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Abstract

This work studies the location estimation problem for a mixture of two rotation
invariant log-concave densities. We demonstrate that Least Squares EM, a variant
of the EM algorithm, converges to the true location parameter from a randomly
initialized point. Moreover, we establish the explicit convergence rates and sample
complexity bounds, revealing their dependence on the signal-to-noise ratio and the
tail property of the log-concave distributions. Our analysis generalizes previous
techniques for proving the convergence results of Gaussian mixtures, and highlights
that an angle-decreasing property is sufficient for establishing global convergence
for Least Squares EM.

1 Introduction

One important problem in statistics and machine learning [18, 24] is learning a finite mixture of
distributions. In the parametric setting in which the functional form of the density is known, this
problem is to estimate parameters (e.g., mean and covariance) that specify the distribution of each
mixture component. The parameter estimation problem for mixture models is inherently non-convex,
posing challenges for both computation and analysis. While many algorithms have been proposed,
rigorous performance guarantees are often elusive. One exception is the Gaussian Mixture Model
(GMM) for which much theoretical progress has been made in recent years. The goal of this paper is
to study algorithmic guarantees for a much broader class of mixture models, namely the mixture of
log-concave distributions. This class includes may common distributions' and is interesting from
both modelling and theoretical perspectives [2, 3, 6, 12, 26, 23].

We focus on the Expectation Maximization (EM) algorithm [11], which is one of the most popular
methods for estimating mixture models. Understanding the convergence property of EM is highly non-
trivial due to the non-convexity of the negative log-likelihood function. The work in [4] developed
a general framework for establishing /ocal convergence to the true parameter. Proving global
convergence of EM is more challenging, even in the simplest setting with a mixture of two Gaussians
(2GMM). The recent work in [10, 28] considered balanced 2GMM with known covariance matrix and
showed for the first time that EM converges to the true location parameter using random initialization.
Subsequent work established global convergence results for a mixture of two truncated Gaussians [19],
two linear regressions (2MLR) [17, 16], and two one-dimensional Laplace distributions [5].

All the above results (with the exception of [5]) rely on the explicit density form and the specific
properties of the Gaussian distribution. In particular, under the the Gaussian assumption, the
M-step in the EM algorithm has a closed-form expression, which allows a direct analysis of the
convergence behavior of the algorithm. However, for a general log-concave distribution the M-step
no longer admits a closed-form solution, and this poses significant challenges for analysis. To address

'Familiar examples of log-concave distributions include Gaussian, Laplace, Gamma, and Logistics [3].
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this difficulty, we consider a modification of the standard EM algorithm, called Least Squares EM
(LS-EM), to learn the location parameter of a mixture of two log-concave distributions. This algorithm
admits an explicit update, which is computationally simple.

As the main result of this paper, we show that for a mixture of rotation invariant log-concave
distribution, LS-EM converges to the true location parameter with a random initialization. Moreover,
we provide explicit convergence rates and sample complexity bounds, which depend on the signal-to-
noise ratio as well as the tail property of the distribution. As the functional form of the true density
may be unknown, we further establish a robustness property of LS-EM when using a mis-specified
density. As a special case, we show that using a Gaussian density, LS-EM globally converges to a
solution close to the true parameter whenever the variance of the true log-concave density is moderate.

Technical Contributions We generalize the sensitivity analysis in [10] to a broad class of log-
concave distributions. In the process, we demonstrate that log-concavity and rotation invariance of the
distribution are the only properties required to guarantee the global convergence of LS-EM. Moreover,
our analysis highlights the fundamental role of an angle-decreasing property in establishing the
convergence of LS-EM to the true location parameter in the high dimension settings. Note the {5
distance contraction, upon which the previous convergence results were built, no longer holds for
general log-concave distributions.

Organization In Section 2, we describe the parameter estimation problem for a mixture of log-
concave distributions and review related work. In Section 3, we derive the LS-EM algorithm and
elucidate its connection with classical EM. Analysis of the global convergence of LS-EM is provided
in Section 4 for the population setting, in Section 5 for the finite-sample setting, and in Section 6 for
the model mis-specification setting. The paper concludes with a discussion of future directions in
Section 7. Some details of the proofs and numerical experiments are deferred to the Appendix.

