
Automating Incremental and Asynchronous
Evaluation for Recursive Aggregate Data Processing

Qiange Wang
§
, Yanfeng Zhang

§
, Hao Wang

∗
, Liang Geng

§
, Rubao Lee

∗
,

Xiaodong Zhang
∗
, Ge Yu

§

§
Northeastern University, China,

∗
The Ohio State University

wangqiange@stumail.neu.edu.cn,{zhangyf,yuge}@mail.neu.edu.cn

wang.2721@osu.edu,{liru,zhang}@cse.ohio-state.edu

ABSTRACT
In database and large-scale data analytics, recursive aggre-

gate processing plays an important role, which is generally

implemented under a framework of incremental comput-

ing and executed synchronously and/or asynchronously. We

identify three barriers in existing recursive aggregate data

processing. First, the processing scope is largely limited to

monotonic programs. Second, checking on conditions for

monotonicity and correctness for async processing is sophis-

ticated and manually done. Third, execution engines may be

suboptimal due to separation of sync and async execution.

In this paper, we lay an analytical foundation for condi-

tions to check if a recursive aggregate program that is mono-

tonic or even non-monotonic can be executed incrementally

and asynchronously with its correct result. We design and im-

plement a condition verification tool that can automatically

check if a given program satisfies the conditions. We further

propose a unified sync-async engine to execute these pro-

grams for high performance. To integrate all these effective

methods together, we have developed a distributed Datalog

system, called PowerLog. Our evaluation shows that Pow-

erLog can outperform three representative Datalog systems

on both monotonic and non-monotonic recursive programs.

CCS CONCEPTS
• Information systems→Datamanagement systems; •
Computing methodologies → Distributed computing
methodologies.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389712

KEYWORDS
recursive programs; aggregate operations; monotonic se-

quences; asynchronous execution; graph processing; Datalog

ACM Reference Format:
Qiange Wang, Yanfeng Zhang, Hao Wang, Liang Geng, Rubao Lee,

Xiaodong Zhang and Ge Yu. 2020. Automating Incremental and

Asynchronous Evaluation for Recursive Aggregate Data Processing.

In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD’20), June 14–19, 2020, Portland,
OR, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3318464.3389712

1 INTRODUCTION
Large-scale recursive algorithms, including PageRank, Single

Source Shortest Path (SSSP), andmany others, play important

roles in database and big data analytics. Recently, new devel-

opment has re-emerged around Datalog [2, 6, 24, 35, 46, 49,

51, 59] for expressing such algorithms, due to its high-level

declarative semantics and support for recursive programs.

Program 1 shows an example of using Datalog for SSSP.

Programmers can use two rules of Datalog to express the

algorithm: rule r1 initializes the distance to the source node

(with ID 1) as 0; and rule r2 recursively declares a path from

the source to node Y with length dx + dxy , if there is a path
from the source to node X with length dx and an edge from

X to Y with length dxy . The shortest path to Y is the shortest

one of all possible paths from the source to Y, as expressed

by the aggregate operation min. This type of recursive pro-
grams that have an aggregate operation in the recursion are

called recursive aggregate programs (to be formally defined

in Section 2.1). This example shows that Datalog only needs

2 rules for SSSP. In contrast, the graph processing systems

[13, 15, 27, 28, 53, 68] require tens of lines of code, and other

programming languages, such as Java, need more than one

hundred of lines.

Program 1. Single Source Shortest Path
r1. sssp(X,d) :- X=1,d=0.

r2. sssp(Y,min[dy]) :- sssp(X,dx),edge(X,Y,dxy),

dy = dx + dxy .

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2439

https://doi.org/10.1145/3318464.3389712
https://doi.org/10.1145/3318464.3389712
https://doi.org/10.1145/3318464.3389712

In Datalog, semi-naive evaluation [8, 24] is critical for effi-

cient execution of Datalog rules. In each iteration, semi-naive

evaluation performs the computation on the incremental

(delta) result from the previous iteration and feeds the newly

computed result to the next iteration. In this way, it can

avoid redundant computation to achieve high performance.

A number of Datalog systems [24, 29, 30, 46, 49, 50, 59] sup-

port semi-naive evaluation for recursive aggregate programs,

when certain conditions are satisfied. We use a simplified

term, called monotonic programs, to refer to these satisfiable

programs. The results from a recursive sequence generated

by a monotonic program are either monotonically increasing

or monotonically decreasing; otherwise, it is a non-monotonic
program. Existing systems only support semi-naive evalua-

tion for monotonic programs, and none of the systems can

verify these conditions automatically, so that users have to

manually check the conditions for each program. It requires

high human efforts and is also tedious and error-prone.

Meanwhile, there exist many non-monotonic programs,

e.g., the original PageRank algorithm shown in Program 2.
Instead of incrementally adding new ranking scores, the

PageRank algorithm replaces old ranking scores with new

scores in each iteration, making the scores changed non-

monotonically. Semi-naive evaluation cannot be used for

these non-monotonic programs. Previous studies [29, 30, 49]

show that users can explicitly write some non-monotonic

programs into monotonic ones and then use semi-naive

evaluation. For example, users can write the delta-based

PageRank algorithm [13, 68] that iteratively and incremen-

tally accumulates non-negative ranking scores (as Program
2.b in Section 3.3). However, under what conditions a non-

monotonic program can be written into a monotonic one that

has the same result as that of the original non-monotonic

program is unclear. Since existing systems cannot identify

those convertible non-monotonic programs, they fall back to

naive evaluation1 in the execution by creating an additional

rank table to perform the join operation in each iteration,

which is computationally expensive for large datasets.

Program 2. PageRank (Declarative + Imperative)

r1. degree(X,count[Y]) :- edge(X,Y).

r2. rank(0,X,r) :- node(X),r = 0.

r3. rank(i+1,Y,sum[ry]):- node(Y),ry = 0.15;

:- rank(i,X,rx),

edge(X,Y),degree(X,d),

ry = 0.85 · rx /d.

In data processing, there are two execution modes, namely

synchronous execution and asynchronous execution. Sync exe-
cution requires a barrier before next iteration, while async

1
As these PageRank-like algorithms are not defined in a declarative way,

strictly speaking, naive evaluation cannot be used. But existing systems can

follow the way of naive evaluation in the execution.

 0

 100

 200

 300

 400

 500

 600

SSSP PageRank

T
im

e(
s)

SociaLite Myria

13.6

477.9

110.7 119.5

(a) LiveJournal

 0

 200

 400

 600

 800

 1000

 1200

Wiki-link Arabic-2005

T
im

e(
s)

SociaLite Myria

794.9

169.8

410.4

983.1

(b) SSSP

Figure 1: Performance comparison of SociaLite (sync)
andMyria (async) on variable algorithms and datasets.

execution does not. Some Datalog systems adopt sync execu-

tion, e.g., SociaLite [46] and BigDatalog [49], while the others

use the async, e.g., Myria [59]. However, executing some re-

cursive aggregate programs asynchronously could result in

wrong results. The correctness of incremental and asynchro-

nous evaluation is not guaranteed in existing systems. More-

over, existing studies [12, 61] show that neither sync nor

async execution consistently outperforms the other. Figure

1(a) shows that on LiveJournal dataset[26], SociaLite outper-

forms Myria on SSSP, but it loses on PageRank. In contrast,

for SSSP in Figure 1(b), SociaLite beats Myria on Arabic-2005

dataset[5], but loses on Wiki-link dataset[60]. The perfor-

mance dynamics and uncertainty come from over-controlled

synchronization and under-controlled asynchronization. Be-

tween them, there must be a “properly-controlled” execution

mode in the “sweet point” to achieve the best performance.

In this paper, we lay an analytical foundation for cor-

rect incremental and asynchronous evaluation: we propose

monotonic recursive aggregate (MRA) evaluation, a type of
semi-naive evaluation but dedicated for recursive aggregate

programs, and prove that when the MRA conditions are

satisfied, a recursive aggregate program that is monotonic

or even non-monotonic can be executed incrementally and

asynchronously with its correct result. We design and im-

plement a condition verification tool that can automatically

check if a given program satisfies the MRA conditions by

leveraging Satisfiability Modulo Theories (SMT) solver Z3

[63]. We further design a unified sync-async engine to exe-

cute these Datalog programs. We observe that the commu-

nication frequency can effectively serve as a control knob

to adjust the level of asynchronization. We then develop an

adaptive buffer method to adjust the amount of stored up-

dates and control the communication frequency, leading to a

properly-controlled execution. To integrate all these effective

methods together, we have developed a new Datalog system,

called PowerLog. Figure 2 shows its high-level structure. Our

major contributions include:

• An analytical foundation for correctness of incre-
mental and asynchronous evaluation: We prove that

a recursive aggregate program that reaches a fixpoint can

be correctly executed with incremental and asynchronous

evaluation when the MRA conditions are satisfied. This

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2440

Non-monotonic

Convertible
Non-monotonic

Monotonic

Recursive
Aggregate
Programs

Naïve Evaluation

MRA Evaluation

Evaluation
Techniques

Sync. Engine

Unified
Sync-Async

Engine

Parallel Exec.
Engines

Foundation of Monotonic Recursive Aggregate (MRA) Evaluation

SMT Solver Z3-based
Automatic Condition Checker

PowerLog

…

Figure 2: The overall structure of PowerLog. A recursive aggregate program is first processed by Automatic Condi-
tion Checker. If the MRA conditions are satisfied, the program will be executed with MRA evaluation on Unified
Sync-Async Engine. Otherwise, it will be executed with naive evaluation on sync execution engine.

not only guarantees the correctness of incremental and

asynchronous evaluation but also enlarges its scope to

execute those non-monotonic but convertible programs.

• An automatic condition check tool: We leverage SMT

solver Z3 to develop a condition check tool that can auto-

matically check if the MRA conditions are satisfied for a

given recursive aggregate program.

• Aunified sync-async engine:We design and implement

a distributed execution engine that can execute a recursive

aggregate program in an adaptively sync-async way to

achieve best performance.

In our experiments, PowerLog identifies that twelvewidely-

used recursive aggregate programs can pass the condition

check and be executed with incremental and asynchronous

evaluation but two programs cannot. We then compare Pow-

erLog to three existing and representative Datalog systems

(SociaLite, Myria, and BigDatalog) on six recursive aggre-

gate algorithms, including CC, SSSP, PageRank, Adsorption,

Katz Metric, and Belief Propagation, with a set of real-world

datasets. On a 17-node Aliyun cluster, PowerLog can achieve

1.1x to 188.3x speedups over other Datalog systems.

2 PRELIMINARIES
2.1 Recursive Aggregate Datalog Programs
Datalog is best known for expressing recursive queries due

to its high-level declarative semantics and its support for

recursion. In a Datalog program, if a predicate appears in the

head and a body, this rule is identified as a recursive rule. If an
aggregation, e.g., min and max, appears in the head of a recur-

sive rule, this program is a recursive aggregate program.

We define a recursive aggregate program as follows.

R(k1, . . . ,kn,д(y0,y1, . . . ,yl)) : −T1(k1, . . . ,kn,y1); . . . ;

: −Tm (k1, . . . ,kn,ym);

: −R(k1, . . . ,kn, x),

P1(k1, . . . ,kn, c1), . . . ,

Pl (k1, . . . ,kn, cl),

y0 = f (x, c1, . . . , cm).

