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ABSTRACT

Performant Indexes and Search for Academia (PISA) is an experimen-

tal search engine that focuses on efficient implementations of state-

of-the-art representations and algorithms for text retrieval. In this

work, we outline our effort in creating a replicable search run from

PISA for the 2019 Open Source Information Retrieval Replicability

Challenge, which encourages the information retrieval community

to produce replicable systems through the use of a containerized,

Docker-based infrastructure. We also discuss the origins, current

functionality, and future direction and challenges for the PISA sys-

tem.
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1 INTRODUCTION

Reproducibility, replicability, and generalizability have become in-

creasingly important within the Information Retrieval (IR) commu-

nity. For example, weak baselines [3, 18] are often used as compari-

son points against newly proposed systems, resulting in what often

appear to be large improvements. One possible reason that weak

baselines are used is that they are usually simple and well estab-

lished, making it easy to reproduce or replicate them. Indeed, repli-

cating experimental runs is not a trivial task; minor changes in soft-

ware, datasets, and even hardware can result in significant changes

to experimental runs [10]. To this end, the 2019 Open Source Infor-

mation Retrieval Replicability Challenge (OSIRRC) brings together

academic groups with the aim of defining a reusable framework for

easily running IR experiments with a particular focus on replica-

bility, where a different team (to those who proposed the system)

uses the original experimental artifacts to replicate the given result.

In an attempt to improve replicability, the OSIRRC workshop pro-

poses to package and deploy various IR systems within a Docker

container ,1 which enables low-effort replication by reducing many

experimental confounders.

The goal of this paper is to give an overview of the PISA system

and to outline the process of building replicable runs from PISA

with Docker. We outline the particulars of our submitted runs, and

Copyright© 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). OSIRRC 2019 co-located with SIGIR
2019, 25 July 2019, Paris, France.
1https://www.docker.com/

discuss where PISA is suited for use in IR experimentation. The

remainder of this paper is structured as follows. In Section 2 we

describe some of the core functionality that makes PISA the state-

of-the-art for efficient search. Section 3 outlines the particular runs

that were deployed for the workshop, and shows some reference

experiments across a variety of collections. In Section 4, we briefly

outline the future of the PISA system. Finally, we conclude this

work in Section 5.

2 THE PISA ENGINE

PISA2 is an open source library implementing text indexing and

search, primarily targeted for use in an academic setting. PISA im-

plements a range of state-of-the-art indexing and search algorithms,

making it useful for researchers to easily experiment with new tech-

nologies, especially those concerned with efficiency. Nevertheless,

we strive for much more than just an efficient implementation.

With clean and extensible design and API, PISA provides a general

framework that can be employed for miscellaneous research tasks,

such as parsing, ranking, sharding, index compression, document

reordering and query processing, to name a few.

PISA started off as a fork repository of the ds2i library3 by Otta-

viano et al., which was used for prior research on efficient index

representations [26, 27]. Since then, PISA has gone through sub-

stantial changes, and now considerably extends the original library.

PISA is still being actively developed, integrating new features and

improving its design and implementation at regular intervals.

2.1 Design Overview

PISA is designed to be efficient, extensible, and easy to use. We now

briefly outline some of the design aspects of PISA.

Modern Implementation. The PISA engine itself is built using

C++17, making use of many new features in the C++ standard.

This allows us to ensure the implementations are both efficient and

understandable, as some of the newest language features can make

for cleaner code and APIs. We aim to adhere to best design practices,

such as RAII (Resource Acquisition Is Initialization), C++ Core

Guidelines4 (aided by Guidelines Support Library5), and strongly-

typed aliases, all of which result in safer and cleaner code without

sacrificing runtime performance.

2https://https://github.com/pisa-engine/pisa
3https://github.com/ot/ds2i
4https://github.com/isocpp/CppCoreGuidelines
5https://github.com/Microsoft/GSL
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Performance. One of the biggest advantages of C++ is its perfor-

mance. Control over data memory layout allows us to implement

and store efficient data structures with little to no runtime overhead.

