
DirectLoad: A Fast Web-scale Index System across Large Regional Centers

An Qin1, Mengbai Xiao2, Jin Ma1, Dai Tan1,

Rubao Lee3, Xiaodong Zhang2

1Baidu Inc., {qinan, majin, tandai02}@baidu.com
2The Ohio State University, xiao.736@osu.edu, zhang@cse.ohio-state.edu

3United Parallel Computing Corporation, lirb@unipacc.com

Abstract—The freshness of web page indices is the key to
improving searching quality of search engines. In Baidu, the
major search engine in China, we have developed DirectLoad,
an index updating system for efficiently delivering the web-
scale indices to nationwide data centers. However, the web-scale
index updating suffers from increasingly high data volumes
during network transmission and inefficient I/O transactions
due to slow disk operations. DirectLoad accelerates the index
updating streams from two aspects: 1) DirectLoad effectively
cuts down the overwhelmingly high volume of indices in trans-
mission by removing the redundant data across versions, and
mutates regular operations in a key-value storage system for
successful accesses to the deduplicated datasets. 2) DirectLoad
significantly improves the I/O efficiency by replacing the LSM-
Tree with a memory-resident table (memtable) and appending-
only-files (AOFs) on disk. Specifically, the write amplification
stemming from sorting operations on disk is eliminated, and
a lazy garbage collection policy further improves the I/O
performance at the software level. In addition, DirectLoad
directly manipulates the SSD native interfaces to remove the
write amplification at the hardware level. In practice, 63%
updating bandwidth has been saved due to the deduplication,
and the write throughput to SSDs is increased by 3x. The
index updating cycle of our production workloads has been
compressed from 15 days to 3 days after deploying DirectLoad.
In this paper, we show the effectiveness and efficiency of an
in-memory index updating system, which is disruptive to the
framework in a conventional memory hierarchy. We hope that
this work contributes a strong case study in the system research
literature.

1. Introduction

Baidu [1] is the major Internet search engine in China,
and its index updating system continuously builds the index
data from countless crawled web pages and ships them to
nationwide data centers, where the index data are placed in
a key-value storage system for promptly serving billions of
users. As the Internet itself is evolving, the speed of index
updating takes a significant role in determining the searching
quality.

1.1. Background

An overview of the index building and updating system
of Baidu is shown in Figure 1. In this section, we will briefly
introduce how the index data are generated and distributed
to the regional data centers, related technical issues, and our
solution to address the issues.

1.1.1. Index Building. The web crawlers located in a ded-
icated data center (data center#0 in Figure 1) are crawling
the web pages round by round, and in the same data center,
all the index datasets are prepared for further distribution
to regional data centers. The web crawlers download a
document identified by its uniform resource locator (URL)
only if it has been modified since last round of crawling. In
Baidu, the crawled documents in the amount of petabytes
are categorized into VIP level and non-VIP level according
to their content quality, the government censorship, and the
popularity at the crawling time (e.g., the breaking news).
The VIP level data serve more than 80% user queries while
consuming only a few TBs of storage space. Building and
updating indices generated from both kinds of data are
exactly the same so we will not distinguish them in Figure 1.

The crawled pages are fed to the index building engine
for generating indices represented as key-value pairs. The
forward indices are firstly generated in the form of <URL,
terms>, where the terms are a list of words dismantled
from the document content. The summary indices are gen-
erated separately from the forward indices, and the key is
also the URL but the value is a summary of the document.
Once a collection of forward indices have been crafted, the
inverted indices can be updated. The key of an inverted index
is a term and its value is a chain of URLs representing the
documents that contain the term. A summary index entry is
denoted as <URL, abstract> while an inverted index is
<term, URLs>. In Figure 1, the red arrows represent the
summary indices and the blue arrows represent the forward
indices combined with inverted indices. A search request to
a search engine is at first broken into couples of terms. For
each term, the corresponding URLs are retrieved from the
inverted indices. These URLs are ranked and only the most
related ones are returned to the users with their abstracts
gathered from the summary index.

1790

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00195

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

The Internet docs

crawling

Data center#0

documents

Index
Building
Engine

forward index

inverted index

summary index
Deduplication

module

Network
Control
Plane

Relay group

Relay group

Relay group

Data center#1.1

Data center#1.2

North China

South China

East China

<k, v>

…
Skip list

k offset
<k, null>

memory
SSD

GC table

Block aligned

Bifrost

Mint

QinDB

Backbone
network

Storage node

or

H(k1)

H(k2)

H(k3)

Group
#1

Group
#2

Group
#3

1 2

3
4

Append Only Files

Figure 1: An overview of Baidu’s index building and updating system

1.1.2. Index Updating. The data center building the indices
(data center#0) keeps sending slices of index data in GBs
every hour to nationwide data centers. There are in total six
data centers in China deployed to accept Baidu’s index data
and they are evenly distributed in three regions, which are
North China, East China, and South China. The inverted
indices are stored in all six data centers for low-latency
document retrieval while the summary indices can only
be found in three ones due to the high storage cost. An
example of data center deployment in North China is shown
in Figure 1 (data center#1.1 and data center#1.2). For one
round of web crawling and selection, the corresponding
index data are tagged with an advancing version number.
When the index data arrive at a data center, they are arranged
to the storage nodes, in which at most four versions of index
data persist. In our production environment, two subsystems,
Bifrost and Mint, are designed and implemented to cope with

the network transmission and data storage, respectively.