(1)

The predicate on the left side of ‘:-’ is the rule head, where
predicate R has an aggregate function д(·) with input vari-

ables y and zero or several group-by arguments k1, . . . ,kn
for д(·). On the right side of ‘:-’, there are multiple rule

bodies T separated by semicolons to provide aggregation

inputs y. Each T may include multiple predicates P sepa-

rated by commas that provide parameters to compute y, e.g.,
y0 = f (x, c1, . . . , cm). In the rule bodies, there is one and

only one predicate with the same name as the head predicate

R, which makes it be a recursive aggregate rule. In this paper,

we only allow one predicate to have R in the rule bodies
2
.

2.2 Naive and Semi-Naive Evaluations
Two major evaluation techniques exist in Datalog systems.

Naive Evaluation:. Given an input set X 0
, an aggregateG ,

and the rest of rules F , naive evaluation performs:

Yk−1 = F (Xk−1)

Xk = G(Yk−1).
(2)

Usually, F is applied on a set of records, and G is a group-by

aggregation to be applied on a set of key-specified records,

i.e., X is a set and Y is a multiset. Let (G ◦ F)k denote k appli-

cations of (G ◦ F). If the recursive program terminates after

n iterations, its result is denoted as (G ◦ F)n(X 0). We call

the evaluation terminates at a fixpoint [1], i.e., F does not

produce new facts after n iterations and we have Yn = Yn+1
.

There also exist some algorithms (e.g., PageRank) that have

a mathematical limit. In order to guarantee their termina-

tion, we extend the syntax of Datalog for programmers to

customize termination criteria at the user level. That is, the

program will terminate after a number of iterations when

the difference between the results of two consecutive aggre-

gations is sufficiently small, i.e., |∆Xn+1 | = |Xn+1 − Xn | < ϵ ,
where ϵ is user specified. Furthermore, we also define a ter-

mination number of iterations at the system level to stop

the iterative processing after the iteration limit. With this

two-level termination criteria, the iterative processing of a

2
We focus on the direct recursion and linear Datalog programs in this paper,

and leave the mutual recursion and the non-linear cases in a future work.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2441

(a) Naïve Evaluation

Xn=G(Xn-1∪ F(Xn-1-Xn-2))

(b) Semi-Naïve Evaluation

X0

X1-X0

X2-X1

Xn-1-Xn-2

X1

...

Xk=G◦F(Xk-1) Xk=G(Xk-1∪ F(Xk-1-Xk-2))

X2

Xn-1

X1

X2

Xn=G◦F(Xn-1)

Xn-1

X0

...

Figure 3: Naive vs. Semi-Naive Evaluation.

given Datalog program starts from an initial value, and each

step of the processing is derived from the previous step and

is hoped to converge toward to a fixpoint step by step.

Semi-Naive Evaluation. It avoids redundant computation

by incrementally computing the existing results and can be

formalized as follows.

Xk = G(Xk−1 ∪ F (∆Xk−1))

∆Xk = Xk − Xk−1,
(3)

where ‘−’ is set subtraction and ∆X 0 = X 0
. The difference

between naive and semi-naive evaluation is shown in Figure

3. Figure 3 (a) depicts naive evaluation. In each iteration,X k
is

fully computed for producingX k+1
. In semi-naive evaluation

of Figure 3 (b), only the incremental result ∆X k
between

every two iterations is computed by F . Existing systems [24,

29, 50, 59] show the effectiveness with semi-naive evaluation.

2.3 Monotonic/Non-Monotonic Programs
For a recursive aggregate program with aggregate oper-

ation G and non-aggregate operation F , during the exe-

cution (with naive or semi-naive evaluation), we have a

series of X 0, . . . ,Xn
, where X k

(∀k, 0 ≤ k ≤ n) is a set

of key-value pairs {⟨K,V ⟩, . . .} with unique keys, which

are group-by arguments k1, . . . ,kn for д(·) in the definition

of recursive aggregate program of Section 2.1. We define

a partial order on {X 0, . . . ,Xn}: X i ⊑ X j
if and only if

∀⟨K,V ⟩ ∈ X i , ∃⟨K ′,V ′⟩ ∈ X j , ⟨K,V ⟩ ⊑ ⟨K ′,V ′⟩, where

⟨K,V ⟩ ⊑ ⟨K ′,V ′⟩ if and only ifK = K ′,V ⊑ V ′
. With respect

to the partial order, if X k−1 ⊑ X k
holds for any k , such a

program defined by G and F is amonotonic program.

A monotonic program can be executed with semi-naive

evaluation for high performance. However, checking on

monotonic conditions in existing systems [24, 29, 49, 58, 65]

are sophisticated and manually done by users. Myria [58]

requires to check that aggregateG is defined on a finite set

and commutative, associative, and bag-monotonic, and non-

aggregate F is monotonic with respect to the partial order

defined above and distributive. DeALS [50] introduces mono-

tonic aggregates for some aggregates, e.g., mmin for min and

mmax for max. In the implementation of a monotonic aggre-

gate, DeALS keeps intermediate results in a built-in buffer

and computes the output based on intermediate results and

results produced in the current iteration. For example, for

min, if the minimum of the produced values [d] is smaller

than the smallest value r in the buffer, it returns min([d]);
otherwise, it returns r , i.e., return min(r,min([d])). In
this way, DeALS can make the value sequence of each key

changed monotonically and then use semi-naive evaluation.

However, programmers need to manually rewrite programs

by using the monotonic aggregates and guarantee the cor-

rectness of the rewritten programs.

PageRank of Program 2 is non-monotonic because its iter-

atively updated score on each vertex does not monotonically

increase or decrease. However, it can be manually rewritten

into a monotonic program [13, 68] when using the delta-

based algorithm. Such convertible non-monotonic programs

cannot be executed with semi-naive evaluation in existing

systems. In this paper, we aim to extend the scope of semi-

naive evaluation and asynchronous execution to include such

convertible non-monotonic programs.We also aim to provide

a condition verification tool to automatically check if a given

program satisfy the conditions to use incremental and asyn-

chronous evaluation. In the implementation, we adopt the

built-in buffer method to build our execution engine. Besides

min, for other aggregates, including max, sum, and count, we
have their runtime semantics as return max(r,max([d])),
return sum(r,sum([d])), and return sum(r,count[d]),
where r are previously computed results.

3 ANALYTICAL FOUNDATION
In this section, we formally describe monotonic recursive

aggregate (MRA) evaluation and discuss under what condi-

tions MRA evaluation can be applied. Finally, we present our

automatic condition verification mechanism.

3.1 MRA Evaluation
We formally describe MRA evaluation as follows.

∆Xk = G ◦ F ′(∆Xk−1)

Xk = G(Xk−1 ∪ ∆Xk),
(4)

where F ′
is a new non-aggregate operation different from F ,

and ∆X 1
is the execution start point that consists of initial

key-value pairs. G(X k−1 ∪ ∆X k) is to apply the group-by

aggregate operator on the previously computed result X k−1

and the newly computed delta result ∆X k
. Different from the

recursions defined in Equations (2) and (3), Equation (4) di-

rectly computes the delta result ∆X k
based on the previously

computed ∆X k−1
. The result after k recursions is

Xk = G(X 0 ∪

k−1⋃
i=0

(G ◦ F ′)i (∆X 1)). (5)

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2442

There are two types of terminations of MRA evaluation. Let S
be a set of bags of kv-pairs, i.e., ∀k,Y k ∈ S , where Y k

is a bag

of kv-pairs as defined in Equation (2). If S is a finite set, there

must be a finite n such that Yn = Yn+1
and Yn

is the fixpoint

bag [1, 59]. Accordingly, we have the fixpoint Xn
after the

aggregation on Yn
. Program SSSP is such a case. In addition,

some algorithms do not reach a fixpoint in a finite n, but they
have a mathematical limit. For example, the computation

of PageRank on a primitive stochastic matrix converges to

the unique dominant eigenvector [25], which is the fixpoint

of PageRank. This type of algorithms will terminate after a

number of iterations when the difference between the results

of two consecutive aggregations is sufficiently small, i.e.,

|∆Xn+1 | = |Xn+1 − Xn | < ϵ , where ϵ is algorithm specific.

To support this type of termination, we extend the Datalog

syntax to allow users to specify the termination conditions

(as shown in the programs of Section 6.1).

3.2 Conditions for MRA Evaluation
We propose the following theorem to guarantee the correct-

ness of MRA evaluation for recursive aggregate programs.

Theorem 1. (Conditions for MRA Evaluation) Given
a recursive aggregate program with aggregate operation G
and non-aggregate operation F starting from X 0, if F can be
decomposed into a new F ′ and a constant setC , i.e.,G ◦F (X) =

G(F ′(X) ∪C), and F ′ and G have the following properties:
• 1.G(X ∪Y) = G(Y ∪X) andG(X ∪Y) = G(G(X) ∪Y),
• 2. G ◦ F ′ ◦G(X) = G ◦ F ′(X),

MRA evaluation in Equation (4) can produce the same result as
that of naive evaluation in Equation (2), where MRA evaluation
is initialized as ∆X 1 such thatX 1 = G ◦F (X 0) = G(∆X 1∪X 0).

Proof. We use mathematical induction to prove it. In

base case for k = 1, we have X 1 = G(X 0 ∪ ∆X 1) = G ◦ F (X 0)

according to the definition of initial start of MRA evaluation.

Assume that the following statement is true for k :

Xk = G ◦ F (Xk−1) = G((G ◦ F ′)k−1(∆X 1) ∪ Xk−1). (6)

For k + 1, we have

Xk+1 =G ◦ F (Xk) = G(F ′(Xk) ∪C) (6.a)

=G(F ′ ◦G((G ◦ F ′)k−1(∆X 1) ∪ Xk−1) ∪C) (6.b)

=G(F ′((G ◦ F ′)k−1(∆X 1) ∪ Xk−1) ∪C) (6.c)

=G(F ′(G ◦ F ′)k−1(∆X 1) ∪ F ′(Xk−1) ∪C) (6.d)

=G((G ◦ F ′)k (∆X 1) ∪G(F ′(Xk−1) ∪C)) (6.e)

=G((G ◦ F ′)k (∆X 1) ∪ Xk) (6.f)

Line (6.a) is true because of the decomposability of F (X),

i.e.,G ◦ F (X) = G(F ′(X) ∪C). By substituting X k
with Equa-

tion (6), we have Line (6.b). Line (6.c) is true when applying

Property 1, Property 2, and Property 1: G(F ′ ◦G(X) ∪C) =

G(G ◦F ′◦G(X)∪C) = G(G ◦F ′(X)∪C) = G(F ′(X)∪C). Line
(6.d) is true because of the distributive property of F ′(X), i.e.,

F ′(X1 ∪ X2) = F ′(X1) ∪ F ′(X2), which is the native prop-

erty of non-aggregate operation. Line(6.e) is true because of

Property 1. Line (6.f) is true because of the decomposability

of F (X) and Equation (2), i.e., X k = G ◦ F (X k−1). Therefore,

the statement is also true for k + 1. Proved. □

The insights into the properties can be explained as fol-

lows. First, Property 1 indicates thatG is commutative and

associative. The commutative property implies that we can

change the order of the operands in the aggregation and the

associative property allows us to aggregate “partial” results

first after applying F ′
. Second, if Property 2 holds, we can

convert the recursion with aggregation to a recursion with-

out aggregation by repeatedly applying this property, e.g.,

G◦F ′◦G◦F ′◦G(X) is equal toG◦F ′◦F ′(X). In otherwords, we

can move G out of the recursion of F ′
. A recursive program

without aggregation and negation (G ◦ F ′ ◦ F ′(X)) can be ex-

ecuted with semi-naive evaluation under certain conditions

[1], so that its equivalent program (G ◦F ′ ◦G ◦F ′ ◦G(X)) can

also be executed with semi-naive evaluation
3
. The properties

also guarantee the correctness of async execution. AfterG is

out of the recursion, each F ′
in the recursive sequence can be

asynchronously executed as onlyG needs to synchronize the

input. We will prove it in Section 4. A set of monotonic and

non-monotonic programs satisfy the properties. We show

two examples here and more others in Section 6.1.

