Unexpected Data Dependency Creation and
Chaining: A New Attack to SDN

Feng Xiao, Jinquan Zhang, Jianwei Huang', Guofei Gu', Dinghao Wu, Peng Liu
The Pennsylvania State University
T SUCCESS Lab, Texas A&M University

Abstract—Software-Defined Networking (SDN) is an emerging
network architecture that provides programmable networking
through a logically centralized controller. As SDN becomes more
prominent, its security vulnerabilities become more evident than
ever. Serving as the “brain” of a software-defined network, how
the control plane (of the network) is exposed to external inputs
(i.e., data plane messages) is directly correlated with how secure
the network is. Fortunately, due to some unique SDN design
choices (e.g., control plane and data plane separation), attackers
often struggle to find a reachable path to those vulnerable logic
hidden deeply within the control plane.

In this paper, we demonstrate that it is possible for a
weak adversary who only controls a commodity network device
(host or switch) to attack previously unreachable control plane
components by maliciously increasing reachability in the con-
trol plane. We introduce D?>C? (data dependency creation and
chaining) attack, which leverages some widely-used SDN protocol
features (e.g., custom fields) to create and chain unexpected data
dependencies in order to achieve greater reachability. We have
developed a novel tool, SVHunter, which can effectively identify
D?C? vulnerabilities. Till now we have evaluated SVHunter
on three mainstream open-source SDN controllers (i.e., ONOS,
Floodlight, and Opendaylight) as well as one security-enhanced
controller (i.e., SE-Floodlight). SVHunter detects 18 previously
unknown vulnerabilities, all of which can be exploited remotely
to launch serious attacks such as executing arbitrary commands,
exfiltrating confidential files, and crashing SDN services.

I. INTRODUCTION

In contrast to traditional computer networks, where switches
are a “melting pot” of control plane and data plane, Software-
Defined Networks (SDNs) keep control plane and data plane
separated. While the data plane (of a network) still stays
inside switches, the control plane is detached from the data
plane and moved to a dedicated server called an SDN con-
troller. This separation enables flexible and dynamic network
functionalities, makes troubleshooting easier, and leads to the
development of an open network programming interface that
accelerates the growth of network applications.

As SDN becomes more prominent, the security vulnera-
bilities become more evident than ever. Serving as the core
of SDN networks, the security of SDN control plane [37],
[42], [39], [16], [19] receives the most attention from security
researchers. In particular, the data-to-control plane attacks,
which enable adversaries remotely attack the control plane,
are found to have severe attack effects. Most data-to-control
plane attacks involve two stages: (i) inject malicious network
events into the SDN control channel via protocol interactions;
(ii) exploit vulnerable control plane designs/logic with ma-

licious network events. For example, ConGuard [42] gener-
ates asynchronous network events in unexpected schedules to
exploit vulnerable asynchronous logic of SDN control plane.
The “reachability” (i.e., the set of execution paths triggered
by the network events) in the control plane decides which
logic can be abused. However, the SDN design principles
such as control plane and data plane separation greatly limit
such reachabilities. As a result, attackers located in the data
plane usually target at one or two control plane logic that
closely relates to the malicious network events. Increasing
such reachability to attack more logic in the control plane
may have tremendous promise. Unfortunately, it is difficult to
do so due to the following two unique SDN design choices:

« First, the decoupled SDN control plane (i.e., software
controller) and the data plane (i.e., network devices) only
communicate with each other via pre-defined protocols
(e.g., OpenFlow, NetConf). As a result, attackers (usually
located in the data plane) can only input data in restricted
and pre-defined forms into the control plane.

« Second, only a few components (i.e., message-handling
components) in the controller directly handle protocol
messages from the data plane. Hence, even though an
attacker can inject malicious data into these message-
handling components, it is still very difficult to attack
other components (the components that run important
network services) in the controller unless a very special
data dependency (i.e., the data dependency which can
directly send malicious protocol messages to the target
sensitive method) exists between the target component
and message-handling components.

Because of these SDN design choices, attackers often
struggle to find a reachable path to those vulnerable logic
hidden deeply within the SDN control plane. In this work,
we propose a new attack, D*>C? (data dependency creation
and chaining), which effectively breaks the security guards
brought by the two SDN design choices mentioned above.
The new attack provides an unexpected, seemingly-unlikely
way to exploit sensitive methods/APIs hidden in the control
plane. By creating malicious data dependencies, D*>C? is able
to connect previously unreachable sensitive methods to the
data plane in order to increase the reachability. The D?>C?
attack succeeds due to two findings. First, we found that some
widely-used SDN protocol features can help an attacker to
violate the security property provided by the first SDN design

Control Plane ' Data Plane

________________________ N
ICQn!roI Plane Data Items |

|

|

i |
1 Device |

| (Flow Rules () Objects) | :
|

|

|

Y

FlowRule
Store

OpenFlow
Provider Il Iﬁl

Entry Component

WEB Ul

Target Component ,

Fig. 1. A real exploit chain of the D2C? attack in ONOS Controller.

choice (control plane and data plane separation). Southbound
protocols (e.g., OpenFlow, NetConf) introduce custom fields
to enrich the semantics of SDN network states. By abusing
this feature, adversaries are now able to input customized
malicious data in various forms (e.g., long string or XML) into
the control plane through southbound protocol interactions.
However, due to the guard brought by the second design choice
mentioned above, only the methods in the message-handling
components are being exposed to the attackers even though
they can abuse the custom fields in the SDN protocols. Hence,
we also need to create our own malicious data dependencies in
order to increase the reachability. Our second finding is that it
is actually possible to create such malicious data dependencies
to attack more sensitive methods in the control plane if the
attackers firstly exploit a few sensitive methods in those
message-handling components by employing a smart strategy
(i.e., dependency creation by control plane data poisoning).
Such strategies can be illustrated with a real-world exploit
chain that we discovered in ONOS [7], one of the most
widely used controllers. As shown in Fig. 1, instead of directly
introducing a specific attack effect, the attacker first chooses
to poison a control plane data item which will be used by
another component (WEB UI). With the same strategy, the
attacker poisons the data item used by the target component.
As a result, when the poisoned data is handled by the target
component, the attacker successfully attacks the previously
unreachable target method.

The key idea of the D>C? attack is to abuse reachable
sensitive methods/APIs with existing data dependencies (e.g.,
data dependencies created by custom field) to create new
data dependencies to abuse previously unreachable sensitive
methods/APIs in controllers. To achieve this goal, we designed
and implemented a tool, SVHunter, to automatically construct
such exploit chains. Constructing a successful exploit chain,
however, needs to address the following three challenges:

« First, in order to figure out which data dependencies can
be created, how to represent and model the preconditions
and postconditions of abusing sensitive methods/APIs?

« Second, how to chain the newly created data dependen-
cies with the existing ones together to construct a D>C?
exploit chain?

« Third, how to craft a concrete D>C? attack payload?

The first challenge arises from the fact that it is difficult
to decide how much abstraction (generalization) is needed
to model the behavior of sensitive methods/APIs. In order
to access previously unreachable sensitive methods/APIs, we

first need to represent the precondition (the data dependencies
needed to abuse the methods/APIs) and postcondition (the data
dependencies that can be created after abusing the method-
s/APIs) of accessing these sensitive methods/APIs. However,
it is challenging to find the appropriate model to represent
such casualty relationships. If our model is too abstract, the
generated representation might be too coarse to describe the
correct data dependencies of each method. If we choose a
very concrete model to represent the relationships, it is likely
that we cannot identify enough information needed by the
fine-grained representation with the state-of-the-art program
analysis techniques. To address this challenge, we employ a
declarative logic language model to represent data dependen-
cies. Unlike an imperative language model that focuses on
the details of program state changes, the declarative model
provides a flexible representation which expresses the logic of
the computation, which is exactly what we are looking for.

The second challenge is about how to analyze and reason
the relationships we identified in the previous steps. Since we
might identify a large number of sensitive methods/APIs, it
is very tedious and error-prone to manually reason and chain
their relationships. Hence, we design a reasoning engine to
automatically reason the causality relationships of abusing
sensitive methods.

The third challenge is daunting because it is complex and
time-consuming to craft concrete D>C? attack payloads even
for an SDN expert. To craft such a payload, the attacker has
to (i) manually emulate the protocol interactions to inject
malicious protocol messages, and (ii) fully understand the
complex causality relationships within a D?>C? chain in order
to prepare the proper payload for every sensitive method. To
address this challenge, we design an exploit engine to ease the
process of synthesizing D?>C? exploits.

In summary, the main contributions of this paper are as
follows:

« We propose a new D?C? attack against SDN controllers
that leverage legitimate protocol interactions to abuse
sensitive methods in multiple SDN control plane compo-
nents. By creating malicious data dependencies, the attack
enables a data plane attacker abuse previously inaccessi-
ble sensitive methods/APIs in the controller while only
controlling a normal network device in the data plane.

o We design SVHunter, a novel tool to pinpoint a wide
range of sensitive methods in SDN controllers and cre-
ate data dependencies to attack these methods. It is a
practical tool since it not only leverages program anal-
ysis techniques to identify sensitive method usages in
the control plane but also semi-automatically constructs
exploit chains to introduce various attack effects. We will
open source SVHunter at https://github.com/xiaofen9/
SVHunter.

