9] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consistent
robust regression. In Advances in Neural Information Processing Systems, pages 2107–2116,
2017.

[10] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Byzantine-
tolerant machine learning. arXiv preprint arXiv:1703.02757, 2017.

[11] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via Wirtinger
flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007,
2015.

[12] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
non-convex optimization. arXiv preprint arXiv:1611.00756, 2016.

[13] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
47–60. ACM, 2017.

[14] Niladri Chatterji and Peter L Bartlett. Alternating minimization for dictionary learning with
random initialization. In Advances in Neural Information Processing Systems, pages 1994–
2003, 2017.

11

[15] Lingjiao Chen, Zachary Charles, Dimitris Papailiopoulos, et al. DRACO: Robust distributed
training via redundant gradients. arXiv preprint arXiv:1803.09877, 2018.

[16] Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient
descent: General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025,
2015.

[17] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. arXiv preprint arXiv:1705.05491, 2017.

[18] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initializa-
tion: Fast global convergence for nonconvex phase retrieval. arXiv preprint arXiv:1803.07726,
2018.

[19] Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. A trust region algorithm
with a worst-case iteration complexity of ǫ−3/2 for nonconvex optimization. Mathematical
Programming, 162(1-2):1–32, 2017.

[20] Georgios Damaskinos, El Mahdi El Mhamdi, Rachid Guerraoui, Rhicheek Patra, and Mahsa
Taziki. Asynchronous Byzantine machine learning. arXiv preprint arXiv:1802.07928, 2018.

[21] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[22] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
655–664. IEEE, 2016.

[23] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Being robust (in high dimensions) can be practical. arXiv preprint arXiv:1703.00893,
2017.

[24] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and Al-
istair Stewart. Sever: A robust meta-algorithm for stochastic optimization. arXiv preprint
arXiv:1803.02815, 2018.

[25] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos.
Gradient descent can take exponential time to escape saddle points. In Advances in Neural
Information Processing Systems, pages 1067–1077, 2017.

[26] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed robust learning. arXiv preprint
arXiv:1409.5937, 2014.

[27] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In COLT, pages 797–842, 2015.

[28] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
In Advances in Neural Information Processing Systems, pages 2973–2981, 2016.

[29] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. arXiv preprint arXiv:1704.00708, 2017.

[30] Peter J Huber. Robust statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

[31] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

[32] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to
escape saddle points efficiently. arXiv preprint arXiv:1703.00887, 2017.

[33] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes
saddle points faster than gradient descent. arXiv preprint arXiv:1711.10456, 2017.

12

[34] Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. Minimizing nonconvex population risk
from rough empirical risk. arXiv preprint arXiv:1803.09357, 2018.

[35] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Informa-
tion Processing Systems, pages 586–594, 2016.

[36] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms for outlier-robust
regression. arXiv preprint arXiv:1803.03241, 2018.

[37] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[38] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Feder-
ated optimization: distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

[39] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
665–674. IEEE, 2016.

[40] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[41] Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance
reduced gradient methods and a lower bound for communication complexity. arXiv preprint
arXiv:1507.07595, 2015.

[42] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent
converges to minimizers. arXiv preprint arXiv:1602.04915, 2016.

[43] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. First-order methods almost always avoid saddle points. arXiv preprint
arXiv:1710.07406, 2017.

[44] Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv preprint
arXiv:1611.04831, 2016.

[45] Jerry Li. Robust sparse estimation tasks in high dimensions. arXiv preprint arXiv:1702.05860,
2017.

[46] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis. High dimensional robust
sparse regression. arXiv preprint arXiv:1805.11643, 2018.

[47] Gabor Lugosi and Shahar Mendelson. Risk minimization by median-of-means tournaments.
arXiv preprint arXiv:1608.00757, 2016.

[48] Nancy A. Lynch. Distributed Algorithms. Elsevier, 1996.

[49] Brendan McMahan and Daniel Ramage. Federated learning: Col-
laborative machine learning without centralized training data.
https://research.googleblog.com/2017/04/federated-learning-collaborative.html,
2017.

[50] Stanislav Minsker and Nate Strawn. Distributed statistical estimation and rates of convergence
in normal approximation. arXiv preprint arXiv:1704.02658, 2017.

[51] Stanislav Minsker et al. Geometric median and robust estimation in banach spaces. Bernoulli,
21(4):2308–2335, 2015.

[52] Arkadii Nemirovskii, David Borisovich Yudin, and Edgar Ronald Dawson. Problem complexity
and method efficiency in optimization. Wiley, 1983.

[53] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 1998.

13

https://research.googleblog.com/2017/04/federated-learning-collaborative.html

[54] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[55] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust
estimation via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

[56] Clément W Royer and Stephen J Wright. Complexity analysis of second-order line-search
algorithms for smooth nonconvex optimization. SIAM Journal on Optimization, 28(2):1448–
1477, 2018.

[57] Clément W Royer, Michael O’Neill, and Stephen J Wright. A newton-cg algorithm with com-
plexity guarantees for smooth unconstrained optimization. arXiv preprint arXiv:1803.02924,
2018.

[58] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International Conference on Machine Learning,
pages 1000–1008, 2014.

[59] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[60] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for learning
in the presence of arbitrary outliers. arXiv preprint arXiv:1703.04940, 2017.

[61] Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent optimization: optimal iterative dis-
tributed algorithms. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, pages 425–434. ACM, 2016.

[62] Lili Su and Nitin H Vaidya. Non-Bayesian learning in the presence of Byzantine agents. In
International Symposium on Distributed Computing, pages 414–427. Springer, 2016.

[63] Lili Su and Jiaming Xu. Securing distributed machine learning in high dimensions. arXiv
preprint arXiv:1804.10140, 2018.

[64] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery using nonconvex optimization.
In Proceedings of the 32nd International Conference on Machine Learning, pages 2351–2360,
2015.

[65] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Benjamin Recht. Low-
rank solutions of linear matrix equations via procrustes flow. arXiv preprint arXiv:1507.03566,
2015.

[66] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[67] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-tolerant SGD.
arXiv preprint arXiv:1802.10116, 2018.

[68] Yi Xu and Tianbao Yang. First-order stochastic algorithms for escaping from saddle points
in almost linear time. arXiv preprint arXiv:1711.01944, 2017.

[69] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. In Proceedings of the 35th International
Conference on Machine Learning, pages 5650–5659, 2018.

[70] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In
International Conference on Artificial Intelligence and Statistics, pages 1998–2007, 2018.

[71] Huishuai Zhang, Yuejie Chi, and Yingbin Liang. Provable non-convex phase retrieval with
outliers: Median-truncated wirtinger flow. In International Conference on Machine Learning,
pages 1022–1031, 2016.

[72] Tuo Zhao, Zhaoran Wang, and Han Liu. A nonconvex optimization framework for low rank
matrix estimation. In Advances in Neural Information Processing Systems, pages 559–567,
2015.

