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ABSTRACT
The deployment of Deep Neural Networks (DNNs) on edge-devices has been hindered by their high computation
cost and memory footprint. Moreover, the lack of high-quality labeled training data also prevents DNNs from
being effectively implemented for various mobile apps running on resource-constrained devices. Pruning can
reduce the model size and calculation time by removing less important parameters in DNNs. Transfer learning
allows a learned model to quickly adapt to a similar new task with less demand on training data. However, can we
leverage the advantages from both pruning and transfer learning still remains largely unknown. This study strives
to answer two fundamental research questions: 1) Can we combine pruning and transfer learning? 2) How to
effectively integrate pruning and transfer learning? To answer these questions, we implement an unstructured
gradual pruning method and image classification transfer learning task on several widely used DNN models (e.g.
ResNet and VGG) and datasets (ImageNet, CIFAR10, and Food101). We find that 1) An appropriately pruned
model (with moderate sparsity ratio) can endow even better generalization ability on transfer learning tasks. 2) The
order of pruning and transfer learning has large impact on DNNs’ accuracy and training time. Our experiments
show that pruning a ResNet34 model (pre-trained on ImageNet) to 50% sparsity, transfer it to CIFAR10 dataset,
then further prune it to 80% sparsity can increase its accuracy by 0.5% and reduce training time by 3x. The
training time can be reduced by 70x with 0.37% better accuracy if we transfer the model first then prune it to 80%
sparsity. 3) Pruning is expensive thus trade-offs between accuracy gain and training cost need to be considered in
practice.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have solved
many challenging tasks in computer vision, speech recog-
nition, and natural language processing. Despite the break-
throughs various DNNs have made in different fields, two
factors are hindering (or slowing down) the deployment of
DNN applications on resource-constrained devices such as
mobile phones, drones, etc. The first limiting factor is the
growing size and deeper architecture of DNN models, which
requires larger storage space, longer training/inference time
and consumes more power. Therefore, it is paramount to
develop techniques that can alleviate the greedy resource
needs of dense and deep DNN models without compromis-
ing accuracy. The second issue is the lack of high-quality
labeled data, which prevents DNNs from being widely and
quickly implemented in real practice. Training a model from
scratch for a new task takes substantial amount of time to
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reach convergence. Meanwhile, the insufficient training data
will hurt the model’s accuracy. Model pruning has been pro-
posed to address the first problem by removing or masking
less important parameters in a DNN model. With moderate
pruning rate, it can significantly reduce the demand of DNN
models for resources while keeping its accuracy. Transfer
learning, which transfers knowledge learned from a well-
trained model to a new domain of interest, has been verified
as an effective solution to the second problem. The transfer
learning process usually only requires minor adjustments
of the original model but often outperforms training from
scratch while significantly reducing the amount of training
data and training time.

A natural question to ask is can we combine pruning with
transfer learning to further promote the deployment of
DNNs on resource constrained devices? Furthermore, if
we can take advantage of both techniques, what is the best
way to integrate them? To the best of our knowledge, the
answers to these questions remain unknown. No existing lit-
erature has thoroughly investigated this problem yet because
combining pruning and transfer learning seems risky at the
first glance. During the pruning process, a large portion of
parameters in a DNN model are marked as less important
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thus removed or masked. This might hurt the performance
of the transer learning task because the pruned parameters
could be useful for the generalization ability of the DNN
model. Making decisions about which parameters are less
important is not trivial and largely based on the input data.
Therefore, a pruned model may have better performance
on specific features of input data but performs poorly on
transfer learning tasks.