Furthermore, we make use of low level optimizations, such as CPU

intrinsics, branch prediction hinting, and SIMD instructions, which

are especially important for efficiently encoding and decoding post-

ings lists. Memory mapped files provide fast and easy access to data

structures persisted on disk. We also avoid unnecessary indirection

of runtime polymorphism in performance-sensitive code in favor of

the static polymorphism of C++ templates and metaprogramming.

Our performance is also much more predictable than when using

languages with garbage collection. Finally, we suffer no runtime

overhead as is the case with VM-based or interpreted languages.

Extensibility. Another important design aspect of PISA promotes

extensibility. For example, interfaces are exposed which allow for

new components to be plugged in easily, such as different parsers,

stemmers, and compression codecs. This is achieved through heavy

use of generic programming, similar to that provided by the C++

Standard Template Library. For example, an encoding schema is as

much a parameter of an index as a custom allocator is a parameter

of std::vector. By decoupling different parts of the framework,

we provide an easy way of extending the library both in future

iterations of the project, as well as by users of the library.

2.2 Feature Overview

In this section, we take a short tour of several important features

of our system. We briefly discuss the indexing pipeline, document

reordering, scoring, and implemented retrieval methods.

Parsing Collection. The objective of parsing is to represent a

given collection as a forward index, where each term is assigned a

unique numerical ID, and each document consists of a list of such

identifiers. This is a non-trivial task that involves several steps that

can be critical to retrieval performance.

First, the document content must be accessed by parsing a certain

data exchange format, such asWARC, JSON, or XML. The document

itself is typically represented byHTML, XML, or a custom annotated

format, which must be parsed to retrieve the underlying text. The

text must be then tokenized, and the resulting words are typically

stemmed before indexing.

PISA supports a selection of file and content parsers. The parsing

tool allows input formats of many standard IR collections, such as

ClueWeb096, ClueWeb127, GOV28, Robust049, Washington Post10,

and New York Times.11 We also provide an HTML content parser,

and the Porter2 [31] stemming algorithm for English language.

As discussed in Section 2.1, PISA is designed to allow new com-

ponents, such as parsers or stemmers, to be plugged-in with low

implementation overhead.

As part of a forward index, we also encode a term lexicon. This is

simply a mapping between strings and numerical IDs. We represent

6https://lemurproject.org/clueweb09/
7https://lemurproject.org/clueweb12/
8http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
9https://trec.nist.gov/data/robust/04.guidelines.html
10https://trec.nist.gov/data/wapost/
11https://catalog.ldc.upenn.edu/LDC2008T19

it as a payload vector. The structure is divided into two memory ar-

eas: the first one is an array of integers representing payload offsets,

while the other stores the payloads (strings). This representation

allows us to quickly retrieve a word at a given positionÐwhich

determines its IDÐdirectly from disk using memory mapping. We

achieve string lookups by assigning term IDs in lexicographical

order and performing binary search. Note that reassigning term

IDs requires little overhead, as it is applied directly when a number

of small index batches are merged together. This design decision

enables us to provide a set of command line tools to quickly access

index data without unnecessary index loading overhead. Docu-

ment titles (such as TREC IDs) are stored using the same structure

but without sorting them first, as the order of the documents is

established via an index reordering stage as described below.

The entire parsing process is performed in parallel when ex-

ecuted on a multi-core architecture. The forward index can be

created under tight memory constraints by dividing the corpus and

processing it in batches, and then merging the resulting forward

indexes at the end. Currently, PISA only supports merging forward

indexes together prior to generating the canonical inverted index.

However, future work will aim to allow index updates through

efficient inverted index merging operations.

