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Abstract

Iterative Gaussianization is a fixed-point iter-
ation procedure that can transform any con-
tinuous random vector into a Gaussian one.
Based on iterative Gaussianization, we pro-
pose a new type of normalizing flow model
that enables both efficient computation of like-
lihoods and efficient inversion for sample gen-
eration. We demonstrate that these models,
named Gaussianization flows, are universal
approximators for continuous probability dis-
tributions under some regularity conditions.
Because of this guaranteed expressivity, they
can capture multimodal target distributions
without compromising the efficiency of sam-
ple generation. Experimentally, we show that
Gaussianization flows achieve better or compa-
rable performance on several tabular datasets
compared to other efficiently invertible flow
models such as Real NVP, Glow and FFJORD.
In particular, Gaussianization flows are easier
to initialize, demonstrate better robustness
with respect to different transformations of
the training data, and generalize better on
small training sets.

1 INTRODUCTION

Maximum likelihood is a widely adopted approach for
density estimation. However, for very expressive proba-
bilistic models, e.g., those parameterized by deep neural
networks, evaluating likelihood can be intractable. Sev-
eral special architectures have been proposed to build
probabilistic models with tractable likelihoods. One
such family of models is normalizing flows (Rezende
and Mohamed, 2015; Dinh et al., 2014, 2015). These
models learn a bijective mapping T that pushes forward
the data distribution to a simple target distribution
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(typically Gaussian or uniform) such that the log deter-
minant of the transformation’s Jacobian (log | det Jr|)
is efficient to compute. The corresponding likelihood
can then be efficiently computed via the change of vari-
ables formula, enabling efficient training via maximum

likelihood.

Given a density model, it is often desirable to generate
samples from it in an efficient way. This requires an
additional property for normalizing flow models: the in-
verse of T must also be easy to compute. Unfortunately,
even though flow models are invertible by construction,
they are not always efficiently invertible in practice.
For example, models like MAF (Papamakarios et al.,
2017), NAF (Huang et al., 2018), Block-NAF (De Cao
et al., 2019) all need D times more computation for
inversion than for likelihood evaluation, where D is the
data dimension. Continuous flow models, such as Neu-
ral ODE (Chen et al., 2018) and FFJORD (Grathwohl
et al., 2018), take roughly the same time for inversion
and likelihood evaluation, but both directions involve
slow numerical integration procedures. Models based
on coupling layers, e.g., Real NVP (Dinh et al., 2016)
and Glow (Kingma and Dhariwal, 2018), have efficient
procedures for both inversion and likelihood computa-
tion, yet it is unclear whether their architectures are
sufficiently expressive to capture all distributions.

To explore different flow architectures that are expres-
sive and permit efficient sampling, we draw inspiration
from iterative Gaussianization. First proposed in Chen
and Gopinath (2001), it is an iterative approach to
transform the data distribution to a standard (mul-
tivariate) Gaussian distribution. Specifically, we first
transform each data point with a linear mapping (typi-
cally an orthogonal matrix computed by ICA or PCA),
and then individually “Gaussianize” the marginal dis-
tributions of each data dimension. This is achieved by
estimating each univariate CDF, mapping each data
dimension to a uniform random variable, and then
transforming it to a Gaussian by CDF inversion. Intu-
itively, the linear mapping in Gaussianization amounts
to finding a specific direction where the marginals of
the data distribution are as “non-Gaussian” as possible;
this “non-Gaussianity” is reduced by the subsequent
Gaussianization step performed for each marginal dis-
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tribution. As proved in Chen and Gopinath (2001), the
transformed data distribution converges to a standard
normal if this procedure is repeated a sufficiently large
number of times (under some conditions). Though theo-
retically satisfying, this method has many limitations in
practice. First, Gaussianizing marginal distributions is
practically difficult, even in the univariate case, because
non-parametric methods for CDF estimation (such as
kernel density estimation) can be inaccurate and hard
to tune. Second, finding optimal linear mappings such
that the marginal distributions are “non-Gaussian” is
challenging and traditional methods such as linear ICA
do not have closed-form solutions and can be very slow
to run for large scale datasets.