1.2. Problem Statement and Our Solutions

The first obstacle of speeding up the index updating
comes from the increasingly high data volumes. In order to
react to unpredictable glitches and failures in the production
environment, the index data have to be versionized so that
rollback to a functional version could be the last resort. But
this introduces a tremendous volume of data to be delivered
for every update towards a new version, which is likely to
overwhelm the backbone networks interconnecting regional
data centers. Since around 70% newly generated index data
are found to be duplicate compared to its previous version
in our production workload, recognizing and removing these
redundancy would be a promising solution for bandwidth
saving. However, this invalidates the regular data access op-
erations such as GET(key) or DEL(key) in the key-value

1791

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

storage system because some keys are preserved without
the value fields. Therefore, we need to remold the regular
operations in the key-value store system to adapt to the
deduplicated key-value pairs.

Another concern is related to poor I/O performance
in solid-state storage devices (SSDs). As the state-of-
art databases for key-value data (e.g., LevelDB [2] and
RocksDB [3]) adopt LSM-Tree [4], [5] for high write
throughput, we have observed that in our system the in-
herent write amplification of this data structure can not be
effectively compensated by sequential writes to the SSD any
more. Wisckey [6] attempts to alleviate the write amplifica-
tion by separating the storage of keys and values, but the
LSM-Tree is retained for keeping keys sorted. Sorting data
on the disk has to read and write data repeatedly so that the
write amplification is unavoidable. On the other hand, the
write amplification also exists at the hardware level because
the SSD can only erase data as a whole block (e.g., 256 KB)
while writing data is in a smaller granularity (e.g., 4 KB).
As a result, the inefficient I/O transactions have to be well
addressed before we can implement a system achieving fast
index updating.

In this paper, we present DirectLoad, a web-scale index
updating system, which consists of two components, Bifrost
(Data center#0 in Figure 1) and Mint (Data center#1.2
in Figure 1). Bifrost is responsible for delivering index
data to regional centers, and Mint is a distributed key-
value store system for index data in each regional data
center. DirectLoad effectively and systematically addresses
the above-mentioned two challenges in the following ways.
First, Bitfrost is able to reduce the data volume to be deliv-
ered in regional centers by deduplications. This effort may
leave some key-value pairs incomplete, which is addressed
by Mint for additional operations to make key-value pairs
complete. Second, instead of building an LSM tree in the
memory and disk storage, we have implemented a novel
and effective data structure of Mint to achieve the goals of
fast data accesses and best utilization of SSD storage. Mint
consists of a memory resident table, termed as memtable and
appending-only-files (AOFs) in SSD storage. The memtable
can be a sorted data structure to store keys, such as a tree
structure or a list, where data reads are fast because accesses
are in-memory in sequence. Since coming index entries are
appended in SSD disks in a block-aligned way, the number
of writes is minimized. In addition, we have used a lazy
garbage collection (GC) policy to make usable space. The
efforts of AOFs and lazy GC have greatly reduced write
amplifications at both the software- and hardware-level. The
improvement of data access performance by Mint may lead
a longer recovery time after the main memory is in a failure
mode because memtable has to be rebuilt based on the entire
AOFs in SSD. In addition, a lazy GC may also needs more
SSD space. However, these two side effects are manageable,
and trivial compared with what we have accomplished.
The experiments conducted with our production workloads
show that Bifrost can reduce up to 63% network traffic by
deduplications, and Mint raises the write throughput by 3x
compared with a conventional LSM-tree structure. With the

support of Bifrost and Mint, DirectLoad has successfully
reduced the index updating cycle from 15 days to 3 days.

The rest of the paper is organized as follows. Section 2
presents the design of Bifrost and Mint in DirectLoad.
After discussing implementation details of DirectLoad in
Section 3, we evaluate the performance of our system in
Sections 4 and 5. Section 6 introduces the related work and
Section 7 concludes the work.

2. System Design

To elaborate the design choices in DirectLoad, we will
outline our system first. Then we describe how index data
are delivered to the regional data centers by Bifrost, and
how Mint stores the arriving data in a data center. On each
storage node, a key-value storage engine named QinDB
(Quick-Indexing Database) is installed to optimize the write
throughput to SSDs (See Figure 1).

2.1. In-memory data processing with SSD storage

Having looked into the data structures of LSM-tree [4],
LSbM-tree [5] and Wisckey [6], we have determined they
may not be suitable in our production system. All of these
designs build LSM-tree in hard disks, which is not efficient
in our SSD storage since range query accesses in SSD are
not very cost-effective and frequent compactions in LSM-
tree are not affordable for SSD. A compaction buffer is built
in LSbM-tree to minimize the LSM-tree compaction induced
buffer cache invalidations. Since we have built a sorted data
structure in memory for fast data accesses, buffer cache is
not very critical in our system. The incoming data stream
is written into our SSD storage in an appending format at
a minimal cost, which is then placed in our memtable in
a sorted format in the main memory. Since only keys are
stored in memory, there are sufficient memory space to build
a fully sorted data structure in memory. The data accesses
can be very fast in memory to satisfy high quality search
requirement.

Furthermore, in a conventional KV-store with a hash-
ing mechanism, frequent indexing operations can cause a
high number of random accesses in memory, reducing KV
throughput [7]. In DirectLoad, key-value store is imple-
mented by the sorted keys in memtable and fast accesses
to their values in SSD without a hashing table, significantly
improving the access efficiency.

One disadvantage of this design is that the memtable
recovering can be relatively slow after an electricity outrage
compared with the data structure with an LSM-tree in SSD.
However, our design is highly preferred in practice for three
reasons. First, the chance to rebuild the memtable is very
rare according to our daily operation experiences, though it
is checkpointed periodically. Second, the cost to build an
LSM-tree on SSD is quite expensive and not suitable due
to its life span based on limited write cycles. Finally, our
simple appending format in SSD not only reduces the write
amplification but also supports random accesses for values,
which is best suitable for SSD.