« We present a comprehensive evaluation of SVHunter on
the mainstream SDN controllers. SVHunter successfully
constructed 18 exploit chains to attack previously un-
known security risks in the control plane. We have made

https://github.com/xiaofen9/SVHunter
https://github.com/xiaofen9/SVHunter

TABLE I
CUSTOM FIELDS IN OPENFLOW
Name Purpose Length
mfr_desc Manufacturer description 256
hw_desc Hardware description 256
serial_num Serial number 32
dp_desc Human readable description of datapath 256

responsible disclosure and notified each vendor. By the
time of writing, vendors have already patched 9 of them.

II. BACKGROUND

Software-Defined Networking (SDN) is a new network
architecture with a decoupled control plane and data plane.
Here we introduce some background on SDN: the protocols
that bridge the decoupled planes, the software components and
internal data in the control plane.

A. Protocols

To bridge the decoupled control plane and data plane,
SDN introduces several southbound protocols [27] such as
OpenFlow (OF), Open vSwitch Database Management Pro-
tocol (OVSDB), and NetConf. Most message fields in these
southbound protocols are limited to a finite set of pre-defined
values (e.g., 0x00000001~0x000000e0). However, some fields
have no constraint and can be customized by the sender. We
denote them as custom fields in the subsequent text. Custom
fields are used to enrich the semantics of SDN network states.
For example, to allow SDN controllers to better support the
vendor-dependent features, network devices in the data plane
use the custom field of OpenFlow to claim their software/hard-
ware information. Table I demonstrates some default custom
fields and their intended purposes in OpenFlow, one of the
most important SDN protocols.

B. Control Plane Components

The SDN control plane contains many software compo-
nents [17], including core services and applications. Core ser-
vices provide services to other components, while applications
use these services to provide functionalities to the network
[18]. When a protocol message reaches the control plane,
a certain service will parse the message and store it in the
controller for further usages [14]. For example, when a new
switch connects to the network, a networking event will be
sent to the control plane, which contains hardware information
about the switch. Then a specific service will update the
network states so that other components, such as a topology
tracking app, can better understand the network environment
with such information.

C. Internal Data

There are mainly two kinds of internal data in the SDN
controller, configurational data and runtime data. Important
network parameters, such as administrator credentials and
the access control list, are stored as configurational data.
These data items are usually set by the administrators and
stored persistently in the file system or relational databases

in the controller. They are critical since the control plane
components rely on them to make important decisions such
as routing. Runtime data stores the network status information
such as network topology, device state, and traffic statistics.
The information is mainly collected from the data plane and
is usually stored as runtime data structures of the controller.

III. THREAT MODEL
A. Scenario

As the brain of the entire network, it is clear that compro-
mising the controller is much more effective to attackers [42]
than just to compromise a single or partial network device(s).!
In this paper, we do not assume that attackers can have direct
access to the SDN controller or SDN applications, which can
be well protected. In addition, the control channels between the
controller and switches as well as the administrative channels
between administrators and SDN UI migtht be protected by
secure cryptographic protocols like SSL/TLS. In this paper, we
consider scenarios where a vulnerable network device (e.g., a
switch or a host) exists in the network, and an attacker in
the data plane wants to launch D?C? attacks by abusing the
device to interact with the controller using legitimate protocol
interactions.

We believe that this attack scenario is realistic. First, net-
work switches (including software switches) can be com-
promised. Actually, many serious vulnerabilities have been
found in SDN-enabled switches [3], [2], [36], [26]. Second,
in many cases, attackers might not need to compromise
network switches; instead, they just compromise normal hosts
or virtual machines to launch attacks. When SDN networks
are configured as in-band control [12], the control plane and
data plane share the same physical links.? As a result, normal
hosts could interact with the controller as long as the control
channel does not enforce SSL/TLS?.

B. Attack Effects

A data plane attacker who wants to impact the network
security will seek to introduce one or several attack effects
to the controller. In Table II, we summarize three categories
of common attack effects against the controller. (a) Denial
of Service. The attack effects in this category can disrupt
the availability of a specific network service in the controller.
(b) Data leakage. Such attack effects aim at stealing valuable
information from the controller (e.g., the network topology).
(c) Network manipulation. These attack effects can manipulate
arbitrary network elements or alter the controller’s knowledge
about the network.

We claim that the D*>C? attack is able to introduce multi-
ple attack effects which can cover almost every previously

IThere are existing studies that target the data plane to launch attacks [36),
[26], [13]; however, such attacks are not the focus of this paper.

2Many real-world networks take this in-band operation approach due to its
cost-efficiency [12], [42].

3 Note that the control channel does not enforce SSL/TLS by default [9],
[8], and it can be very complex to manage in real-world deployments
especially when there are multiple controllers [32].

TABLE II
COMMON SDN ATTACK EFFECTS AGAINST CONTROLLERS FOR DATA PLANE ATTACKERS

Category Attack Effect

Examples

Congest SDN architectural
bottleneck

A remote attacker generates a large number of events
to congest the bottleneck of controller [39].

. . Disrupt network services
Denial-of-Service P

A remote attacker exploits SDN service logic flaws (e.g.,
harmful race conditions) [42] to crash core SDN services.

Install false flow rules

N/A

Corrupt critical configuration

N/A

Probe sensitive network

Data Leakage information

A remote attacker steals sensitive information (e.g.,
physical IP) from the controller by violating network policy [42]

Steal important network
configuration

N/A

Manipulate network view
Network Manipulation

A remote attacker alters the controller’s knowledge
about the network by sending fake LLDP packets [19]

Install arbitrary flow rules

N/A

achieved attack effect in Table II. In addition, our attack
can also introduce previously unachieved attack effects, such
as install false/arbitrary flow rules and corrupt/steal critical
configuration, listed as “N/A” in Table II.

IV. D?C? ATTACK

In this section, we introduce D2C?, a novel attack that
employs a data poisoning strategy to abuse previously unreach-
able sensitive methods in the controller.

The D?C? attack leverages two important insights to abuse
sensitive methods/APIs in the controller. The first insight
is that some SDN design features, e.g., custom field, can
be abused to help attackers send malicious data into the
control plane. By abusing custom fields in SDN protocol (e.g.,
OpenFlow) messages, the attacker is able to manipulate the
sensitive methods/APIs in the message-handling components.

Another important new insight of D?>C? is that the data
dependencies among the many seemingly-separated SDN ser-
vices/applications can actually be created in unexpected ways
(i.e., data item poisoning) to result in the exposure of previ-
ously unreachable sensitive methods/APIs to attackers. To take
advantage of this, the attacker should realize that his intended
attack effect is supposed to result from the execution of a
partial order of sensitive methods which belong to multiple
services or applications. Hence, to achieve such attack effects
in SDN networks, the attacker needs to perform a multi-
stage attack which directly or indirectly poisons several control
plane data items to finally attack the target component.

A. Example Attack Scenario

We illustrate such an attack by analyzing a real exploit chain
of the D?C? attack we mentioned in Section I. The attack
effect of this exploit chain is to manipulate arbitrary flow
tables in the data plane. To introduce this effect, the exploit
chain attacks the core service component FlowRuleManager,
which manages flow tables in data plane devices (e.g., network
switches). As shown in Fig. IV-A, the exploit chain starts
from the data plane, where a poisoned protocol message (e.g.,
custom field) is sent into the control plane via legitimate
protocol interactions. In Phase 1, the core service OpenFlow
Provider parses the poisoned protocol message and generates
a poisoned network state. In Phase 2, the sensitive method

|
| a Load Briasit WEB Ul Application X |
2 Balancer 8 (getDevice) (sensitive method)
|< |
________________ 7[—— —_———]
e s S -
| FlowRule OpenFlow . |
| & | FlowRuleStore Manager Provider (Sce?‘:is::;fsoz) |
2 (applyflowRules) (handlePacket)
I'S |
=
g ‘\ \' L |
3 @ ©) |
-
|8 Flow Rules Device Objects Internal Dataz | |
| |
P J
Control Plane
Data Plane] &

Switch Host . ﬁl Switch

Fig. 2. A real-world exploit chain of the D2C? attack. The exploit chain
poisons several control plane data items to create malicious data dependencies
(red edges) via existing data dependencies (blue edges).

getDevice in the Web UI application is abused by the
poisoned network state. By abusing method getDevice, the
poisoned network state is able to manipulate the Web Ul
application to launch HTTP requests to access the northbound
APIs (i.e., Restful APIs) belonging to the FlowRuleManager.
Hence, a malicious data dependency is established from the Ul
application to the sensitive method applyflowRules in the
FlowRuleManager. By abusing the newly reachable sensitive
method, a malicious flow rule is inserted. In the end, the
core service FlowRuleStore handles poisoned flow rules and
updates the flow tables in correspond data plane devices. This
is a typical exploit chain of the D>C? attack. By employing
such data poisoning strategy, the D*>C? exploit chain is able to
send malicious data to the target sensitive method via existing
and newly created data dependencies.