To mitigate these limitations while preserving theo-
retical guarantees, we propose to parameterize the
Gaussianization procedure to make it jointly trainable,
in lieu of following the original iterative refining ap-
proach. This results in a new family of flow models
named Gaussianization flows. More specifically, we
parameterize the linear mapping by stacking several
Householder transformations with learnable parame-
ters. After this linear mapping, we parameterize an
element-wise non-linear transformation by composing
the inverse Gaussian CDF with the CDF of a trainable
mixture of logistic distributions. Combining the linear
mapping and element-wise non-linear transformation,
we get a differentiable Gaussianization module whose
Jacobian determinant is available in closed-form, and
inversion is easy to compute. We can stack several
Gaussianization modules to form a Gaussianization
flow model which is also easy to invert.

We can show that Gaussianization flows are univer-
sal approximators when the model is sufficiently wide
and deep, meaning that the model architecture is theo-
retically expressive enough to transform any data dis-
tribution with strictly positive density to a Gaussian
distribution (under some regularity conditions). Due
to the connection between Gaussianization flows and
iterative Gaussianization, the layers of Gaussianization
flows have a natural interpretation. For example, the
mixture of logistics in a Gaussianization flow should
ideally capture the marginal distribution obtained af-
ter applying the Householder layer. We can therefore
initialize the parameters of the mixture of logistic used
for Gaussianization using a kernel density estimator
with logistic kernels for better training. Because of
the non-parametric nature of kernel density estimation,
this intialization is more adaptive, providing some ro-
bustness with respect to re-parameterizations of the
data.

In our experiments, we demonstrate that Gaussianiza-
tion flows achieve better or comparable performance
on density estimation for tabular data, compared to

some efficient invertible baselines such as Real NVP,
Glow and FFJORD. In particular, we achieve better
performance when the number of training data points
is limited, and our models show more robustness to
reparameterizations of the data.

2 BACKGROUND

2.1 Density Estimation with Flow Models

Let D = {x; € R}, be a dataset of continuous
observations which are i.i.d. samples from an unknown
continuous data distribution (denoted as pqata). Given
this dataset D, the goal of density estimation is to
approximate pqasa With a probabilistic model parame-
terized by @ (denoted as pg). Specifically, we learn an
invertible model Ty : RP — RP, which performs a bi-
jective, differentiable transformation of x to z = Tg(x).
Using the change of variables formula,

po(x) = p.(To() [det 280 | — . 2 det ()

where det Jr,(x) denotes the determinant of the Ja-
cobian matrix evaluated at x, and p,(z) is a simple
fixed distribution with tractable density (e.g. the mul-
tivariate standard Gaussian A(0,I)). Note that in
order to evaluate the likelihood pg(x), the determi-
nant of Jacobian det Jr, (x) must be easy to compute.
Models with this property are named normalizing flow
models (Rezende and Mohamed, 2015).

Multiple flow models Ty, To,---, Ty can be stacked
together to yield a deeper and more expressive model
T =T;oTs0---0T. Since T™ =T 0T 00
Tl_l, and det Jy = det Jr, det J, - - -det Jr, , as long
as each component T is invertible and has tractable
determinant of Jacobian, the combined model T also
shares such properties.

2.2 Iterative Gaussianization

Training a flow model with maximum likelihood
amounts to solving

min By, (x) [~ 10g pe (x)]

= mein Dxr, (pdata(X) || po(x)) + const. (1)
When pg(x) is the likelihood of a flow model Tg(x)
given by Eq. (1), we can transform the above objec-
tive using the fact that KL divergence is invariant to
bijective mappings of random variables, which gives us

n%in Dk, (pdata(x) || pe(x)) + const

= min Dy, (pr, (2) | A(0,1)) + const, (2)
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where pt, denotes the distribution of z = Tg(x), when
x is sampled from pg(x). Intuitively, Eq. (2) means
that training a flow model with maximum likelihood
is equivalent to finding an invertible transformation
to warp the data distribution to a multivariate stan-
dard normal distribution. This task is well-known as
Gaussianization (Chen and Gopinath, 2001).