Single Source Shortest Path. As shown in Program 1,
SSSP has the non-aggregate operation F that is applied on

vertex x to propagate the candidate shortest distancedx +dxy
to its neighbor y, where dx is the current shortest distance

from source s to x and dxy is the weight of the edge be-

tween x and y. The aggregate operation G groups all the

distances by destination vertex ID and performs min aggre-
gation to update the shortest distance to vertex y. First, Prop-
erty 1 holds for min because ofmin(X ,Y) = min(Y ,X) and

min(X ,Y) = min(min(X),Y). Second, F does not contain a

constant part and F ′
is F ; and G and F ′

satisfy Property 2,

as the shortest distances are the same in the following two

cases: (1) making expansion and then making aggregation

(G ◦ F ′(X)), i.e., miny (dx + dxy); and (2) making aggrega-

tion, then making expansion, and making aggregation again

(G ◦ F ′ ◦G(X)), i.e.,miny (minx (dx) + dxy). We will discuss

how to set the initial ∆X 1
in Section 3.3.

PageRank. As shown in Program 2, each vertex computes

and sends the partial ranking score (ry = 0.85 · rx/d) to its

neighbours and also sends a constant value 0.15 to itself. G
groups all scores by destination vertex IDy and performs sum

3
When the monotonic G is moved out of the recursion of F ′

, we need

Property 1 to guarantee the correctness of aggregation results.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2443

(declare-const d Int)
(define-fun g ((a Real) (b Real)) Real
 (+ a b))
(define-fun f ((a Real)) Real
 (/ (* a 0.85) d))
(assert (> d 0))
(assert (
 not (forall ((x1 Real) (y1 Real) (x2 Real) (y2 Real))

 (= (g (f (g x1 y1)) (f (g x2 y2)))
 (g (g (g (f x1) (f y1)) (f x2)) (f y2))))
))
(check-sat)

Figure 4: The Z3 code for automatic verification ofG ◦

F ′ ◦G(X) = G ◦ F ′(X) for PageRank.

aggregation. First, sum satisfies Property 1 as sum(X ,Y) =
sum(Y ,X) and sum(X ,Y) = sum(sum(X),Y). Second, F can

be decomposed into F ′
that is “0.85·rx/d” and a constant part

C that is “0.15”. Assuming vertex x has two values rx1 and rx2
before sending to y, rx1 and rx2 can be used to calculate the

partial ranking scores first, i.e., 0.85 · rx1/d and 0.85 · rx2/d ,
or be aggregated first before calculating the partial ranking

score, i.e., 0.85 · sum(rx1, rx2)/d . On the receiver y where

sum is applied, these two cases have the same result, i.e.,

sum(0.85 · rx1/d, 0.85 · rx2/d) = sum(0.85 · sum(rx1, rx2)/d).
This property also holds for variable numbers of input values.

Notice that although the original PageRank of Program 2
is non-monotonic, we can execute it incrementally withMRA

evaluation because the MRA conditions are satisfied. Our

system can convert it to its equivalent incremental program

[13, 68] automatically and transparently to users. For ease

of understanding, we show the equivalent in Program 2.b,
where the ranking score of each vertex is monotonically

increasing since it is the aggregation result of its previous

score (i.e., ry = r in r3) and the scores from its neighbours.

Program 2.b PageRank (Incremental)

r1. degree(X,count[Y]) :- edge(X,Y).

r2. rank(0,X,r) :- node(X),r = 0.15.

r3. rank(i+1,Y,sum[ry]) :- rank(i,Y,r),ry = r ;

:- rank(i,X,rx),

edge(X,Y),degree(X,d),

ry = 0.85 · rx /d.

3.3 Automating Condition Verification
It is cumbersome and error-prone to manually check the

MRA conditions of Theorem 1. To turn our theory into reality,

we design and implement an automatic condition verification

tool with the help of Satisfiability Modulo Theories (SMT)

solver Z3 [63]. We automatically extractG and F ′
(in Section

5.1) and address the following two problems.

Verifying Properties of G and F ′ with Z3. We use SMT

solver Z3 to automatically verify the properties ofG and F ′
.

An SMT instance is a formula where some functions and

constants are defined with constraints. SMT can determine

if such a formula is satisfiable, i.e., if there is an assignment

of proper values to its uninterpreted function and constant

symbols to make the formula to be true. Z3 asserts a formula

and may return “satisfiable”, “non-satisfiable”, or “unknown”.

Notice that an SMT solver cannot judge “whether a formula

H is always true?” but only answers “whether a formula H
is satisfiable?”. To verify a property that should be always

true, we use double negation to convert “H is always true”

into “NOT H is not satisfiable”. If H is always true, “NOT H”

is always false and cannot have any satisfiable assignment,

and the assertion will return “unsat”. We provide the Z3 code

template to verify the properties ofG and F ′
. The algorithm-

specificG and F ′
will be automatically filled into the template.

The verification is automatically done. Figure 4 shows the Z3

code for PageRank that can automatically verify the formula

G ◦F ′◦G(X) = G ◦F ′(X). If “NOT”G ◦F ′◦G(X) = G ◦F ′(X)

returns “unsat”,G ◦ F ′ ◦G(X) = G ◦ F ′(X) is always true. We

skip how to verify Property 1 due to the page limit.

Determining Initial Values. It is necessary to automati-

cally determine the initial value ∆X 1
to satisfyX 1 = G(∆X 1∪

X 0). We need to find the inverse operation G−
such that

∆X 1 = G−(X 1,X 0) to compute ∆X 1
. We have predefined G−

for the typical aggregate operations. For example, whenG
ismin, G−

is stillmin; while, when G is sum, G−
is the pair-

wise subtraction. With G−
, we can obtain ∆X 1

from X 1
and

X 0
by applying G−

. For SSSP, we get ∆X 1 = X 1
, because

∆X 1 = min(X 1,X 0) = dsx = min(dsx) = min(ds + dsx) =
G ◦ F (X 0) = X 1

, where s is the source and ds is 0. The for-
mula indicates that the shortest distances from source s to
vertices X at the first recursion (i.e., X 1

) are the weights of

edges from s to each x (i.e., ∆X 1
). In practice, the initializa-

tion can be enforced after calculating X 1
with rule r2. This

process is handled by our system automatically. Section 5.1

will introduce more details of the automation.

4 CORRECTNESS OF ASYNC EXECUTION
In a distributed computing environment, input kv-pairs of

aggregate operation G and non-aggregate operation F ′
are

partitioned across multiple workers. Due to the existence of

G , in each iteration, the whole result of applying F ′
must be

ready before G can be applied in synchronous (sync) execu-

tion. This forms a strict operation sequence ofG ◦F ′
. We can

formalize it with the bulk-synchronous parallel (BSP) model

[55], where F ′
can be executed independently on kv-pairs

and G is the synchronous point. Equation (5) shows the re-

sult of MRA evaluation in sync execution. We denote ∆Y 1
as

the result of applying F ′
on ∆X 1

, i.e., ∆Y 1 = F ′(∆X 1); and

we rewrite Equation (5) with (n + 1) iterations and have the

result of Sync MRA Evaluation as follows:

Rnsyn = G
(
X 0 ∪ ∆X 1 ∪

n−1⋃
i=0

(G ◦ F ′)i (G(∆Y 1))

)
. (7)

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2444

P1
0 P2

0 P3
0

P2
1 P3

1

ΔY1:

F G(S1)

P3
2

F G(S2)

 . . .
F G(S3)

. . .

. . .

S1= P1
0

S2= P2
0
 P2

1

S3= P3
0
 P3

1
 P3

2

. . .

P4
0

P4
1

P4
2

P4
3

. . .
S4= P4

0
 P4

1
 P4

2
 P4

3

1 2 3 4

Application times
of F G:

Figure 5: An example of async execution. ∆Y 1 =

F ′(∆X 1) is the start point of async execution. A hori-
zontal box F ′ ◦ G(St) represents the output of the tth-
time applying F ′ ◦G, and F ′ ◦G(St) is partitioned into
multiple disjoint subsets P that will be used in the fol-
lowing F ′ ◦ G. A vertical box St represents the input
of the tth-time applying F ′ ◦ G, and St is a union of
subsets P from previous results of applying F ′ ◦G, i.e.,
St = P0

t ∪ P1

t ∪ . . . ∪ P t−1t .

In contrast, asynchronous (async) execution allows a part

of results of applying F ′
to be aggregated and processed

earlier than others within an iteration or even across itera-

tions. Translating a recursive aggregate program into a query

plan for async execution has been studied [59]. However,

the correctness of results is not guaranteed. Figure 5 shows

an example of async execution. It starts from ∆Y 1
and per-

forms F ′ ◦G iteratively. When applying F ′ ◦G in the first

time, the input is denoted as S1 and the output is denoted

as F ′ ◦ G(S1). In async execution, S1 is P
0

1
that means the

input of the first time applying F ′ ◦G is a subset of applying

F ′ ◦ G zero time, i.e., a subset of the initial ∆Y 1
. Similarly,

the subsequent F ′ ◦G can take a union of the subsets from

one or more previous steps as the input. We formalize async

execution as follows.

Definition 2. (AsyncMRAEvaluation) From a start∆Y 1
,

where ∆Y 1 = F ′(∆X 1) and ∆X 1
is the start point of MRA

evaluation, we define the result of async MRA evaluation

after themth-time applying F ′ ◦G as:

Rmasy = G
(
X 0 ∪ ∆X 1 ∪ ∆Y 1 ∪ F ′ ◦G(S1) ∪ . . . F

′ ◦G(Sm)

)
, (8)

where

St+1 =
t⋃
i=0

P it+1

m⋃
i=t+1

P ti =

{
F ′ ◦G(St) t > 0

∆Y 1 t = 0.