Indexing. Once the parsing phase is complete, the forward index

containing a collection can be used to build an inverted index in a

process called inverting. The product of this phase is an inverted

index in the canonical format. This representation is very similar

to the forward index, but in reverse: it is a collection of terms,

each a containing a list of document IDs. The canonical representa-

tion is stored in an uncompressed and universally readable format,

which simply uses binary sequences to represent lists. There are

a few advantages of storing the canonical representation. Firstly,

it allows various transformations, such as document reordering

or index pruning, to be performed on the index before storing it

in its final compressed form. Secondly, it allows for different final

representations to be built rapidly, such as indexes that use different

compression algorithms. Thirdly, it allows the PISA system to be

used to create an inverted index without requiring the PISA system

to be used beyond this point, making it easy for experimenters to

import the canonical index into their own IR system.

Document Reordering. Document reordering corresponds to re-

assigning the document identifiers within the inverted index [4]. It

generally aims to minimize the cost of representing the inverted in-

dex with respect to storage consumption. However, reordering can

also be used to minimize other cost functions, such as query process-

ing speed [41]. Interestingly, optimizing for space consumption has

been empirically shown to speed up query processing [14, 15, 24],

making document reordering an attractive step during indexing.

In theory, index reordering can take place either on an existing

inverted index, or before the inverted index is constructed. PISA

opts to use the canonical index as both input and output for the doc-

ument reordering step, as this allows a generic reordering scheme

to be used which can be easily extended to various reordering tech-

niques, and allows the reordering functionality to be used without

requiring further use of PISA.

Many approaches for document reordering exist, including ran-

dom ordering, reordering by URL [33], MinHash ordering [6, 9],
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Figure 1: Index building pipeline in PISA. A collection is first parsed and encoded in a forward index. Subsequently, it is inverted and

stored in the canonical inverted index format. This can be used to efficiently reorder documents. Eventually, a compressed representation is

produced, which will be used at query time. Additional data might be extracted, depending on the algorithms used. The simplicity of the

inverted index format (uncompressed) makes it easy to convert it to any given format used by another framework.

and recursive graph bisection [13]. PISA supports efficient index

reordering for all of the above techniques [21].

Index Compression. Given the extremely large collections in-

dexed by current search engines, even a single node of a large

search cluster typically contains many billions of integers in its

index structure. In particular, compression of posting lists is of

utmost importance, as they account for much of the data size and

access costs. Compressing an inverted index introduces a twofold

advantage over a non-compressed representation: it reduces the

size of the index, and it allows us to better exploit the memory

hierarchy, which consequently speeds up query processing.

Compression allows the space requirements of indexes to be sub-

stantially decreased without loss of information. The simple and

extensible design of PISA allows for new compression approaches

to be plugged in easily. As such, a range of state-of-the-art com-

pression schemes are currently supported, including variable byte

encoders (VarIntGB [12], VarInt-G8IU [34], MaskedVByte [30],

and StreamVByte [17]), word-aligned encoders (Simple8b [2], Sim-

ple16 [43], QMX [35, 37], and SIMD-BP128 [16]), monotonic en-

coders (Interpolative [25], EF [40], and PEF [27]), and frame-of-

reference encoders (Opt-PFD [42]).

Oftentimes, the choice of encoding depends on both the time

and space constraints, as compression schemes usually trade off

space efficiency for either encoding or decoding performance, or

both. We refer the reader to [24] for more details.

Scoring. Currently, BM25 [32] is used as the weighting model for

ranked retrieval. BM25 is a simple yet effective ranker for process-

ing bag-of-words queries, and promotes effective dynamic prun-

ing [28]. Given a document d and a query q, we use the following

formulation of BM25:

BM25(d,q) =
∑

t ∈q

IDF(t) · TF(d, t), (1)

IDF(t) = log

(

N − ft + 0.5

ft + 0.5

)

, (2)

TF(d, t) =
fd,t · (k1 + 1)

fd,t + k1 · (1 − b + b · ld/lavg)
, (3)

where N is the number of documents in the collection, ft is the

document frequency of term t , fd,t is the frequency of t in d , ld is

the length of document d , and lavg is the average document length.