For one-dimensional (univariate) data x ~ pgata(z),
one could perform Gaussianzation by estimating its
cumulative density function (CDF, e.g. using kernel
density estimation) and applying the inverse Gaussian
CDF. To see this, let ® be the CDF of the standard
normal distribution, and Fy.:, be the CDF of the data
distribution, we can transform any random variable
T ~ pdata to a Gaussian random variable z by z =
(I)_l © Fdata(x)'

For high dimensional data, one key observation is that
the KL divergence between a distribution p(x) and
a multivariate standard Gaussian distribution can be
decomposed as follows (Chen and Gopinath, 2001):

Dy (p(x) [ N(0.1)) & J(x) = I(x) + Jm(x) (3)

where I(x) is the multi-information that measures the
statistical dependence among components of x:

D .
Hmw@)) NG

and J,(x) is the sum of KL divergences between the
marginal distributions and univariate standard normal
distributions:

I(x) = Dk, (p(x)

Jon() = iDKL (r || ¥OD).  ©)

Here we represent x = (z(1), 2 ... 2(P)T and let
pi(2") be the marginal distribution of p(x). Intuitively,
to transform the data distribution into a multivariate
unit Gaussian, we need to make each dimension inde-
pendent (I(x) = 0), and each marginal distribution
univariate standard normal (J,,(x) = 0).

Based on the decomposition Eq. (3), a particular it-
erative Gaussianization (Chen and Gopinath, 2001)
approach—Rotation-Based Iterative Gaussianization
(RBIG, Laparra et al. (2011))—alternates between ap-
plying one-dimensional Gaussianization and rotations
to the data. Specifically, RBIG estimates the marginal
distribution corresponding to each dimension of the
data distribution, and performs one-dimensional Gaus-
sianization of all marginal distributions. Then, RBIG
applies a rotation matrix to the transformed data.

The rationale behind RBIG is that dimension-wise
Gaussianization will decrease J,,,(x) and leave I(x)

invariant, due to the fact I(x) is invariant under
dimension-wise invertible transformations (Laparra
et al., 2011), whereas applying rotation to p(x) will not
modify the overall KL divergence objective I(x)+Jp (X)
since KL is invariant under bijective transformations
(rotation in particular) and N(0,I) is rotationally in-
variant. Therefore, Dkr, (p(x) || MN(0,I)) will not in-
crease (typically decreases) at each RBIG iteration. To
improve the performance of RBIG, one could consider
rotation operators that make J,,(x) as large as possi-
ble, so that the subsequent marginal Gaussianization
step removes J,,,(x) and results in a large decrease in
Dk (p(x) || N(0,1)). Popular choices of rotation ma-
trices include random matrices and those computed by
independent component analysis (ICA) and principal
component analysis (PCA). However, all three candi-
dates are less than desirable. For random rotations
and PCA, the procedure could require many RBIG
steps to converge (Laparra et al., 2011). ICA, on the
other hand, is optimal yet does not have closed-form
solutions and is expensive to compute in practice.

3 METHOD

While iterative Gaussianization possesses the ability to
transform a complex distribution to standard normal,
density estimation with iterative Gaussianization is
still difficult, because of the following challenges:

e One-dimensional (1D) Gaussianization is challeng-
ing for certain data distributions;

e Finding optimal rotation matrices is challenging
(as in the case of ICA rotation matrices, which
have no closed form solution).

In this section, we address these challenges with a new
type of invertible flow model based on the iterative
Gaussianization (RBIG) method, named Gaussianiza-
tion Flows (GF). Specifically, GF improves the two
components of RBIG where we replace 1D Gaussianiza-
tion with a trainable kernel layer and a fixed rotation
matrix with a trainable orthogonal matrix layer.

3.1 Building Trainable Kernel Layers

Marginal Gaussianization plays a crucial role in RBIG
since it reduces the objective value J,,(x) in Eq. (5) and
is the only procedure that decreases the KL objective
in Eq. (3) (rotation does not change the KL divergence
because KL is invariant to bijective mappings, however,
it enables progress in the next iteration). For a set of 1D
scalars {z; };Vil, one could perform Gaussianization by
first estimating a CDF (denoted as Fyata(x)), and then
applying the transformation ¢ : z + ®71 o Fyua(7)
where @ is the CDF for a 1D standard Gaussian.
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One approach to estimate the CDF is via 1D density
estimation, where the CDF can be computed from
the PDF by taking the integral. As we are assum-
ing the underlying data distribution is continuous, we
can naturally employ kernel density estimation (KDE)
methods to fit the data PDF, and then obtain the CDF
by integrating out the kernels in closed-form. How-
ever, there are two shortcomings of KDE for large-scale
density estimation. Firstly, the complexity of com-
puting the KDE for each sample scales quadratically
with the number of samples, making it prohibitive for
larger batches/datasets; secondly, the performance of
KDE largely depends on the sample size (Parzen, 1962;
Devroye and Wagner, 1979) and bandwidth selection
(Sheather, 2004), yet optimal bandwidths are difficult
to obtain even with good bandwidth selection heuristics
(Scott and Sheather, 1985).