14

Appendix

A Challenges of Escaping Saddle Points in the Adversarial

Setting

We provide two examples showing that in non-convex setting with saddle points, inexact oracle can
lead to much worse sub-optimal solutions than in the convex setting, and that in the adversarial
setting, escaping saddle points can be inherently harder than the adversary-free case.

Consider standard gradient descent using exact or ∆-inexact gradients. Our first example shows
that Byzantine machines have a more severe impact in the non-convex case than in the convex
case.

Example 1. Let d = 1 and consider the functions F (1)(w) = (w−1)2 and F (2)(w) = (w2−1)2/4.
Here F (1) is strongly convex with a unique local minimizer w∗ = 1, whereas F (2) has two local
(in fact, global) minimizers w∗ = ±1 and a saddle point (in fact, a local maximum) w = 0.
Proposition 3 below shows the following: for the convex F (1), gradient descent (GD) finds a
near-optimal solution with sub-optimality proportional to ∆, regardless of initialization; for the
nonconvex F (2), GD initialized near the saddle point w = 0 suffers from an Ω(1) sub-optimality
gap.

Proposition 3. Suppose that ∆ ≤ 1/2. Under the setting above, the following holds.
(i) For F (1), starting from any w0, GD using a ∆-inexact gradient oracle finds w with F (1)(w) −
F (1)(w∗) ≤ O(∆).
(ii) For F (2), there exists an adversarial strategy such that starting from a w0 sampled uniformly
from [−r, r], GD with a ∆-inexact gradient oracle outputs w with F (2)(w)−F (2)(w∗) ≥ 9

64 , ∀w∗ =

±1, with probability min{1, ∆r }.

Proof. Since F (2)(w) = 1
4 (w

2 − 1)2, we have ∇F (2)(w) = w3 − w. For any w ∈ [−∆,∆],

|∇F (2)(w)| ≤ ∆ (since ∆ ≤ 1/2). Thus, the adversarial oracle can always output ĝ(w) = 0 when
w ∈ [−∆,∆], and we have |ĝ(w)−∇F (2)(w)| ≤ ∆. Thus, if w ∈ [−∆,∆], the iterate can no longer
move with this adversarial strategy. Then, we have F (2)(w)− F (2)(w∗) ≥ F (2)(∆)− 0 ≥ 9

64 (since

∆ ≤ 1/2). The result for the convex function F (1) is a direct corollary of Theorem 1 in [69].

Our second example shows that escaping saddle points is much harder in the Byzantine setting
than in the non-Byzantine setting.

Example 2. Let d = 2, and assume that in the neighborhood B0(b) of the origin, F takes the
quadratic form F (w) ≡ 1

2w
2
1 − λ

2w
2
2 , with λ > ǫH .4 The origin w0 = 0 is not an (ǫg, ǫH)-second-

order stationary point, but rather a saddle point. Proposition 4 below shows that exact GD escapes
the saddle point almost surely, while GD with an inexact oracle fails to do so.

Proposition 4. Under the setting above, if one chooses r < b and sample w from B0(r) uniformly
at random, then:
(i) Using exact gradient descent, with probability 1, the iterate w eventually leaves B0(r).
(ii) There exists an adversarial strategy such that, when we update w using ∆-inexact gradient
oracle, if ∆ ≥ λr, with probability 1, the iterate w cannot leave B0(r); otherwise with probability
2
π

(
arcsin

(
∆
λr

)
+ ∆

λr

√
1− (∆

λr)
2
)

the iterate w cannot leave B0(r).

Proof. Since F (w) = 1
2w

2
1 − 1

2λw
2
2 , ∀ w ∈ B0(r), we have ∇F (w) = [w1, −λw2]

⊤. Sample w0

uniformly at random from B0(r), and we know that with probability 1, w0,2 6= 0. Then, by
running exact gradient descent wt+1 = wt − η∇F (wt), we can see that the second coordinate of
wt is wt,2 = (1 + ηλ)tw0,2. When w0,2, we know that as t gets large, we eventually have wt,2 > r,
which implies that the iterate leaves B0(r).

On the other hand, suppose that we run ∆-inexact gradient descent, i.e., wt+1 = wt − ηĝ(wt)
with ‖ĝ(wt) − ∇F (wt)‖2 ≤ ∆. In the first step, if |w0,2| ≤ ∆

λ , the adversary can simply replace
∇F (w0) with ĝ(w0) = [w0,1, 0]

⊤ (one can check that here we have ‖ĝ(w0)−∇F (w0)‖2 ≤ ∆), and
then the second coordinate of w1 does not change, i.e., w1,2 = w0,2. In the following iterations, the

4
F (w) ≡ 1

2
w

2
1 −

λ
2
w

2
2 holds locally around the origin, not globally; otherwise F (w) has no minimum.

15

adversary can keep using the same strategy and the second coordinate of w never changes, and then
the iterates cannot escape B0(r), since F (w) is a strongly convex function in its first coordinate.
To compute the probability of getting stuck at the saddle point, we only need to compute the area
of the region {w ∈ B0(r) : |w2| ≤ ∆

λ }, which can be done via simple geometry.

Remark. Even if we choose the largest possible perturbation in B0(r), i.e., sample w from
the circle {w ∈ R

2 : ‖w‖2 = r}, the stuck region still exists. We can compute the length of
the arc {‖w‖2 = r : |w2| ≤ ∆

λ } and find the probability of stuck. One can find that when
∆ ≥ λr, the probability of being stuck in B0(r) is still 1, otherwise, the probability of being stuck
is 2

π (arcsin(
∆
λr)).

The above examples show that the adversary can significantly alter the landscape of the function
near a saddle point. We counter this by exerting a large perturbation on the iterate so that it
escapes this bad region. The amount of perturbation is carefully calibrated to ensure that the
algorithm finds a descent direction “steep” enough to be preserved under ∆-corruption, while not
compromising the accuracy. Multiple rounds of perturbation are performed, boosting the escape
probability exponentially.

B Proof of Theorem 3

We first analyze the gradient descent step with ∆-inexact gradient oracle.

Lemma 1. Suppose that η = 1/LF . For any w ∈ W, if we run the following inexact gradient
descent step:

w′ = w − ηĝ(w), (4)

with ‖ĝ(w)−∇F (w)‖2 ≤ ∆. Then, we have

F (w′) ≤ F (w) − 1

2LF
‖∇F (w)‖22 +

1

2LF
∆2.

Proof. Since F (w) is LF smooth, we know that

F (w′) ≤F (w) + 〈∇F (w),w′ −w〉+ LF

2
‖w′ −w‖22

=F (w) − 〈∇F (w),
1

LF
(ĝ(w)−∇F (w))〉 − 〈∇F (w),

1

LF
∇F (w)〉

+
1

2LF
‖ĝ(w) −∇F (w) +∇F (w)‖22

≤F (w) − 1

2LF
‖∇F (w)‖22 +

1

2LF
∆2.