Notations We use z € R and € R? to denote scalars and vectors, respectively; X € R and
X € R? to denote scalar and vector random variables, respectively. The i-th coordinate of x (or X)
is x; (or X;), and the j-th data point is denoted by &7 or X”’. The Euclidean norm in R% is || - ||o.

For two vectors , 3 € R?, we use Z(a, 3) € (0, ) to denote the angle between them and (c, 3)
to denote their inner product. Finally, I 4 is the d-by-d identity matrix.

2  Problem Setup

In this section, we set up the model for a mixture of log-concave distributions and discuss the
corresponding location estimation problem.

2.1 Data Generating Model

Let F be a class of rotation invariant log-concave densities in R¢ defined as follows:

1
F= {f f(z) = o P (—g(llz||2)), g is convex and strictly increasing on [0, cc),
(1

/f(:n)dz::1,/xff(m)dw:17w€ [d]},

where we may assume g(0) = 0 without loss of generality.” It can be verified that each f € F
has mean 0 and covariance matrix I,. For each f € F, we may generate a location-scale family
consisting of the densities fg ,(x) := U—ld f (%), which has mean 3 and covariance matrix 021 4.
We assume that each data point is generated from D(3", o), a balanced mixture of two symmetric
members of the above log-concave location-scale family:

1 1
D(ﬁ*va) = §fﬁ*,a+§f—ﬁ*,o~ 2)

’Note that & — g(||z||2) is a convex function, as it is the composition of a convex function and a convex
increasing function. The normalization constant Cy can be computed explicitly by Cy = Crdvg with Cj, =

15 t97 exp(—g(t)) dt, where vq := W is the volume of a unit ball in R?.



Throughout this paper, we denote the signal-to-noise ratio (SNR) by
n:=18%l2/0.

It is sometimes useful to view the above model as an equivalent latent variable model: for each i € [n]
an unobserved label Z; € {1, 2} is first generated accordingto P(Z = 1) =P(Z = 2) = 1/2, and
then the data point X" is sampled from the corresponding mixture component, i.e., from fg« , if
Z; = 1 and from f_g~ , otherwise.

Examples: Below are several familiar examples of one-dimensional log-concave distributions
f x exp(—g) from F:

1. Polynomial distributions: g(z) o |z|” with » > 1. When r = 2, it corresponds to the
Gaussian distribution. When r = 1, it corresponds to the Laplace distribution.

2. Logistic distribution: g(x) o log(e~1#!/2 4 el=l/2),

These distributions can be generalized to higher dimension by replacing |x| with ||z ||. In Appendix B,
we provide a review of some elementary properties of log-concave distributions.

2.2 Location Estimation and the EM Algorithm

We assume that o is known, and our goal is to estimate the location parameter 3* given data
X' X% ..., X" € R? sampled i.i.d. from the mixture distribution D(8*, ) in (2). We first
consider this problem for a given log-concave family for which the base density f (equivalently, g) is
known. The case with an unknown f is discussed in Section 6.

Since the negative log-likelihood function of the mixture (2) is non-convex, computing the standard
MLE for 8 involves a non-convex optimization problem. EM is a popular iterative method for
computing the MLE, consisting of an expectation (E) step and a maximization (M) step. In a standard
implementation of EM, the E-step computes the conditional distribution of the labels Z; under
the current estimate of 3, and the M-step computes a new estimate by maximizing the expected
log-likelihood based on the E-step. The LS-EM algorithm we consider, described in Section 3 to
follow, is a variant of the standard EM algorithm with a modified M-step.

2.3 Convergence of EM and Related Work

Despite the popularity and empirical success of the EM algorithm, our understanding of its theoretical
property is far from complete. Due to the non-convexity of negative log-likelihood functions, EM is
only guaranteed to converge to a stationary point [27]. Quantitative convergence results only began
to emerge in recent years. The work [4] proposed a general framework for establishing the local
convergence of EM when initialized near the true parameter, with applications to 2GMM, 2MLR,
and regression with missing coefficients. Extensions to multiple components are considered in [29].