1792

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

…

Figure 2: The regular operations (GET, PUT and DEL) in QinDB. All of these operations have to mutate to adapt the new
paradigm of key-value pair.

2.2. Bifrost

Modification to a web page in a short period rarely
lead to semantic changes of this document. As a result,
the index data generated from a new round of crawling
usually stay the same. Our data show that on average 70%
index data are exactly the same between two consecutive
versions. Bifrost removes the redundancy by comparing the
signatures of index data between consecutive versions. Only
if the signature differs, a key-value pair is forwarded to
the network transmission, otherwise the value field will be
removed before delivery.

The index data with or without the value field are
transmitted to three regional relay groups continuously. For
each relay group, there are 20∼30 relay nodes caching and
relaying the data to the two data centers located in the same
region. Since the backbone networks interconnects every
pair of the three relay groups, we have opportunities to
optimize the data transmission by flexibly arranging data
streams to circumvent the channels sustaining high traffic.
In order to timely understand the inter-regional network
traffic, a centralized network monitoring platform keeps
collecting the real-time network statistics from the relay
groups, predicts the available bandwidth resources of the
network channels, and directs how the index data should be
delivered to the relay groups.

More importantly, Bifrost must ensure that individual
data streams, i.e., summary indices and inverted indices,

arrive at all data centers simultaneously due to two rea-
sons: 1) the index data of different types are generated
continuously but there are no sufficient space in the in-
termediate nodes to cache them; 2) while the relay nodes
also serve other applications, the general-purpose resource
management module is unaware of index traffic pattern
so that it will revoke the allocated bandwidth if one data
stream has stopped. Reallocation of network resources is
unpredictable and could be time consuming. In practice, we
empirically reserve 40% bandwidth for summary indices and
60% bandwidth for inverted indices.

2.3. Mint

When the index data have arrived in a regional data
center, Mint directs how the key-value pairs persist on the
disks of storage nodes. The key-value pairs are dispatched
to storage nodes according to H(k), where H(·) is a hash
function and k denotes the key, for load balance (See Data
center#1.2 in Figure 1). However, Mint avoids to map H(k)
directly to the storage node due to the poor scalability.
The storage nodes are organized in groups and the H(k)
is mapped to a group. In this way, Mint can add/remove
storage nodes in the groups without redistributing the stored
key-value pairs. Furthermore, three replicates of a key-value
pair are distributed to different storage nodes in the same
group for reliability. Requests to a specific key can be sent

1793

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

Figure 3: The asymmetric operations of write and delete on
SSDs

to the relevant nodes in parallel without incurring additional
query latency.

For each storage node, we have developed a novel key-
value storage engine, namely QinDB, for effectively and ef-
ficiently accessing the index data. In order to correctly serve
index data that have been deuduplicated, QinDB mutates
the regular data access operations. Besides, QinDB adopts
a memtable in conjunction with AOFs in SSD instead of
LSM-Tree for minimizing write amplification.
QinDB: The key-value pairs are appended to the AOFs and
the keys are sorted in a memory-resident skip list [8]. The
AOFs are append-only files with a fixed size of 64 MB and
it includes a GC mechanism for revoking the space occupied
by the deleted data. In this way, sorting operations are only
conducted in the main memory and we only need to address
the write amplification in the GC. In the skip list, an item
is composed of a key and the offset referring to the actual
position of the value in the AOFs. For a storage node, there
is only one SSD of 2TB installed so that the skip list is able
to fully reside in the main memory without a huge amount
of values.

As the datum of indices have changed to a key carrying
a value or NULL, we need to tweak the regular data ac-
cess queries in the key-value storage system. The modified
operations are shown in Figure 2.
PUT(<k/t,v>): The PUT is invoked when a key-value pair,
<k/t,v>, has arrived, where k represents the key, t is a
version number and v is the value. In Figure 2, the black
arrows represent the steps of the PUT operation. QinDB
(1) appends the arriving key-value pair to the end of the
AOFs. Then (2) k/t and offset are crafted as an item and
inserted into the skip list, no matter if there is a valid value
field or not. In addition to these two fields, we also have an
individual flag r marking if this item has been deduplicated
and a flag of d representing if this key-value pair has been
deleted. It worth noting that items are sorted in the skip list
so that the same keys are naturally aggregated in the order
of increasing version numbers.
GET(k/t): When a read query to k/t arrives, QinDB at first

Figure 4: The GC mechanism on the SSD incurs both read
and write amplification.

searches the k/t in the skip list. The GET operation follows
the red arrows in Figure 2. If (1) we can find a corresponding
item in the skip list and the flag r indicates that the value
field exists, (2) the key-value pair can then be successfully
positioned in the AOF and returned to who sent the query. If
the r flag shows the value field of k/t has been deduplicated,
QinDB is expected to find the value field as NULL in the
AOF. In order to discover a valid value for the query, QinDB
tracebacks to older versions until an item containing the
value field has been found. The traceback is illustrated at
the right bottom of Figure 2.
DEL(k/t): The DEL operation is sophisticated because a
value may be referred by multiple keys and the GC is
involved. In Figure 2, the dashed black arrows mean the DEL
operation and the dashed grey arrows indicate the GC steps.
In most cases, (1) the DEL(k/t) operation simply set the
delete flag d in the main memory. When the manipulation
against the skip list has completed, (2) QinDB updates the
occupancy ratio of the corresponding file containing the
deleted key and value, which are maintained in a GC table
in the memory. The deletions actually happen in the GC
process. (3) If the occupancy ratio of a file has reached
a predefined threshold, QinDB invokes the GC process to
recycle this file. (4) The GC process appends all valid key-
value pairs and invalid key-value pairs that are referred by
later version keys to current end of the AOFs, (5) updates the
offset fields in the skip list for corresponding items, and
(6) eventually erase the target file on the disk. For the invalid
key-value pairs with no referent, QinDB also removes their
matching items in the skip list, which has the deletion flag
set already. The difference between deleting items with and
without referents are described at right top in Figure 2.