Let ǫ be the threshold on ‖ĝ(w̃)‖2 that the algorithm uses to determine whether or not to add
perturbation. Choose ǫ = 3∆. Suppose that at a particular iterate w̃, we observe ‖ĝ(w̃)‖2 > ǫ.
Then, we know that

‖∇F (w̃)‖2 ≥ ‖ĝ(w̃)‖2 −∆ ≥ 2∆.

According to Lemma 1, by running one iteration of the inexact gradient descent step, the decrease
in function value is at least

1

2LF
‖∇F (w̃)‖22 −

1

2LF
∆2 ≥ 3∆2

2LF
. (5)

We proceed to analyze the perturbation step, which happens when the algorithm arrives at
an iterate w̃ with ‖ĝ(w̃)‖2 ≤ ǫ. In this proof, we slightly abuse the notation. Recall that in
equation (2) in Section 4.1 , we use w′

t (0 ≤ t ≤ Tth) to denote the iterates of the algorithm in the
saddle point escaping process. Here, we simply use wt to denote these iterates. We start with the
definition of stuck region at w̃ ∈ W .

16

Definition 5. Given w̃ ∈ W, and parameters r, R, and Tth, the stuck region WS(w̃, r, R, Tth) ⊆
Bw̃(r) is a set of w0 ∈ Bw̃(r) which satisfies the following property: there exists an adversarial
strategy such that when we start with w0 and run Tth gradient descent steps with ∆-inexact gradient
oracle ĝ(w):

wt = wt−1 − ηĝ(wt−1), t = 1, 2, . . . , Tth, (6)

we observe ‖wt −w0‖2 < R, ∀ t ≤ Tth.
When it is clear from the context, we may simply use the terminology stuck region WS at w̃.

The following lemma shows that if ∇2F (w̃) has a large negative eigenvalue, then the stuck region
has a small width along the direction of the eigenvector associated with this negative eigenvalue.

Lemma 2. Assume that the smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤ −γ < 0,
and let the unit vector e be the eigenvector associated with λmin(H). Let u0,y0 ∈ Bw̃(r) be two
points such that y0 = u0 + µ0e with some µ0 ≥ µ ∈ (0, r). Choose step size η = 1

LF
, and consider

the stuck region WS(w̃, r, R, Tth). Suppose that r, R, Tth, and µ satisfy 5

Tth =
2

ηγ
log9/4(

2(R+ r)

µ
), (7)

R ≥ µ, (8)

ρF (R+ r)µ ≥ ∆, (9)

γ ≥ 24ρF (R + r) log9/4(
2(R+ r)

µ
). (10)

Then, there must be either u0 /∈WS or y0 /∈WS.

We prove Lemma 2 in Appendix B.1. With this lemma, we proceed to analyze the probability
that the algorithm escapes the saddle points. In particular, we bound the probability that w0 ∈
WS(w̃, r, R, Tth) when λmin(∇2F (w̃)) ≤ −γ and w0 is drawn from Bw̃(r) uniform at random.

Lemma 3. Assume that λmin(∇2F (w̃)) ≤ −γ < 0, and let the unit vector e be the eigenvector
associated with λmin(∇2F (w̃)). Consider the stuck region WS(w̃, r, R, Tth) at w̃, and suppose that
r, R, Tth, and µ satisfy the conditions in (7)-(10). Then, when we sample w0 from Bw̃(r) uniformly

at random, the probability that w0 ∈WS(w̃, r, R, Tth) is at most 2µ
√
d

r .

Proof. Since the starting point w0 is uniformly distributed in Bw̃(r), to bound the probability of
getting stuck, it suffices to bound the volume of WS . Let 1WS(w) be the indicator function of the
set WS . For any w ∈ R

d, let w(1) be the projection of w onto the e direction, and w(−1) ∈ R
d−1

be the remaining component of w. Then, we have

Vol(WS) =

∫

B
(d)

w̃
(r)

1WS (w)dw

=

∫

B
(d−1)

w̃
(r)

dw(−1)

∫ w̃(1)+
√

r2−‖w̃(−1)−w(−1)‖2
2

w̃(1)−
√

r2−‖w̃(−1)−w(−1)‖2
2

1WS(w)dw̃(1)

≤2µ
∫

B
(d−1)

w̃
(r)

dw(−1)

=2µVol(B
(d−1)
0 (r)),

where the inequality is due to Lemma 2. Then, we know that the probability of getting stuck is

Vol(WS)

Vol(B
(d)
0 (r))

≤2µVol(B
(d−1)
0 (r))

Vol(B
(d)
0 (r))

=
2µ√
πr

Γ(d2 + 1)

Γ(d2 + 1
2)
≤ 2µ√

πr

√
d

2
+

1

2
≤ 2µ

√
d

r
,

where we use the fact that Γ(x+1)

Γ(x+ 1
2)
<
√
x+ 1

2 for any x ≥ 0.

We then analyze the decrease of value of the population loss function F (·) when we conduct the
perturbation step. Assume that we successfully escape the saddle point, i.e., there exists t ≤ Tth
such that ‖wt −w0‖2 ≥ R. The following lemma provides the decrease of F (·).

5Without loss of generality, here we assume that 2
ηγ

log9/4(
2(R+r)

µ
) is an integer, so that Tth is an integer.

17

Lemma 4. Suppose that λmin(∇2F (w̃)) ≤ −γ < 0, and at w̃, we observe ‖ĝ(w̃)‖2 ≤ ǫ = 3∆.
Assume that w0 ∈ Bw̃(r) and that w0 /∈ WS(w̃, r, R, Tth). Let t ≤ Tth be the step such that
‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF

4Tth
R2 − ∆2Tth

LF
− 4∆r − LF

2
r2. (11)

We prove Lemma 4 in Appendix B.2.
Next, we choose the quantities µ, r, R, and γ such that (i) the conditions (7)-(10) in Lemma 2

are satisfied, (ii) the probability of escaping saddle point in Lemma 3 is at least a constant, and
(iii) the decrease in function value in (11) is large enough. We first choose

µ = ∆3/5d−1/5ρ
−1/2
F , (12)

r = 4∆3/5d3/10ρ
−1/2
F , (13)

R = ∆2/5d1/5ρ
−1/2
F . (14)

One can simply check that, according to Lemma 3, when we drawn w0 from Bw̃(r) uniformly
at random, the probability that w0 ∈ WS(w̃, r, R, Tth) is at most 1/2. Since we assume that
∆ ≤ 1, one can also check that the condition (8) is satisfied. In addition, since ρFRµ = ∆, the
condition (9) is also satisfied. According to (7), we have

Tth =
2LF

γ
log9/4(

2d2/5

∆1/5
+ 8d1/2). (15)

In the following, we choose

γ = 768(ρ
1/2
F + LF)(∆

2/5d1/5 +∆3/5d3/10) log9/4(
2d2/5

∆1/5
+ 8d1/2), (16)

which implies

Tth =
LF

384(ρ
1/2
F + LF)(∆2/5d1/5 +∆3/5d3/10)

(17)

Then we check condition (10) holds. We have

24ρF (R + r) log9/4(
2(R+ r)

µ
) = 24ρ

1/2
F (∆2/5d1/5 + 4∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2) ≤ γ.