Beyond local convergence, it is known that the likelihood function of GMM may have bad local
optima when there are more than two components, and EM fails to find the true parameter without a
careful initialization [14]. Analysis of the global convergence of EM has hence been focused on the
two component setting, as is done in this paper. The work in [10] showed that EM converges from a
random initialization for 2GMM. Subsequent work in [17, 16, 28, 19] established similar results in
other settings, most of which involve Gaussian models. An exception is [5], which proved the global
convergence of EM for a mixture of 2 Laplace distributions and derived an explicit convergence rate,
but only in the one-dimensional population (infinite sample) setting. In general, properties of EM for
mixtures of other distributions are much less understood, which is the problem we target at in this
paper.

The log-concave family we consider is a natural and flexible generalization of Gaussian. This family
includes many common distributions, and has broad applications in economics [2, 3], reliability
theory [6] and sampling analysis [12]; see [26, 23] for a further review. Existing work on estimating
log-concave distributions and mixtures has mostly considered the non-parametric setting [26, 9,
15, 21, 9]; these methods are flexible but typically more computational and data intensive than
the parameteric approach we consider. Other approaches of learning general mixtures include
spectral [1, 22] and tensor methods [13, 8]; EM is often applied to the output of these methods.



3 The Least Squares EM Algorithm (LS-EM)

The M-step in the standard EM involves maximizing the conditional log-likelihood. For GMM, the
M-step is equivalent to solving a least-squares problem. For a mixture of log-concave distributions,
the M-step is to solve a convex optimization problem, and this optimization problem does not admit a
closed form solution in general. This introduces complexity in both computation and analysis.

We instead consider Least Squares EM, a variant of EM that solves a least-squares problem in the
M-step even for non-Gaussian mixtures. To elucidate the algorithmic property, we consider LS-EM
in the population setting, where we have access to an infinite number of data points from the mixture
distribution D(83*, o). The finite sample version is discussed in Section 5.

Each iteration of the population LS-EM algorithm consists of the following two steps:

e E-step: Compute the conditional probabilities of the label Z € {1, 2} given the current location
estimate (3:

1 L fﬁﬂ(X) 2 L f—B,o(X)
X = 5 ) + T X)) DB = ) (X

o Least-squares M-step: Update the location estimate 3 via weighted least squares:

B = argmin Exp(g- o) [P8.0 (X)X = blI3 + pj o (X)[1X +b]3]

3)

1 /1 1 /1 S
B o X tont 39 (21X + 8l ) - 50 (11X - Bl | = 21(6".),

In (4), we minimize the sum of squared distances of X to each component’s location, weighted
by the conditional probability of X belonging to that component. One may interpret LS-EM as a
soft version of the K-means algorithm: instead of associating each X exclusively with one of the
components, we assign a probability, which is computed using the log-concave density.

3.1 Connection to Standard EM

In contrast to LS-EM, the M-step in the standard EM algorithm involves maximizing the weighted
log-likelihood function (or minimizing the weighted negative log-likelihood function):

Standard M-step:
argmax QW | B) :=Ex~p(g.0) [Pp.o(X)10g fo.0(X) + P, (X)10g [0 (X)]. (5)

The standard EM iteration, consisting of (3) and (5), corresponds to a minorization-maximization
procedure for finding the MLE under the statistical setting (2). In particular, the function Q(- |
(3) above is a lower bound of the (marginal) log-likelihood function of (2), and the standard M-
step (5) finds the maximizer of this lower bound. In general, this maximization can only be solved
approximately. For example, the “gradient EM” algorithm considered in [4] performs one gradient
ascent step on the Q(- | B) function.

The least-squares M-step (4) may also be viewed as an approximation to the standard M-step (5), as
we observe numerically (see Appendix H.3) that the LS-EM update 87 satisfies

QBT 8)>QMBIB) ifB+#p6" 6)
This implies that the least-squares M-step finds an improved solution 3% (compared to the previous

iterate (3) of the function Q(- | B).

4 Analysis of Least Squares EM

In this section, we analyze the convergence behavior of the LS-EM update (4) in the population
setting. We first consider the one dimensional case (d = 1) in Section 4.1 and establish the global
convergence of LS-EM, extending the techniques in [10] for 2GMM to log-concave mixtures. In



Section 4.2, we prove global convergence in the multi-dimensional case (d > 1). In this setting,
the LS-EM update is not contractive in {2, so the analysis requires the new ingredient of an angle
decreasing property.