QinDB achieves a higher throughput at a cost of longer
recovery time and larger storage space. When a storage node
has recovered from a failure, we have to scan all AOFs
for reconstruction of the memtable and the GC table. And
QinDB revokes the disk space occupied by the deleted data

1794

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

less often compared with the periodical GC policy. However,
both costs are acceptable because: 1) The long recovery time
can hardly impair the system availability as there are three
replicas of the index data in Mint. The parallel requests to
the replicas will hide the node recovery from front-end users.
2) In Baidu’s search service, the I/O throughput, which
directly impacts the user experience, is much more important
than the storage space.

Block-aligned files: In addition to the write amplification at
the software level, there is also write amplification caused by
the SSDs. Currently the SSD can only erase the data at the
block scale while supporting writes at the page scale. Fig-
ure 3 illustrates the asymmetric write and delete operations
on SSDs, in which a block is 256 KB composed of 64 pages
in 4 KB. This means that the valid data in a block have to
be moved if we want to free other pages containing invalid
data in this block. The recycling operations are completed
by the GC processing on the SSD. An example of SSD GC
is shown in Figure 4. In this example, when we want to free
three pages containing invalid data in the block x, we have
to first migrate all valid pages to another block y. Then we
can free the storage space of block x entirely.

In order to circumvent the SSD GC mechanism that
incurs both read and write amplification, QinDB directly
invokes the native SSD programming interfaces to store
and erase the AOFs in the block-aligned manner. In other
words, QinDB stores files on SSD in a unit of block. In
the best case, all data pages in a block can be either valid
or invalid. GC only targets invalid blocks, eliminating write
amplification.

3. Implementation

We have implemented two mechanisms for promptly
locating bugs, errors, and failures in DirectLoad. We verify
the data integrity based on checksums in Bifrost and build
gray release for tracing potential malfunctions in a new
version.

Failures in Transmission: The arrival of data at a data
center does not mean the success of index delivery. The
integrity of delivered data may be impaired during the
network transmission due to failures of switches or other
relay nodes. In order to discover the transmission errors as
early as possible, every intermediate nodes in Bifrost will
recalculate and compare the checksum of received index
data slices. The slice checksum will be removed after all
new version data are ready across the regional data centers.
Another reason for failing the data transmission is that the
network can not deliver the indices in time. In the case that
an out-of-date data slice is found, a warning message will
be generated and this may lead to a repair process.

Gray Release: A gray release that allows version advance
at only one out of the six data centers is necessary. The gray
release accepts realistic user queries and it is an opportunity
of exposing unexpected malfunctions, glitches, and errors
before activating the new version in all data centers. The
malfunctions/glitches/errors stopping the releasing of a new

version includes data inconsistency, module failures, long-
tail query latency and etc. The period that the gray release
lasts depends on the data type. The VIP index data are
updated more frequently compared to the non-VIP data.
Rolling back to the last version is the last resort if the
malfunctions/glitches/errors can not be fixed in time.

The gray release occasionally leads to inconsistent
searching results for users traveling across regions. A user
may access the different versions of inverted index and sum-
mary index. In DirectLoad, the inconsistency of searching
result is measured under 0.1% and this inconsistency rarely
confuses users because of the highly overlapped content
between consecutive versions.

4. Evaluation

DirectLoad has been served Baidu’s index update more
than two years, and contributes most on index freshness
enhancement. Inconsistent rate between DirectLoad indices
and the expected results has been decreased from 5% to
1.2% statistically after our update system is online. The
decrease of index inconsistent rate has benefited document
retrieval accuracy for Baidu users.

In the evaluation process, we first prepare some micro-
benchmarks and compare the performance of QinDB to
the traditional LSM-Tree based engine. Then, we evaluate
the updating throughput of DirectLoad over our production
workload. Finally, we collect experimental data to inspect
the performance variation in terms of data availability raised
by our system.

All of our experiments are carried out in dockers
equipped with a 4-core 2.4 GHz Xeon processor, 4 GB of
memory, and one 500G SSD disk. The dockers are mutually
networked with 1 Gbps full-duplex Ethernet. The experi-
ments measuring performance of QinDB are conducted in a
single docker and we extend experiments to 200 nodes when
evaluating the overall updating performance of DirectLoad.
In all experiments, LevelDB 1.9.0 [2] running with the
default configurations is used as the baseline.