Next, we consider the decrease in function value in (11). Using the equations (15) and (16), we
can show the following three inequalities by direct algebra manipulation.

LF

4Tth
R2 ≥ 6

∆2Tth
LF

, (18)

LF

4Tth
R2 ≥ 24∆r, (19)

LF

4Tth
R2 ≥ 3LF r

2. (20)

By adding up (18), (19), and (20), we obtain

LF

4Tth
R2 ≥ 2

∆2Tth
LF

+ 8∆r + LF r
2,

which implies that when we successfully escape the saddle point, we have

F (w̃)− F (wt) ≥
LF

8Tth
R2 = 48(ρ

−1/2
F + LF ρ

−1
F)(∆6/5d3/5 +∆7/5d7/10). (21)

Then, one can simply check that, the average decrease in function value during the successful round
of the Escape process is

F (w̃)− F (wt)

t
≥ F (w̃)− F (wt)

Tth
≥ 2(∆8/5d4/5 +∆2d)

LF
>

3∆2

2LF
. (22)

18

Recall that according to (5), when the algorithm is not in the Escape process, the function value

is decreased by at least 3∆2

2LF
in each iteration. Therefore, if the algorithm successfully escapes the

saddle point, during the Escape process, the average decrease in function value is larger than the
iterations which are not in this process.

So far, we have chosen the algorithm parameters r, R, Tth, as well as the final second-order
convergence guarantee γ. Now we proceed to analyze the total number of iterations and the failure
probability of the algorithm. According to Lemma 3 and the choice of µ and r, we know that
at each point with ‖ĝ(w̃)‖2 ≤ ǫ, the algorithm can successfully escape this saddle point with
probability at least 1/2. To boost the probability of escaping saddle points, we need to repeat the
process Q rounds in Escape, independently. Since for each successful round, the function value
decrease is at least

48(ρ
−1/2
F + LFρ

−1
F)(∆6/5d3/5 +∆7/5d7/10) ≥ 48LFρ

−1
F (∆6/5d3/5 +∆7/5d7/10),

and the function value can decrease at most F0−F ∗. Therefore, the total number of saddle points
that we need to escape is at most

ρF (F0 − F ∗)

48LF (∆6/5d3/5 +∆7/5d7/10)
. (23)

Therefore, by union bound, the failure probability of the algorithm is at most

ρF (F0 − F ∗)

48LF (∆6/5d3/5 +∆7/5d7/10)
(
1

2
)Q,

and to make the failure probability at most δ, one can choose

Q ≥ 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 +∆7/5d7/10)

)
. (24)

Again, due to the fact that the function value decrease is at most F0 − F ∗, and in each effective

iteration, the function value is decreased by at least 3∆2

2LF
. (Here, the effective iterations are the

iterations when the algorithm is not in the Escape process and the iterations when the algorithm
successfully escapes the saddle points.) The total number of effective iterations is at most

2(F0 − F ∗)LF

3∆2
. (25)

Combing with (24), we know that the total number of parallel iterations is at most

4(F0 − F ∗)LF

3∆2
log

(
ρF (F0 − F ∗)

48LFδ(∆6/5d3/5 +∆7/5d7/10)

)
.

When all the algorithm terminates, and the saddle point escaping process is successful, the output
of the algorithm w̃ satisfies ‖ĝ(w̃)‖2 ≤ ǫ, which implies that ‖∇F (w̃)‖2 ≤ 4∆, and

λmin(∇2F (w̃)) ≥ −γ = −768(ρ1/2F + LF)(∆
2/5d1/5 +∆3/5d3/10) log9/4(

2d2/5

∆1/5
+ 8d1/2)

≥ −950(ρ1/2F + LF)(∆
2/5d1/5 +∆3/5d3/10) log(

2d2/5

∆1/5
+ 8d1/2).

(26)

We next show that we can simplify the guarantee as

λmin(∇2F (w̃)) ≥ −1900(ρ1/2F + LF)∆
2/5d1/5 log(

10

∆
). (27)

We can see that if ∆ ≤ 1√
d
, then ∆3/5d3/10 ≤ ∆2/5d1/5 and 2d2/5

∆1/5 + 8d1/2 ≤ 10
∆ . Thus, the

bound (27) holds. On the other hand, when ∆ > 1√
d
, we have ∆2/5d1/5 > 1 and thus

1900(ρ
1/2
F + LF)∆

2/5d1/5 log(
10

∆
) > LF .

By the smoothness of F (·), we know that λmin(∇2F (w̃)) ≥ −LF . Therefore, the bound (27) still
holds, and this completes the proof.

19

B.1 Proof of Lemma 2

We prove by contradiction. Suppose that u0,y0 ∈ WS . Let {ut} and {yt} be two sequences
generated by the following two iterations:

ut = ut−1 − ηĝ(ut−1), (28)

yt = yt−1 − ηĝ(yt−1), (29)

respectively, where ‖ĝ(w)−∇F (w)‖2 ≤ ∆ for any w ∈ W . According to our assumption, we have
∀ t ≤ Tth, ‖ut − u0‖2 < R and ‖yt − y0‖2 < R.

Define vt := yt − ut, δt := ĝ(ut)−∇F (ut), and δ′t := ĝ(yt)−∇F (yt). Then we have

yt+1 = yt − η(∇F (yt) + δ′t)

= ut + vt − η(∇F (ut + vt) + δ′
t)

= ut + vt − η∇F (ut)− η
[∫ 1

0

∇2F (ut + θvt)

]
vt − ηδ′

t

= ut+1 + ηδt + vt − η
[∫ 1

0

∇2F (ut + θvt)dθ

]
vt − ηδ′

t,

which yields
vt+1 = (I− ηH)vt − ηQtvt + η(δt − δ′

t), (30)

where

Qt :=

∫ 1

0

∇2F (ut + θvt)dθ −H. (31)

By the Hessian Lipschitz property, we know that

‖Qt‖2 ≤ρF (‖ut − w̃‖2 + ‖yt − w̃‖2)
≤ρF (‖ut − u0‖2 + ‖u0 − w̃‖2 + ‖yt − y0‖2 + ‖y0 − w̃‖2)
≤2ρF (R + r).