For convenience, we introduce the shorthand Fg »(X) := g (L[| X + B|2) — g (21X — Bll2);
when o = 1, we simply write Fjg = Fj ;. Since the integrand in (4) is an even function of X, the
update (4) can be simplified to an equivalent form by integrating over one component of the mixture:

B =M(B",8) = Ex~y,. , X tanh (0.5F3 ,(X)). (7)

Throughout the section, we refer to the technical conditions permitting the interchange of differentia-
tion and integration as the regularity condition. This condition is usually satisfied by log-concave
distributions — a detailed discussion is provided in Appendix E.

4.1 One Dimensional Case (d = 1)

For one dimensional log-concave mixtures, the behavior of LS-EM is similar to that of EM algorithm
for 2GMM: there exist only 3 fixed points, 0, 3* and —/*, among which 0 is non-attractive. Conse-
quently, LS-EM converges to the true parameter (3* or —3*) from any non-zero initial solution 3°.
This is established in the following theorem.

Theorem 4.1 (Global Convergence, 1D). Suppose that f € F satisfies the regularity condition. The
LS-EM update (4), 5 — M(B*, 5), has exactly three fixed points: 0, 5* and —3*. Moreover, the
following one-step bound holds:

|M(B", B) —sign(BB")5*| < K(8*,B,0) - |8 — sign(85) %],
where the contraction factor

K(B%,B,0) = Exnfrimasiipen.e [1 — tanh (0.5F (5], 16+ )),0 (X))]
satisfies 0 < k(8*,B,0) < L when 8 & {0, 5%, —*}.

We prove this theorem in Appendix C.1. The crucial property used in the proof is the self-consistency
of the LS-EM update (4), namely M (3, 8) = S for all 5. This property allows us to extend the
sensitivity analysis technique for 2GMM to general log-concave distributions.

It can be further shown that the contraction factor x(8*, 8, o) becomes smaller as the iterate moves
closer to the true 3* (see Lemma C.2). We thus obtain the following corollary on global convergence
at a geometric rate. Without loss of generality, assume 8* > 0.

Corollary 4.2 (t-step Convergence Rate, 1D). Suppose that f € F satisfies the regularity condition.
Let 3 denote the output of LS-EM after t iterations, starting from 3° # 0. The following holds:

8" — sign(B°6)8*| < w(B*,8°,0)" - |B° — sign(8°8") 8.
If 3% isin (0,0.55%) or (1.53*, 00), running LS-EM for O <log Lﬁi/log w(8%, 8°, a)) iterations

1805~
outputs a solution in (0.58*,1.58%). In addition, if 8° is in (0.58*,1.53*), running LS-EM for
O (Cy(n)log(1/e)) iterations outputs an e-close estimate of 3*, where Cr(n) > 0 is a constant

depending only on f and the SNR 1) := */o.

Special cases We provide explicit convergence rates for mixtures of some common log-concave
distributions. In the following, we assume 8* > 0 and 5 > 0 without loss of generality, and set

z = min(S, 5%).

e Gaussian: k(8% 8,0) < exp ( — 2%/20?) and C(n) = max (1, 77—12)

v,
e Laplace: x(8*,3,0) < 20xp(=57)

= 1
S o227 and Cy(n) = max (1, n)'

4exp(—-Z2
vl and C(n) = max (1, %)

e Logistic: x(8*,3,0) < Trenp(— 25 )75 oxp(— 25)

See Appendix C.2 for the proofs of the above results. Note that the convergence rate depends on
the signal-to-noise ratio 7 as well as the asymptotic growth rate -y = ~ of the log-density function
g = —log f. In the above examples, x(3*, 3,0) ~ exp (—c(min(3*, 8)/a)7), where v = 1 for
Laplace and Logistic, and vy = 2 for Gaussian.



4.2 High Dimensional Case (d > 1)

Extension to higher dimensions is more challenging for log-concave mixtures than for Gaussian
mixtures. Unlike Gaussian, a log-concave distribution with diagonal covariance need not have
independent coordinates. A more severe challenge arises due to the fact that LS-EM is not contractive
in {5 distance for general log-concave mixtures. This phenomenon, proved in the lemma below,
stands in sharp contrast to the Gaussian mixture setting.