B. Problem Formulation

In this paper, we focus on four categories of internal
data items (i.e., protocol messages, network states, databases,
configure files) according to our discovered attack surface. Part
of these data is stored as a runtime variable in the controller
while others are stored persistently in the file system (e.g.,
databases and configuration files). The D>C? attack poisons
these different kinds of internal data by abusing different kinds
of sensitive methods/APIs that modify these data items. For
example, in one of the cases we found, the File.read() method

is vulnerable and can be abused to poison configuration files.
To investigate how control plane components will be affected
if one data item is poisoned, we study a list of methods that
collect data from the four categories of data items. Most of
the methods are critical SDN APIs (e.g., southbound APIs and
northbound APIs) and some of them are dangerous Java lib
methods (e.g., File.read()). In this paper, we call these methods
as data collecting methods. We observe the data collecting
methods and sensitive methods have intersections since some
data collecting methods are also sensitive methods that can be
abused to leak data.

To launch D?>C? attacks, we need an exploit chain that
consists of several events in which several control plane data
items are handled by different sensitive methods. In this
paper, we denote such an event as a poisoning event since its
consequence is to poison the data item in the control plane.
However, not all such chains can be regarded as harmful, since
only part of them can create exploitable data dependencies
between the attacker and the target sensitive method in the
SDN control plane. In this paper, our goal is to identify such
D?C? chains from numerous seemly exploitable chains.

D?>C? chains. There are several requirements that should
be met before a chain can be exploitable. (1) Every two
neighbor events in such D>C? chain should have the following
relationships: (1a) The prior event must be able to create at
least one data dependency to the later one. (1b) The prior one
does not have to call the later one, which means they can be
called separately. (2) The first event and the last event should
have additional requirements: (2a) The attacker should be able
to trigger the first event from the data plane (e.g., through the
custom field). (2b) The last event in the D?>C? chain should
be abused on a destructive sensitive method which can fulfill
the attacker’s objective.

The attacker faces a knotty problem when he wants to
launch such an attack. That is how to find all D>C? chains from
the SDN controller. To address this problem, we introduce our
tool, SVHunter, which pinpoints poisoning events in the SDN
control plane and generates D>C? chains through backward
taint analysis and logic reasoning.

V. TooL DESIGN AND IMPLEMENTATION

In this section, we present our tool, SVHunter, for identify-
ing and exploiting the D>C? vulnerabilities in SDN controllers.
As shown in Fig. 3, SVHunter comprises three main compo-
nents: the Tracer pinpoints poisoning events in the controller
by utilizing backward data flow tracking. The Reasoning En-
gine reasons the causality relationships between the identified
poisoning events to create and chain data dependencies in
order to generate D?>C? chains. The Exploit Engine eases the
process of synthesizing D?>C? exploits.

A. Pinpointing Poisoning Events

In this section, we describe the design of the Tracer, which
pinpoints poisoning events in the controller as well as its appli-
cations at the Java bytecode level. The Tracer first identifies
the usages of sensitive methods in the controller according

Payload Crafting
Guide

m Controller
Bytecode

————

/ N\ / 7 N\

| D Ii i -1
ata Flow | Causality Payload Crafting | |

| | Backtracking | ., Generation Guide Generator [| Bl S

£lg! -1 -3
| I HH v 1 |
| 18 |
Poisoning Event | | &] | Causality Custom Field i
I Extraction | Reasoning Data Injector > _—
\ / AN / Malicious Protocol

_———— ~— — — — —

—_—— — —
Messages

Tracer Reasoning Engine Exploit Engine

Fig. 3. SVHunter Overview.

to a particular list of method names. Second, it employs
static analysis techniques to backward trace data flows from
each parameter of each identified sensitive method to its data
sources (i.e., data collecting methods). Finally, the Tracer
associates sensitive method usages with their corresponding
data collecting methods as well as certain context information.
Detecting sensitive method usages. The Tracer detects the
usages of sensitive methods with a particular list of method
names. We follow two principles to choose sensitive methods.
First, according to the essence of the D>C? attack, i.e.,
data poisoning, we choose from the methods that perform
read/write operations on the four categories of control plane
internal data mentioned in Section II-C. Second, to introduce
destructive attack effects with D*C?, we also choose some
widely targeted methods (similar to the process of choosing
sinks in taint analysis research [41], [33]) that can be abused
to introduce destructive effects from both Java library methods
(e.g., exec()) and SDN APIs (e.g., firewall switches). Similar
to other vulnerability discovery research [28], [11], we made
our best effort to collect as many sensitive APIs as possible.*
Using the list of method names, the Tracer locates the usages
of sensitive methods in the controller through keyword match-
ing and marks them as the data sinks of backward tracing.
Backtracking. In this step, the Tracer reversely traces the data
flows from each parameter of each located sensitive method.
The Tracer is implemented on top of Soot [22]. To backward
trace the potentially harmful data flows, the Tracer marks
the data collecting methods as data sources and marks the
parameters of each located sensitive method as tainted data
(data sinks).

To improve tracing efficiency, we optimize the tracing
design as follows. (i) Before tracing, the Tracer will first
construct a mapping table which records the caller-callee
relationships. (ii)) During tracing, all the being-traced paths
will be saved temporarily so that they can be reused if another
sensitive method usage is traced to any of the saved paths.
Identifying poisoning events. After backtracking, the Tracer
identifies poisoning events by identifying all the data flows that
start from data collecting methods and end at those sensitive
methods. Note that if a data flow starting from one data
collecting method contains more than one sensitive methods,
multiple poisoning events will be identified separately so that

4 A full list can be found on our project website (https:/github.com/
xiaofen9/SVHunter). We acknowledge the list might not be complete but can
be expanded over time.

https://github.com/xiaofen9/SVHunter
https://github.com/xiaofen9/SVHunter

Variables to trace

@Path("flows")
public class FlowsWebResource extends AbstractWebResource {

@Path("{deviceld}")
public Response createFlow (String deviceld, String appld,

InputStream stream) { ~ =

~—_

ObjectNode jsonTree = readTreeFromStream(mapper(),st?eam);
JsonNode specifiedDeviceld = jsonTree.get("devic%ld");/
/
-)
FlowRule rule = codec(FIowF;uIe.cIass).decode'(JsonTree, this);

/
service.applyFlowRules(rule];

Fig. 4. Illustration of SVHunter’s Backtracking (using a real-world example
of sensitive method usage).

each poisoning event involves a single sensitive method. For
the Tracer to know if a method is a data collecting method or
not, it checks the method in the list of data collecting methods.

To illustrate, here we use the same example used in
Section IV-A. As shown in Fig. 4, the trace for Phase
2 (poisoning event (2)) starts from the sensitive method
applyFlowRules. To trace its data flows, the Tracer iden-
tifies its parameters as the data sinks. In this example, the data
sink is variable rule. Next, the Tracer traces variable rule
using the aforementioned approach. Finally, the Tracer traces
to method createFlow whose type information (red circle)
matches one of the data collecting methods, which indicates
that the data flow from createFlow to applyFlowRules
should be identified as a poisoning event.

B. Reasoning Event-Triggering Causality

Before we can reason the causality relationships between the
poisoning events identified by the Tracer to figure out how
they can be chained together, we first need to represent the
poisoning events in a unified model. Hence, the Reasoning
Engine first generates a unified representation for each poi-
soning event. This representation describes the causality (i.e.,
preconditions and postconditions) of each poisoning event.
Second, the Reasoning Engine reasons the generated causality
representations to decide whether and how two or more
poisoning events can be chained together to create malicious
(transitive) data dependencies between the data plane and the
target method(s) in the control plane.

Modeling poisoning events. To represent different poisoning
events in a unified form, we introduce a simple but effective
declarative language, Event Reasoning Language (ERL). We
implemented the ERL compiler component on top of a popular
framework, ANTLR [1]. The basic idea of ERL is to model
both the preconditions (i.e., how a poisoning event obtains data
items) and the postconditions (i.e., how a sensitive method
involved in a poisoning event is abused to poison other
data items) of each poisoning event. According to the four
aforementioned categories of data items, ERL respectively
uses fs, net_state, proto_msg, db to denote the data items
stored in configuration files, network states, protocol messages