4.1. Performance of QinDB

1) Write Amplification: in the first experiment we eval-
uate how much write amplification can be removed in
QinDB. We rerun a 6-hour workload of summary index on
both QinDB and LevelDB, in which 11 versions of data
are updated onto the SSDs. The workload is composed of
key-value pairs with 20-byte keys, and the value field is
20 KB on average. For QinDB, there are 8 write threads
including 1 deletion thread and 7 insertion threads. If there
are four versions of data on the disks already, the deletion
thread removes the oldest version when the new version of
data are inserted. LevelDB is configured with the exactly
same threads. The results of this experiment are shown in
Figure 5, in which the x-axes are elapsed time in minutes
and the y-axes are throughput in MB/s. The Sys Read and
Sys Write used in experiments are measured by the SSD
firmware, while the User Write is from user/application

1795

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

(a) LevelDB (b) QinDB

Figure 5: The write amplification comparison of LevelDB vs. QinDB

(a) LevelDB (b) QinDB

Figure 6: The write throughput dynamics at the application level

view. Figure 5a shows the throughput variation of User
Write, Sys Write and Sys Read of LevelDB while Figure 5b
presents the same performance measurement of QinDB.
Figure 5a shows that the User Write throughput is only 1.5
MB/s on average while the underlying Sys Write throughput
ranges from 30 MB/s to 50 MB/s. The throughput difference
between Sys Write and User Write reflects the level of
write amplification. In this case, such 20x to 25x write
amplification comes from the compaction operations of the
LSM-Tree. In other words, over 90% I/O bandwidth are
consumed by the LSM-tree compaction operations. On the
other hand, Figure 5b presents the three throughputs of
QinDB, where the User Write throughput is 3.5 MB/s on
average and the Sys Write throughput is only 7.5 MB/s on
average. The write amplification is much lower compared to
LevelDB due to the migration of sorting operations to the
main memory. There is still up to 2.5x write amplification
as QinDB has to re-append valid data of deleted files in the
GC process.

The detailed throughput of User write of two storage
engines are plotted in Figure 6. Figure 6a and Figure 6b
show that the User Write throughput dynamics of LevelDB
is much higher than that of QinDB due to the frequent LSM-

Tree compaction, in which the standard deviation of User
Write throughput in LevelDB is 0.6616 MB/s and the same
metric in QinDB is 0.0501 MB/s. The write throughput
dynamics in QinDB is effectively smoothed out by the
migration of sorting operations and the lazy GC policy. The
high fluctuation of write throughput in an index updating
system is likely to defer the arrival of index data and further
impair the system availability.

2) Storage Occupation: We also measure the storage
space usage of QinDB in the same experiment as a lazy GC
policy is used in the system. For QinDB, an AOF is recycled
if its occupancy ratio has lowered to 25%. Furthermore, in
QinDB, the GC will be deferred if there are ongoing reads
and free disk space. The experimental results are presented
in Figure 7, in which the y-axis is storage space usage in GB
and the x-axis is elapsed time in minutes. We observe that
with the same workload, LevelDB consumes less storage
space due to its more frequent compaction operations. In
the first 180 minutes, QinDB uses disk space much more
quickly without revoking the deleted data, but this trend
slows down at the 185th minutes since the GC starts to
work. At the end of the experiment, ∼80 GB disk space is
used by QinDB while only ∼40 GB space is consumed by

1796

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350

St
or

ag
e

si
ze

 (G
B

)

Elapsed time (min)

QinDB
LevelDB

Figure 7: Storage occupation during data processing

LevelDB.
3) Read Latency: Next we want to understand if our

design impact the read performance. We measure the read
latency in our production environment that has Mint and
QinDB installed. The data are collected with or without
updating data streams. Both experiments last 5 hours, and
when there are updating data streams, 11 versions of indices
are inserted. In the experiments, the query rate of user reads
are 8 million/s and the updating throughput is 5 MB/s.
Both of the results are shown in Figure 8. The y-axes are
read latency in microseconds and the x-axes represent three
statistical points: average latency, 99th percentile latency,
and 99.9th percentile latency. Different bars in the figures
are the results measured in LevelDB or QinDB. In Figure 8a,
QinDB has almost the same average and 99th percentile
read latency as LevelDB, which are 1803 us (1846 us for
LevelDB) and 3558 us (3909 us for LevelDB), repectively.
QinDB experiences a much lower 99.9th percentile read
latency (6574 us) than LevelDB (15081 us) because in
the worse case, LevelDB has to open multiple files, i.e.,
searching along layers in the LSM-Tree, to locate values.
In Figure 8b, LevelDB has the read latency of 2668 us on
average, 12789 us at the 99th percentile, and 26458 us at the
99.9th percentile. QinDB has a similar average read latency
of 2104 us, but reaches much lower 99th percentile and
99.9th percentile read latency, which are 4397 us and 13663
us, respectively. Since the long latency of a read would
easily violate the Service Level Object (SLO) that all search
queries should be completed in 500 ms, So QinDB is highly
preferred as the storage engine in Baidu.

4.2. Online Cross-region Update

Next, we examine how much redundancy in the index
updating streams can be removed and if the deduplication
will impact the reliability of our index updating system.

1) Deduplication and Upate Time: We evaluate the
overall updating performance in our production system with
DirectLoad installed. The results are analyzed from a one-
month long system log containing 10 versions of index data.
We expect to understand the amount of redundant data can

be removed and how fast the index updating can achieve.
The deduplication ratio is measured as the proportion of
data removed by the deduplication module before network
transmission and the update time is measured as the period
starting at the generation of the very first index data in a new
version and ending at all data of this version are prepared in
the six data centers. Since the update time is affected by a
lot of factors like network congestion or unexpected glitches
other than the deduplication ratio, we want to confirm that
the deduplication of network transmission can contribute to
the major improvement of update efficiency.

The experimental results are presented in Figure 9, in
which the x-axis is the elapsed days within one-month
scope, the left y-axis is the update time in minutes and
the right one represents deduplication ratio in percent. We
observe that in DirectLoad, the update time is mainly de-
termined by the deduplication ratio while the fluctuations
reflect the impacts from other factors. For example, in an
early day of the month, as the ratio goes down to 23%,
the update time increases to 130 minutes. The update time
decreases to ∼30 minutes when the deduplication ratio
has reached ∼80% in the middle of the month. Overall,
the update time of index data is closely correlated to the
decuplication ratio, and it can be reduced to as low as 30
minutes.