To alleviate the limitations of existing non-parametric
KDE approaches, we propose to learn a “parameter-
ized KDE” for each data dimension, leading to train-
able kernel layers. For each data dimension (indexed
by d = 1,2,---,D), we learn a set of anchor points
{,u;d) 3}'(:1 and bandwidth parameters {h§-d) }5(:1 This
leads to a total of 2K D parameters for a trainable
kernel layer. Mathematically, we parameterize a CDF
with the following

K (d) _ ,,(d)
d 1 x s
Fé)(x)éEE 0(}1(‘1)]>7d: e

where o(-) denotes the sigmoid function throughout
the paper, and 8 denotes the collection of all trainable
parameters ({,ugd) ) and {hgd) ). Learning this
CDF amounts to performing KDE with a logistic kernel
when o(-) is the sigmoid function. Then, the Gaussian-
ization procedure for dimension d can be parameterized
as

(@) 2o o Fy(z), d=1,---,D, (7)

and we denote Uy = (\11(91), @é2)7 .. 7\11‘(913))7.

By making anchor points and bandwidths trainable,
our parametric trainable kernel layer can be more sam-
ple efficient compared to the traditional non-parametric
KDE approach (when trained, for example, with maxi-
mum likelihood). We find that 20 to 100 anchor points
work well in practice. In stark contrast, naive KDE
needs thousands of sample points to get comparable
results, which is particularly inefficient given that the
computational complexity scales quadratically with
respect to K.

We note that ¥ is a transformation with a Jacobian
whose determinant is tractable. Additionally, ¥ can be
efficiently inverted:

o O &' &' are not computable by elementary func-
tions, yet they can be efficiently evaluated via
numerical methods.

e Asboth ®~! and Féd) are monotonic, \I/gd) =d 1o
Fe(d) is also monotonic. We can therefore efficiently
invert Wg by inverting all of its dimensions with the
bisection method in parallel, as Vg is element-wise.

e The Jacobian of ¥ is a diagonal matrix. The
log-determinant is therefore the sum of the log-
derivatives of @71 o Féd) (x) over all dimensions.

3.2 Building Trainable Rotation Matrix
Layers

In iterative Gaussianization, we transform the data
using a rotation matrix after the marginal Gaussian-
ization step. As mentioned in Section 2.2, finding a
good rotation matrix is challenging using methods like
ICA or PCA. Here, we discuss our approach to finding
rotations by optimizing trainable rotation matrices.

3.2.1 Householder Reflections

We can parameterize the rotation matrix using House-
holder reflections, defined for any vector v € RP:

2 T
H=1-""_ (8)

2
||V||2

Any D x D orthogonal matrix R can be represented as
the product of at most D Householder reflections (Tom-
czak and Welling, 2016), i.e., R = HiHy--- Hp.

By parameterizing the rotation matrix with multiple
trainable Householder reflections, we define a trainable
orthogonal matrixz layer. Since the inverse of a rotation
matrix is the transpose of itself, one can efficiently
obtain the inverse by multiplying the transpose of the
orthogonal matrix. Moreover, because the Jacobian
determinant of an orthogonal transformation is always
one, we can easily compute the Jacobian determinant
of this layer, which is also equal to one.

One caveat is that each Householder reflection requires
D parameters, and thus fully parameterizing a rota-
tion matrix will require O(D?) parameters. This is
reasonable when the data dimension is small. How-
ever, this may no longer be feasible in cases where D
is large. For example, CIFAR-10 (Krizhevsky et al.,
2009) images have D = 3072, and ImageNet (Deng
et al., 2009) images can have D as large as 10°. In
such cases, one may need to trade off model flexibility
for computational efficiency by using a smaller number
(< D) of Householder reflections. Below, we explore
one such approach that exploits the structure of im-
ages and utilizes a patch-based parameterization of
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Patch-based rotation matrix Flattened image

Input image
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Figure 1: A patch-based rotation matrix where L =
4,p =2 and k = 2. All entries with the grey color are
zeros. Each 4 x 4 block on the diagonal corresponds to
a new subspace of neighboring pixels, where we perform
Householder reflections.

rotation matrices to significantly reduce the number of
parameters.