TABLE III
EXAMPLES OF PID AND THEIR MEANINGS

Data Refers to

fs::bin.diagnostics
proto_msg::portstatus.port

configure file diagnostics under the file dictionary of bin
protocol field port in the PortStatus message

from the data plane, and databases. To further describe each
specific data item, ERL employs a namespace concept that
is very similar to the namespaces in modern languages like
C++. A path identifier (pid) is assigned to every data item
to differentiate data items in the same category. Table III
shows examples of supported pid formats in ERL. To describe
different kinds of operations on data items, ERL employs
two commonly used primitives (i.e., read and write) and one
SDN-specific primitive (i.e., crash). read and write mean that
the corresponding poisoning event can read and write a data
item, respectively. crash means that the corresponding event
is able to corrupt the format or integrity of a data item.
List 1 demonstrates the main ERL grammar. As indicated
by the ERL grammar, all poisoning events are represented
by a notion called observations. Every observation is in the
form of data — operation, which means that a particular
operation has been performed on a particular data item. The
observations involved in a poisoning event can be divided into
two sub-classes, which are used to describe the preconditions
and postconditions of the poisoning event, respectively.
observation ::= data — operation
| IF observation THEN observation

| observation && observation
| observation || observation

operation ::= READ var
| WRITE var
| CRASH var

data r:= fs :: pid
| net_state :: pid
| proto_msg :: pid
| db :: pid

pid 1= letter
| lpid
| pid.letter

Listing 1. ERL grammar

We also introduce a language extension to ERL, which is
a stage description model that guides the chaining procedure.
The model enables users to add customized rules according
to their own cases. More specifically, the model enables users
to explicitly declare the first event and last events of a D>C>
chain with two special labels, respectively. (1) By adding the
@toe-hold label to a poisoning event, the attacker declares
that he can directly manipulate the data item(s) in the event
so that the event can be placed at the beginning of the D*>C?
chain. This label is useful when the attacker controls other
internal data items than data plane messages in some cases.
For example, compromising an FTP service may lead to the
manipulation of some configuration files in the controller). (2)

By adding the @final label to an event, the attacker declares
that a sensitive method involved in the event can achieve his
final attack objective. For example, if he wants to execute
arbitrary commands in the controller, an event involving such
sensitive methods as Runt ime . exec () should be labeled as
@final, since it should be the final event in any D?C? chain
that includes the event. The language extension can avoid the
generation of meaningless D>C? chains which let a final event
be further connected to potentially many other events.

Generating observations. With the unified representation,
the Reasoning Engine takes poisoning events as input and
generates the corresponding representations using ERL. Each
observation consists of two sub-sentences. The first sub-
sentence describes what data items are already poisoned when
the corresponding poisoning event happens. The second sub-
sentence describes what data items can be further poisoned
once the sensitive method involved in the event is abused.

The Reasoning Engine employs a heuristic method to gen-
erate the two sub-sentences. For the first sub-sentence, the
Reasoning Engine extracts the concrete data description from
the running context of the identified data collecting method in
the event. For the second sub-sentence, since it is deterministic
in terms of which data items can be abused by each sensitive
method, the Reasoning Engine is able to directly decide which
data items can be accessed for every sensitive method in a
heuristic manner. It is worth noting that in some cases the
pid for the second sub-sentence could be “.’, which means
the sensitive method can affect all data items in that category
(e.g., the abusing of File.write () can lead to an arbitrary
file write).

Using the same example exploit chain used in Section IV,
the poisoning event shown in Fig. 4 collects a data item
in the category of net_state. In this case, the Reasoning
Engine extracts information from @Path at both class level
and method level, which corresponds to the actual URL
when accessing the data item via Restful API. As a re-
sult, the Reasoning Engine decides that the datra should be
net_state::flows.deviceid. Finally, the first sub-sentence for the
event should be net_state::flows.deviceid — read.
Observation reasoning. The Reasoning Engine takes ob-
servations as input to generate the event chain graph. It
first generates nodes for every observation and then tries to
connect them to generate the graph according to the causality
relationships between the poisoning events.

Algorithm 1 outlines our process for constructing the event
chain graph with given observations. It takes as input all the
observations as a set S and produces the corresponding graph
denoted by (N, E), where every node n; € N corresponds to
an observation s € §, and directed edge e;; € E denotes that
node j can be triggered with the postconditions in node i. The
algorithm can be divided into two phases. In the first phase,
it generates a node for each observation. Every node can be
denoted as (P, C), where set P denotes the set of preconditions
for this observation and set C denotes the set of postconditions.

In the second phase, the algorithm reasons the causality

Algorithm 1 Event chain graph Generation

Require:

S = a set of observations;
Ensure:

ECG = (N, E) where N is a set of nodes and E is a set of edges.
LN e {},E < {}
2: for all observation s € S do
3 P « get_preconditions(s)
4 C « get_postconditions(s)
5: N« NU{(P,C)}
6: end for
7
8
9

: for all Node (P;,C;) € N do
for all Node (Pj, Cj) € N and (P;,C;) # (Pj, Cj) do
if lisFinalEvent((P;, C;)) then

10: for all p,, € Pj and ¢, € C; do
11: if satisfy(cn, pm) then

12: E — EU{(e;,)}

13: break

14: end if

15: end for

16: end if

17: end for

18: end for

relationships between every two nodes. The Reasoning Engine
will add an edge e;; between node i, denoted as (P;,C;),
and node j, denoted as (P;,C;), if node i can meet the
preconditions of node j. Since e;; means that node i can
poison the data items used by node j, the Reasoning Engine
will examine both the operation and data of P; and C;. First,
data in P; should be a subset of data in C;. Second, the
operation of C; should be write or crash, which can affect the
data items in node j. It is worth noting that the Reasoning
Engine also follows two rules introduced by the language
extension. First, it will stop expanding a path once it connects
a node labeled as a final event. Second, the engine will always
start reasoning from the nodes with label toe-hole, which can
be directly triggered by the attacker.

Node a

if proto_msg :: OF FeatureReply.m frDesc — read var#53

then net_state :: root — write var#53

Node b
if net_state :: root. flows.deviceid — read var#24

then net_state :: flowRules — write var#24

The two observations shown above correspond to two
observations in the aforementioned example exploit chain.
The Reasoning Engine will first generate two nodes (i.e.,
node a denoted as (P,, C,) and node b denoted as (Pp, Cp)),
respectively. Then the Reasoning Engine uses Algorithm 1 to
reason the causality relationships between the two nodes. It is
not difficult to see that C, and P} perform operations on the
same data item in the category of net_state. Also, Pp reads
the data item after it is written by C,. Hence, the Reasoning
Engine adds an edge e, ;, between node a and node b. In some
cases, there might be several paths in the event chain graph, but
SVHunter will only highlight the paths with roe-hold nodes,
whose data can be directly controlled by the attacker.

C. Generating D>C? Payloads

Even with the help of event chain graphs, verifying D>C?
vulnerabilities can still be challenging and time-consuming.

Hence, SVHunter provides an Exploit Engine in order to make
D?C? exploitation more automated.

Custom Field Data Injector. The data injector is part of
the Exploit Engine. Leveraging SVHunter’s payload-crafting
guide generation capability, which will be presented shortly
in this section, users can gain concrete understanding about
which (kinds of) data items should be included in the attack
payload. However, knowing the content of the attack payload
does not mean that users also know how to use the content
to generate a poisoning event. Without orchestrating a specific
set of malicious protocol interactions with the target controller,
no poisoning event can be successfully generated. In order to
gain this orchestrating capability, users should be familiar with
SDN protocol specifications, in order to locate the custom
field, and implementation of specific SDN protocols (e.g.,
Open vSwitch), in order to inject the content of a payload
into a custom field.

To answer this “how” question and help users overcome the
orchestrating difficulties, we built the Custom Field Data In-
jector, which can automatically generate specific toe-hold poi-
soning events through protocol message manipulation (Note
that the type of message is decided by the data field of the
first sub-sentence in the corresponding poisoning event). In
particular, the Data Injector does two things: (i) it dynamically
injects payloads into target custom fields; (ii) it automatically
orchestrates the needed protocol interactions with the SDN
controller and triggers the controller to process the target
custom fields.

For the first task, the Data Injector hooks the protocol han-
dling functions for each protocol implementation (e.g., Open
vSwitch) so that the Data Injector can dynamically modify
the desired custom fields when these protocol implementations
generate the corresponding protocol messages.

For the second task, the Data Injector first simulates a
legitimate network device in order to let the controller handle
its messages. Then, it generates particular network events in
order to trigger different protocol interactions between the
Data Injector and the controller. For example, the Data Injector
will connect a new switch to the control plane in order to
generate the “switch join” protocol messages.

Currently, the Custom Field Data Injector supports two
widely-used protocols in SDN (i.e., OpenFlow and NetConf).
The set of custom fields supported by our Exploit Engine in
each protocol can be found in Table VIII in the Appendix.

Payload Crafting Guide Generation. To exploit a D>C?
chain, the attacker needs to input attack payloads into the
Custom Field Data Injector to satisfy the constraints associated
with the new attack path (i.e., exploit chain) which is created
through malicious data dependency creating and chaining.
However, for SVHunter, it is difficult to automatically satisfy
all the constraints and generate the final exploit. This is be-
cause solving the constraints associated with data dependency
creating requires not only general purpose path constraint
solvers [15], [43] but also an expert system which incorporates
both SDN domain knowledge and hacking skills, which is

Payload

TYPE : proto_msg
DevicesWebResource PID
#igetDevice

DATA: var#53
@83
var#53

TYPE : net_state

: OFFeatureReply.mfrDesc

FlowRuleService
#applyFlowRules
@98

PID_:root.flows.deviceid
DATA: var#24

var#24
TYPE: net_state
PID :flowRules

Fig. 5. An example payload crafting guide generated by SVHunter. *Since
sensitive method getDevice has no caller (It is implicitly called by
controller framework via reflection), SVHunter directly shows the method
itself when representing its usage.

quite beyond the scope of this paper.