(32)

We let ψt be the norm of the projection of vt onto the e direction, and φt be the norm of the
projection of vt onto the remaining subspace. By definition, we have ψ0 = µ0 ≥ µ > 0 and φ0 = 0.
According to (30) and (32), we have

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R + r)
√
ψ2
t + φ2t − 2η∆, (33)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R+ r)
√
ψ2
t + φ2t + 2η∆. (34)

In the following, we use induction to prove that ∀ t ≤ Tth,

ψt ≥ (1 +
1

2
ηγ)ψt−1 and φt ≤

t

Tth
ψt (35)

We know that (35) holds when t = 0 since we have φ0 = 0. Then, assume that for some t < Tth,
we have ∀ τ ≤ t, ψτ ≥ (1 + 1

2ηγ)ψτ−1 and φτ ≤ τ
Tth
ψτ . We show that (35) holds for t+ 1.

First, we show that ψt+1 ≥ (1+ 1
2ηγ)ψt. Since ∀ τ ≤ t, ψτ ≥ ψτ−1, we know that ψt ≥ ψ0 ≥ µ.

Therefore, according to (9), we have

∆ ≤ ρF (R + r)µ ≤ ρF (R+ r)ψt. (36)

In addition, since t < Tth, we have
φt ≤ ψt. (37)

Combining (36), (37) and (33), (34), we get

ψt+1 ≥ (1 + ηγ)ψt − 2ηρF (R+ r)
√

2ψ2
t − 2ηρF (R+ r)ψt > (1 + ηγ)ψt − 6ηρF (R + r)ψt, (38)

φt+1 ≤ (1 + ηγ)φt + 2ηρF (R + r)
√

2ψ2
t + 2ηρF (R + r)ψt < (1 + ηγ)φt + 6ηρF (R+ r)ψt. (39)

20

According to (10), we have γ ≥ 24ρF (R+ r) log9/4(
2(R+r)

µ) > 12ρF (R+ r). Combining with (38),

we know that ψt+1 ≥ (1 + 1
2ηγ)ψt.

Next, we show that φt+1 ≤ t+1
Tth

ψt+1. Combining with (38) and (39), we know that to show

φt+1 ≤ t+1
Tth

ψt+1, it suffices to show

(1 + ηγ)φt + 6ηρF (R+ r)ψt ≤
t+ 1

Tth
[1 + ηγ − 6ηρF (R + r)]ψt. (40)

According to the induction assumption, we have φt ≤ t
Tth
ψt. Then, to show (40), it suffices to

show that
(1 + ηγ)t+ 6ηρF (R + r)Tth ≤ (t+ 1)[1 + ηγ − 6ηρF (R + r)] (41)

Since t+ 1 ≤ Tth, we know that to show (41), it suffices to show

12ηρF (R+ r)Tth ≤ 1. (42)

Then, according to (7) and (10), we know that (42) holds, which completes the induction.
Next, according to (35), we know that

‖uTth
− yTth

‖2 ≥ φTth
≥ (1 +

1

2
ηγ)Tthµ0

≥ (1 +
1

2
ηγ)

2
ηγ log9/4(

2(R+r)
µ)µ0

≥ 2(R+ r)

µ
· µ0 = 2(R+ r),

where the last inequality is due to the fact that η = 1
LF

and thus ηγ ≤ 1. On the other hand, since
we assume that u0,y0 ∈WS , we know that

‖uTth
− yTth

‖2 ≤ ‖uTth
− u0‖2 + ‖yTth

− y0‖2 + ‖u0 − y0‖2 < 2(R+ r),

which leads to contradiction and thus completes the proof.

B.2 Proof of Lemma 4

Recall that we have the iterations wτ+1 = wτ − ηĝ(wτ) for all τ < t. Let δτ = ∇F (wτ)− ĝ(wτ),
and then ‖δτ‖2 ≤ ∆. By the smoothness of F (·) and the fact that η = 1

LF
, we have

F (wτ)− F (wτ+1) ≥〈∇F (wτ),wτ −wτ+1〉 −
LF

2
‖wτ −wτ+1‖22

=

〈
wτ −wτ+1

η
+ δτ ,wτ −wτ+1

〉
− LF

2
‖wτ −wτ+1‖22

=
LF

2
‖wτ −wτ+1‖22 + 〈δτ ,wτ −wτ+1〉

≥LF

4
‖wτ −wτ+1‖22 −

‖δτ‖22
LF

≥LF

4
‖wτ −wτ+1‖22 −

∆2

LF
.

(43)

By summing up (43) for τ = 0, 1, . . . , t− 1, we get

F (w0)− F (wt) ≥
LF

4

t−1∑

τ=0

‖wτ −wτ+1‖22 −
∆2t

LF
. (44)

Consider the k-th coordinate of wτ and wτ+1, by Cauchy-Schwarz inequality, we have

t−1∑

τ=0

(wτ,k − wτ+1,k)
2 ≥ 1

t
(w0,k − wt,k)

2,

21

which implies
t−1∑

τ=0

‖wτ −wτ+1‖22 ≥
1

t
‖w0 −wt‖22. (45)

Combining (44) and (45), we obtain

F (w0)− F (wt) ≥
LF

4t
‖w0 −wt‖22 −

∆2t

LF
≥ LF

4Tth
R2 − ∆2Tth

LF
. (46)

On the other hand, by the smoothness of F (·), we have

F (w̃)− F (w0) ≥ 〈∇F (w̃), w̃ −w0〉 −
LF

2
‖w0 − w̃‖22 ≥ −(ǫ+∆)r − LF

2
r2. (47)

Adding up (46) and (47), we obtain

F (w̃)− F (wt) ≥
LF

4Tth
R2 − ∆2Tth

LF
− (ǫ +∆)r − LF

2
r2, (48)

which completes the proof.

C Proof of Theorem 4

First, when we run gradient descent iterations w′ = w− η∇F (w), according to Lemma 1, we have

F (w′) ≤ F (w)− 1

2LF
‖∇F (w)‖22. (49)

Suppose at w̃, we observe that ‖∇F (w̃)‖2 ≤ ǫ, and then we start the Escape process. When
we have exact gradient oracle, we can still define the stuck region WS at w̃ as in the definition
of stuck region in Appendix B, by simply replacing the inexact gradient oracle with the exact
oracle. Then, we can analyze the size of the stuck region according to Lemma 2. Assume that the
smallest eigenvalue of H := ∇2F (w̃) satisfies λmin(H) ≤ −γ < 0, and let the unit vector e be the
eigenvector associated with λmin(H). Let u0,y0 ∈ Bw̃(r) be two points such that y0 = u0 + µ0e

with some µ0 ≥ µ ∈ (0, r). Consider the stuck region WS(w̃, r, R, Tth). Suppose that r, R, Tth,
and µ satisfy

Tth =
2

ηγ
log9/4(

2(R+ r)

µ
), (50)

R ≥ µ, (51)

γ ≥ 24ρF (R + r) log9/4(
2(R+ r)

µ
). (52)