Lemma 4.3 (Non-contraction in ¢5). Consider a log-concave density of the form g(x)  ||x||5 with
r > 1. Whenr € [1,2], 0 is the only fixed point of LS-EM in the direction ortoghonal to 3*. When
r € (2,00), there exists a fixed point other than 0 in the orthogonal direction. Consequently, when
r > 2, there exists (3 such that | M (8", 8) — B"||2 > |8 — B7||2.

We prove Lemma 4.3 in Appendix D.3. The lemma shows that it is fundamentally impossible to
prove global convergence of LS-EM solely based on /5 distance, which was the approach taken
in [10] for Gaussian mixtures.

Despite the above challenges, we show affirmatively that LS-EM converges globally to +3" for
mixtures of rotation-invariant log-concave distributions, as long as the initial iterate is not orthogonal
to 3" (a measure zero set).

As the first step, we use rotation invariance to show that the LS-EM iterates stay in a two-dimensional
space. The is done in the following lemma, which is proved in Appendix D.1.

Lemma 4.4 (LS-EM is 2-Dimensional). The LS-EM update satisfies: M (8", 3) € span(B3,3").
Moreover, if Z(3,8%) = 0or Z(8,3") = w/2, then M (3", 3) € span(3).

We now establish the asymptotic global convergence property of LS-EM.

Theorem 4.5 (Global Convergence, d-Dimensional). Suppose that f € F satisfies the regularity
condition. The LS-EM algorithm converges to sign((3°, 8*))B* from any randomly initialized point
B° that is not orthogonal to 3.

The theorem is proved using a novel sensitivity analysis that shows decrease in angle rather than in ¢
distance. The proof does not depend on the explicit form of the density, but only log-concavity and
rotation invariance. We sketch the main ideas of proof below, deferring the details to Appendix D.2.

Proof Sketch. Let 3° be the initial point that is not orthogonal to 3*. Without loss of generality, we
assume (3", B*) > 0. Consequently, all the future iterates satisfy (3", 3*) > 0 (see Lemma D.4).

If 3° is in the span of 3* (i.e., 8° parallels 3*), Lemma D.3 ensures that the iterates remain in the
direction of 3" and converge to 3. On the other hand, if 3° is not in the span of 3%, we make use of
the following two key properties of the LS-EM update 3" = M (3", 3):

1. Angle Decreasing Property (Lemma D.2): Whenever Z3, 3" € (0, T), the LS-EM update strictly

decreases the iterate’s angle toward 3%, i.e., Z(8", 8%) < £(8,8%) ;
2. Local Contraction Region (Corollary D.7): there is a local region around 3* such that if any
iterate falls in that region, all the future iterates remain in that region.

Since the sequence of LS-EM iterates is bounded, it must have accumulation points. Using the angle
decreasing property and the continuity of M (3", 3) in the second variable 3, we show that all the
accumulation points must be in the direction of 3*. In view of the dynamics of the 1-dimensional
case (Theorem 4.1), we can further show that the set of accumulation points must fall into one of
the following three possibilities: {0}, {3"}, or {0, 3" }. Below we argue that {0} and {0, 3%} are
impossible by contradiction.

e If {0} is the set of accumulation points, the sequence of non-zero iterates { ﬁt} would converge
to 0 and stay in a neighborhood of 0 after some time 7'; in this case, Lemma D.8 states that the
norm of the iterates is bounded away from zero in the limit and hence they cannot converge to 0.

e If {0, 3"} is the set of accumulation points, then there is at least one iterate in the local region
of 3%; by the local contraction region property above, all the future iterates remain close to 3*.
Therefore, 0 cannot be another accumulation point.