As a result, SVHunter chooses to address this difficulty in a
semi-automatic manner. To help users craft D>C? payloads, we
built the Payload Crafting Guide generator. This generator will
construct a payload crafting guide for every generated event
chain graph. With the guide, users will be able to quickly
locate the vulnerable code snippets and understand how data
items are processed along the whole exploit chain. As shown
in Fig. 5, the guide will indicate to users two types of critical
information. (1) The boxes on the left of the figure display the
code locations where sensitive methods are being abused (in
the format of Class#SensitiveMethod@Line). (2) The boxes
on the right provide a detailed description of every poisoned
data item in each step (Note that the description is extracted
from the data part of the corresponding observation).

We again use the aforementioned example exploit chain
to further illustrate the generated payload crafting guide. As
shown in Fig. 5, node a is converted to the box which is
connected to the “Data Plane” node. This box indicates that
getDevice is the first sensitive method to be abused, and
it is located in class DevicesWebResource at line 83.
Similarly, node b is converted to the box which is connected
to the “END” node. The box records the code location of
the second sensitive method (i.e., applyFlowRules) in
the exploit chain. Moreover, the boxes on the right side
of the figure illustrate how poisoned data propagates. For
example, a malicious payload in the form of proto_msg is
sent from the “malicious device”. By abusing the sensitive
methods in nodes a and b, the payload further propagates to
var#53 and var#24, which are respectively stored in the
root.flows.deviceid date item and the flowRules data item. Note
that both data items are in the category of net_state.

VI. EVALUATION

In this section, we present our evaluation results of
SVHunter. Our evaluation is focused on using SVHunter
to construct exploit chains against three open-source SDN
controllers (i.e., ONOS, Floodlight, and Opendaylight). The
three controllers are currently the most widely used controllers
in both academia and industry. In addition, to understand

whether security-enhanced SDN controllers are immune to
the D>C? attack or not, we also use SVHunter to exploit SE-
Floodlight, which is a security-enhanced variant of Floodlight.
SVHunter consists of more than 11K LoC (Java+Python)
in total. More specifically, the Tracer has 3,449 LOC, the
Reasoning Engine has 3,847 LOC, and the Exploit Engine
has 3,854 LOC. We are releasing SVHunter as an open-source
tool at https://github.com/xiaofen9/SVHunter in the hope that
it will be useful for future SDN security research. We run
SVHunter on a machine running Ubuntu 16.04 LTS with a
dual-core 2.4 GHz CPU and 16 GB memory.

Conceptually speaking, we seek to answer the following
evaluation questions:

o Is “Data Dependency Creation and Chaining” a pre-
existing vulnerability in widely-used mainstream SDN
controllers? If so, how serious is the vulnerability?

« Can SVHunter effectively exploit the “Data Depen-
dency Creation and Chaining” vulnerability and construct
previously-unknown exploit chains in different kinds of
SDN controllers?

o In which ways do the discovered vulnerabilities and
explain chains enlarge the attack surface of SDN?

A. Identifying Poisoning Events

Table IV presents our results of poisoning-event pinpointing
from ONOS v1.13.1, Floodlight v1.2, OpenDaylight v0.4.1,
and SE-Floodlight, respectively. SVHunter detected 74 poison-
ing events among 8,664 tracked information flows in ONOS
using 98 seconds. 38 poisoning events and 19 poisoning events
were identified in Floodlight and SE-Floodlight respectively.
17 poisoning events among 5,150 tracked information flows
were identified in OpenDaylight using 46 seconds. Compared
with Floodlight and Opendaylight, we analyzed more ap-
plications (i.e. 164) in ONOS. This is because the ONOS
project maintains both the controller and a large number of
applications while the other two projects mainly maintain the
corresponding controllers. Hence, we analyzed all the official
applications in ONOS while in Floodlight and OpenDaylight
we only analyzed a handful of applications which are nec-
essary for SDN networks to function. For the same reason,
SVHunter identified more poisoning events in ONOS than in
Floodlight and OpenDaylight.

Regarding the “quality” of the detected poisoning events, on
one hand, we note that it is very difficult if not impossible to
find concrete and justifiable per-event evaluation criteria. On
the other hand, we note that the quality of the detected events
can actually be indirectly evaluated through the quality of the
D?C? chains constructed by the Reasoning Engine, which we
will evaluate in the following subsections.

B. Reasoning Results

The effectiveness of SVHunter is affected by two main
factors. (a) Since the Reasoning Engine uses heuristics, the
generated observations are imperfect in some cases. (b) The
Tracer might fail to recognize the semantics of some usages

TABLE IV
DETECTION RESULTS OF POISONING EVENTS.

Event Detection Results

Controller Version LoC Time

#NTC [#TIF #SMU [#PE

ONOS 1.13.1 673985 98s 164 8664 536 74

Floodlight 1.2 60090 19s 31 992 163 38

OpenDaylight 0.4.1 326479 465 5 5150 406 17

SE-Floodlight Beta7 N/A 21s N/A 1256 108 19

#: the number of
TIF: traced data flows; SMU: sensitive method usages;
PE: poisoned events; NTC: tested components.
of sensitive methods (e.g., some poisoning events could have
an unknown calling precondition).

Due to the two factors, it is not guaranteed that every
D?C? chain generated by the Reasoning Engine is exploitable.
Therefore, this part of the evaluation will not only focus
on whether SVHunter can generate previously unknown ex-
ploitable D?>C? chains, but also on how likely SVHunter
falsely generates unexploitable D*C? chains. We denote such
unexploitable D>C? chains as a false positive. In order to
distinguish exploitable D?>C? chains from unexploitable ones,
we first built an SDN testbed with Mininet 2.3 [6], which is
an SDN network emulator. Then, we ran the four controllers
on the testbed and tried to run each of the generated D>C?
chains via modifying the payloads generated by the Exploit
Engine. Note that all the toe-hold poisoning events involved
can be automatically generated by the Exploit Engine.

Table V summarizes our reasoning results. The first column
records the number of D?>C? chains generated by SVHunter
(i.e. Constructed Chains). The second column records the
number of chains that are found to be exploitable (i.e. Ex-
ploitable Chains) for each controller. We manually examined
all the exploitable chains generated by SVHunter and found
that some exploitable chains actually exploit the same sensitive
method(s) in the same component (e.g., in Floodlight four
D?C? chains exploit the same sensitive API), although they
use different parameter values when calling the sensitive
method(s). It is clear that the adversary will pay attention to
this special kind of “distinct but redundant” redundancy. Based
on this finding, the third column records the number of non-
redundant chains, i.e., the number of exploitable chains after
this special kind of redundancy is removed.

The results show that SVHunter identified 58 D>C? chains
in ONOS, and 48 of them are exploitable. In Floodlight, we
found 13 out of 19 identified D*>C? chains can be exploited. In
OpenDaylight, 2 D*>C? chains are identified by SVHunter and
both can be exploited. In SE-Floodlight, SVHunter identified
5 D?>C? chains and 4 of them can be exploited. Since SE-
Floodlight is not open source, we directly used the heuristics
obtained from Floodlight to test SE-Floodlight (Note that
SE-Floodlight is adapted from Floodlight). After comparison,
we found that the result of SE-Floodlight and the result of
Floodlight are almost the same: only one non-redundant chain
identified from Floodlight is not detected in SE-Floodlight.
The missing non-redundant chain results from the fact that SE-
Floodlight is based on an older version of Floodlight (v0.87)

https://github.com/xiaofen9/SVHunter

TABLE V
REASONING RESULTS FOR THE FOUR CONTROLLERS.

Controller Constructed Chains Exploitable Chains Non-redundant Chains

ONOS 58 48 11

Floodlight 19 13

OpenDaylight 2 2

o[w

SE-Floodlight 5 4

and the sensitive method abused by the missing chain doesn’t
appear in the old version.

In fact, it is not a surprise that SE-Floodlight is vulnerable
to the D?>C? attack: existing security-enhanced controllers
only focus on SDN application resilience and permission
management rather than the abuse of sensitive methods in
the control plane. Moreover, according to the fact that the
detection results from SE-Floodlight and Floodlight are only
slightly different from each other, we can also posit that the
heuristics obtained from the three mainstream controllers are
also applicable to their variants. Since it is a common practice
for industry and academia to develop their own controllers [5],
[4] by adapting one of the three mainstream controllers
(i.e., Floodlight, ONOS, and Opendaylight), SVHunter and
the heuristics used by SVHunter should be very useful for
many if not most vendors and researchers to test their own
controllers before releasing. We also observed that SVHunter
identified more exploit chains in ONOS than in the other three
controllers. We posit that this is due to two reasons: (i) As
we have discussed in Section VI-A, SVHunter identified more
poisoning events in ONOS than in others. Because of this, a
larger number of chains are constructed from a larger number
of candidate events. (ii) In ONOS, the identified event(s) is
able to poison arbitrary data items in the category of net_state,
which leads to greater reachability than other events.