We set parameters k1 = 0.9 and b = 0.4, as described by Trotman

et al. [36]. For a more exhaustive examination of BM25 variants,

we refer the reader to the work by Trotman et al. [38].

Search. Because PISA supports document-ordered index organiza-

tion, both Boolean and scored conjunctions or disjunctions can be

evaluated, exploiting either a Document-at-a-Time or a Term-at-a-

Time index traversal strategy.

Furthermore, PISA supports a range of state-of-the-art dynamic

pruning algorithms such as MaxScore [39] and WAND [5], and

their Block-Max counterparts, Block-MaxMaxScore (BMM) [7] and

Block-Max WAND (BMW) [14].

In order to facilitate these dynamic pruning algorithms, an aux-

iliary index metadata structure must be built, which stores the re-

quired upper-bound score information to enable efficient dynamic

pruning. It can be built per postings list (for algorithms likeWAND

and MaxScore), or for each fixed-sized block (for the Block-Max

variants). In addition, variable-sized blocks can be built (in lieu of

fixed-sized blocks) to support the variable-block family of Block-

Max algorithms listed above, such as Variable Block-MaxWAND

(VBMW) [22, 23]. Ranked conjunctions are also supported using

the Ranked AND or (Variable) Block-Max Ranked AND (BMA) [14]

algorithms.

Indeed, the logical blocks stored in the index metadata are de-

coupled from the compressed blocks inside the inverted index. The

advantage of storing the metadata independently from the inverted

index is that the metadata depends only on the canonical index,

needs to be computed only once, and does not change if the under-

lying compression codec is changed.

PISA provides two ways to experiment with query retrieval. The

first one performs end-to-end search for a given list of queries, and

prints out the results in the TREC format. It can also be used to

evaluate query speed, as was done for this workshop. Additionally,

we provide a more granular approach, which focuses on comparing

different retrieval methods directly. Here, we only report the time

to fetch posting lists and perform search, excluding lexicon lookups

and printing results to the standard output or a file. We encourage
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Robust04 Core17 Core18 Gov2 ClueWeb09 ClueWeb12

16.5 15 13.5 17 22.5 25.5

Table 1: Values of λ for the given collections using the Gumbo

parser, Porter2 stemmer, and reordering with recursive graph bi-

section. These values will yield an average block size of 40 ± 0.5

for the variable block metadata.

the interested reader to refer to PISA’s documentation for more

details about running experiments.12

3 REPRODUCIBLE EXPERIMENTATION

In the spirit of OSIRRC, we utilize the software and metrics made

available by the organizers, including the jig13 and the trec_eval14

tool. In addition, we have decided to provide some further informa-

tion and reference experiments that we consider important.

3.1 Default Runs

Given the many possibilities for the various components of the

PISA system, we now outline the default system configuration for

the OSIRRC workshop. Further information can be found in the

documentation of our OSIRRC system.15 Note that the block size for

the variable-block indexes depends on a parameter λ [22]. In order

to get the desired average block size for the variable blocks, the

value of λ was searched for offline, and differs for each collection.

For convenience, we tabulate the values of λ in Table 1. Note that

such values of λ only apply when using the same parsing, stemmer,

and reordering as listed below.

• Parsing: Gumbo16 with Porter2 stemming; no stopwords

removed. We discard the content of any document with over

1,000 HTML parsing errors.

• Reordering: Recursive graph bisection. We optimize the

objective function using the posting lists of lengths at least

4,096.

• Compression: SIMD-BP128 with a posting list block size

of 128.

• Scoring: BM25 with k1 = 0.9 and b = 0.4

• Index Metadata: Variable blocks with a mean block size of

40 ± 0.5.

• Index Traversal: Variable BlockMax WAND.

3.2 Experimental Setup

Now, we briefly outline the experimental setup and the resources

used for our experimentation.