To verify if the aforementioned concerns are true or not, we
explore the possibility of combining model pruning with
transfer learning in this study. Specifically, we strive to
answer the following two key research questions: 1) Can
we combine transfer learning and pruning? 2) If we can
benefit from the combination of pruning and transfer learn-
ing, what is the best way to integrate them? To answer
these questions, we pick two widely used convolutional neu-
ral networks (VGG16 (Simonyan & Zisserman, 2014) and
ResNet34 (He et al., 2016)) and choose the transfer learn-
ing task that classifies images for various size of datasets
(e.g. ImageNet (Deng et al., 2009), CIFAR10 (Krizhevsky
et al., 2009), and Food101(Bossard et al., 2014)). During
the investigation, we implement a simple gradual pruning
approach (Zhu & Gupta, 2017) that requires minimal tun-
ing and can be seamlessly incorporated with various model
architectures. For transfer learning, we change the number
of classes in the last layer and take the rest of the layers as
fixed feature extractors for the new datasets.

The primary findings are summarized below:

• Pruning and transfer learning can work together. Train-
ing a model on a large dataset and prune it not over
aggressively (with the sparsity ratio less than 90%) is
able to improve the generalization ability of the transfer
learning task comparing to its dense counterpart.

• The orders of conducting pruning and transfer learning
have significant impact on model accuracy and training
time. Among three different orders (i.e. prune before
transfer learning, prune after transfer learning, prune
before and after transfer learning), our experimental re-
sults show that prune the ResNet34 model (pre-trained
on ImageNet) to 50% sparsity first, and conduct trans-
fer learning to CIFAR10 dataset then further prune the
transferred model to 80% sparsity has the best perfor-
mance, which can increase the accuracy by 0.5% and
reduce the training time by 3x.

• Pruning is resource demanding and time consuming,
especially when the input dataset is large. The trade-
offs between the accuracy gain and computation cost
when combine transfer leaning with pruned models
should be carefully considered.

2 RELATED WORK

Parameter Pruning Pruning induces sparsity in weights
and activations of neural networks to reduce parameter
size and computation times. Optimal Brain Damage (Le-
Cun et al., 1990) and Optimal Brain Surgeon (Hassibi &
Stork, 1993) are the earliest works that proposed the idea
of network pruning in the 1990s. (Han et al., 2015) pruned
network weights with a small magnitude threshold and in-
troduced a three-step iterative pruning pipeline approach,
which brought network pruning to public attention. After-
ward, pruning further diverged into unstructured pruning
and structured pruning. Unstructured pruning increases the
sparsity of weights in neural networks and generates fine-
grained sparse weight tensors. The drawbacks are it only
generates smaller models when special sparse matrix storage
methods are used and only reduces computation cost as well
as run-time memory when deployed on specialized hard-
ware. For structured pruning, there are vector level, kernel
level, filter level, and channel level pruning strategies (Mao
et al., 2017). The coarser the pruning level is, the smaller
the final models are. Compared to unstructured pruning,
structured pruning directly changes network architectures
and does not require any special hardware. However, it
tends to suffer from lower accuracy. The most recently
works (Frankle & Carbin, 2018; Liu et al., 2018) started to
explore the essence of pruning, which claim sub-networks
of the original network can achieve comparable accuracy
from random re-initialization comparing to the original one.

Knowledge Transfer Training a DNN from scratch with
randomly initialized parameters is computationally intensive
and time consuming. In addition, it requires massive high
quality labeled data as input, which could be hard to collect
in practice. Knowledge transfer can leverage the learned rep-
resentations from other models and generalize its knowledge
for a new task with less training data (Pan & Yang, 2009).
For example, the DNNs trained on a large-scale image clas-
sification dataset such as ImageNet (Deng et al., 2009) has
proven to be excellent feature extractors for a broad range of
visual tasks such as image captioning (Karpathy & Fei-Fei,
2015; Lu et al., 2017) and visual question answering (Xu
& Saenko, 2016). Depending on whether the labeled data
are available in a source domain and target domain, trans-
fer learning can be divided into three categories, which are
inductive, transductive and unsupervised transfer learning
(Pan & Yang, 2009). The method used in our study belongs
to inductive transfer learning because it has both labeled
data in the source and target domain.