3.2.2 Patch-Based Rotation Matrices

Intuitively, a pixel in an image is more correlated to
its neighboring pixels than far away ones. Based on
this intuition, we propose “patch-based” Householder
reflections for parameterizing rotation matrices for im-
ages. Recalling that the role of the rotation matrix
in RBIG is to render the components as independent
as possible, patch-based Householder reflections are
designed to focus on the components where we expect
to get the biggest gains, i.e., the ones that are farthest
from being independent.

For an image with dimension L x L, the rotation matrix
will have size L? x L?. Assuming p is a divisor of L
and L = p x k, we can partition the matrix into k2 x k2
smaller blocks each with size p?> x p?. Instead of di-
rectly parameterizing the L2 x L? rotation matrix using
L? Householder reflections, we parameterize a block-
diagonal rotation matrix with &2 blocks. Each block on
the diagonal is a p? x p? rotation matrix, which requires
p? Householder reflections to parameterize. Since rota-
tion is now only performed in each p X p-dimensional
subspace, we leverage a “shift” operation on the input
vectors to introduce dependency across different rota-
tional subspaces. We call this block-diagonal rotation
matrix a “patch-based rotation matrix” (see Fig. 1),
and relegate extra details to Appendix B.

3.3 Deep Gaussianization Flows

Our proposed model, Gaussianization flow, is con-
structed by stacking trainable kernel layers (Section 3.1)
and orthogonal matrix layers (Section 3.2) alternatively.

Formally, we define an Gaussianization flow with L
trainable kernel layers and orthogonal layers as:

TQ(X) :\IJQL ORLO\I/9L71 O---O\I/91 OR]_X (9)
where 6 denotes the collection of all parameters.

Note that both forward and backward computations
of the Gaussianization flow are efficient, and the log
determinant of its Jacobian can be computed in closed-
form. Consequently, we can train Gaussianization flows
jointly with maximum likelihood, as well as producing
samples efficiently. This is to the contrary of RBIG,
which is a non-trainable iterative procedure.

3.4 Gaussianization Flows are Universal
Approximators

We hereby prove that Gaussianization flows can trans-
form any continuous distribution with a compact sup-
port to a standard normal, given that the number of
layers and the number of parameters in each layer are
sufficiently large. Ours is the first universal approxi-
mation result we are aware of for efficiently invertible
normalizing flows.

Our results closely follow that of Chen and Gopinath
(2001). However, we note that their results are weaker
than what we need: they assume the marginal Gaus-
sianization step can be done perfectly, whereas we use
the learnable kernel layers for doing marginal Gaus-
sianization. We defer all proofs to Appendix A.

Our proof starts by showing that mixtures of logistic
distributions (as used in our learnable kernel layers) are
universal approximators for continuous densities (see
Lemma 2 in Appendix). Therefore, our learnable ker-
nel layers will be able to do arbitrarily good marginal
Gaussianization when sufficiently many anchor points
are used. Based on this, we show that Gaussianiza-
tion flow is a universal approximator given a sufficient
number of layers:

Theorem 1. Let p be any continuous distribu-
tion supported on a compact set X < RP, and
infzex p(xz) > 0 for some constant § > 0. Then,
there exists a sequence of marginal Gaussianization
layers {Vq,, Vg, -+ ,Wq,, -} and rotation matrices
{R1,Ra, -+, Ry, -} such that the transformed ran-
dom variable

Wg, o RyoWg, ,0Rp_10---0Wp o R1X % N(0,T),

where X ~ p.

3.5 Building Invertible Networks with
Proper Initializations

Since our Gaussianization flow is a trainble extension
of RBIG, we propose to provide good initializations
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for Gaussianization flows using RBIG. In the train-
able rotation matriz layers, we randomly initialize each
Householder reflection vector with samples from an
isotropic Gaussian. This amounts to using random
rotation matrices in RBIG. We abstain from using
ICA /PCA layers for providing initialization both for
the aforementioned computational issues, and for the
fact that they provide similar results in practice.

In the trainable kernel layer, we consider a data-
dependent initialization approach, using N random
samples from the dataset. To initialize KDE anchor
points in the first layer, we randomly draw N samples
from the dataset. More generally, we initialize the KDE
anchor points at layer [ + 1 using the outputs of the
[-th trainable rotation matrix layer.