(9)

In the definition, St+1 is the input of the (t + 1)th-time apply-

ing F ′ ◦G, and P it+1 is a subset of output from the ith-time

applying F ′ ◦ G and is used as a part of St+1. This means

in async execution, the input of applying the (t + 1)th-time

F ′ ◦G includes the output from applying the 0th-time to the

t th-time F ′ ◦G. Equation (9) also shows that for t > 0 there

must be an m, such that F ′ ◦ G(St) =
⋃m

i=t+1 P
t
i . It means

that all results of the t th-time applying F ′ ◦G are used up at

themth-time applying F ′ ◦G; and for t = 0, data used up at

themth-time applying F ′ ◦G is from ∆Y 1
. For any t and i ,

where i > t , P ti can be an empty set, i.e., applying F ′ ◦G at

the ith step does not need the output of the t th step.

Theorem 3. ((Correctness of Async MRA Evaluation)
For a recursive program with F ′ and G and the initial start
∆X 1 and ∆Y 1, where ∆Y 1 = F ′(∆X 1), if sync MRA evaluation
of the program reaches a fixpoint in a finite n and async MRA
evaluation reaches the same fixpoint in anm, Rnsyn in Equation
(7) is equal to Rmasy in Equation (8), when the properties of
Theorem 1 hold.

Proof. In order to simplify the discussion, we move X 0 ∪

∆X 1
out of both Equations (7) and (8). In async execution

starting from ∆Y 1
, afterm times applying F ′ ◦G, wherem

is described in Definition 2, we have:

Rmasy =G
(
∆Y 1 ∪ F ′ ◦G(S1) ∪ . . . F

′ ◦G(Sm)

)
(10)

=G
(
∆Y 1 ∪ F ′(S1) ∪ F ′(S2) ∪ . . . F

′(Sm)
)

(10.a)

=G
(
∆Y 1 ∪ F ′(∪0

k=0S
k
1
) ∪ F ′(∪1

k=0S
k
2
) ∪ . . . F ′(∪m−1

k=0 S
k
m)

)
(10.b)

=G
(
∆Y 1 ∪ F ′(∪mt=1S

0

t) ∪ F ′(∪mt=2S
1

t) ∪ . . . F
′(∪mt=mSm−1

t)
)

(10.c)

=G
(
∆Y 1 ∪

n−1⋃
i=1

F ′i (∆Y 1) ∪ SRES
)

(10.d)

=G
(
G(∆Y 1 ∪

n−1⋃
i=1

(G ◦ F ′)i (G(∆Y 1))) ∪ SRES
)

(10.e)

=G
(
Rnsyn ∪ SRES

)
= Rnsyn (10.f)

To get Line (10.a), we first apply Property (1) on Line (10)

and getG(∆Y 1∪G◦F ′◦G(S1)∪ . . .G◦F ′◦G(Sm)), then apply
Property (2) to getG(∆Y 1 ∪G ◦ F ′(S1) ∪ . . .G ◦ F ′(Sm)), and
apply Property (1) again to removeG inside the braces and

get Line (10.a). This step shows that the properties can help

to transform the recursion of F ′ ◦G into the recursion of F ′

(both having aG after the recursion). On the recursion of F ′
,

we prove that async execution can get the same result as that

of sync execution by regrouping results of async execution

on which F ′
has been applied the same times.

To get Line (10.b), we first introduce a symbol Pk ,it+1 to

decompose P it+1 of Equation (9), i.e., P it+1 =
⋃i

k=0 P
k ,i
t+1. This

means for each k , Pk ,it+1 is a subset of P
i
t+1 on which F ′

has

been applied k times. For i > 0, P0,i
t+1 is ∅ as F ′

has been

applied at least once. We also introduce a symbol Skt+1 to
denote the union of the subsets of St+1 where F

′
has been

applied exactly k times, and we have Skt+1 =
⋃t

i=k P
k ,i
t+1. As

F ′
can be applied on input kv-pairs independently, from

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2445

Equation (9) and for the recursion of F ′
, we have:

St+1 =
t⋃
i=0

(i⋃
k=0

Pk ,it+1

)
=

t⋃
k=0

(t⋃
i=k

Pk ,it+1

)
=

t⋃
k=0

Skt+1 (11)

And then from Equation (11), we have Line (10.b).

Line (10.c) is true: because F ′
is distributive on Union, we

can unfold unions Skt having the same t inside each F ′
at

Line (10.b), and regroup to unions Skt that have the same k .
Then, we get Line (10.c).

To get Line (10.d), we first denote∪m
t=k+1S

k
t to be the union

of the input subsets of applying the (k + 1)th-time to the

mth-time F ′
and on these subsets F ′

has been applied exactly

k times. For any k (k < m), we have:

F ′k (∆Y 1) =

m⋃
t=k+1

Skt =
m⋃

t=k+1

t−1⋃
i=k

Pk ,it . (12)

The rationale of Equation (12) is as follows. Based on the

definition in Equation (9), there exists anm such that ∆Y 1

will be used up at themth-time applying F ′
. As ∆Y 1

is an

intermediate result of sync execution, i.e., ∆Y 1 = F ′(∆X 1),

we use ∆Y 1
to bridge the results of sync and async execution:

the union of data on which F ′
has been applied k times in

async execution is the result of sync execution after applying

F ′
on ∆Y 1 k times. In async execution, such data is from

different subsets Pk ,it . We use mathematical induction to

prove Equation (12). For k = 0, we have:

m⋃
t=1

t−1⋃
i=0

P0,it =

m⋃
t=1

P0,0t ∪

m⋃
t=1

t−1⋃
i=1

P0,it =

m⋃
t=1

P0,0t ∪ ∅ (13)

=

m⋃
t=1

P0t = ∆Y 1
(13.a)

Line (13) is true, because of the definition that Pk ,it is ∅ when

k = 0 and i > 0. Line (13.a) is true because of Equation (9).

For k > 1, if there exists an m, such that F ′k (∆Y 1) =⋃m
t=k+1

⋃t−1
i=k P

k ,i
t . For k+1, we apply F ′

on both side of Equa-

tion (12) and have F ′k+1(∆Y 1) = F ′(
⋃m

t=k+1
⋃t−1

i=k P
k ,i
t). The

right side F ′(
⋃m

t=k+1
⋃t−1

i=k P
k ,i
t) is to apply one more F ′

on

all data that has been applied k times F ′
. Based on Definition

2, there must exist anm′
such that all data applied k+1 times

F ′
is used up. That means the data generated by the (k +1)th-

time F ′
is the union of the subsets of the input from apply-

ing the (k + 2)th-time to the (m′)th-time F ′
. Then we have

F ′k+1(∆Y 1) = F ′(
⋃m

t=k+1
⋃t−1

i=k P
k ,i
t) = ∪m′

t=k+2∪
t−1
i=k+1P

k+1,i
t .

Equation (12) holds for k + 1.
Sincem is not necessarily equal to n (usuallym of async

execution is larger than n of sync execution), we denote SRES
as the data on which F ′

is applied more than n − 1 times.

Then, we can get Line (10.d) by applying Equation (12) to

Line (10.c) with SRES .
Line (10.e) is true when applyingG ◦F ′◦G(X) = G ◦F ′(X)

and G(X ∪ Y) = G(G(X) ∪ Y) on Line (10.d).

Datalog Programs

Parser and Analyzer ANTLR

MRA Condition Checker Z3 SMT Solver

Code Generator StringTemplate

SociaLite
Runtime

Incremental and Asynchronous Evaluation (on MonoTable)

Distributed Runtime (Unified Sync-Async Engine)

Light-Weight Lock MPI Control

Termination ControlFault Tolerance

TROVE

OpenMPI

Adaptive Message Buffer Management

HDFS

Figure 6: System overview of PowerLog.

Line (10.f) is true. Because of the fixpoint at n of sync ex-

ecution, we have Rnsyn = Rmsyn = G(Rnsyn
⋃

∪m
k=n(F

k (∆Y 1)))

for anym ≥ n. As in async execution,SRES ⊆ ∪m
k=n(F

k (∆Y 1)).

Thus, based on the definition of monotonic in Section 2.3, we

have Rnsyn ⊑ G(Rnsyn ∪ SRES) ⊑ G(Rnsyn
⋃

∪m
k=n(F

k (∆Y 1))).

That is Rnsyn ⊑ Rmasy ⊑ Rmsyn . Thus, R
n
syn = Rmasy . Proved. □

Theorem 3 can be extended to the case if sync MRA evalu-

ation does not reach a fixpoint in a finite n but has a mathe-

matical limit. Similar to the proof of Theorem 3, when async

MRA evaluation reaches the same limit, we have R∞
syn =

G(R∞
syn ∪ SRES) = R∞

asy . We also point out that sync execu-

tion is a special case of async execution with the restriction

S1 = ∆Y 1
and ∀t ≥ 1, St+1 = F ′ ◦ G(St). That means the

whole St is aggregated together by the t th-time applying G.

5 THE POWERLOG SYSTEM
Figure 6 shows the structure of PowerLog that is developed

based on SociaLite open-source software [24] and has the

following major modules.

5.1 Automatic Condition Checker
PowerLog has a parser to convert a Datalog program into

an abstract syntax tree (AST) by using ANTLR [3], and uses

an analyzer to traverse the AST to perform syntactic and se-

mantic analysis, to identify the recursive rule, and to extract

the aggregate operation G, the non-aggregate operation F ′
,

and the constant set C . As shown in Section 2.1, the rule

head of a recursive program includesG, and each rule body

logically contains multiple table predicates for join opera-

tion and multiple expression predicates that could include

F ′
and C . In PageRank of Program 2, F contains the table

predicates “rank(i,X,rx),edge(X,Y),degree(X,d)”, the
expression predicate “ry = 0.85 · rx/d” that includes F

′
, and

the constant predicate “ry = 0.15” that includesC . By analyz-
ing the rules, PowerLog can identify a recursive aggregate

program and then extract G, F ′
and C .

PowerLog takes two steps to check if a recursive aggregate

program satisfies the MRA conditions. Each step checks one

property of Theorem 1. In PowerLog, we have defined five

common aggregate operators min, max, sum, count, and mean

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2446

Key Accumulation Intermediate Auxiliaries

k g(Δxk
0

, Δxk
1

, . . .) g(Δxk
i) var1 . . . data dep.

l g(Δxl
0

, Δxl
1

, . . .) g(Δxl
i+1) var1 . . . data dep.

(2) g(Δxk
i)=0

(1) tmp=g(Δxk
i); Δxk

i=tmp; (3) Δxl
i+1=f(tmp)

.

.

Figure 7: MonoTable data structure and its update.

in Z3 SMT solver. The first four operators are commutative

and associative, while the last one mean does not. The details
of how to define an operator in Z3 are referred to [64].

PowerLog then checks if G and F ′
can satisfy Property 2

G ◦ F ′ ◦ G(X) = G ◦ F ′(X). In Z3, we define f as a single-

input-single-output function and define д, i.e., min, max, sum,
and count, as a double-input-single-output function (binary

operator). Becauseд can naturally take any number of inputs,

in order to generalize the expression ofдwith variable inputs,
we use the binary aggregate operators in Z3 code. We have

д(x0, x1, x2, . . . , xn−1) = д(д(. . .д(д(x0, x1), x2) . . .), xn−1), as
the associative property G(X ∪ Y) = G(G(X) ∪ Y) holds.