The combination of pruning and transfer learning seems
to be counter-intuitive. After all, the pruning process aims
to reduce model size by removing or masking unimportant
weights (i.e. part of the model information will be erased).
Transfer learning, on the other hand, strives to utilize the
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learned representations from other datasets as much as pos-
sible to learn a new task in a more efficient way (i.e. any
missing information of the model could negatively affect its
generalization ability in a transfer learning task). Therefore,
to the best of our knowledge, none of the previous work
had conducted a comprehensive study on the feasibility of
combining pruning with transfer learning. In this paper, we
prove that pruning not only works well with transfer learn-
ing but also performs better than dense models if they are
integrated in an appropriate order.

3 METHODOLOGY

In this section, we describe the methodologies in detail
on conducting transfer learning with fine-grained sparse
networks.

3.1 Automatic gradual unstructured pruning

Comparing to other unstructured pruning methods, the au-
tomatic gradual pruning is the preferred method for our
experiments as it is succinct, convenient and flexible. This
method was first proposed by (Zhu & Gupta, 2017), which
concluded that large sparse models tend to achieve better
performance than small dense models at the same memory
footprint. Unlike other magnitude-based weight pruning
methods (Han et al., 2015; See et al., 2016; Narang et al.,
2017), the automatic gradual pruning strategy does not re-
quire the pre-processing and parameter analysis steps be-
cause it prunes each layer equally to the desired sparsity.
We leverage this method to further explore how well large
sparse models perform on transfer learning tasks. Assuming
the sparsity ratio of a DNN model is S, automatic gradual
pruning prunes the model from an initial sparsity Si to a
final sparsity value Sf within n pruning steps, starting at
training step t0 with pruning frequency ∆t. The temporary
sparsity St at each step is represented as equation 1.

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

for t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}
(1)

The intuition behind equation 1 is to prune the network
rapidly in the initial phase when the redundant connections
are abundant and gradually reduce the pruning rate as if
the redundancy of weights is dropping gradually. Figure 1
shows the pruning curve of a ResNet20 model trained on
the CIFAR10 dataset and pruned to 95% sparsity within 75
epochs, from which we can observe the decreasing pruning
slope when the model is approaching to the expected spar-
sity. To be consistent, we prune all layers except the first
input layer and the last fully connected layer in the experi-
ments shown in Section 4. For every layer pruned, a binary

mask variable with the same size and shape as the layer’s
weight tensor is added and it determines which weights par-
ticipate in the forward execution, as demonstrated in (Zhu &
Gupta, 2017). Since the binary weight masks are updated in
each ∆t step as the network is trained to gradually increase
the sparsity of the network, it allows the model to recover
from any pruning-induced loss in accuracy. To accurately
illustrate how does pruning affect model generalization abil-
ity, we set ∆t = 1, which disables the capability of network
to adjust their accuracy in pruning steps.

Figure 1. Gradual Pruning on ResNet20 model

We prune VGG16 and ResNet34 models that are pre-trained
on ImageNet using the automatic gradual pruning approach.
The initial learning rate of the pruning process is set to
0.005, and it reduces 5% in every epoch. In the pruning
before transfer learning process (PB), we prune pre-trained
models for 10 epochs from sparsity Si to sparsity Sf and let
the networks adjust their parameters for another 5 epochs.
In the pruning after transfer learning process (PA), we prune
transferred models for 25 epochs and let the network adjust
for 25 epochs. The batch size of all Resnet34 pruning is set
as 64 whereas the batch size of pruning VGG16 varies from
16 to 128.

3.2 Transfer learning

To accelerate the learning process, it is typical to use a
pre-trained model on a very large dataset and take their pa-
rameters as initialization for the new image classification
tasks. Based on the similarity and the relative size of the
new dataset comparing to the original dataset, the trans-
ferred models can be viewed as the fixed feature extractors
(learned parameters are frozen) or fine-tuned feature extrac-
tors (learned parameters can be changed to fit new tasks) on
the new dataset.