Table VI demonstrates the 18 non-redundant D>C? chains
identified by SVHunter (Note that all the involved poisoning
events are listed in Table IX in Appendix A). We noticed
that the D?C? attack substantially increases the reachability
mentioned in Section 1: With the data dependencies created by
the 21 poisoning events, 12 previously unreachable sensitive
methods from 13 control plane components were successfully
abused. We also noticed there are five identified chains only
consisting of one poisoning event. However, we posit that
they are still important. Since D?>C? chains aim at increasing
the reachability in the control plane, the significance of a
chain should be reflected in how previously unreachable meth-
ods/components are reached instead of its length. Although
each of the five chains only consists of a single event, every
single event in the five chains successfully manipulates the
parameters of critical sensitive methods. According to the
results above, despite the fact that we cannot guarantee that
the heuristics (e.g., sensitive methods and data collecting
methods) used by SVHunter are complete and exhaustive, we
posit that these heuristics are essential and effective in D?>C?
vulnerability analysis. Otherwise, it is unlikely that SVHunter
successfully found 18 previously-unknown D?>C? chains.

Although the results are very encouraging, we also found

that in some special cases SVHunter doesn’t construct 100%
correct D?>C? chain that could be exploited. The false positives
of SVHunter mainly result from certain semantic checks
ignored by SVHunter. For example, when we verified one
of D?C? chains identified from ONOS, we found that one
of the poisoning events located in an IP address converting
component cannot be triggered. This is because the parameter
srcIp of the sensitive method parseInt to be abused
cannot be manipulated since its format is strictly checked.
However, SVHunter still “concludes” that its preceding events
are sufficient for poisoning this parameter.

C. Impact Analysis of Identified D*C* Chains

As shown in Table VI, we identified 18 non-redundant D*C?
chains. To fix these vulnerabilities, we have made responsible
disclosure and notified the vendors of each vulnerable con-
troller. They reacted immediately and so far 9 of them have
been fixed and assigned a CVE number. In this section, we
conduct an impact analysis on these D?>C? chains according
to the three types of attack effects listed in Table II.

Network Manipulation. We found that 6 D>C? chains (i.e.,
DC-1, DC-2, DC-3, DC-4, DC-12 and DC-17) can generate
serious network manipulation effects (e.g., arbitrary command
execution or installation of arbitrary flow rules). In ONOS,
we identified 4 chains. First, DC-1, DC-2, and DC-3 abuse
the sensitive method Runtime.getRuntime () .exec ()
in different components. The common attack effect of the
three chains is to have the controller execute arbitrary system
commands. Second, DC-4 abuses a sensitive method in north-
bound APIs (i.e., applyFlowRules ()) to install specific
malicious flow rules. In Floodlight, we found that one similar
D?C? chain (i.e., DC-12) can install malicious flow rules
by abusing sensitive methods in northbound APIs. In SE-
Floodlight, we also identified DC-17 and DC-18, which is
respectively identical to DC-12 and DC-13 in Floodlight.

Data Leakage. We found that 12 D?>C? chains (i.e., DC-1,
DC-2, DC-3, DC-5, DC-6, DC-7, DC-8, DC-12, DC-13,
DC-15, DC-17 and DC-18) can leak sensitive information
(e.g., network topology, flow rules, and network traffic) from
the control plane. In ONOS, we found 7 D>C? chains. Since
DC-1, DC-2 and DC-3 are able to execute commands in
the controller, they are able to read network states through
command execution. In addition, we found that DC-5 and
DC-6 can access net_state data items by abusing northbound
APIs. Finally, we found that DC-7 and DC-8 can let
information in configuration files leak out. Their last events
are in the NETCONF application and the Driver service,
respectively. They abuse XML parser methods such as
Javax.xml.parsers.DocumentBuilder.parse ().
In Floodlight, DC-12 and DC-13 were found to be able to
abuse the northbound APIs to access net_state so as to acquire
sensitive network information such as network topologies and
flow rules. Similarly, we found that in SE-Floodlight DC-17
and DC-18 are generating the same kind of attack effect. In
OpenDaylight, we found that DC-15 can be leveraged by the

D2C? CHAINS (NON-REDUNDANT) CONSTRUCTED BY SVHUNTER.

TABLE VI

Attack Effects
Controller Chain# Target Component Event Chain Description Disclosure
#1 ‘ #2 ‘ #3
1 Diagnostic — - Execute arbitrary commands ['4 v v Fixed (CVE-2017-1000078, CVE-2018-1999020)
2 Diagnostic — (A6 — Execute arbitrary commands v | v | v | Fixed (CVE-2017-1000078, CVE-2018-1999020)
3 YangLiveCompiler - Execute arbitrary commands v v |v Fixed (CVE-2019-13624)
4 FlowRuleManager @ - Modify specific network states (4 Reported
5 WEB UI o () Read arbitrary network states v Fixed (CVE-2018-1000614)
ONOS 6 WEB UI - () Read arbitrary network states v Fixed (CVE-2018-1000616)

7 NETCONF Read arbitrary configuration files v Fixed (CVE-2018-1000614)
8 XMLPARSER Read arbitrary configuration files 4 Fixed (CVE-2018-1000616)
9 OVSDB Disrupt specific network service v Fixed (CVE-2018-1000615)
10 YangLiveCompiler - Corrupt arbitrary configuration files v Fixed (CVE-2018-1999020)
11 Core — Corrupt arbitrary configuration files v Fixed (CVE-2018-1999020)
12 StaticEntryPusher o Write specific network states v | v Fixed (CVE-2018-1000163)

Floodlight 13 Web GUI o Read specific network states v Fixed(CVE-2018-1000163)
14 Forwarding @ Disrupt specific network service (4 Fixed (CVE-2018-1000617)
15 ODL-SDNi €D-©) Read specific network states v Fixed (CVE-2018-1132)

OpenDaylight
16 VPNService Disrupt specific network service v Fixed
17 StaticEntryPusher — Write specific network states v v Reported
SE-Floodlight Y P P

18 ‘Web GUI @ — @ Read specific network states v Reported

1#: Network Manipulation 2#: Data Leakage

3#: Denial of Service

Researchers from Fraunhofer AISEC also discovered CVE-2017-1000078 and they reported it earlier than us.

attacker to access the database of the ODL-SDNi application
and obtain certain network device information.

Denial of Service. We found that 8 D2C? chains (i.e., DC-
1, DC-2, DC-3, DC-9, DC-10, DC-11, DC-14 and DC-
16) can hurt the availability of the controllers. In ONOS,
we found 6 D?C? chains. DC-1, DC-2 and DC-3 can termi-
nate the controller through command execution. DC-9 incurs
a NumberFormatException exception into the OVSDB
component, which leads to disruption of the legitimate pro-
tocol interactions involved in the corresponding service. By
abusing the sensitive method FileOutputStream, DC-
10 and DC-11 can affect the functionalities of a component
by corrupting its configuration files. In Floodlight, we found
that DC-14 can crash the forwarding component by incurring
exceptions during protocol handling. In OpenDaylight, DC-16
crashes the vonservice component by incurring exceptions
into its protocol parsing method(s).

Remark. Based on the impact analysis results, we claim
that the D’>C? attack indeed achieves greater reachability
in the control plane, which leads to a much larger SDN
attack surface. This claim is supported by two main insights.
(i) By triggering creation and chaining of unexpected data
dependencies in a creative way, the D>C? attack effectively
attacks many components hidden deep in the control plane.
According to our results, 13 previously unreachable control
plane components are attacked via 21 newly created data
dependencies. Without taking the newly created data depen-
dencies into consideration, some of these exposed components
(e.g., Diagnostic) in fact originally do not have any direct or
indirect data dependencies with the data plane. (ii) The D*C?
attack achieves significant attack effects by abusing these

exposed components. By “significant”, we mean the following
indicators. First, the D>C? attack is able to cause almost every
attack effect in previous data-to-control plane attacks. The
only exception is the data-to-control plane saturation attack.
We cannot achieve this particular attack effect because the
D?C? attack is not volumetric attack. Second, some of the
attack effects previously caused by local control-plane-only
attacks [37], [16], such as injection of manipulated flow rules,
can also be caused by the D2C? attack. Third, the D*C? attack
causes some completely new kinds of attack effects, including
the execution of arbitrary commands in the controller and
exfiltration/corruption of arbitrary configuration files.

D. Case Studies

In this section, we illustrate the severity of the D?C? attack
through two representative attack examples.

Arbitrary command execution in the control plane.
With DC-2, an attacker in the data plane is able to execute
arbitrary commands in the controller. Fig. 6(a) shows the
exploit chain’s event chain graph (left half) and payload
crafting guide (right half). As shown in the left half, the target
is the diagnostics component which holds the sensitive method
Runtime.getRuntime () .exec (). SVHunter identified
a poisoning event (i.e. event) which takes input data
from a local configuration file. To trigger this event, SVHunter
identified another poisoning event (i.e. event) which can
poison a category fs data item. This event is identified from
the Yang component which creates new files with the sensitive
method Files.write (). However, to control the content
of the new files and trigger this event, we need a particular
network state to be poisoned. This precondition is met by

Data Plane)

Payload
TYPE : proto_msg

PID : OFFeatureReply.mfrDesc
DevicesWebResource DATA: var#s3
#getDevice :l

@83 var#53
TYPE : net_state
PID_: root.models

YangLiveCe DATA: var#12
HextractZipArchive
@17
var#12

Thin.
onos-node-diagnostics

DiagnosticsWebResource DATA: varfiS1
#execute
@62

——————————— var#s1
TYPE : net_state
PID ;.