As shown in Figure 4 of Section 3.3, in the Z3 code, we ex-

pressG◦F ′◦G(X)withд and f asд(f (д(x1,y1)), f (д(x2,y2)))
and express G ◦ F ′(X) as д(д(д(f (x1), f (y1)), f (x2)), f (y2)),
where x and y are “for all” real numbers. We let Z3 check

if G ◦ F ′ ◦G(X) is equal toG ◦ F ′(X) by using the Z3 asser-

tion with double negation. If Z3 returns “unsat” for “NOT”

G ◦ F ′ ◦G(X) = G ◦ F ′(X), G ◦ F ′ ◦G(X) is always equal to

G ◦ F ′(X). Notice that д and f are automatically extracted by

PowerLog and used in the Z3 assertion. If these properties

hold, PowerLog executes the program with MRA evaluation.

5.2 Implementation of MRA Evaluation
PowerLog implements MRA evaluation by manipulating a

distributed mutable in-memory table, called MonoTable. The
table maintains the states of the recursive computation.

Each tuple of the table includes an accumulated aggre-

gation result x and a delta result ∆x . Variable xi is accu-
mulated by xi = д(xi ,∆xi), and ∆xi is computed by ∆xi =
д(f (∆x j1), f (∆x j2), . . .), where (∆x j1,∆x j2, . . .) are delta re-
sults of other tuples dependent with tuple i . Figure 7 shows
the design of MonoTable. The Key column indexes the ta-

ble. The Accumulation column maintains the result x . The
Intermediate column stores the intermediate aggregated

delta results, i.e., д(∆xk). The Auxiliaries columns store

the joined results of non-recursive predicates in the recursive

rule body and other constant values of each tuple. The table

is initialized with the method described in Section 3.3.

There are three steps to manipulate MonoTable as shown

in Figure 7. First, an intermediate entry д(∆xk) is fetched
into a local variable, i.e., variable tmp in the figure, and then

the local variable is used to update the final result x in the

accumulation entry at the same row. The superscript of ∆xk

indicates the time point when ∆xk is generated. Second, the

intermediate entry is reset to the identity element so that

a delta result will not be aggregated multiple times. Third,

the fetched value in variable tmp is computed by f and the

result is used to update intermediate entries at other rows. As

this step has cross-row operations, communication between

workersmay be needed. Notice that there are concurrent read

and write on an entry, the atomic operations are needed: the

first and second steps need an atomic exchange and the third

step needs an atomic implementation of the aggregation.

5.3 Unified Sync-Async Engine
The basis of our method comes from two insights into asyn-

chronous processing in a distributed environment. First, the

frequency of async message passing determines the level of

asynchronization for each worker. More frequent message

passing activities lead more data that are frequent updates

among distributed nodes, which raises the level of async

computing. A high level async computing may help the com-

putation to reach the convergence at almost zero coordina-

tion cost. In contrast, less frequent message passing activities

can accumulate data updates in high granularity, which re-

flect a reduced level of asynchronization. An extreme case

is the maximum reduced level of asynchronization that is

equivalent to sync computing: no workers pass updated data

until each of them finishes its computation. Another phe-

nomenon in async computing is called “stale synchronous

parallel (SSP)” [18], where distributed workers are allowed

to read stale or non-updated data. SSP may lower the quality

of async computing by increasing the amount of computing

but delaying the convergence. Adjusting the frequency of

async message passing activities is the key to adaptively es-

tablish a “properly-controlled” mechanism to minimize the

synchronization overhead and to minimize the access to the

stale data in order to achieve optimal performance.

Second, all the programs in PowerLog can be correctly

processed in async mode with our automatic checking mech-

anism. In addition, in a distributed environment, synchro-

nization overhead is the most expensive, compared with

other types of overheads. Considering these two facts, our

method is in a framework of async computing.

Meanwhile, sync execution is still necessary, especially to

check the termination condition. Workers in async comput-

ing do not have any global information about the computa-

tion progress and determine the time to stop. For algorithms

where the global termination check is demonstrated to be

more efficient, e.g., PageRank, sync execution is needed in

the execution engine to collect the local computation states

and to make a global termination decision.

Based on the above considerations, we design and imple-

ment a unified sync-async engine as shown in Figure 8. The

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2447

Computing
thread

MonoTable
Shard

...

Termination check

update

Termination
check thread

Communicate
thread

Worker 1

Worker 2

...

Worker n

Master worker

MPI

Buffer

send

recv

Distributed
 Runtime

Figure 8: Structure of the sync-async engine.

engine contains a number of workers and one master. Each

worker includes several compute threads to update the lo-

cal shard of MonoTable and has a dedicated thread for the

communication among workers. The master globally and

periodically checks the termination condition.

The key of the engine is a method to adaptively adjust the

frequency of message passing in each worker independently.

Specifically, we adaptively adjust the message size and the

time interval between two consequent message-passing ac-

tivities for the following reasons. A larger message size and

higher interval time, the lower frequency will be, and so is

the chance of stale processing in each node. For a slow up-

dating worker, message passing size should also be reduced

accordingly for quality control. We will show that the adap-

tive method is effective and overhead free because no global

information is collected.

Each worker node in an N -node cluster maintains (N −

1) message buffers for the rest of the workers. Initially, a

message-passing size β(i, j) and a message-passing interval

τ are predefined for all worker nodes. During the execution,

each worker makes its own adaptive adjustment based on

the following principle. If the updates (denoted as |B(i, j)|)
are accumulated in a fast pace (in the time window ∆T),
the message size β(i, j) is enlarged; and if the updates are

in a slow pace, the message size β(i, j) is reduced. Specif-
ically, when |B(i, j)|/∆T > r · β(i, j)/τ in the fast pace or

|B(i, j)|/∆T < 1

r · β(i, j)/τ in the slow pace, β(i, j) is updated
to be β(i, j) = α · τ · |B(i, j)|/∆T , where α is a damping factor

fixed to 0.8 and r is a configurable parameter set to 2 in our

experiments. From the perspective of system management,

this is a tradeoff between batch and stream processing.

5.4 Other Optimizations
PowerLog uses TROVE [54] for container operations, Open-

MPI [38] formessage passing, ProtoStuff [41] for serialization

and deserialization, and HDFS to store data and checkpoint

intermediates. Here we introduce the termination check and

the optimizations for MRA evaluation as follows.

Termination Check. In MRA evaluation, the results of

a program are monotonically increasing or decreasing. MRA

evaluation is terminated when either reaching a fixpoint or

the changes of consecutive results are sufficiently small. A

dedicated thread on each worker evaluates the aggregation

result of accumulation column entries of MonoTable. These

threads report local aggregation results to the master that

will merge local results and determine whether to stop the

evaluation by checking the difference between two consecu-

tive global aggregation results. Notice that async execution

does not have a central coordination mechanism, thus in

our unified sync-async engine, we check the termination

condition periodically.

Optimizations forMRAEvaluation.Wehave optimized

MRA evaluation for the sum aggregation. In sum, the number

of delta results produced in each iteration is fixed; and delta

results to be accumulated become smaller over iterations.

We observe that the effect of delta results on performance is

distinct. Those with larger values are more important for the

convergence [67]. Therefore, we make the following opti-

mization efforts. First, delta results are distinguished. Second,

the important ones, whose values are larger than a config-

urable threshold, are accumulated to the final results and

their computed values after applying f are sent to neighbors

immediately. Third, the less important delta results are con-

tained and accumulated in the local cache before they are

used. These optimizations can reduce the number of com-

munications between workers and also reduce the amount

of computations, e.g., the non-aggregate operation.

6 EVALUATION
6.1 MRA Evaluation Satisfiable Programs
Some non-monotonic programs can satisfy the MRA condi-

tions and be executed with MRA evaluation, without chang-

ing their semantics, e.g., PageRank. There also exist core

non-monotonic programs that cannot pass the MRA con-

dition check, e.g., GCN-Forward [22], and evaluating these

programs with MRA evaluation will lead to incorrect results.

We investigate more widely-used programs in this section.

Besides SSSP and PageRank, we have found ten recursive

aggregate programs that can pass the MRA condition check

of PowerLog but other two that cannot. Table 1 summarizes

these programs, where “MRA sat.” indicates if a program
passes the check.

Connected Component (CC) is to find the connected com-

ponents in a graph. Its Datalog expression in Program 3 is
based on the label propagation approach [42], where rule

r1 initializes the component of a vertex with its own vertex

ID and rule r2 recursively updates the component of each

vertex with the minimum ID propagated by its in-neighbors.

In this program, the aggregate operation min is commutative

and associative (Property 1). F is an identity function and

does not contain a constant part (F ′
is F). Thus, G and F ′

hold Property 2, as SSSP algorithm.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2448

Table 1: Twelve recursive aggregate programs that can be executed with MRA evaluation in PowerLog.

Program MRA sat. Aggregator Program MRA sat. Aggregator

SSSP [24] yes min PageRank [39] yes sum

CC [24] yes min Adsorption [7] yes sum

Katz metric [21] yes sum Belief Propagation [40] yes sum

Computing Paths in DAG [50] yes count Cost [50] yes sum

Viterbi Algorithm [50] yes max SimRank [20] yes sum

Lowest Common Ancestor [44] yes min APSP [50] yes min

CommNet [52] no sum GCN-Forward [22] no sum

Program 3. Connected Components

r1. cc(X,X) :- edge(X,_).

r2. cc(Y,min[v]):- cc(X,v),edge(X,Y);

Adsorption is a graph label propagation algorithm. The al-

gorithm shown in Program 4 is based on the Markov Process

[7]. Rule r1 gives the initial label distribution I for each ver-

tex. In rule r2, L reserves the intermediate label distribution

in recursion. The label distribution consists of two parts.

First, each vertex computes and propagates its current distri-

bution a1 = 0.7∗a∗w ∗p to its out-neighbours as their partial
distributions. Second, each vertex sends the initial weighted

distribution a1 = i ∗ p2 to itself. The aggregation sum aggre-

gates these two parts as the new distribution. Other symbols

can be treated as constant variables, e.g., pi and pc are two
constant weight tables associated with vertices.

As shown in Program 4, we extend Datalog syntax to

include a termination condition in the recursive rule body

with a pair of braces, i.e., {sum[∆a] < 0.001}. This condition
terminates the execution of Adsorption when the difference

of accumulated results in a time interval is smaller than

0.001. For different algorithms, users can specify different

conditions. For example, one can add {sum[∆rx] < 0.001} to
Program 2 to specify the terminate condition for PageRank.

Adsorption satisfies the MRA conditions. First, sum sat-

isfies Property 1. Second, F can be decomposed into F ′
as

0.7 ∗a ∗w ∗p and the constant part i ∗p2. Considering vertex
x has two values ax1 and ax2 before sending to its neighbour
y, no matter computing the distributions first or aggregating

them first, these two cases have the same result whenG is

on the receiver y. i.e., sum(0.7∗ax1 ∗w ∗p, 0.7∗ax2 ∗w ∗p) =
sum(0.7 ∗ sum(ax1,ax2) ∗w ∗ p). Property 2 also holds.

Program 4. Adsorption

r1. I(x,i) :- node(x), i=1.

r2. L(0,x,l) :- node(x), l=0.

r3. L(j+1,y,sum[a1])):-I(y,i),pi (y,p2),a1 = i ∗ p2;

L(j,x,a),A(x,y,w),pc (x,p),

a1 = 0.7 ∗ a ∗w ∗ p;

{sum[∆a] < 0.001}.