Three image classification datasets are used in our exper-
iments, which are CIFAR10 (Krizhevsky et al., 2009),
Food101 (Bossard et al., 2014) and ImageNet (Deng et al.,
2009). For all input images, we crop and resize them to
the 224x224 resolution and use a standard data augmen-
tation scheme (He et al., 2016; Huang et al., 2016; Lin
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Figure 2. Transfer learning process

et al., 2013) (shifting/mirroring) to pre-process the data. All
pruning and transfer learning experiments are conducted on
two popular network architectures - VGGNet (Simonyan
& Zisserman, 2014) and ResNet (He et al., 2016). The pre-
trained VGG16 and ResNet34 models on ImageNet from
the Pytorch (Paszke et al., 2017) framework are selected
as baseline models. For all transfer learning processes, we
change the number of neurons in the last fully connected
layer into the number of classes of the target dataset and fine
tune all weights (See Figure 2). We set the initial learning
rate as 0.005 and it degrades 5% in every epoch afterwards.
The batch size is 128 and the models are trained for 50
epochs respectively. As Table 1 shows, training ResNet34
and VGG16 models with CIFAR10 and Food101 dataset
from scratch gets much worse accuracy comparing to train-
ing the corresponding transferred models that are pre-trained
on ImageNet.

Model Dataset Scratch Acc% Transfer Acc%

ResNet34 Cifar10 88.720 96.130
Food101 70.657 82.178

VGG16 Cifar10 88.210 93.080
Food101 72.412 78.547

Table 1. Accuracy comparison between training from scratch and
transfer learning. Scratch Acc% represents the accuracy of train-
ing the models from CIFAR10 or Food101 datasets with random
initialization. Transfer Acc% represents the accuracy of training
the models on ImageNet dataset then transfer to the CIFAR10 and
Food101 datasets respectively.

4 EXPERIMENTS AND RESULTS

In this section, we design a set of experiments to answer two
key research questions. First, what is the impact of pruning
on transfer learning? Can they work together? Second,
what is the best order (prune before transfer learning, prune
after transfer learning, or prune before and after transfer
learning) to integrate pruning with transfer learning? The
experimental results are presented to quantitatively analyze

the impact of different choices to accuracy and training time.

In our experiments, all pruning tasks (using the pre-trained
ImageNet models) are completed on a server with 2 Titan X
Nvidia GPUs with 12GB on-chip memory each. All transfer
learning tasks are conducted on a Dell workstation with one
GeForce GTX 1080 GPU that has 8GB on-chip memory.

4.1 Does pruning affect the generalization ability of
transfer learning?

The biggest concern to combine pruning and transfer learn-
ing is that pruning may damage the generalization ability
of a DNN model by removing or masking a great portion
of parameters that are considered as less important. To
investigate if this is a valid concern, we conduct transfer
learning on pruned models with various sparsities and com-
pare the accuracy of transfer learning tasks with their dense
counterparts.

For this experiment, we select the standard ResNet34 and
VGG16 provided by Pytorch pre-trained on ImageNet, and
prune them into 50%, 70%, 80%, and 90% sparsity respec-
tively. For each sparse model we transfer them to both the
CIFAR10 and Food101 image classification datasets. To
ensure the correctness of the results, all experiments are
conducted with the open-source Distiller tool (Zmora et al.,
2018), a package especially designed for neural network
compression research.

Figure 3 shows the accuracy comparison of transfer learning
on dense models (i.e. the orininal model without pruning)
and several sparse models with 50%, 70%, 80%, and 90%
sparsities. It can be observed that pruned models perform
better than or at least equally well when sparsity ratio is
80% or less. This is probably because pruning successfully
eliminates some of the redundancy in the original network,
which helps to alleviate the over-fitting problem in the dense
model. It is also evident that the accuracy of different CNN
models and transfer learning tasks show a trend of increasing
first and decreasing later between 50% and 80% sparsity.
However, the accuracy of transfer learning task is still better
than using the dense model when the pruning rate is not
over aggressive (e.g. sparsity ratio is greater than 90%).
(Han et al., 2015) reported that accuracy dropped when the
model is pruned too aggressively. Our findings align well
with their results and extend the existing findings by proving
that aggressive pruning will hurt the accuracy of transfer
learning tasks as well.