We conclude that 3” is the only accumlation point, which LS-EM must converge to. O



S Finite Sample Analysis

In this section, we consider the finite sample setting in which we are given n data points X sampled
i.id. from D(8*,0). Using the equivalent expression (7) for the population LS-EM update, and
replacing the expectation with the sample average, we obtain the finite-sample LS-EM update:>

~ 1 & ) . ;i
B ==Y X' tanh(0.5Fp,(X"),  where X' X foe . ®)
n
i=1
One approach to extend the population results (in Section 4) to this case is by coupling the pop-

. . . ~+ .
ulation update 3% with the finite-sample update 3 . To this end, we make use of the fact that
log-concave distributions are automatically sub-exponential (see Lemma F.2), so the random vari-

ables { X tanh(0.5Fp (X 1))}7: , are i.i.d. sub-exponential for each coordinate j. Therefore, the

~+ ~
concentration bound |3 — B[]z = O(1/(||B"|12 + 02)d/n) holds, and we expect that the conver-
gence properties of the population LS-EM carry over to the finite-sample case, modulo a statistical

error of 6(\/%) .

The above argument is made precise in following proposition for the one-dimensional case, which is
proved in Appendix F.1.

Proposition 5.1 (1-d Finite Sample). Suppose the density function f € F satisfies the regularity
condition. With 3 € R being the current estimate, the finite-sample LS-EM update (8) satisfies the
Sollowing bound with probability at least 1 — §:

B = 3| < K(8",B,0) 18— B*| + (5" + o) - O <\/;1og§> , ©

where k(B*, 8, ) is contraction factor defined in Theorem 4.1 and Cj is the Orlicz U1 norm (i.e.,
the sub-exponential parameter) of a random variable with density f € F.

Using Proposition 5.1, we further deduce the global convergence of LS-EM in the finite sample
case, which parallels the population result in Corollary 4.2. We present this result assuming sample
splitting, i.e., each iteration uses a fresh, independent set of samples. This assumption is standard
in finite-sample analysis of EM [4, 29, 10, 28, 17, 16]. In this setting, we establish the following
quantitative convergence guarantee for LS-EM initialized at any non-zero 3°. Without loss of
generality, 3°, 3* > 0.

The convergence has two stages. In the first stage, the LS-EM iterates enter a local neighborhood
around 3%, regardless of whether 3° is close to or far from 0. This is the content of the result below.
Proposition 5.2 (First Stage: Escape from 0 and oc). Suppose the initial point B° is in (0,0.58*) U
(1.58%,00). After T = O <log ﬁmi/log k(B*, min(B°,0.55%), J)) iterations, with N/T =

BO—p~|
2 ~,
Q ((1—;@(13* (;Tn?gé%).sﬁ*) e log %) fresh samples per iteration, LS-EM outputs a solution BT €

(0.58%,1.58*) with probability at least 1 — ¢ - O <log %/log k(B*, min(B°,0.53%), 0)).

Within this local neighborhood, the LS-EM iterates converge to 5* geometrically, up to a statistical
error determined by the sample size. This second stage convergence result is given below.

Proposition 5.3 (Second Stage: Local Convergence). The following holds for any € > 0. Sup-
pose B° € (0.58%,1.58%). After T = O (loge/logk(B*,0.58*,0)) iterations, with N/T =

* 2 ~
U= (1_(’/2 (;*C 6/5:76) 77 log %) fresh samples per iteration, LS-EM outputs a solution 7 satisfying

|ET — B*| < €B8* with probability at least 1 — § - O (log e/log k(5*,0.55*, 0)).

We prove Propositions 5.2 and 5.3 in Appendix F.2.

Let us parse the above results in the special cases of Gaussian, Laplace and Logistic, assuming
that o = 1 for simplicity. In Section 4.1 we showed that x(8*, 5,0) = exp (— min(3, 8*)7),

3This expression is for analytic purpose only. To actually implement LS-EM, we use samples X’ from the
mixture distribution D (8", o), which is equivalent to (8).



where v = vy is the growth rate of the log density — log f. Consequently, the first stage requires
O (1/(min(B°, 8*))?) iterations with © (1/(min(3°, 3*))?7) samples per iteration, and the second
stage requires O (log(1/€) /n7) iterations with Q (1/€*>") samples per iteration, where 1 := 3* /o
is the SNR. As can be seen, we have better iteration and sample complexities with a larger n > 1
(larger separation between the components) and a larger vy (lighter tail of the components).