Then, there must be either u0 /∈ WS or y0 /∈ WS . In addition, according to Lemma 3, if con-
ditions (50)-(52) are satisfied, then, when we sample w0 from Bw̃(r) uniformly at random, the

probability that w0 ∈WS(w̃, r, R, Tth) is at most 2µ
√
d

r . In addition, according to (48) in the proof
of Lemma 4, assume that w0 ∈ Bw̃(r) and that w0 /∈ WS(w̃, r, R, Tth). Let t ≤ Tth be the step
such that ‖wt −w0‖2 ≥ R. Then, we have

F (w̃)− F (wt) ≥
LF

4Tth
R2 − ǫr − LF

2
r2. (53)

Combining (50) and (52), we know that the first term on the right hand side of (53) satisfies

LF

4Tth
R2 ≥ 3ρFR

3. (54)

Choose R =
√
ǫ/ρF and r = ǫ. Then, we know that when ǫ ≤ min{ 1

ρF
, 4
L2

F ρF
}, we have ǫr ≤ ρFR3

and 1
2LF r

2 ≤ ρFR3. Combining these facts with (53) and (54), we know that, when the algorithm
successfully escapes the saddle point, the decrease in function value satisfies

F (w̃)− F (wt) ≥ ρFR3. (55)

22

Therefore, the average function value decrease during the Escape process is at least

F (w̃)− F (wt)

Tth
≥ 12

LF
ǫ2. (56)

When we have exact gradient oracle, we choose Q = 1. According to (49) and (56), for the
iterations that are not in the Escape process, the function value decrease in each iteration is at
least 1

2LF
ǫ2; for the iterations in the Escape process, the function value decrease on average is

12
LF
ǫ2. Since the function value can decrease at most F0−F ∗, the algorithm must terminate within

2LF (F0−F∗)
ǫ2 iterations.

The we proceed to analyze the failure probability. We can see that the number of saddle points
that the algorithm may need to escape is at most F0−F∗

ρFR3 . Then, by union bound the probability
that the algorithm fails to escape one of the saddle points is at most

2µ
√
d

r
· F0 − F ∗

ρFR3

By letting the above probability to be δ, we obtain

µ =
δǫ5/2

2
√
ρFd(F0 − F ∗)

,

which completes the proof.

D Proof of Proposition 1

We consider the following class of one-dimensional functions indexed by s ∈ R:

F = {fs(·) : fs(w) = ∆3/2 sin(∆−1/2w + s), s ∈ R}.

Then, for each function fs(·) ∈ F , we have

∇fs(w) = ∆cos(∆−1/2w + s),

and
∇2fs(w) = −∆1/2 sin(∆−1/2w + s).

Thus, we always have |∇fs(w)| ≤ ∆, ∀w. Therefore, the ∆-inexact gradient oracle can simply
output 0 all the time. In addition, we verify that for all s and w, |∇2fs(w)| ≤ ∆1/2 ≤ 1 and
|∇3fs(w)| = | − cos(∆−1/2w + s)| ≤ 1 under the assumption that ∆ ≤ 1, so all the functions in F
are 1-smooth and 1-Hessian Lipschitz as claimed.

In this case, the output of the algorithm does not depend on s, that is, the actual function that
we aim to minimize. Consequently, for any output w̃ of the algorithm, there exists s ∈ R such that
∆−1/2w̃ + s = π/4, and thus |∇fs(w̃)| = ∆/

√
2 and λmin(∇2fs(w̃)) = −∆1/2/

√
2.

E Proof of Proposition 2

Suppose that during all the iterations, the Escape process is called E + 1 times. In the first E
times, the algorithm escapes the saddle points, and in the last Escape process, the algorithm does
not escape and outputs w̃. For the first E processes, there might be up to Q rounds of perturb-
and-descent operations, and we only consider the successful descent round. We can then partition
the algorithm into E+1 segments. We denote the starting and ending iterates of the t-th segment
by wt and w̃t, respectively, and denote the length (number of inexact gradient descent iterations)
by Tt. When the algorithm reaches w̃t, we randomly perturb w̃t to wt+1, and thus we have
‖w̃t −wt+1‖2 ≤ r for every t = 0, 1, . . . , E − 1. According to (25), we know that

E∑

t=0

Tt ≤
2(F0 − F ∗)LF

3∆2
:= T̃ ,

23

and according to (23), we have

E ≤ ρF (F0 − F ∗)

48LF (∆6/5d3/5 +∆7/5d7/10)
.

According to (46), we know that

F (wt)− F (w̃t) ≥
LF

4Tt
‖wt − w̃t‖22 −

∆2Tt
LF

,

which implies

‖wt − w̃t‖2 ≤
2√
LF

√
Tt(F (wt)− F (w̃t)) +

2∆Tt
LF

.

Then, by Cauchy-Schwarz inequality, we have

E∑

t=0

‖wt − w̃t‖2 ≤ 2

√√√√ T̃

LF

E∑

t=0

(F (wt)− F (w̃t)) +
2∆T̃

LF
. (57)

On the other hand, we have

E∑

t=0

(F (wt)− F (w̃t)) +

E−1∑

t=0

(F (w̃t)− F (wt+1)) = F (w0)− F (w̃E) ≤ F (w0)− F ∗.

According to (47), we have

F (w̃t)− F (wt+1) ≥ −4∆r −
LF

2
r2,

and thus
E∑

t=0

(F (wt)− F (w̃t)) ≤ F (w0)− F ∗ + E(4∆r +
LF

2
r2) (58)

Combining (57) and (59), and using the bounds for T̃ and E, we obtain that

E∑

t=0

‖wt − w̃t‖2 ≤ C1
F (w0)− F ∗

∆
, (59)

where C1 > 0 is a quantity that only depends on LF and ρF . In addition, we have

E−1∑

t=0

‖w̃t −wt+1‖2 ≤ Er ≤ C2
F (w0)− F ∗

∆3/5d3/10 +∆4/5d2/5
, (60)

where C2 > 0 is a quantity that only depends on LF and ρF . Combining (59) and (60), and using
triangle inequality, we know that

‖w̃E −w0‖2 ≤ C1
F (w0)− F ∗

∆
+ C2

F (w0)− F ∗

∆3/5d3/10 +∆4/5d2/5
≤ CF (w0)− F ∗

∆
.

Here, the last inequality is due to the fact that we consider the regime where ∆ → 0, and C is a
quantity that only depends on LF and ρF . As a final note, the analysis above also applies to any
iterate prior to the final output, and thus, all the iterates during the algorithm stays in the ℓ2 ball

centered at w0 with radius C F (w0)−F∗

∆ .