Katz Metric is a proximity measure in a network [21]. Rule

r1 of Program 5 sets the source and its initial metric score. In

rule r2, the metric score of a vertex is computed by iteratively

aggregating the metric scores from its in-neighbors. In this

program,G is sum, F ′
is 0.1∗k , andC is j . TheMRA conditions

are satisfied, as sum satisfies Property 1 andG and F ′
satisfy

Property 2 due to the similar reason to that for Adsorption.

Program 5. Katz Metric

r1. I(X,k) :- X=0,k = 10000.

r2. K(i+1,y,sum[k1]) :- I(y,j),k1 = j;

K(i,x,k),edge(x,y),k1 = 0.1 ∗ k;

{sum[∆k] < 0.001}.

Belief Propagation (BP) [23] is a message-passing algo-

rithm that performs inference on graphicalmodels. In Program
6, variable B is a vector including the to-be-returned beliefs.

Variable E is an input weighted network with vector I for

initial beliefs. Variable H is a vector of coupling scores. In this

program, F does not have a constant part. F ′
is 0.8 ∗w ∗b ∗h

andG operation is sum. The MRA conditions are satisfied in

BP as Adsorption.

Program 6. Belief Propagation
r1. B(0,v,c,b) :- I(v,c,b).

r2. B(j+1,t,c2,sum[b1]) :- B(j,s,c1,b),

E(s,t,w),H(c1,c2,h),

b1 = 0.8 ∗w ∗ b ∗ h;

{sum[∆b] < 0.0001}.

GCN-Forward is the forward progress of Graph Convolu-

tional Network (GCN) [22]. Program 7 shows its imperative

expression. Variable д is the embedding vector on each ver-

tex. Variable A represents a normalized weighted adjacency

table that stores the normalized weightw on edges. Data set

Para stores the learnable parameter matrix. Function relu
resets negative values to zero as {return (x>0)?x:0;}. In
rule r1, F ′

is relu(д ∗p) ·w , where ∗ is matrix multiplication

and · is scalar multiplication, and G is sum. Because we have
1 for sum(relu(sum(−1, 2)), relu(sum(1,−2))) but have 3 for
sum(relu(−1), relu(2), relu(1), relu(−2)), Property 2 of The-

orem 1 does not hold. We skip the details of CommNet [52]

that cannot pass the check due to the page limit.

Program 7. GCN-Forward
r1. GCN(j+1,Y,sum[д1]) :- GCN(j,X,д),

A(X,Y,w),Para(p),

д1 = relu(д ∗ p) ·w.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2449

 1

 10

 100

 1000

 10000

Flickr LiveJ Orkut Wiki Web Arabic Flickr LiveJ Orkut Wiki Web Arabic Flickr LiveJ Orkut Wiki Web Arabic

T
im

e(
s)

3
9

.6 6
8

.3

7
.8

5
5

.9 1
6

6
.3

1
7

6
.7 7

1
3

.9

1
7

7
.5 7

0
1

.6

6
1

.9 1
6

0
.5

2
0

5
.9

2
4

7
.6

9
4

.1 2
9

3
.2

4
.8 8

.1

6
.8 1

5
.4 2
8

.0

3
5

.5

SociaLite Myria BigDatalog/GraphX PowerLog

1
2

.0

1
3

.6

1
2

.3

7
9

4
.9

1
7

.8

1
6

9
.8

6
0

.3

1
1

0
.7

1
9

1
.8

4
1

0
.4

1
5

1
.1

9
8

3
.1

3
9

.5 9
5

.1

7
0

.9

7
7

.8

7
1

.5 1
5

5
.4

5
.6 7
.8

7
.7

2
3

.9

3
0

.6

2
9

.9

5
5

9
.4

4
7

7
.9

5
0

0
.2 2

7
2

9
.3

6
9

6
5

.7

4
9

5
6

.3

5
3

.6 1
1

9
.5 4

5
1

.1

8
6

1
.6 3
5

7
8

.6

1
6

9
0

.0

1
5

4
.0

2
2

6
.0

7
4

.0

4
6

9
.0

1
2

5
3

.0

6
6

7
.0

2
9

.4

4
6

.2

2
6

.4 1
1

0
.6

1
3

1
.8

2
6

.3

(c) PageRank(b) SSSP(a) CC

 1

 10

 100

 1000

 10000

Flickr LiveJ Orkut Web Wiki Arabic Flickr LiveJ Orkut Web Wiki Arabic Flickr LiveJ Orkut Web Wiki Arabic

T
im

e(
s)

7
2

1
.1

3
4

9
.9

2
1

1
.0 1

3
1

2
.9

1
2

4
8

.8

1
8

1
8

.2

3
2

.8

3
9

.2

3
8

.0

4
3

.4

6
5

.1

3
8

.0

4
4

9
.7

1
2

1
.9

1
1

3
.6

1
2

5
8

.0

5
2

2
.1 1
9

7
9

.7

3
3

.1

1
6

.4

1
8

.5 3
3

.9

3
9

.0 9
8

.1

4
9

7
.4

3
8

1
.9

1
6

2
.4

1
4

7
6

.5

1
1

2
3

.5

3
3

2
2

.7

4
7

.0

3
9

.1

2
6

.0 4
6

.6

4
2

.1

5
5

.3

(f) Belief Propagation(e) Katz Metric(d) Adsorption

Figure 9: Performance comparisons of PowerLog with existing Datalog systems on 6 algorithms and 6 datasets.

Table 2: Dataset Description

Dataset Vertices Links Abbreviation

Flickr [33] 2,302,925 33,140,017 Flickr

LiveJournal [26] 4,847,571 68,475,391 LiveJ

Orkut [34] 3,072,441 117,184,899 Orkut

ClueWeb09 [10] 20,000,000 243,063,334 Web

Wiki-link [60] 12,150,976 378,142,420 Wiki

Arabic-2005 [5] 22,744,080 639,999,458 Arabic

6.2 Experimental Setups

Cluster Setups. We conduct the evaluation on an Aliyun

ECS cluster with 17 nodes. Each node is an “ecs.r5.xlarge”

instance that has 4 vCPUs and 32GB memory with Ubuntu

16.04 LTS OS. The network bandwidth between nodes is 1.5

Gbps/s. A node is dedicated as the master and the others are

configured as workers. Each worker has 4 parallel threads.

Apache Hadoop 2.6.4 is used as the distributed storage sys-

tem. The graph datasets in Table 2 are also used.

Existing Datalog Systems. We compare PowerLog with

SociaLite [46], Myria [59], and BigDatalog [49]. All these

three systems support semi-naive evaluation but only for

monotonic programs. SociaLite and BigDatalog use the sync

execution while Myria uses the async one. We get their latest

open-source versions from github at [45, 48, 58], respectively.

6.3 Overall Performance
Because SociaLite, Myria, and BigDatalog use different data

loading methods, we exclude the data loading time from

the execution time. We report the results with the mean of

three runs under their best configurations, e.g., we follow

the BigDatalog setups [49] that use the Single-Job PSN with

SetRDD and 64 partitions. As Adsorption, Katz Metric, and

Belief Propagation are not supported by Myria and BigData-

log, we only compare to SociaLite on these three programs.

Figure 9(a) shows the execution time of CC. All systems

can use the incremental evaluation on CC. The performance

differences come from different execution engines. Because

CC of SociaLite runs out ofmemory onWiki-link, ClueWeb09

and Arabic-2005 datasets, we do not show the corresponding

results. PowerLog consistently outperforms others and can

achieve 1.1x to 46.4x speedups. Figure 9(b) shows the execu-

tion time of SSSP. All systems can also use the incremental

evaluation. PowerLog outperforms others in almost all cases

and can achieve 1.6x to 33.2x speedups. On ClueWeb09

dataset, SociaLite is 1.7x faster than PowerLog. This is be-

cause ClueWeb09 dataset has a small graph diameter that

can be optimized by the delta stepping method [31], which

is used in SociaLite only. Figure 9(c) shows the execution

time of PageRank. Different from CC and SSSP, the origi-

nal PageRank is non-monotonic and semi-naive evaluation

cannot be used. SociaLite and Myria use naive evaluation.

BigDatalog does not support PageRank. We use GraphX [15]

to substitute BigDatalog since both are built upon Apache

Spark. As PageRank can pass the condition check, PowerLog

uses MRA evaluation with the sync-async engine and can

achieve 1.8x to 188.3x speedups.

Figures 9(d)-(f) compare PowerLog and SociaLite on Ad-

sorption, Katz Metric, Belief Propagation
4
. Because these pro-

grams are non-monotonic (similar as PageRank), semi-naive

evaluation cannot be used. SociaLite uses naive evaluation

with an additional join in each iteration. PowerLog can use

MRA evaluation and achieve 5.6x to 47.8x, 6.1x to 37.1x,
and 6.2x to 60.1x speedups, respectively.

6.4 Performance Gain Analysis
The performance gain of PowerLog comes from the incre-

mental evaluation (i.e., MRA evaluation) and the high effi-

ciency of our unified sync-async execution. We quantify the

4
We simplify its implementation for large graph datasets by abstracting

vertex-pairs into vertices.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2450

 0

 100

 200

 300

 400

 500

Wiki Web Arabic

T
im

es
(s

)

(a) CC

Naive+Sync MRA+Sync MRA+Async MRA+Sync-Async PowerGraph/Maiter/Prom

387.6

110.1

160.9

75.2
101.9

45.8
29.1 33.2

151.4

15.4
28.0 35.538.6 32.6

47.3

 0

 100

 200

 300

 400

Wiki Web Arabic

NT

(b) SSSP

155.0

253.6

65.5
49.3

60.3
44.3 36.9

150.4

23.9 30.6 29.9
47.1 39.2

49.4 10
0

 10
1

 10
2

 10
3

 10
4

Wiki Web Arabic
(c) PageRank

2729.3

6995.7
4956.3

194.0
399.1

176.6126.8

568.0

218.4
110.6 131.8

26.3

250.5 287.6 210.8

 10
0

 10
1

 10
2

 10
3

 10
4

Wiki Web Arabic

T
im

es
(s

)

(d) Adsorption

1248.8 1312.9
1818.2

115.0
82.4 63.866.3 75.7 75.165.1

43.4 38.0

183.6

81.1 105.6

 10
0

 10
1

 10
2

 10
3

 10
4

Wiki Web Arabic
(e) Katz Metric

522.1

1258.0
1979.7

48.3 46.1

185.4

46.2 35.7

152.4

39.0 33.9

98.1125.6

55.1

243.7

 10
0

 10
1

 10
2

 10
3

 10
4

Wiki Web Arabic
(f) Belief Propagation

1123.5 1476.5

3322.7

74.6 86.9
140.2

48.6
92.5

156.2

42.1 46.6 55.3
103.7

76.6
149.5

Figure 10: Performance gain of PowerLog from MRA evaluation and sync-async execution.

gain from MRA evaluation and the gain from unified sync-

async execution separately. We first use naive evaluation

with sync execution and then combine MRA evaluation with

sync, async, and unified sync-async execution.