In fact, the initial state of our model corresponds to
an iterative Gaussianization method, which, as shown
previously, is capable of capturing distributions to a
certain level. This allows our GF' to outperform other
normalizing flows at initial iterations. Because of the
good initialization, our model also exhibit better ro-
bustness with respect to re-parameterizations of the
data.

4 EXPERIMENTS

We evaluate our Gaussianization Flow (GF) on sev-
eral datasets; these include synthetic 2D toy datasets,
benchmark tabular UCI datasets (Papamakarios et al.,
2017) (Power, Gas, Hepmass, MiniBoone, BSDS300)
and two image datasets (MNIST and Fashion-MNIST).
We compare with several popular invertible mod-
els for density estimation, including RealNVP (Dinh
et al., 2015), Glow (Kingma and Dhariwal, 2018),
FFJORD (Grathwohl et al., 2018), MAF (Papa-
makarios et al., 2017), TAN (Oliva et al., 2018) and
NAF (Huang et al., 2018); we also compare directly
with RBIG (Laparra et al., 2011) for reference.

Figure 2: 2D density estimation results. Top: Ground
truth samples. Middle: Glow. Bottom: GF.

Our experiments aim to answer the following questions:

e Is GF competitive against other methods in terms
of density estimation (4.1, 4.2)7

e Does GF have better initialization than other nor-
malizing flow models?

e Is GF robust against re-parameterization of the
data with simple transformations (4.4)?

e Does GF achieve good performance when the train-
ing set is small (4.5)7

4.1 2D Toy Datasets

We first perform density estimation on four synthetic
datasets drawn from complex two-dimensional distri-
butions with various shapes and number of modes. We
train the model by warping the predicted probability
distribution to an isotropic Gaussian distribution. In
Fig. 2, we visualize the estimated density of our Gaus-
sianization Flow and Glow. The results show that our
model is capable of fitting both continuous and dis-
continuous, connected and disconnected multi-modal
distributions. Glow, on the other hand, has trouble
modeling disconnected distributions.

4.2 Tabular and Image Datasets

We perform density estimation on five tabular datasets
which are preprocessed using the method in Papamakar-
ios et al. (2017). We compare our results directly with
RealNVP, Glow and FFJORD as these are also effi-
ciently invertible models which can be used for sample
generation and inference; we list MAF, MADE, TAN
and NAF results as reference as they have higher com-
putational costs in sampling but are competitive in
density estimation. From Tab. 1, we observe that GF
achieves the top negative log-likelihood results in 3 out
of 5 tabular datasets, and obtain comparable results
on the remaining two. As expected, Gaussianization
flow outperforms RBIG on all tasks by a large mar-
gin, which demonstrates the strong advantages of joint
training by maximum likelihood.

For tabular datasets, we use D Householder reflections
for each trainable rotation matriz layer where D equals
the data dimension, so that the model possesses the
ability to parameterize all possible rotation matrices.
See Appendix D for more training details.

We also consider two image datasets, MNIST and
Fashion-MNIST, and perform density estimation on the
continuous distribution of uniformly dequantized im-
ages (see Tab. 1). For image data, we use patch-based
rotation matrices as trainable rotation matriz layers.
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Figure 3: Negative log-likelihood (loss in nats) on training and test sets over initial training iterations.

Table 1: Negative log-likelihood for tabular datasets measured in nats, and image datasets measured in bpd.

Smaller values are better.

Method | POWER GAS HEPMASS MINIBOONE BSDS300 ‘ MNIST FMNIST
Real NVP -0.17 -8.33 18.71 13.55 -153.28 1.06 2.85
Glow -0.17 -8.15 18.92 11.35 -155.07 1.05 2.95
FFJORD -0.46 -8.59 14.92 10.43 -157.40 0.99 -
RBIG 1.02 0.05 24.59 25.41 -115.96 1.71 4.46
GF(ours) -0.57 -10.13 17.59 10.32 -152.82 1.29 3.35
MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 4.18
MAF -0.24 -10.08 17.70 11.75 -155.69 1.89 -
TAN -0.48 -11.19 15.12 11.01 -157.03 - -
MAF-DDSF -0.62 -11.96 15.09 8.86 -157.73 - -

Specifically, we set the patch size to 4 and randomly
pick the shifting constant ¢ at each layer. We provide
more training details in Appendix D. From the results
in Tab. 1 we see that Gaussianization flow outperforms
all other non-convolutional models on image datasets,
including those that cannot be inverted efficiently, such

as MAF and MADE (Germain et al., 2015).