In contrast, in the low SNR regime with n < 1, the sample complexity actually becomes worse for a
larger ~y (lighter tails). Indeed, low SNR means that two components are close in location when o = 1.
If their tails are lighter, then it becomes more likely that the mixture density ( fg« o + f—g+ »)/2 has
a unique mode at 0 instead of two modes at +3*. In this case, the mixture problem becomes harder
as it is more difficult to distinguish between the two components.

In the higher dimensional setting, we can similarly show coupling in ¢» (i.e., bounding || ,8+ —B72)
via sub-exponential concentration. However, extending the convergence results above to d > 1 is
more subtle, due to the issue of ¢, non-contraction (see Lemma 4.3). Addressing this issue would
require coupling in a different metric (e.g., in angle—see [17, 28]); we leave this to future work.

6 Robustness Under Model Mis-specification

In practice, it is sometimes difficult to know a priori the exact parametric form of a log-concave
distribution that generates the data. This motivates us to consider the following scenario: the data
is from the mixture D(83*, o) in (2) with a true log-concave distribution f € F and unknown

location parameter 3", but we run LS-EM assuming some other log-concave distribution f() =
5 Yexp(=g(|| - |l2)) € F. Using the same symmetry argument as in deriving (7), we obtain the

following expression for the mis-specified LS-EM update in the population case:
~+ — . ~
B =M(B",B) :=Ex~g,. X tanh (0.5F5 (X)), (10)

where Fjg - (X) := G (711X + Bll2) =3 (51X — Bl2).

Many properties of the LS-EM update are preserved in this mis-specification setting. In particular,
using the same approach as in Lemma4.4 and Lemma D.2, we can show that the mis-specified
LS-EM update is also a two dimensional object and satisfies the same strict angle decreasing property

~+
Z(B ,B8%) < Z(B,8"). Therefore, to study the convergence behavior of mis-specified LS-EM, it
suffices to understand the one-dimensional case (i.e., along the 3™ direction).

We provide such a result focusing on the setting in which j?is Gaussian, that is, we fit a Gaussian
mixture to a true mixture of log concave distributions. In this setting, we can show that mis-specified
LS-EM has only 3 fixed points {43, 0} (Lemma G.1). Moreover, we can bound the distance between
B and the true 3*, thereby establishing the following convergence result:

Proposition 6.1 (Fit with 2GMM). Under the above one dimensional setting with Gaussian f the
Jfollowing holds for some absolute constant Cy > 0: If n > Cy, then the LS-EM algorithm with a
non-zero initialization point 3° converges to a solution (3 satisfying sign(3) = sign(3°) and

’B — sign(ﬁoﬁ*)ﬁ*| < 100.

We prove this proposition in Appendix G.1. The proposition establishes a robust property of LS-EM:
even in the mis-specified setting, LS-EM still converges globally. Moreover, when the SNR 7 is high
(i.e., small noise level o), the final estimation error is small and scales linearly with o.

7 Discussion

In this paper, we have established the global convergence of the Least Squares EM algorithm for a
mixture of two log-concave densities. Our theoretical results are proved under the following three
assumptions on the densities: (i) rotation invariance, (ii) log-concavity, and (iii) monotone increasing
of the log density g with respect to the norm; cf. Equation (1). As we discuss in greater details in
Appendix H, all these assumptions appear to be essential under our current framework of analysis.



Moreover, empirical results suggest that the log-convexity assumption cannot be relaxed completely:
Figure | provides an example where the LS-EM algorithm may converge to 0 (an undesired solution)
with constant probability when the log-concavity property is violated. See Appendix H for additional
numerical results.
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Figure 1: The base distribution class f is proportional to exp(—|x|%2%). This is log-convex instead
of log-concave. The ground truth location parameter is set to be 1. We initialize the LS-EM iterates
at 6 =0.1,0.2,0.3,0.4,0.5, and it is seen that all converge to 0 after some iterations.

For future work, an immediate direction is to establish quantitative global convergence guarantees in
high dimensions for both the population and finite sample cases; doing so would require generalizing
the angle convergence property in [17] to log-concave distributions. In light of the discussion above,
it is also of interest to investigate to what extent the rotation invariance assumption can be relaxed, as
many interesting log-concave distributions are skewed. It is also interesting to consider mixtures with
multiple components.
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