Figure 10(a) shows the results of CC, where MRA evalua-

tion can achieve 1.1x to 5.2x speedups over naive evaluation

(both with sync). Async execution can further improve the

performance onWiki-link and ClueWeb09 datasets. However,

it cannot outperform sync execution on Arabic-2005 dataset.

In contrast, sync-async execution can outperform both sync

and async execution and get 3.9x to 25.2x speedups over

naive evaluation with sync execution. Figure 10(b) shows

the results of SSSP. MRA evaluation achieves 3.1x to 4.1x
speedups over naive evaluation (both with sync); and the

speedups can be further increased by sync-async execution,

leading to 5.1x to 8.5x speedups over naive evaluation. Fig-

ure 10(c) shows the results of PageRank. MRA evaluation

with unified sync-async execution can get the most speedups,

leading to 24.7x to 188.3x speedups over naive evaluation

(with sync). On Arabic dataset, MRA evaluation has 28.1x

speedup over naive evaluation (both with sync); and sync-

async execution can further achieve 6.7x speedup over sync

execution (both with MRA evaluation), leading to the overall

188.3x speedup over naive evaluation with sync execution

that is what SociaLite does for PageRank of Program 2.
Figures 10(d)-(e) show the performance gains from MRA

evaluation and unified sync-async execution for Adsorption,

Katz Metric, and Belief Propagation. These figures show

that MRA evaluation can significantly reduce the execution

time from naive evaluation. However, which execution mode

(sync or async) can deliver better performance is not certain.

With our sync-async execution, MRA evaluation can get best

performance on all algorithms and datasets, leading to 19.2x
to 47.8x, 13.4x to 37.1x, and 26.7x to 60.1x speedups over

naive evaluation with sync execution in Figures 10(d)-(e).

We further evaluate PowerLog by comparing it with exist-

ing graph processing systems that support the incremental

computation [11, 32]. As such a system that supports the

incremental computation for all evaluated algorithms does

not exist, we use PowerGraph [14] for CC and SSSP, Maiter

[68] for PageRank, Adsorption, and Katz Metric, and Prom

[62] for Belief Propagation. Besides the incremental compu-

tation, PowerGraph can use either sync or async execution,

and we use its best performance results in evaluation. Maiter

and Prom use async execution. As shown in Figures 10(a)-(e),

with the incremental computation, these graph processing

systems have better performance than that of naive evalua-

tion with sync execution by PowerLog and can get compara-

ble performance with either “MRA+Sync” or “MRA+Async”

of PowerLog. For all cases, “MRA+Sync-Async” of PowerLog

can outperform others due to the effectiveness of the unified

sync-async engine. Furthermore, using these graph process-

ing systems, as well as the Datalog systems [46, 50, 59], users

have to manually check and rewrite programs to use the

incremental computation.

6.5 Comparing Other Execution Engines
We further evaluate our unified sync-async engine with the

Adaptive Asynchronous Parallel (AAP) model proposed in

Grape+ system [12]. Grape+ is a parallel graph processing

system that makes the execution mode switching among SP

(sync parallel), AP (async parallel), and SSP (stale synchro-

nous parallel) on each worker. Different modes exist not only

at different stages of the execution but also among different

workers in the same stage. To achieve such a complex hybrid

execution, Grape+ uses a block-based computation, where

each worker decides its own execution mode by analyzing

the sizes of in-messages. The network thread communicates

with others via a fix-sized buffer.

Our unified sync-async engine can make a timely adjust-

ment of the levels of sync and async to improve performance.

The major difference with AAP is that our adjustment is

based on valid data generated on each worker, instead of in-

messages from others. Each worker decides its own levels of

sync and async and controls the communication frequency

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2451

 0

 50

 100

 150

 200

Wiki Web Arabic

T
im

e(
s)

(a) SSSP

65.5

49.3
60.3

44.3
36.9

150.4

46.7
35.2

29.4
23.9

30.6 29.6

 0

 200

 400

 600

 800

Wiki Web Arabic

(b) PageRank

Sync Async AAP Sync-Async

194.0

399.1

176.6
126.8

568.0

218.4

130.2

310.4

128.6
110.6 131.8

26.3

Figure 11: Comparing sync-async with AAP [12]

to affect others, but does not depend on the received data size.

In addition, our approach is vertex-based and uses dynamic

message sizes to adjust sync and async in a finer granularity.

Since AAP is not released yet, we follow the paper to

implement AAP and integrate it with semi-naive evaluation

in our execution engine. We evaluate SSSP and PageRank

with four modes, i.e., sync, async, AAP, and our unified sync-

async. Figure 11(a) shows the performance of SSSP. In this

figure, AAP has the comparable performance with our sync-

async engine on Arabic-2005 dataset; but ours outperforms

AAP on other two datasets. For PageRank in Figure 11(b),

AAP outperforms both sync and async modes on ClueWeb09

and Arabic-2005 datasets, and has comparable performance

with async on Wiki-link dataset. On all datasets, our sync-

async engine shows the best performance.

7 RELATEDWORK
Monotonic Aggregates in Recursive Queries. Enabling
aggregates in recursive queries is long-term desired [36, 37,

43]. But even the recent SQL standard disallows the use of

aggregates in recursion. Ross and Sagiv [43] observe that

particular monotonic aggregates can be used in recursive

queries. Recent studies on the formalization of monotonic

aggregates [29, 30, 65] are conducive. A class of recursive

aggregate programs can be written to monotonic programs.

However, due to the absence of an analytical foundation,

these studies can only write programs with monotonic aggre-

gates in a manually case-by-case manner. REX [32] supports

the incremental computation with user-specified termina-

tion conditions and explicitly-defined delta operations for

pipelined queries. But it does not guarantee the correctness

of user-defined delta computations. The conditions proposed

in this paper can help REX achieve this goal.

RaSQL [16] is a recursive-aggregate-SQL system for big

data analytics. RaSQL and PowerLog share the same goal of

leveraging the incremental evaluation for high performance.

RaSQL summarizes the Pre-Mappability (PreM) conditions.

A recursive aggregate program satisfying PreM is identified

as being monotonic and can be executed with semi-naive

evaluation. PowerLog goes further to enable the incremen-

tal computation for some non-monotonic programs, e.g.,

PageRank, thus significantly enlarges its application scope

of incremental computation. More importantly, the condi-

tion check is automated in PowerLog. This method is also

applicable to verify the conditions of using other parallel

techniques [19].

Datalog Systems. Besides the three representative Datalog
systems used in our experiments, there exist several other

Datalog systems. DeALS [50, 51] is a deductive database

system built on Datalog language. It supports multiple exe-

cution platforms, such as multi-core machines and clusters.

Datalography [35] can transform Datalog programs to graph

processing programs on Giraph [4] so that Datalog programs

can be efficiently evaluated in a distributed computing envi-

ronment. GraphRex [66] provides a Datalog-like declarative

interface and a series of optimizations for graph analysis.

Async Execution in Graph Processing. Many graph pro-

cessing systems support async execution [9, 17, 27, 47, 53, 56,

68]. Recent studies show that neither sync nor async execu-

tion can consistently outperform the other. Besides Grape+

[12], several sync-async hybrid systems have emerged. Pow-

erSwitch [61] performs an automatic switch between sync

and async onworkers. SEP-Graph [57] selects the shortest ex-

ecution paths of graph algorithms on GPU, considering sync

and async with different communication and vertex traver-

sal schemes. Most of these systems are performance-centric

without considering the correctness of async execution.

8 CONCLUSION
We have designed and implemented PowerLog, which con-

sists of three components in both theory and system build-

ing. First, we lay an analytical foundation for conditions to

determine whether a monotonic or even a non-monotonic

program can be correctly executed in an incremental and

asynchronous way. Second, we develop a condition verifi-

cation tool to automatically check if a program satisfies the

conditions. Finally, we build a unified sync-async processing

engine to minimize execution times for the programs that

satisfy the conditions. Compared with three representative

Datalog systems in large-scale experiments with many work-

loads, we show the effectiveness of PowerLog. We believe

the methodology and analytical foundation in this paper are

applicable to a broad scope of incremental computing for

graph processing and neural network systems.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their encouraging

and constructive comments and suggestions. The work is

supported by the National Key R&D Program of China under

grants 2018YFB1003404, the U.S. National Science Founda-

tion under grants CCF-1629403, IIS-1718450, CCF-2005884,

the National Natural Science Foundation of China under

grants 61672141, U1811261, and the Fundamental Research

Funds for the Central Universities under grants N181605017,

N181604016.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2452

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Founda-

tions of Databases: The Logical Level (1st ed.). Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[2] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein,

David Maier, and Russell Sears. 2011. Dedalus: Datalog in Time and

Space. In Datalog 2011. 262–281.
[3] ANTLR 2020. ANother Tool for Language Recognition. http://www.

antlr.org/

[4] Apache Giraph 2020. Iterative graph processing system. http://giraph.

apache.org

[5] Arabic-2005 2020. Arabic-2005 Network. http://law.di.unimi.it/

webdata/arabic-2005/

[6] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan

Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.

2015. Design and Implementation of the LogicBlox System. In Pro-
ceedings of the ACM International Conference on Management of Data
(SIGMOD ’15). 1371–1382.

[7] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik,

Shankar Kumar, Deepak Ravichandran, andMohamed Aly. 2008. Video

Suggestion andDiscovery for Youtube: Taking RandomWalks Through

the View Graph. In Proceedings of the 17th International Conference on
World Wide Web (WWW ’08). ACM, New York, NY, USA, 895–904.

[8] François Bancilhon. 1986. Naive Evaluation of Recursively Defined
Relations.

[9] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.

Groute: An Asynchronous Multi-GPU Programming Model for Irregu-

lar Computations. In Proceedings of the 22NdACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’17). ACM,

New York, NY, USA, 235–248.

[10] ClueWeb09 2020. The ClueWeb09 Dataset. https://lemurproject.org/

clueweb09/

[11] Wenfei Fan, Chunming Hu, and Chao Tian. 2017. Incremental Graph

Computations: Doable and Undoable. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD ’17). ACM,

New York, NY, USA, 155–169.

[12] Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan

Yu, and Ruiqi Xu. 2018. Adaptive Asynchronous Parallelization of

Graph Algorithms. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD ’18). 1141–1156.

[13] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu

Zheng, Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Se-

quential Graph Computations. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD ’17). 495–510.

[14] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computa-

tion on Natural Graphs. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI’12). USENIX
Association, USA, 17–30.

[15] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in

a Distributed Dataflow Framework. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14).
USENIX Association, USA, 599–613.

[16] Jiaqi Gu, Yugo H. Watanabe, William A. Mazza, Alexander Shkap-

sky, Mohan Yang, Ling Ding, and Carlo Zaniolo. 2019. RaSQL:

Greater Power and Performance for Big Data Analytics with Recursive-

aggregate-SQL on Spark. In Proceedings of the 2019 International Con-
ference on Management of Data (SIGMOD ’19). ACM, New York, NY,

USA, 467–484.

[17] Minyang Han and Khuzaima Daudjee. 2015. Giraph Unchained: Barri-

erless Asynchronous Parallel Execution in Pregel-like Graph Systems.