4.3 Initial Performance

The data-dependent initialization of our model allows
the training process to converge faster. To illustrate
this, we choose four tabular datasets (pre-processed as
described in Papamakarios et al. (2017)), where we set
the batch size to be 500 and perform training for 3000
iterations using the default settings and model architec-
tures. From the results in Fig. 3, Gaussianization flow
achieves better training and validation performance
across most iterations on the four datasets compared
with other models such as RealNVP, Glow, FFJORD,
MAF and NAF.

4.4 Stretched Tabular Datasets

In density estimation applications (such as anomaly
detection), one could receive a stream of data that

might not be sampled i.i.d. from a fixed distribution.
In these cases, it would be difficult to find suitable
pre-processing techniques to normalize the data, so it
is desirable if our models can be robust under distri-
butions that are not normalized. To evaluate whether
the flow models are robust against certain distribution
shifts (that could make normalization difficult), we
consider density estimation on datasets that are not
normalized. In particular, we select three pre-processed
UCI datasets and transform the data using some sim-
ple invertible transformations before training. Here we
keep the transformations invertible and differentiable
so that we can use the change of variables formula to
compute the likelihoods defined in the original data
space. We consider two transformations: cubic, where
f(x) = 23; and affine where f(x) = 1000z + 51.

From the results in Tab. 2, we observe that Gaussian-
ization flows have stable and consistent performance
for both transformations and on all three datasets. In
contrast, all other methods can fail in some settings.
MAF-DDSF has numerical issues that lead to NaNs
on datasets processed with the affine transformation;
RealNVP, Glow, and MAF all have cases where test
loss does not go down when training loss goes down;
FFJORD has convergence issues when training on GAS
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Table 2: Negative log-likelihood in nats for tabular datasets after simple transformations. “«*” stands for loss

larger than 1000. “xx” implies loss does not converge and varies largely on different batches.

W

implies loss

explosion on validation and test sets. “NaN” implies numerical issues encountered during training. Numbers in

parentheses for GF denote the corresponding likelihood

value under the original normalized transformation.

Transformation | f(z) =23 | f(z) = 1000z + 51

Method | POWER MINIBOONE GAS ‘ POWER MINIBOONE GAS
Real NVP 17.47 (21.53)  93.98 (109.96)  32.27 (32.85) - - -

Glow 1.67 (5.73) 91.86 (107.84) - 41.64 (0.19) 315.30 (18.27) 49.26 (-6.00)
FFJORD * 88.29 (104.27) *k * 329.97 (32.94) *

GF (ours) -4.41 (-0.35) 4.62 (20.60) -6.91 (-6.33) | 41.00(-0.45) 325.72 (28.69) 47.69 (-7.57)
MAF 19.37 (23.43)  381.32 (397.3)  19.76 (20.34) - - -
MAF-DDSF -4.12 (-0.06) 7.88 (23.86) -4.52 (-3.94) NaN NaN NaN
% GAS subset results (n=852174) HEPMASS subset results (n=315123) MINIBOONE subset results (n=29556)
£ 75 = —\ 28 40
o
E 5.0 \_.w,,.,,,, \ 35 ’\——rxff.fﬂ\
T 25 26 20
E 0.0 1155 NAF 25 \

© _55 —— FFORD 24 o
s —— GF \s_,_ﬂ\‘ 20 S~
g—s.o 1000 2000 3000 4000
Training set size 1000 2000 3000 4000 1000 2000 300.0 4000

Training set size

Training set size

Figure 4: Negative log-likelihood results (measured in nats) over small subsets of the original training set. The
subsets, with size ranging from 500 to 4500, are much smaller than the original training set size n as shown in the
parentheses. We exclude MAF, RealNVP and Glow in the figures as validation error does not decrease.

with the cubic transformation, and on POWER and
GAS with the affine transformation. Moreover, even
with the added transformation, we are still able to ob-
tain comparable likelihood when transformed back to
the original space (see Tab. 2 results in parentheses).