Datasets. We performed our experiments on the following text

collections:

• Robust04 consists of newswire articles from a variety of

sources from the late 1980’s through to the mid 1990’s.

12https://pisa.readthedocs.io/en/latest/
13https://github.com/osirrc/jig/
14https://github.com/usnistgov/trec_eval
15https://github.com/osirrc/pisa-docker
16https://github.com/google/gumbo-parser

Documents Terms Postings

Robust04 528,155 587,561 107,481,358

Core17 1,855,660 1,048,294 448,998,765

Core18 595,037 621,941 191,042,917

Gov2 25,205,178 32,407,061 5,264,576,636

ClueWeb09 50,220,110 87,896,391 14,996,638,171

ClueWeb12 52,343,021 133,248,235 14,173,094,439

Table 2: Quantitative properties of our indexes.

Collection Track Topics # Topics

Robust04 Robust ’04 301ś450, 601ś700 250

Core17 Common Core ’17 301ś450, 601ś700† 250

Core18 Common Core ’18 321ś825‡ 50

Gov2 Terabyte ’04-’06 701ś850 150

ClueWeb09 Web ’09-’12 51ś200 150

ClueWeb12 Web ’13-’14 201ś300 100

Table 3:Query topics used in the experiments. Note that theCore17

topics are the same as the Robust04 topics, but some were modified

to reflect temporal changes†, andCore18 used 25 topics fromCore17

and 25 new topics.‡

• Core17 corresponds to the New York Times news collection,

which contains news articles between 1987 and 2007.

• Core18 is the TRECWashington Post Corpus, which consists

of news articles and blog posts from January 2012 through

August 2017.

• Gov2 is the TREC 2004 Terabyte Track test collection con-

sisting of around 25million .gov sites crawled in early 2004;

the documents are truncated to 256 kB.

• ClueWeb09 is the ClueWeb 2009 Category B collection con-

sisting of around 50 million English web pages crawled be-

tween January and February, 2009.

• ClueWeb12 is the ClueWeb 2012 Category B-13 collection,

which contains around 52million English web pages crawled

between February and May, 2012.

Some quantitative properties of these collections are summarized

in Table 2. The first three are relatively small, and contain newswire

data. The remaining corpora are significantly larger, containing

samples of the Web. Thus, the latter two should be more indicative

of any differences in query efficiency. In fact, each of these can

be thought of as representing a single shard in a large distributed

search system.

Test queries. Each given collection contains a set of test queries

from various TREC tracks which we use to validate the effectiveness

of our system. These queries are described in Table 3.

Testing details. All experiments were conducted on a machine

with two Intel Xeon E5-2667 v2 CPUs, with a total of 32 cores

clocked at 3.30 GHz with 256 GiB RAM running Linux 4.15.0. Fur-

thermore, the experiments presented here are deployed within the
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Docker framework. Although we believe that this may cause a

slight reduction in the efficiency of the presented algorithms, we

preserve this setup in the spirit of the workshop and comparabil-

ity. We leave further investigation of potential overhead of Docker

containers as future work.

A note on ClueWeb12. In preliminary experiments, we found

that the memory consumption for reordering the ClueWeb12 index

was high, which slowed down the indexing process considerably.

Thus, we opted to skip reordering the ClueWeb12 collection in the

following experiments, and our results are reported on an index

that uses the default (crawl) order. Since index order impacts the

value of λ, we use λ = 26, which results in variable block metadata

with a mean block size in the desired range of 40 ± 0.5. Note that

this value differs from the one reported in Table 1, which is correct

if reordering is applied based on Recursive Graph Bisection (see

Section 3.1).

3.3 Results and Discussion

We now present our reference experiments, which involve end-to-

end processing of each given collection.

Indexing and Compression. The HTML content of each docu-

ment was extracted with the Gumbo parser. We then extracted

three kinds of tokens: alphanumeric strings, acronyms, and pos-

sessives, which were then stemmed using the Porter2 algorithm.