2) Availability: The miss ratio is denoted as the propor-
tion of a slice of data that takes more than one hour to arrive
at the destination data center, and it reflects the availability
of one version of updating data. In this part, we want to
check if DirectLoad will degrade the data availability.

The results are retrieved from the same one-month
dataset. Figure 10a compares the updating throughput of
systems with and without DirectLoad. The x-axis is elasped
days within one month and the y-axis is the updating
throughput in 104 keys/sec (kps). The results show that the
updating throughput can be improved by up to 5x times in
DirectLoad, which is contributed by both the deduplication
and the new storage engine. Figure 10b shows the data
availability of DirectLoad, where the right x-axis is the miss
ratio in percentage. The results show that the miss ratio of
DirectLoad is only 0.24% while the corresponding SLO in
Baidu is 0.6%.

5. An Evaluation by the RUM Conjecture

The RUM Conjecture [9] considers the design of a
storage system with three critical parameters: read latency
(R), Update overhead, or write performance (U), in con-
junction with memory and storage cost (M). Optimization in
each area means to minimize the read latency, to maximize
the write throughput, and to minimize the memory/storage
space. The conjecture states that in a system design, op-
timizing any two parameters would be at a cost of the
third one. For example, the designers of LSbM-tree aim to
improve the read performance by minimize the LSM-tree
induced buffer cache validations to gain high hit rates, and
to retain the high write throughput of LSM-tree. The read

1797

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

(a) Read-Only (b) Read-Write

Figure 8: Latency under two scenarios

Figure 9: Dedup ratio and update time within one month

and write performance optimizations are achieved at the cost
of additional space of a compaction buffer in the disk.

The storage system in DirectLoad gains its read and
write performance under the RUM framework in the fol-
lowing way. During normal operations, each parameter is
optimized or used to help others. The read performance is
high with the in-memory index and fast accesses in SSD.
The write throughput is also high with simple appending
operations, lazy GC and block-aligned write, minimizing
write amplification. The space in memory is efficiently used,
but storage space is increased due to lazy GC that improves
the user write and read throughput. Furthermore, once the
system is crashed, we need to rebuild the index in the
memory from the appended data items in the SSD storage.
Both read and write activities have to be stalled during the
recovering time. In practice, the recovery operations have
been rarely triggered.

6. Related Work

We first survey various key-value stores on the SSD and
the related techniques adopted for this emerging hardware.
We also investigate the key-value stores that choose the

LSM-Tree to improve their write performance, where lots of
efforts have been made to overcome the inefficiency from
the compaction operation. Building a large scale of key-
value store is challenging and we will discuss work related
to this topic.

6.1. Key-value Stores on the SSD

The SSD is an emerging storage hardware and its details
are introduced in [10], [11], [12]. Chen et. al [13] identifies
the I/O parallelism as the top priority of performance im-
provement on SSDs and most schemes desgined for HDDs
may not be effective any more. LOCS [14] exposes the
multi-channel capacity in SSD hardware to LSM-Tree ap-
plications and achieves high I/O throughput. NVMKV [15]
builds the key-value store based on the advanced capabilities
of modern Flash Translation Layers (FTLs), and the per-
formance of a GET/PUT operation approaches that of raw
devices. Such a FTL-aware solution has been also adopted
in other systems [16], [17], [18].

To improve write performance to SSD, most key-value
stores [19], [20], [21], [22] append their data to a log
structure while having a hash table in the main memory
for indexing. FlashStore [19] uses the flash device as the
cache between the main memory and the disk, in which key
signatures are kept for space saving. In the main memory, a
variety of cuckoo hashing is used to resolve key-collisions.
SkimpyStash [20] offloads most memory pointers to the
flash so that the extremely low memory footprint can be
achieved, and two advanced techniques further improve the
performance. FAWN [21] features the capability of fast and
energy efficient data processing. SILT [22] modifies the
storage layout on the flash according to data age. One of
the layouts is log-structured for high write performance.
CLAMs [23] implements the fast hash table operations
based on the combination of DRAM and flash storage.
Specifically, insertion operations are cached in the main
memory and written to the flash storage in batch. All of the
above systems are built with hash tables and the advanced
features like range queries are not supported.

1798

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

(a) The throughput improvement in DirectLoad (b) The miss ratio of DirectLoad with one-hour delay window

Figure 10: The throughput improvement and miss ratio of DirectLoad

6.2. Key-value Stores with the LSM-Tree

A wide range of applications, e.g., Google BigTable [24]
and Apache HBase [25], are built upon LSM-Tree based
engines like LevelDB [2] and RocksDB [3] for high write
performance to HDDs. But the write amplification intro-
duced by compaction need to be reduced before we can
maximize the write throughput on SSDs. LevelDB, the
underlying storage engine of BigTable, balances the write
and read throughput by ordering the multiple-way merge
data-shards in the scheduling. This engine is structured into
levels (6 levels by default) and the larger size of data
shard (2level−1) at a high storage level aggravates the write
amplification. In contrast, RocksDB is more economic in
terms of write amplification because size-based LSM-Tree
compaction would invoke less redundant data reads and
writes when the key ranges overlap each other.