F Robust Estimation of Gradients

F.1 Iterative Filtering Algorithm

We describe an iterative filtering algorithm for robust mean estimation. The algorithm is orig-
inally proposed for robust mean estimation for Gaussian distribution in [22], and extended to
sub-Gaussian distribution in [23]; then algorithm is reinterpreted in [60]. Here, we present the

24

algorithm using the interpretation in [60]. Suppose that m random vectors x1,x2, . . . ,xm ∈ R
d

are drawn i.i.d. from some distribution with mean µ. An adversary observes all these vectors and
changes an α fraction of them in an arbitrary fashion, and we only have access to the corrupted
data points x̂1, x̂2, . . . , x̂m. The goal of the iterative filtering algorithm is to output an accurate
estimate of the true mean µ even when the dimension d is large. We provide the detailed procedure
in Algorithm 2. Here, we note that the algorithm parameter σ needs to be chosen properly in order
to achieve the best possible statistical error rate.

Algorithm 2 Iterative Filtering [22, 23, 60]

Require: corrupted data x̂1, x̂2, . . . , x̂m ∈ R
d, α ∈ [0, 14), and algorithm parameter σ > 0.

A ← [m], ci ← 1, and τi ← 0, ∀ i ∈ A.
while true do

Let W ∈ R
|A|×|A| be a minimizer of the convex optimization problem:

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈A

Wji=1

max
U�0

tr(U)≤1

∑

i∈A
ci(x̂i −

∑

j∈A
x̂jWji)

⊤U(x̂i −
∑

j∈A
x̂jWji),

and U ∈ R
d×d be a maximizer of the convex optimization problem:

max
U�0

tr(U)≤1

min
0≤Wji≤ 3+α

(1−α)(3−α)m∑
j∈A

Wji=1

∑

i∈A
ci(x̂i −

∑

j∈A
x̂jWji)

⊤U(x̂i −
∑

j∈A
x̂jWji).

∀ i ∈ A, τi ← (x̂i −
∑

j∈A x̂jWji)
⊤U(x̂i −

∑
j∈A x̂jWji).

if
∑

i∈A ciτi > 8mσ2 then

∀ i ∈ A, ci ← (1− τi
τmax

)ci, where τmax = maxi∈A τi.

A ← A \ {i : ci ≤ 1
2}.

else

return µ̂ = 1
|A|
∑

i∈A x̂i

end if

end while

F.2 Proof of Theorem 5

To prove Theorem 5, we first state a result that bounds the error of the iterative filtering algorithm
when the original data points {xi} are deterministic. The following lemma is proved in [23, 60];
also see [63] for additional discussion.

Lemma 5. [23, 60] Let S := {x1,x2, . . . ,xm} be the set of original data points and µS :=
1
m

∑m
i=1 xi be their sample mean. Let x̂1, x̂2, . . . , x̂m be the corrupted data. If α ≤ 1

4 , and the
algorithm parameter σ is chosen such that

∥∥∥∥∥
1

m

m∑

i=1

(xi − µS)(x− µS)
⊤

∥∥∥∥∥
2

≤ σ2, (61)

then the output of the iterative filtering algorithm satisfies ‖µ̂− µS‖2 ≤ O(σ
√
α).

By triangle inequality, we have

‖µ̂− µ‖2 ≤ ‖µ̂− µS‖2 + ‖µS − µ‖2, (62)

and
∥∥∥∥∥
1

m

m∑

i=1

(xi − µS)(x − µS)
⊤

∥∥∥∥∥
2

=
1

m

∥∥([x1, · · · ,xm]− µS1
⊤)([x1, · · · ,xm]− µS1

⊤)⊤
∥∥
2

=
1

m

∥∥[x1, · · · ,xm]− µS1
⊤∥∥2

2

≤ 1

m

(
‖[x1, · · · ,xm]− µ1⊤‖2 +

√
m‖µ− µS‖2

)2
, (63)

25

where 1 denotes the all-one vector.6 By choosing

σ = Θ(
1√
m
‖[x1, · · · ,xm]− µ1⊤‖2 + ‖µ− µS‖2)

in Lemma 5 and combining with the bounds (62) and (63), we obtain that

‖µ̂− µ‖2 .

√
α√
m
‖[x1, · · · ,xm]− µ1⊤‖2 + ‖µ− µS‖2. (64)

With the above bound in hand, we now turn to the robust gradient estimation problem, where
the data points are drawn i.i.d. from some unknown distribution. Let ĝ(w) := filter{ĝi(w)}mi=1,
where filter represents the iterative filtering algorithm. In light of (64), we know that in order to
bound the gradient estimation error supw∈W ‖ĝ(w)−∇F (w)‖2, it suffices to bound the quantities

sup
w∈W

‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1⊤‖2

and

sup
w∈W

‖ 1
m

m∑

i=1

∇Fi(w)−∇F (w)‖2.

Here, we recall that ∇Fi(w) is the true gradient of the empirical loss function on the i-th machine,
and ĝi(w) is the (possibly) corrupted gradient.

We first bound supw∈W ‖ 1
m

∑m
i=1∇Fi(w) −∇F (w)‖2. Note that we have 1

m

∑m
i=1∇Fi(w) =

1
nm

∑m
i=1

∑n
j=1∇f(w; zi,j). Using the same method as in the proof of Lemma 6 in [17], we can

show that for each fixed w, with probability at least 1− δ,

‖ 1
m

m∑

i=1

∇Fi(w) −∇F (w)‖2 ≤
2
√
2ζ√
nm

√
d log 6 + log

(1
δ

)
.

For some δ0 > 0 to be chosen later, let Wδ0 = {w1,w2, . . . ,wNδ0 } be a finite subset of W such
that for any w ∈ W , there exists some wℓ ∈ Wδ0 such that ‖wℓ−w‖2 ≤ δ0. Standard ǫ-net results
from [66] ensure that Nδ0 ≤ (1 + D

δ0
)d. Then, by the union bound, we have with probability 1− δ,

for all wℓ ∈ Wδ0 ,

‖ 1
m

m∑

i=1

∇Fi(w
ℓ)−∇F (wℓ)‖2 ≤

2
√
2ζ√
nm

√
d log 6 + log

(Nδ0

δ

)
. (65)

When (65) holds, by the smoothness of f(·; z) we know that for all w ∈ W ,

‖ 1
m

m∑

i=1

∇Fi(w)−∇F (w)‖2 ≤
2
√
2ζ√
nm

√
d log 6 + log

(Nδ0

δ

)
+ 2Lδ0.

By choosing δ0 = 1
nmL and δ = 1

(1+mnDL)d , we obtain that with probability at least 1− 1
(1+mnDL)d ,

for all w ∈ W ,

‖ 1
m

m∑

i=1

∇Fi(w)−∇F (w)‖2 .
ζ√
nm

√
d log(1 + nmDL). (66)

We next bound sup
w∈W ‖[∇F1(w), · · · ,∇Fm(w)]−∇F (w)1⊤‖2. We note that when the gra-

dients are sub-Gaussian distributed, similar results for the centralized setting have been estab-
lished in [13]. One can check that for every i, ∇Fi(w) − ∇F (w) is ζ√

n
-sub-Gaussian. Define

G(w) := [∇F1(w), · · · ,∇Fm(w)]−∇F (w)1⊤. Using a standard concentration inequality for the
norm of a matrix with independent sub-Gaussian columns [66], we obtain that for each fixed w,
with probability at least 1− δ,

‖ 1
m
G(w)G(w)⊤ − 1

n
Σ(w)‖2 .