Therefore, we can conclude that the concern pruning will
hurt the generalization ability of transfer learning is unnec-
essary. In fact, transfer learning can benefit from a pruned
model as long as it is not too aggressively pruned. The
generalization ability of a model can be improved by a mod-
erate pruning process, which possibly because the relief of



Transfer Learning with Fine-grained Sparse Networks: From an Efficient Network Perspectivee

over-fitting problem.

Figure 3. Accuracy comparison among transfer learning on dense
model and pruned models with 50%, 70%, 80%, and 90% sparsity
respectively. Pruned models perform better than or at least equally
well when sparsity ratio is 80% or less.

4.2 Does the order of pruning and transfer learning
affect model accuracy?

Transfer learning is usually conducted with the models pre-
trained on a large dataset. This is done in part to transfer
features that generalize well to a new task or target domain.
However, when we consider adding pruning into the transfer
learning pipeline, there are multiple options when the model
should be pruned, as outlined in Figure 4. Here, “PB”,
“PA”, and “PBA” represent pruning before transfer learning,
pruning after transfer learning and prune the model both
before and after transfer learning, respectively. A set of
experiments are designed to evaluate the performance of
each sequence, which are conducted as follows. We keep the
results from Section 4.1 and use that as our ’PB’ results. We
take the baseline dense model that has been transferred to
the new dataset and prune it to the same sparsities while fine-
tuning on the new dataset. Please note that in all sequences,
if a green block (pruning) shows before the orange block
(transfer learning), the original domain of images are used
as inputs. Similarly, new domain data are used as inputs if
the green block shows after the orange block.

Figure 4. Pruning and transfer learning sequences. Green blocks
represent sparsity a DNN model is pruned to. Orange blocks
indicate where in the sequence transfer learning occurs.

Figure 5. The performance of different pruning and transfer learn-
ing sequences. Top: PB/PA on CIFAR10 with ResNet34 and
VGG16. Middle: PB/PA on Food101 with ResNet34 and VGG16.
Bottom: PBA on CIFAR10 with ResNet34

Figure 5 plots the results of transfer learning on CIFAR10
and Food101 dataset using ResNet34 and VGG16 respec-
tively, both pre-trained on ImageNet. We can observe from
the top and middle charts that PA outperforms PB in most
cases. The bottom chart of Figure 5 shows the comparison
results of PB, PA, and PBA, where the black dash line rep-
resents the results of PB for ResNet34 on CIFAR10 dataset
and the red dash line shows the corresponding results of
PA. The yellow, green and blue solid lines represent the re-
sults of different PBA pipelines starting from various pruned
ResNet34 models and transferred to CIFAR10 dataset, then
further pruned to higher sparsity. It is surprising to see that
PBA performs even better than PB and PA. It clearly demon-
strates that pruning an already sparse model after transfer
learning can further increase its accuracy. Among all viable
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Pipeline P-Time(h) T-Time(h) Total(h) Acc%
D‖T‖50‖70‖80 5.38 2.44 7.82 96.57
D‖50‖T‖70‖80 186.28 2.44 188.72 96.74
D‖50‖70‖T‖80 367.18 2.44 369.62 96.61
D‖50‖70‖80‖T 548.08 2.44 550.52 96.20

Table 2. The estimated time on pruning and transfer learning on
training the Resnet34 CIFAR10 80% sparsity model. The pipeline
names represent the sequence of pruning and transfer learning. For
example, “D‖50‖T‖70‖80” indicates the pipeline starts from a
pre-trained dense model (D) and prune it to 50% sparsity then
transfer it to CIFAR10 dataset, and then iteratively prune the trans-
ferred model to 70% and 80% sparsity. “P-Time(h)” represents
the pruning time in hours while the “T-Time” means the transfer
learning time in hours.

sparsities, a moderately pruned model with 50% sparsity for
PBA achieves the best accuracy.