(a) Remote command execution in
ONOS.

ld
\ Malicious Device

pmm = \ T
\ Data Plane J

Payload
TYPE : proto_msg
PID : netconf.notification
DATA: var#56

—————— var#56 var#56
TYPE : net_state TYPE: fs

PID : root.flows.deviceid || PID :.

DATA: var#24

var#24 j

___________________ TYPE: net_state
PID :flowRules

FlowRuleService
#getFlowEntries
@63

(b) Steal sensitive network information in ONOS.

Fig. 6. Two D?C? attack examples (We manually adjust the placement of some nodes to make the graphs look neat).

event . In , method getDevice is abused so that

it can poison the data items in the net_state by accessing the

corresponding Restful API. As shown in the figure, can
be directly triggered by a custom field in a legitimate protocol
message from the data plane. Hence, the attacker can exploit
the whole D*>C? chain by sending a single malicious protocol
message. Although there are several events and data items
involved, crafting the payload is actually quite straightforward
with the help of SVHunter. As shown in the right half
of Fig. 6(a), the D>C? chain can be exploited by sending
a OFFeatureReply.mfrDesc protocol message to the
controller while letting the message have a malicious payload
crafted by using the guide shown in the figure. Regarding
the attack effect, an attacker located in the data plane can
leverage this D*>C? chain to execute arbitrary commands in
the controller and even get a reverse system shell from it.
Stealing sensitive network information. The attack effect
of chain DC-5 is to steal important network information
(e.g., configurations, network topologies and routing poli-
cies). As shown in Figure 6(b), the first poisoning event
of this D>C? chain is event , which happens in the
core service NetConf. Since a method of this component
(i.e. createDocFromMessage ()) calls a sensitive method
that can be abused to launch XML external entity attacks
(XXE) [10] to handle certain data items in the category of
proto_msg (i.e., custom field). As shown in the figure, there
are two potential consequences of this poisoning event. First, it
can directly read configurations in the local file system through
the XXE attack. Second, it can also be leveraged to launch
a HTTP request to access data through Restful API, which

is denoted as event . Event involves the sensitive
method getFlowEntries which is used by ONOS to read
flow rules. As shown in the right half of Fig. 6(b), an attacker
only needs to craft the corresponding XXE payload into the
notification message and then send it to the controller from
a data plane device in order to launch this attack. Regarding
the attack effect, a data plane attacker can leverage this D>C?
chain to steal either configuration (e.g., user credentials) or
network state information (e.g., flow rules, network topology).

VII. DISCUSSION
A. Countermeasures

Security Checks. To launch the D?C? attack, an attacker
has to find several exploitable sensitive methods. One way
to defeat the D?C? attack is to add security checks for the
arguments of each sensitive method. For example, in Fig. 8(a),
the attacker abused extractZipArchive in with a
malicious input to write an arbitrary file into an arbitrary
directory. By checking the arguments, the attacker will no
longer be able to exploit this chain. Several chains we reported
to the vendors have been patched with security checks.

Mitigating Malicious Dependency Creation. The D>C?
attack employs a data dependency creation strategy to increase
the reachability. Therefore another potential mitigation method
is to detect and mitigate the malicious data dependency
creation. We can dynamically monitor the data flow of the
entire controller to detect such malicious dependency creation.
However, global monitoring may incur significant overhead to
the controller. As future work, we are considering to design
a custom algorithm to more efficiently detect abnormal data
dependencies from massive legitimate data dependencies.

Sanitizing Protocol Interaction. The first step of all chains
is to inject malicious payloads into the protocol messages and
send them to the controllers. So another potential mitigation is
to sanitize malicious protocol messages. We can sanitize the
format and value range of every custom field to mitigate the
malicious payload injection. Moreover, custom fields in the
SDN protocol specifications should be carefully inspected and
re-defined to make such attacks less possible.

B. Limitations

First, like many other static program analysis tools,
SVHunter may trace a number of redundant information flows
or miss some flows. To reduce false positives and false
negatives, we can combine SVHunter with dynamic program
analysis techniques. Second, since we do not perform fine-
grained analysis of program semantics (SVHunter only per-
forms keyword-based filtering on basic security checks in the
SDN controllers), it is possible for SVHunter to construct an

inaccurate exploit chain whose exploitation might be impeded
by some specific check functions. A potential method to
increase accuracy is to combine SVHunter with, for example,
symbolic execution [38], [31].

Also, SVHunter relies on a domain-specific language ERL
to model the behavior of sensitive methods and APIs. Hence, it
requires some manual effort to identify new sensitive methods
or add some new tracing rules if the user wants to support
more SDN controllers. The sensitive methods/APIs belong to
different controllers usually have an overlap. As a result, users
don’t have to replace the whole list of sensitive methods to
scale to a new controller.

VIII. RELATED WORK

Security Vulnerabilities of SDN. Recently, researchers
have discovered many security issues in SDN. Existing SDN
attack research can be generally classified into two categories:
attacks launching from the data plane and attacks launching
from the control plane. The first category of research [34],
[39], [20], [19], [35], [42] demonstrated that it is possible to in-
troduce serious security and reliability issues to SDN networks
by controlling a data plane device, e.g., switches or hosts.
For example, ConGuard [42] found that a malicious network
device/host can remotely exploit harmful race conditions in
the control plane to introduce several different attack effects.
Different from the previous work, we discovered a new type of
control plane vulnerabilities which can be remotely exploited
by creating malicious data dependencies.

In the second category of research [16], [37], a malicious
(but underprivileged) control plane application (app) might
introduce significant risks to the control plane regardless of the
security policies that have been enforced into SDN application
management. For instance, ProvSDN [37] discovered and
mitigated the CAP (Cross-App Poisoning) attack, which is
a powerful attack that can bypass SDN role-based access
control to poison the control plane integrity with malicious
SDN applications. Different from the attacks in the second
categories that need a malicious app to be installed in the
control plane, the D*>C? attack can be launched remotely from
the data plane. More importantly, the D>C? attack creates
new data dependencies in an unexpected way to establish new
attack paths towards the sensitive methods hidden deep in the
control plane.

Security Enhancements in SDN. To mitigate potential
vulnerabilities and attacks in SDN, researchers also developed
new security applications/enhancements. For example, SE-
FloodLight [29] achieved the detection and reconciliation of
conflicting flow rules from different control applications by in-
troducing a security enforcement kernel. However, as we have
demonstrated, the security-enhanced controllers are not able
to mitigate the D>C? attack due to their inabilities to detect
the creations of malicious data dependencies. Researchers also
developed tools to identify malicious applications or behaviors
in the control plane. INDAGO [24] introduced a static analysis
framework to detect malicious SDN applications by extract-
ing and classifying semantic features in these applications.

SHIELD [23] also leveraged a static analysis approach to
categorize several malicious behaviors of SDN applications.
Since D?C? attacks do not require any malicious applications
to be installed, these enhancements are not suitable for the
D?C? attack detection.

SDN Testing and Auditing. Researchers also developed
tools to help detect potential SDN bugs/vulnerabilities. One
popular approach is to leverage fuzzing techniques to fa-
cilitate SDN bug discovery [25], [21], [30]. For example,
BEADS [21] proposed a protocol fuzzer for SDN networks
that identifies potential risks in the protocol handling logic
within the control channel. However, all of them took a
black box approach which is incapable of performing fine-
grained data flow analysis in order to detect the critical
creations of potentially malicious data dependencies needed
by the D>C? attack. Another widely used methodology is
data/control flow analysis. Many existing studies [40], [24],
[37], [23] also leveraged static program analysis techniques
(e.g., taint analysis) to pinpoint potential vulnerable data flow
or control flows. For example, CAP attacks [37] leveraged data
flow analysis to study the data sharing relationships between
different control plane applications. It is noteworthy that, while
SVHunter employs a similar methodology to perform data flow
analysis like previous work [37], [40], it possesses a different
analysis goal, which is to identify existing data dependencies
that are vulnerable to the unique data poisoning strategy of
the D?>C? attack.

IX. CONCLUSION

In this work, we approach the vulnerability analysis problem
of SDN networks from a new angle. We present a new attack
that leverage legitimate protocol interactions to abuse sensitive
methods in multiple SDN control plane components. The
significance of this work is indicated by two critical indicators.
The first indicator is a new discovery: a new kind of attack is
discovered. With the new attack, attackers can achieve greater
control plane reachability, which results in a much larger
SDN attack surface. The enlarged attack surface leads to the
discovery of 18 zero-day SDN vulnerabilities, all of which can
be exploited remotely to introduce serious attack effects to the
control plane. The second indicator is SVHunter, a one-of-a-
kind tool which can effectively identify the newly discovered
D?C? vulnerabilities and construct the corresponding exploit
chains. The tool combines data flow backtracking, an event
reasoning language used to formally specify the preconditions
and postconditions of data dependency chaining events, and
automated causality reasoning.