ζ2

n

(√
d

m
+
d

m
+

1

m
log
(1
δ

)
+

√
1

m
log
(1
δ

))
,

6We note that similar derivation also appears in [63].

26

which implies that

1√
m
‖G(w)‖2 .

σ√
n
+

ζ√
n

(√
d

m
+
d

m
+

1

m
log
(1
δ

)
+

√
1

m
log
(1
δ

))1/2

.

Recall the δ0-net Wδ0 = {w1,w2, . . . ,wNδ0 } as defined above. Then, we have with probability at
least 1− δ, for all wℓ ∈ Wδ0

1√
m
‖G(wℓ)‖2 .

σ√
n
+

ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0

δ

)
+

√
1

m
log
(Nδ0

δ

))1/2

. (67)

For each w with ‖wℓ −w‖2 ≤ δ0, we have

‖G(wℓ)−G(w)‖2 ≤‖G(wℓ)−G(w)‖F

≤
(

m∑

i=1

‖(∇Fi(w
ℓ)−∇F (wℓ))− (∇Fi(w)−∇F (w))‖22

)1/2

≤2Lδ0
√
m.

This implies that when the bound (67) holds, we have for all w ∈ W ,

1√
m
‖G(w)‖2 .

σ√
n
+

ζ√
n

(√
d

m
+
d

m
+

1

m
log
(Nδ0

δ

)
+

√
1

m
log
(Nδ0

δ

))1/2

+ 2Lδ0. (68)

Choose δ0 = 1
nmL , in which case the last term above is a high order term. In this case, choosing

δ = 1
(1+mnDL)d

, we have with probability at least 1− 1
(1+mnDL)d

, for all w ∈ W ,

1√
m
‖G(w)‖2 .

σ√
n
+

ζ√
n

((d
m

+

√
d

m

)
log(1 + nmDL)

)1/2

.
σ√
n
+

ζ√
n

(
1 +

√
d

m

)
√
log(1 + nmDL). (69)

Combining the bounds (64), (66), and (69), we obtain that with probability at least 1− 2
(1+mnDL)d ,

sup
w∈W

‖ĝ(w)−∇F (w)‖2 .

(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)
√
log(1 + nmDL),

which completes the proof.

F.3 Median and Trimmed Mean

In this section, we present the error bounds of median and trimmed mean operations in the
Byzantine setting in [69] for completeness.

Assumption 4. For any z ∈ Z, the k-th partial derivative ∂kf(·; z) is Lk-Lipschitz for each

k ∈ [d]. Let L̂ := (
∑d

k=1 L
2
k)

1/2.

For the median-based algorithm, one needs to use the notion of the absolute skewness of a
one-dimensional random variable X , defined as S(X) := E[|X − E[X]|3]/Var(X)3/2. Define the
following upper bounds on the standard deviation and absolute skewness of the gradients:

v := sup
w∈W

(
E[‖∇f(w; z)−∇F (w)‖22]

)1/2
, s := sup

w∈W
max
k∈[d]

S
(
∂fk(w; z)

)
.

Then one has the following guarantee for the median-based algorithm.

27

Theorem 7 (median). [69] Suppose that Assumption 4 holds. Assume that

α+

(
d log(1 + nmDL̂)

m(1 − α)

)1/2

+ c1
s√
n
≤ 1

2
− c2

for some constant c1, c2 > 0. Then, with probability 1 − o(1), GradAGG ≡ med provides a ∆med-
inexact gradient oracle with

∆med ≤
c3√
n
v
(
α+ (

d log(nmDL̂)

m
)1/2 +

s√
n

)
+O(1

nm
),

where c3 is an absolute constant.

Therefore, the median operation provides a Õ(v(α√
n
+
√

d
nm + s

n))-inexact gradient oracle. If

each partial derivative is of size O(1), the quantity v is of the order O(
√
d) and thus one has

∆med .
α
√
d√
n

+ d√
nm

+
√
d

n .

For the trimmed mean algorithm, one needs to assume that the gradients of the loss functions
are sub-exponential.

Assumption 5. For any w ∈ W, ∇f(w; z) is ξ-sub-exponential.

In this setting, there is the following guarantee.

Theorem 8 (trimmed mean). [69] Suppose that Assumptions 4 and 5 hold. Choose β = c4α ≤
1
2 − c5 with some constant c4 ≥ 1, c5 > 0. Then, with probability 1 − o(1), GradAGG ≡ trmeanβ
provides a ∆tm-inexact gradient oracle with

∆tm ≤ c6ξd
(α√

n
+

1√
nm

)√
log(nmDL̂),

where c6 is an absolute constant.

Therefore, the trimmed mean operation provides a Õ(ξd(α√
n
+ 1√

nm
))-inexact gradient oracle.

F.4 Lower Bound for First-Order Guarantee

In this section we prove Observation 2. We consider the simple mean estimation problem with
random vector z drawn from a distribution D with mean µ. The loss function associated with
z is f(w; z) = 1

2‖w − z‖22. The population loss is F (w) = 1
2 (‖w‖22 − 2µ⊤w + E[‖z‖22]), and

∇F (w) = w−µ. We first provide a lower bound for distributed mean estimation in the Byzantine
setting, which is proved in [69].

Lemma 6. [69] Suppose that z is Gaussian distributed with mean µ and covariance σ2I. Then,
any algorithm that outputs an estimate w̃ of µ has a constant probability such that

‖w̃− µ‖2 = Ω(
α√
n
+

√
d

nm
).

Since ∇F (w̃) = w̃ − µ, the above bound directly implies the lower bound on ‖∇F (w̃)‖2 in
Observation 2.

28

	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Problem Setup
	4 Byzantine Perturbed Gradient Descent
	4.1 Algorithm
	4.2 Convergence Guarantees

	5 Robust Estimation of Gradients
	5.1 Iterative Filtering Algorithm
	5.2 Median and Trimmed Mean
	5.3 Comparison and Optimality

	6 Conclusion
	A Challenges of Escaping Saddle Points in the Adversarial Setting
	B Proof of Theorem ??
	B.1 Proof of Lemma ??
	B.2 Proof of Lemma ??

	C Proof of Theorem ??
	D Proof of Proposition ??
	E Proof of Proposition ??
	F Robust Estimation of Gradients
	F.1 Iterative Filtering Algorithm
	F.2 Proof of Theorem ??
	F.3 Median and Trimmed Mean
	F.4 Lower Bound for First-Order Guarantee