4.3 What are the trade-offs between accuracy gain
and training time cost?

Figure 6. Average pruning time per mini-batch

As discussed in Section 4.2, there are a variety of possible
orders to build the prune-transfer pipeline. Since pruning
is computationally expensive and time consuming, it will
be less ideal if we only use accuracy as the single metric
to evaluate which order is the best. For example, Table 2
illustrates the estimated time of several valid pipelines to
prune a ResNet34 model (pre-trained on ImageNet) to 80%
sparsity and transfer it to CIFAR10. The estimated time is
calculated by the average pruning time and transfer learning
time for each mini-batch multiplied by the total input size.
The results show that the “D‖50‖T‖70‖80” pipeline has the
highest accuracy (96.74%) but needs more than 188 hours
to train. Although the accuracy of the “D‖T‖50‖70‖80”
pipeline is slightly lower (96.57%), it is trained much faster
(finishes in less than 8 hours). There are two primary rea-
sons why pruning before transfer learning takes substantial
amount of time. First, the ImageNet dataset is used as inputs
if pruning before transfer learning, which has significantly
more images than the CIFAR10 or Food101 dataset (used as
inputs if pruning after transfer learning). Second, during the

pruning and transfer learning experiments, we notice that the
processing time in each mini-batch is longer when pruning
with ImageNet dataset as input, even though the hardware
and batch size are identical (see Figure 6). All ResNet34
models are pruned on a single GeForce GTX 1080 GPU
and all VGG16 models are pruned on a single Titan X GPU.
Despite all images are resized to the 224x224 resolution
and all mini-batch size is set to 64, we can still observe that
the pruning time for each mini-batch is longer on ImageNet
than CIFAR10 and Food101. This difference on VGG16
is not as obvious as on ResNet34 because VGG16 has two
very large fully connected layers. Therefore, increasing the
number of classes on VGG16 has a relatively minimal im-
pact on the mini-batch execution time. However, increasing
the class number from 10 to 1000 for ResNet34 has a much
larger impact on each mini-batch execution time.

To summarize, the trade-offs between accuracy gain and
training time need to be carefully considered when imple-
menting the pruning-transfer learning pipeline. Generally
speaking, pruning a well pre-trained model on a large dataset
(e.g. ImageNet) endows it better generalization ability. De-
velopers may be able to deploy sparse models with less ag-
gressive pruning to get satisfied accuracy improvements and
arithmetical reductions. However, pruning a model trained
on large datasets is very time consuming. If the primary goal
is to get the highest accuracy or best generalization ability
for various transfer learning tasks, we recommend pruning
with a less sparse model (e.g. sparsity less than 50%) be-
fore transfer learning. Whereas, if training time or training
cost is critical (e.g. developers might need to prune and
implement multiple sparse models to fulfill development
requirements), a better solution would be transfer learning
first then pruning, as demonstrated by the “D‖T‖50‖70‖80”
pipeline example in Table 2.

5 CONCLUSIONS

In this paper, we systematically study the feasibility of com-
bining pruning and transfer learning. We demonstrate that
a moderately pruned model can improve the generalization
ability of transfer learning. In addition, the orders of inte-
grating pruning and transfer learning have large impact on
the models’ accuracy and training time. Our experiments
show that pruning a ResNet34 model (pre-trained on Ima-
geNet) to 50% sparsity, transfer it to CIFAR10 dataset, then
further prune it to 80% sparsity can increase its accuracy by
0.5% and reduce training time by 3x. The training time can
be reduced by 70x with 0.37% better accuracy if we transfer
the model first then prune it to 80% sparsity. Furthermore,
pruning requires extensive computational resource and elon-
gate training time, the trade-offs between accuracy gain
and computation cost should be carefully considered when
integrating pruning with transfer learning.
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