We reordered documents using the recursive graph bisection al-

gorithm which is known to improve both compression and query

performance [13, 21, 24]. Thenwe compressed the index with SIMD-

BP128 encoding, which has been proven to exhibit one of the best

space-speed trade offs [24].

Table 4 summarizes indexing times broken down into individual

phases, while Table 5 shows compressed inverted index sizes as

well as average numbers of bits used to encode document gaps and

frequencies. The entire building process was executed with 32 cores

available; however, at the time of writing, only some parts of the

pipeline support parallel execution. We also note that the index

reordering step is usually the most expensive step in our indexing

pipeline. If a fast indexing time is of high importance, this step can

be omitted, as we did for ClueWeb12. Alternatively, less expensive

reordering operations can be used. However, skipping the index

reordering stage (or using a less effective reordering technique)

will result in a larger inverted index and less efficient query-time

performance.

System Effectiveness. Next, we outline the effectiveness of the

PISA system. In particular, we are processing rank-safe, disjunctive,

top-k queries to depth k = 1,000. Since processing is rank-safe, all of

the disjunctive index traversal algorithms result in the same top-k

set. Table 6 reports the effectiveness for Mean Average Precision

(MAP), Precision at rank 30 (P@30), and Normalized Discounted

Cumulative Gain at rank 20 (NDCG@20).

Query Efficiency. To measure the efficiency of query processing,

we measure how long it takes to process the entire query log for

each collection. We use 32 threads to concurrently retrieve the

top-k documents for all queries using either theMaxScore or the

VBMW algorithm, with a single thread processing a single query at

a time. MaxScore has been shown to outperform other algorithms

for large values of k on the Gov2 and ClueWeb09 collections [24].

Table 7 shows the results. While MaxScore usually outperforms

VBMW, we did not optimize the block size of the index metadata,

so comparisons should be made with caution. Indeed, VBMW is

likely to outperform MaxScore with optimized blocks and small

values of k . For a more detailed analysis of per-query latency within

PISA, we refer the interested reader to the recent work by Mallia

et al. [24].

3.4 Discussion

PISA is built for performance. We are able to rapidly process each

query set thanks to efficient document retrieval algorithms and

extremely fast compression. On the other hand, as we have shown,

SIMD-BP128 encoding also exhibits a reasonable compression ratio,

which allows us to store the index in main memory. We encour-

age the reader to study the work by Mallia et al. [24] for more

information about query efficiency under different retrieval and

compression methods.

At the present moment, our query retrieval is tailored towards

fast candidate selection, as we lack any complex ranking functional-

ity, such as a learning-to-rank document reranking stage. However,

the effectiveness we obtain using BM25 is consistent with other

results found in the literature [19].

Furthermore, we provide a generic index building pipeline, which

can be easily customized to one’s needs. We unload most of the com-

putationally intensive operations onto the initial stages of indexing

to speed up experiments with many configurations; in particular, to

deliver additional indexes with different integer encodings quickly

and easily.

As per the workshop rules, we deliver a Docker image, which

reproduces the presented results. Note that the initial version of the

image was derived from an image with a precompiled distribution

of PISA. However, we quickly discovered this solution was not

portable. The source of our issues was compiling the code with

AVX2 support. Once compiled, the binaries could not be executed

on a machine not supporting AVX2. One solution could be to cross-

compile and provide different versions of the image. However, we

chose to simply distribute the source code to be compiled at the

initial stage of an experimental run.

4 FUTURE PLANS

Despite its clear strengths, PISA is still a relatively young project,

aspiring to become a more widely used tool for IR experimentation.

We recognize that many relevant features can be still developed to

further enrich the framework. We have every intention of pursuing

these in the nearest future.