In addition to the industrial implementations, there are
other efforts improving the performance of key-value stores
based on LSM-Tree. Monkey [26] explores the design space
of LSM-Tree based key-value stores in terms of lookup
costs and update costs. LSbM-tree [5] adds a compaction
buffer to minimize the disk I/Os incurred by the compaction
operations. cLSM [27] is an algorithm leveraging the power
of multiprocessors to increase the throughput of LSM-Tree
accesses. bLSM [28] focuses on optimizing the read perfor-
mance in the LSM-Tree. VT-Tree [29] proposes to eliminate
merge operations for data that have been sorted. LSM-
trie [30] constructs a prefix tree for storing and compacting
data in a more efficient manner so that the write amplifica-
tion can be alleviated. Wisckey [6] improves the write per-
formance by removing the colossal values, and the similar
technique can be also found in Walnut [31], IndexFS [32],
and Purity [33]. Kudu [34] leverages the column-based com-
paction to compact the high-efficient columnar data only.

6.3. Key-value Stores at Scale

The challenges also exist when building a large scale of
distributed key-value store. Redis [35] and MemCache [36]

are based on the hash-based access model for low-latency
applications, but it suffers from the limited scalability. Par-
ticularly, a high proportion of resources are wasted in data
re-sharding and copying in a large-scale system. Re-sharding
also happens during the migration of data after the node
failures [37]. Facebook builds their key-value store based on
MemCache while also considering the ease of monitoring,
debugging and operational efficiency [38]. Dynamo [39]
is a large scale of key-value store in Amazon with high
availability. FaRM [40] is a distributed implementation of
the in-memory key-value store over Remote Direct Mem-
ory Access (RDMA) for high bandwidth and low latency.
MICA [41] applies a holistic approach for fast and scalable
data accesses by exploiting CPU parallelism, circumventing
network stacks in kernel and optimizing memory allocation
and indexing. Fastpass [42] indicates that the data center
network following the conventional design principles of the
Internet should be remolded to achieve high performance.
f4 [43] aims at improving the storage efficiency while
remaining fault tolerant for Binary Large OBjects (BLOBs).

When building key-value stores across regional data
centers, the target of our system is the fast and reliable data
transmission. In order to speed up the index data delivery,
Peer-to-Peer (P2P) communication is an option. The P2P
communication saves 50% bandwidth in our scenario [44],
[45] but it is not reliable. Google MillWheel [46], Apache
Spark Streaming [47], and DStream [48] are the similar
transmission systems that deliver streaming data at low
latency, where the reliability of update channels are one of
the major concerns. Studies like [49], [50], [51], [52] prefer
the efficient data transmission to the challenges of scalability
and heterogeneity of the underlying architecture. The data
update needs to satisfy varying networking QoS while guar-
anteeing the consistency across regional datacenters. The
monetary costs paid for the network resources are usually
the difficulty that should be first overcome when optimizing
the system. Research in the field of data deduplication [50],
[51] motivate our work in the effective reduction of network
transmission.

1799

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

7. Conclusion

In this paper, we present DirectLoad, an index updating
system used in Baidu to provide the reliability and con-
sistency management, which identifies the redundant trans-
mission in business applications and decreases the network
workload by its de-deuplication mechanism. In addition,
it enhances the channel reliability by reducing traffic jam
occurred in back-end processing of index storage. With pro-
duction online workloads, we show the channel capacity has
been dramatically increased more than 3 folds in throughput
and the index updating cycle is reduced from 15 days to 3
days.

We have made a strong case for in-memory data pro-
cessing by designing and implementing DirectLoad, which
allows data to be accessed quickly, enabling high speed
decision-making in business and web searching for bil-
lions of users of Baidu. Specifically, redundant indices are
eliminated before delivering to each regional center, where
indices are hashed into different storage nodes for load
balancing. Fast reads are provided in each storage node
by in-memory searched of keys, and loading values from
SSD. High throughput writes are provided by appending
operations and lazy GC in SSD. We believe our framework
is applicable to other industrial applications. DirectLoad
may be disruptive to conventional system design in existing
memory hierarchy, where data sets are carefully stored in
an indexed format in the persistent storage, such as hard
disks and SSDs, and high performance relies on buffer
caching in memory. In DirectLoad, we have boldly moved
the entire data sets in a sorted format in the main memory,
and shown its effectiveness in our production system, which
can be applicable in other data center applications. We also
hope our work contribute a strong case study in the system
research literature.

Acknowledgments

We would like to thank the anonymous reviewers for
their encouragement, constructive comments and sugges-
tions. This work has been partially supported by the Na-
tional Science Foundation under grants CCF-1513944, CCF-
1629403, and IIS-1718450.

References

[1] “Baidu, Inc.” http://www.baidu.com.

[2] S. Ghemawat and J. Dean, “LevelDB, a fast and lightweight key/value
database library by google,” https://github.com/google/leveldb.

[3] “Facebook RocksDB,” http://code.google.com/apis/protocolbuffers
/docs/overview.html.

[4] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[5] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang,
“Lsbm-tree: Re-enabling buffer caching in data management for
mixed reads and writes,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 68–79.

[6] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Wisckey: separating keys from values in ssd-
conscious storage,” ACM Transactions on Storage (TOS), vol. 13,
no. 1, p. 5, 2017.

[7] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-
kv: a case for gpus to maximize the throughput of in-memory key-
value stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11,
pp. 1226–1237, 2015.

[8] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[9] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos,
A. Ailamaki, and M. Callaghan, “Designing access methods: The
rum conjecture.” in EDBT, vol. 2016, 2016, pp. 461–466.

[10] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based solid
state drives,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1. ACM, 2009, pp. 181–192.

[11] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance.” in USENIX
Annual Technical Conference, vol. 57, 2008.