ACKNOWLEDGEMENT

We would like to thank our paper shepherd David Choffnes
and the anonymous reviewers, for their insightful feedback
that helped shape the final version of this paper. This work
was supported in part by ARO WI911NF-13-1-0421 (MURI),
WOII11NF-15-1-0576, ONR N00014-16-1-2265, N00014-16-1-
2912, N00014-17-1-2894, NSF CNS-1814679, CNS-1652790,
1617985, 1642129, 1700544, and 1740791.

[1]
[2]

[3

[t

[4]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

ANTLR tool, http://www.antlr.org.

CVE-2016-2074: Open vSwitch Buffer Overflow, https://nvd.nist.gov/
vuln/detail/CVE-2016-2074.

CVE-2017-3881: Cisco Catalyst Remote Code Execution, https://nvd.
nist.gov/vuln/detail/CVE-2017-3881.

HPE VAN SDN Controller, https://h17007.www1.hpe.com/ie/en/
\networking/solutions/technology/sdn.
Huawei Agile Controller,
enterprise-networking/sdn-controller.
“Mininet: Rapid prototyping for software defined networks,” http://yuba.
stanford.edu/foswiki/bin/view/OpenFlow/.

https://e.huawei.com/us/products/

] “Onos controller platform,” https://onosproject.org/.

OpenDaylight OpenFlow Plugin: TLS Support., https:
/Iwiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:
_TLS_Support.

OpenFlow and REST APl Security Configuration., https:

/floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/
5636115/OpenFlow+and+REST+API+Security+Configuration.

XML External Entity attack (XXE), https://en.wikipedia.org/wiki/XML_
external_entity_attack.

A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“{NAVEX}: Precise and scalable exploit generation for dynamic web
applications,” in 27th {USENIX} Security Symposium ({USENIX} Se-
curity 18), 2018, pp. 377-392.

W. Braun and M. Menth, “Software-defined networking using openflow:
Protocols, applications and architectural design choices,” Future Inter-
net, vol. 6, no. 2, pp. 302-336, 2014.

J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The
crosspath attack: Disrupting the sdn control channel via shared links,”
in Proceedings of The 28th USENIX Security Symposium (Security’19),
August 2019.

B. Chandrasekaran and T. Benson, “Tolerating sdn application failures
with legosdn,” in Proceedings of the 13th ACM workshop on hot topics
in networks. ACM, 2014, p. 22.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

V. H. Dixit, A. Doupé, Y. Shoshitaishvili, Z. Zhao, and G.-J. Ahn,
“Aim-sdn: Attacking information mismanagement in sdn-datastores,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 664—-676.

N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-defined networking (sdn): Layers and
architecture terminology,” Tech. Rep., 2015.

S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures,” in
Proceedings of the 22th Annual Network and Distributed System Security
Symposium (NDSS), February 2015.

S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-defined
networks,” in Proceeding of the 24th USENIX Security Symposium
(USENIX Security), August 2017.

S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, and S. Fahmy,
“Beads: automated attack discovery in openflow-based sdn systems,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 311-333.

P. Lam, E. Bodden, O. Lhotak, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in CETUS 2011.

C. Lee and S. Shin, “Shield: an automated framework for static analysis
of sdn applications,” in Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization. ACM, 2016, pp. 29-34.

C. Lee, C. Yoon, S. Shin, and S. K. Cha, “Indago: A new framework for
detecting malicious sdn applications,” in 2018 IEEE 26th International
Conference on Network Protocols (ICNP). 1EEE, 2018, pp. 220-230.
S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras, “Delta:
A security assessment framework for software-defined networks,” in
Proceedings of The 2017 Network and Distributed System Security
Symposium (NDSS), February 2017.

[26]

(271

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Liu, M. K. Reiter, and V. Sekar, “Flow reconnaissance via timing
attacks on sdn switches,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). 1EEE, 2017, pp. 196-206.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3—4.

P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the Software-Defined Network Control Layer,” in NDSS’15,
2015.

C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock et al., “Troubleshooting blackbox
sdn control software with minimal causal sequences,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 395-406, 2015.
K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in International Conference on Computer
Aided Verification. Springer, 2006, pp. 419-423.

S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
sdn? implementation challenges for software-defined networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 36-43, 2013.

U. Shankar, K. Talwar, J. S. Foster, and D. A. Wagner, “Detecting
format string vulnerabilities with type qualifiers.” in USENIX Security
Symposium, 2001, pp. 201-220.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,” in
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security (CCS), November 2013.

R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi,
and J. Landry, “Effective topology tampering attacks and defenses in
software-defined networks,” in 2018 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). 1EEE,
2018, pp. 374-385.

K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feld-
mann, and S. Schmid, “Taking control of sdn-based cloud systems via
the data plane,” in Proceedings of the Symposium on SDN Research.
ACM, 2018, p. 1.

B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-app
poisoning in software-defined networking,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 648-663.

W. Visser, C. S. Psreanu, and S. Khurshid, “Test input generation with
java pathfinder,” ACM SIGSOFT Software Engineering Notes, vol. 29,
no. 4, pp. 97-107, 2004.

H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2015.

H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
“Towards fine-grained network security forensics and diagnosis in the
sdn era,” in Proc. of the 25th ACM Conference on Computer and
Communications Security (CCS’18), October 2018.

T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Security and privacy (SP), 2010 IEEE symposium on. 1EEE, 2010, pp.
497-512.

L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the sdn control plane,” in Proceedings of The 26th USENIX
Security Symposium (Usenix Security), August 2017.

Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver for
web application analysis,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 114-124.

http://www.antlr.org
https://nvd.nist.gov/vuln/detail/CVE-2016-2074
https://nvd.nist.gov/vuln/detail/CVE-2016-2074
https://nvd.nist.gov/vuln/detail/CVE-2017-3881
https://nvd.nist.gov/vuln/detail/CVE-2017-3881
https://h17007.www1.hpe.com/ie/en/\ networking/solutions/technology/sdn
https://h17007.www1.hpe.com/ie/en/\ networking/solutions/technology/sdn
https://e.huawei.com/us/products/enterprise-networking/sdn-controller
https://e.huawei.com/us/products/enterprise-networking/sdn-controller
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/5636115/OpenFlow+and+REST+API+Security+Configuration
https://en.wikipedia.org/wiki/XML_external_entity_attack
https://en.wikipedia.org/wiki/XML_external_entity_attack

APPENDIX

if net_state::PortID—read var#8 then db::.—crash var#8

SE-Floodlight

if proto_msg::OFFeaturesReply—read var#7 then net_state::root.wm.core.switch.switchld.statType.json—write var#7

if net_state::root.wm.core.switch.switchId.statType.json—write var#9 then net_state::.—write var#9

if net_state::wm.staticflowentrypusher.json—write var#11 then net_state::flow—write var#11

TABLE VII
OBSERVATIONS OF IDENTIFIED POISONING EVENTS
Controller H Event # ‘ Observation
if proto_msg::NetconfAlarmProvider—read var#56 then (fs::.—read var#56) || (net_state::root—read var#56)
if proto_msg::NetConfControllerConfig—read var#1 then (fs::.—read var#l) || (net_state::root—read var#1)
if proto_msg::OFFeatureReply.mfrDesc—read var#53 then net_state::root—write var#53
if proto_msg::VersionNum—read var#68 then net_state::ovsdb—crash var#68
if net_state::root.applications.upload—write var#9 then fs::.—write var#49
ONOS = PP P
if net_state::root.models—write var#12 then fs::.—write var#12
if fs::bin.onos-node-diagnostics—read var#51 then net_state::.—write var#51
if net_state::root.topo—read var#73 then net_state::topology—read var#73
if fs::model.jar—read var#64 then net_state::.—write var#64
if net_state::root.flows.deviceid—read var#24 then net_state::flowRules—write var#24
if proto_msg::OFFeatureReply.mfrDesc—read var#l then net_state::.—write var#l
if proto_msg::OFFeatureReply.SwitchDescription—read var#2 then net_state::Forwarding—crash var#2
Floodlight profo_mse il P = ¢
if net_state::wm.staticflowentrypusher.json—write var#11 then net_state::flow—write var#11
if net_state::wm.device.all.json—read var#17 then net_state::device—read var#17
@ if proto_msg::getPortName—read var#5 then net_state::PortID—write var#5
OpenDaylight @ if proto_msg::LLDP—read var#7 then net_state:: AlivenessProtocolHandlerLLDP—crash var#7

TABLE VIII

CUSTOM FIELDS SUPPORTED BY EXPLOIT ENGINE

Protocol Name H Message Name Field Name
MultipartRes mfr_desc
MultipartRes sw_desc
MultipartRes serial_num

OpenFlow
MultipartRes dp_desc
MultipartRes hw_desc
FeatureRes::phy_port | name

NetConf

Notification event