An obvious direction is to continue our work on query perfor-

mance. For instance, we intend to support precomputing quantized

partial scores in order to further improve candidate selection perfor-

mance [11]. We are also considering implementing other traversal

techniques, including known approaches, such as Score-at-a-Time

methods [1, 20], as well as novel techniques.

The next step would be to implement more complex document

rankings based on learning-to-rank. Many of the data structures

required for feature extraction are indeed already in place. We
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Parse Invert Reorder Compress Metadata Total

Robust04 0:06:22 0:00:08 0:01:21 0:00:07 0:00:44 0:08:42

Core17 0:11:41 0:00:42 0:07:18 0:00:14 0:02:59 0:22:54

Core18 0:10:42 0:00:14 0:02:11 0:00:07 0:01:11 0:14:25

Gov2 1:37:52 1:00:12 2:28:04 0:06:42 0:37:04 5:49:52

ClueWeb09 4:08:08 3:11:50 10:28:30 0:32:42 2:01:01 20:22:12

ClueWeb12 5:09:58 3:27:51 Ð 0:34:55 2:11:46 11:24:30

Table 4: Indexing times broken down into five phases: parsing, inverting, reordering, compression, and index metadata construction. Times

are reported in the following format: hours:minutes:seconds.

Index size (MiB) Docs (bpi) Freqs (bpi)

Robust04 136.88 7.48 3.21

Core17 545.90 7.07 3.13

Core18 238.33 7.24 3.22

Gov2 5,410.89 5.59 3.03

ClueWeb09 20,715.29 7.96 3.63

ClueWeb12 23,206.16 9.22 4.52

Table 5: Total index size and average number of bits per integer

while encoding documents and frequencies within posting lists.

Topics MAP P@30 NDCG@20

Robust04 All 0.2534 0.3120 0.4221

Core17 All 0.2078 0.4260 0.3898

Core18 All 0.2384 0.3500 0.3927

Gov2

701-750 0.2638 0.4776 0.4070

751-800 0.3305 0.5487 0.5073

801-850 0.2950 0.4680 0.4925

ClueWeb09

51-100 0.1009 0.2521 0.1509

101-150 0.1093 0.2507 0.2177

151-200 0.1054 0.2100 0.1311

ClueWeb12
201-250 0.0449 0.1940 0.1529

251-300 0.0217 0.1240 0.1484

Table 6: The effectiveness of the submitted run for each respective

corpus.

would also like to enhance our query retrieval pipeline with ranking

cascades that are capable of applying learned models [8].

Other planned features include query expansion, content ex-

traction (template detection, boilerplate removal), sharding, and

distributed indexes. Work on some of these has in fact already

started.

5 CONCLUSION

PISA is a relative newcomer on the scene of open source IR software,

yet it has already proven its many benefits, including a flexible

design which is specifically tailored for use in research. Indeed, PISA

k = 10 k = 1,000

Collection MaxScore VBMW MaxScore VBMW

Robust04 7 7 21 26

Core17 10 8 16 15

Core18 5 4 12 14

Gov2 115 99 215 200

ClueWeb09 225 138 285 424

ClueWeb12 220 415 248 842

Table 7: Time taken to process the entire query log for each collec-

tion. Time is reported in milliseconds.

has been successfully used in several recent research papers [21,

23, 24, 29].

One of the indisputable advantages of PISA is its extremely fast

query execution, achieved by careful optimization and the zero-

cost abstractions of C++. Furthermore, it supports a multitude of

state-of-the-art compression and query processing techniques that

can be used interchangeably.

Although there are still several shortcomings, these are mostly

due to the project’s young age, and we hope to address these very

soon. Furthermore, we plan to continue enhancing the system with

novel solutions. Indeed, a good amount of time has been spent on

PISA to provide a high quality experimental IR framework, not

only in terms of performance, but also from a software engineering

point of view.We usemodern technologies and libraries, continuous

integration, and test suites to ensure the quality of our code, and

the correctness of our implementations.

We encourage any interested researchers to get involved with

the PISA project.
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