[12] C. Dirik and B. Jacob, “The performance of pc solid-state disks
(ssds) as a function of bandwidth, concurrency, device architecture,
and system organization,” in ACM SIGARCH Computer Architecture
News, vol. 37, no. 3. ACM, 2009, pp. 279–289.

[13] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting in-
ternal parallelism of flash memory based solid state drives in high-
speed data processing,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on. IEEE, 2011,
pp. 266–277.

[14] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An efficient design and implementation of lsm-tree based key-value
store on open-channel ssd,” in Proceedings of the Ninth European
Conference on Computer Systems. ACM, 2014, p. 16.

[15] L. Marmol, S. Sundararaman, N. Talagala, and R. Rangaswami,
“Nvmkv: A scalable, lightweight, ftl-aware key-value store.” in
USENIX Annual Technical Conference, 2015, pp. 207–219.

[16] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda,
“Beyond block i/o: Rethinking traditional storage primitives,” in
High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on. IEEE, 2011, pp. 301–311.

[17] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “Dfs: A file
system for virtualized flash storage,” ACM Transactions on Storage
(TOS), vol. 6, no. 3, p. 14, 2010.

[18] M. Saxena, M. M. Swift, and Y. Zhang, “Flashtier: a lightweight,
consistent and durable storage cache,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012, pp. 267–
280.

[19] B. Debnath, S. Sengupta, and J. Li, “Flashstore: high throughput
persistent key-value store,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 1414–1425, 2010.

[20] B. Debnath, S. Sengupta, and J. Li, “Skimpystash: Ram space skimpy
key-value store on flash-based storage,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data.
ACM, 2011, pp. 25–36.

[21] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 1–14.

[22] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 2011, pp. 1–13.

[23] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath,
“Cheap and large cams for high performance data-intensive net-
worked systems.” in NSDI, vol. 10, 2010, pp. 29–29.

1800

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

[24] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[25] “Apache hbase,” https://hbase.apache.org.

[26] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal navi-
gable key-value store,” in Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 2017, pp. 79–94.

[27] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar, “Scaling
concurrent log-structured data stores,” in Proceedings of the Tenth
European Conference on Computer Systems. ACM, 2015, p. 32.

[28] R. Sears and R. Ramakrishnan, “blsm: a general purpose log struc-
tured merge tree,” in Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data. ACM, 2012, pp.
217–228.

[29] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster, and
E. Zadok, “Building workload-independent storage with vt-trees.” in
FAST, 2013, pp. 17–30.

[30] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: an lsm-tree-based
ultra-large key-value store for small data,” in Proceedings of the
2015 USENIX Conference on Usenix Annual Technical Conference.
USENIX Association, 2015, pp. 71–82.

[31] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ramakrishnan,
S. Rao, and R. Sears, “Walnut: a unified cloud object store,” in
Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. ACM, 2012, pp. 743–754.

[32] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Indexfs: Scaling file sys-
tem metadata performance with stateless caching and bulk insertion,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014,
pp. 237–248.

[33] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller, C. Sandvig, R. Sears,
A. Tamches, N. Vachharajani, and F. Wang, “Purity: Building fast,
highly-available enterprise flash storage from commodity compo-
nents,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1683–1694.

[34] T. Lipcon, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo, M. Percy,
S. Rus, D. Wang, M. Bertozzi, C. P. McCabe et al., “Kudu: storage
for fast analytics on fast data,” Cloudera, inc, vol. 28, 2015.

[35] “redis,” https://redis.io/.

[36] B. Fitzpatrick and A. Vorobey, “Memcached: a distributed memory
object caching system,” 2011.

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4, pp. 149–160, 2001.

[38] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling memcache
at facebook.” in nsdi, vol. 13, 2013, pp. 385–398.

[39] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in ACM SIGOPS operat-
ing systems review, vol. 41, no. 6. ACM, 2007, pp. 205–220.

[40] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast
remote memory,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, 2014, pp. 401–414.

[41] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage.” USENIX, 2014.

[42] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4, pp. 307–
318, 2015.

[43] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “f4: Facebooks warm blob
storage system,” in Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation. USENIX Associa-
tion, 2014, pp. 383–398.

[44] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing
and improving bittorrent performance,” Microsoft Research, Microsoft
Corporation One Microsoft Way Redmond, WA, vol. 98052, pp. 2005–
03, 2005.

[45] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in ACM SIGCOMM computer
communication review, vol. 34, no. 4. ACM, 2004, pp. 367–378.

[46] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
wheel: fault-tolerant stream processing at internet scale,” Proceedings
of the VLDB Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[47] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,
M. Franklin, S. Shenker, and I. Stoica, “Fast and interactive analytics
over hadoop data with spark,” Usenix Login, vol. 37, no. 4, pp. 45–51,
2012.

[48] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing
on large clusters.” HotCloud, vol. 12, pp. 10–10, 2012.

[49] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance
data store,” in Proc. NSDI11, USENIX Conference on Networked
Systems Design and Implementation, 2011, pp. 141–154.

[50] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent
p2p file-sharing system: Measurements and analysis,” in International
Workshop on Peer-to-Peer Systems. Springer, 2005, pp. 205–216.

[51] A. Tridgell, P. Mackerras et al., “The rsync algorithm,” 1996.

[52] T. Suel and N. Memon, “Algorithms for delta compression and remote
file synchronization,” Lossless Compression Handbook, 2002.

1801

Authorized licensed use limited to: The Ohio State University. Downloaded on July 14,2020 at 22:31:17 UTC from IEEE Xplore. Restrictions apply.