Proceedings of the VLDB Endowment 8, 9 (May 2015), 950–961.

[18] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,

Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P.

Xing. 2013. More Effective Distributed ML via a Stale Synchronous

Parallel Parameter Server. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems (NIPS ’13). 1223–1231.

[19] Kaixi Hou, HaoWang,Wu-chun Feng, Jeffrey S. Vetter, and Seyong Lee.

2018. Highly Efficient Compensation-based Parallelism for Wavefront

Loops on GPUs. In Proceedings of the 32nd IEEE International Parallel
and Distributed Processing Symposium (IPDPS ’18). 276–285.

[20] Glen Jeh and Jennifer Widom. 2002. SimRank: A Measure of Structural-

Context Similarity. In Proceedings of the ACM International Conference
on Knowledge Discovery and Data Mining(KDD ’02). 538–543.

[21] Leo Katz. 1953. A new status index derived from sociometric analysis.

Psychometrika 18, 1 (01 Mar 1953), 39–43.

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifica-

tion with Graph Convolutional Networks. In Proceedings of the 5th
International Conference on Learning Representations (ICLR ’17).

[23] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. 2001.

Factor graphs and the sum-product algorithm. IEEE Transactions on
Information Theory 47, 2 (Feb 2001), 498–519.

[24] Monica S. Lam, Stephen Guo, and Jiwon Seo. 2013. SociaLite: Datalog

Extensions for Efficient Social Network Analysis. In Proceedings of
the 2013 IEEE International Conference on Data Engineering (ICDE ’13).
278–289.

[25] Amy N. Langville and Carl D. Meyer. 2004. Deeper Inside PageRank.

INTERNET MATHEMATICS 1 (2004), 2004.
[26] Livejournal 2020. KONECT Livejournal so network dataset. http:

//konect.uni-koblenz.de/networks/soc-LiveJournal1

[27] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A

Framework for Machine Learning and Data Mining in the Cloud. Pro-
ceedings of the VLDB Endowment 5, 8 (April 2012), 716–727.

[28] Grzegorz Malewicz, Matthew H. Austern, Aart J. C Bik, James C. Dehn-

ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:

a system for large-scale graph processing. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD ’10). 135–
146.

[29] Mirjana Mazuran, Edoardo Serra, and Zaniolo Carlo. 2013. Extending

the power of datalog recursion. VLDB Journal 22, 4 (2013), 471–493.
[30] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. 2013. A declara-

tive extension of horn clauses, and its significance for datalog and its

applications. Theory and Practice of Logic Programming (TPLP ’13) 13,
4-5 (2013), 609–623.

[31] Ulrich Meyer and Peter Sanders. 2003. ∆-stepping: a parallelizable

shortest path algorithm. Journal of Algorithms 49, 1 (Oct. 2003), 114–
152.

[32] Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. 2012. REX:

Recursive, Delta-Based Data-Centric Computation. Proceedings of the
VLDB Endowment 5, 11 (July 2012), 1280–1291.

[33] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter

Druschel, and Bobby Bhattacharjee. 2008. Growth of the Flickr Social

Network. In SIGCOMM Workshop on Social Networks (WoSN ’08).
[34] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Dr-

uschel, and Bobby Bhattacharjee. 2007. Measurement and Analysis of

Online Social Networks. In Proceedings of the ACM/USENIX Internet
Measurement Conference (IMC ’07). San Diego, CA.

[35] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin

Deutsch. 2016. Datalography: Scaling datalog graph analytics on graph

processing systems. In Proceedings of the IEEE International Conference
on Big Data (BigData ’16). 56–65.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2453

http://www.antlr.org/
http://www.antlr.org/
http://giraph.apache.org
http://giraph.apache.org
http://law.di.unimi.it/webdata/arabic-2005/
http://law.di.unimi.it/webdata/arabic-2005/
https://lemurproject.org/clueweb09/
https://lemurproject.org/clueweb09/
http://konect.uni-koblenz.de/networks/soc-LiveJournal1
http://konect.uni-koblenz.de/networks/soc-LiveJournal1

[36] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan.

1990. The Magic of Duplicates and Aggregates. In Proceedings of the
International Conference on Very Large Databases (VLDB ’90). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 264–277.

[37] Sumlt Oanguly and Sergio Greco. 1991. Minimum and Maximum

Predicates in Logic Programming. In Proceedings of the 1991 ACM
Symposium on Principles of Database Systems (PODS ’91).

[38] OpenMPI 2020. A High Performance Message Passing Library. https:

//www.open-mpi.org/

[39] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

1998. The PageRank Citation Ranking: Bringing Order to the Web.

Stanford Digital Libraries Working Paper 9, 1 (1998), 1–14.
[40] Judea Pearl. 1982. Reverend Bayes on Inference Engines: A Distributed

Hierarchical Approach. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence (AAAI ’82).

[41] Protostuff 2020. Java serialization library, proto compiler, code gener-

ator. https://github.com/protostuff/protostuff

[42] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near

linear time algorithm to detect community structures in large-scale

networks. Physical review E 76, 3 (2007), 036106.

[43] Kenneth A. Ross and Yehoshua Sagiv. 1992. Monotonic Aggregation

in Deductive Databases. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS ’92). 114–126.

[44] Baruch Schieber and Uzi Vishkin. 1988. On finding lowest common

ancestors: Simplification and parallelization. SIAM J. Comput. 17, 11
(1988), 1145–1152.

[45] Jiwon Seo. 2016. SociaLite: Query Language For Large-Scale Graph

Analysis. https://github.com/socialite-lang/socialite

[46] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Dis-

tributed Socialite: A Datalog-based Language for Large-scale Graph

Analysis. Proceedings of the VLDB Endowment 6, 14 (Sept. 2013), 1906–
1917.

[47] Xuanhua Shi, Junling Liang, Sheng Di, Bingsheng He, Hai Jin, Lu Lu,

Zhixiang Wang, Xuan Luo, and Jianlong Zhong. 2015. Optimization

of Asynchronous Graph Processing on GPU with Hybrid Coloring

Model. In Proceedings of the ACM/SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’15). 271–272.

[48] Alexander Shkapsky. 2016. BigDatalog on Spark. https://github.com/

ashkapsky/BigDatalog

[49] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu,

Tyson Condie, and Carlo Zaniolo. 2016. Big Data Analytics with

Datalog Queries on Spark. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). ACM, New York,

NY, USA, 1135–1149.

[50] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Opti-

mizing recursive queries with monotonic aggregates in DeALS. In

Proceedings of the IEEE International Conference on Data Engineering
(ICDE ’15). 867–878.

[51] Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. 2013. Graph Queries

in a Next-generation Datalog System. Proceedings of the VLDB Endow.
6, 12 (Aug. 2013), 1258–1261.

[52] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning

Multiagent Communication with Backpropagation. In Proceedings of
the 30th International Conference on Neural Information Processing

Systems (NIPS ’16). Curran Associates Inc., USA, 2252–2260.

[53] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish

Tatikonda, and John McPherson. 2013. From "Think Like a Vertex" to

"Think Like a Graph". Proceedings of the VLDB Endowment 7, 3 (Nov.
2013), 193–204.

[54] TROVE 2020. High performance collections for Java. http://trove.

starlight-systems.com/

[55] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation.

Commun. ACM 33, 8 (Aug. 1990), 103–111.

[56] GuozhangWang,Wenlei Xie, Alan Demers, and Johannes Gehrke. 2013.

Asynchronous Large-Scale Graph ProcessingMade Easy. In Proceedings
of the biennial Conference on Innovative Data Systems Research (CIDR
’13).

[57] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xi-

aodong Zhang. 2019. SEP-graph: Finding Shortest Execution Paths for

Graph Processing Under a Hybrid Framework on GPU. In Proceedings
of the Symposium on Principles and Practice of Parallel Programming
(PPoPP ’19). ACM, New York, NY, USA, 38–52.

[58] Jingjing Wang. 2017. Myria: A Scalable Analytics-As-A-Service Plat-

form Based on Relational Algebra. https://github.com/uwescience/

myria

[59] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. 2015.

Asynchronous and Fault-tolerant Recursive Datalog Evaluation in

Shared-nothing Engines. Proceedings of the VLDB Endowment 8, 12
(Aug. 2015), 1542–1553.

[60] Wiki 2020. Wiki links english dataset. http://konect.uni-koblenz.de/

networks/wikipedia_link_en

[61] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo

Chen. 2015. SYNC or ASYNC: time to fuse for distributed graph-

parallel computation. In Proceedings of the ACM/SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’15). 194–204.

[62] Jiangtao Yin and Lixin Gao. 2014. Scalable Distributed Belief Propaga-

tion with Prioritized Block Updates. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management (CIKM ’14). ACM, New York, NY, USA, 1209–1218.

[63] Z3 2020. SMT Solver. https://github.com/Z3Prover/z3

[64] Z3-guide 2020. Getting Started with Z3: A Guide. https://rise4fun.

com/z3/tutorial

[65] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson

Condie, and Matteo Interlandi. 2017. Fixpoint semantics and opti-

mization of recursive Datalog programs with aggregates. Theory and
Practice of Logic Programming 17, 5-6 (2017), 1048–1065.

[66] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang

Chen, Vincent Liu, and Boon Thau Loo. 2019. Optimizing Declarative

Graph Queries at Large Scale. In Proceedings of the 2019 International
Conference on Management of Data (SIGMOD ’19). ACM, New York,

NY, USA, 1411–1428.

[67] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2011. PrIter:

A Distributed Framework for Prioritized Iterative Computations. In

Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC
’11). 1–14.

[68] Yanfeng Zhang, Qixin Gao, Lixin Gao, and CuirongWang. 2014. Maiter:

An Asynchronous Graph Processing Framework for Delta-Based Ac-

cumulative Iterative Computation. IEEE Transactions on Parallel and
Distributed Systems 25, 8 (Aug. 2014), 2091–2100.

Research 27: Distributed and Parallel Processing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2454

https://www.open-mpi.org/
https://www.open-mpi.org/
https://github.com/protostuff/protostuff
https://github.com/socialite-lang/socialite
https://github.com/ashkapsky/BigDatalog
https://github.com/ashkapsky/BigDatalog
http://trove.starlight-systems.com/
http://trove.starlight-systems.com/
https://github.com/uwescience/myria
https://github.com/uwescience/myria
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/wikipedia_link_en
https://github.com/Z3Prover/z3
https://rise4fun.com/z3/tutorial
https://rise4fun.com/z3/tutorial

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Recursive Aggregate Datalog Programs
	2.2 Naive and Semi-Naive Evaluations
	2.3 Monotonic/Non-Monotonic Programs

	3 Analytical Foundation
	3.1 MRA Evaluation
	3.2 Conditions for MRA Evaluation
	3.3 Automating Condition Verification

	4 Correctness of Async Execution
	5 The PowerLog System
	5.1 Automatic Condition Checker
	5.2 Implementation of MRA Evaluation
	5.3 Unified Sync-Async Engine
	5.4 Other Optimizations

	6 Evaluation
	6.1 MRA Evaluation Satisfiable Programs
	6.2 Experimental Setups
	6.3 Overall Performance
	6.4 Performance Gain Analysis
	6.5 Comparing Other Execution Engines

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