4.5 Small Training Sets

The ability to quickly adapt to new distributions with
relatively few samples (e.g. in a stream of data with
continuous covariate shifts) can also be helpful. To this
end, we further evaluate the generalization abilities of
the models when trained on small subsets of the tabular
datasets. We consider using the normalized tabular
datasets, where we mix the training, validation and
test datasets, shuffle them randomly and select 10,000
samples as validation/test sets respectively. We con-
sider training various model on small training subsets
with sizes ranging from 500 to 4500, where we perform
validation and testing on the new validation/test sets.

We compare GF with Glow, RealNVP, MAF, FFJORD
and NAF, using the same model architecture for the
original tabular experiments and explore the learning
rate to make the training process more stable. We
show the results in Fig. 4. We note that MAF, Glow
and RealNVP have trouble evaluating density on vali-

dation/test set when the training set is small enough,
as the validation/test loss goes up as train loss goes
down, which is the reason why we exclude them in
the plots. GF significantly outperforms FFJORD and
NAF in all settings except when subset size is 500 for
HEPMASS, which suggests that our learnable KDE
layers generalize well on test sets even when training
data is scarce.

5 CONCLUSION

We introduce Gaussianization flows (GF), a new family
of trainable flow models that builds upon rotation-
based iterative Gaussianization. GFs exhibit fast likeli-
hood evaluation and fast sample generation, and are
expressive enough to be universal approximators for
most continuous probability distributions. Empirical
results demonstrate that GFs achieve better or com-
parable performance against existing state-of-the-art
flow models that are efficiently invertible. Compared
to other efficiently invertible models, GFs have better
initializations, are more robust to distribution shifts in
training data, and have superior generalization when
training data are scarce. Combining the advantages of
GFs with other efficiently invertible flow models would
be an interesting direction for future research.



Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

Acknowledgements

This research was supported by Amazon AWS, TRI,
NSF (#1651565, #1522054, #1733686), ONR (N00014-
19-1-2145), AFOSR (FA9550-19-1-0024).

References

Chen, S. S. and Gopinath, R. A. (2001). Gaussianiza-
tion. In Advances in neural information processing
systems, pages 423-429.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Du-
venaud, D. K. (2018). Neural ordinary differential
equations. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Process-
ing Systems 31, pages 6571-6583. Curran Associates,
Inc.

De Cao, N., Titov, I, and Aziz, W. (2019).
Block neural autoregressive flow. arXiv preprint
arXiv:1904.04676.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPRO09.

Devroye, L. P. and Wagner, T. J. (1979). The I; con-
vergence of kernel density estimates. Ann. Statist.,
7(5):1136-1139.

Dinh, L., Krueger, D., and Bengio, Y. (2014).
Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE:
non-linear independent components estimation. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Germain, M., Gregor, K., Murray, 1., and Larochelle, H.
(2015). Made: Masked autoencoder for distribution
estimation. International Conference on Machine
Learning, 37:881-889.

Grathwohl, W., Ricky T. Q. Chen, Jesse Bettencourt,
I. S., and Duvenaud, D. (2018). Ffjord: Free-form
continuous dynamics for scalable reversible genera-
tive models. arXiv preprint arXiv:1810.01367.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville,
A. (2018). Neural autoregressive flows. In Inter-
national Conference on Machine Learning, pages

2083-2092.

Huber, P. J. (1985). Projection pursuit. The annals of
Statistics, pages 435-475.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-
erative flow with invertible 1x1 convolutions. arXiv
preprint arXiw:1807.05039.

Krizhevsky, A. et al. (2009). Learning multiple layers of
features from tiny images. Technical report, Citeseer.

Laparra, V., Camps-Valls, G., and Malo, J. (2011). Iter-
ative gaussianization: from ica to random rotations.
IEEFE transactions on neural networks, 22(4):537—
549.

Oliva, J. B., Dubey, A., Zaheer, M., Poczos, B.,
Salakhutdinov, R., Xing, E. P., and Schneider, J.
(2018). Transformation autoregressive networks.

Papamakarios, G., Pavlakou, T., and Murray, 1. (2017).
Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems,
pages 2338-2347.

Parzen, E. (1962). On estimation of a probability den-
sity function and mode. The annals of mathematical
statistics, 33(3):1065-1076.

Rezende, D. and Mohamed, S. (2015). Variational
inference with normalizing flows. In Bach, F. and
Blei, D., editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages

1530-1538, Lille, France. PMLR.

Scott, D. W. and Sheather, S. J. (1985). Kernel density
estimation with binned data. Communications in
Statistics-Theory and Methods, 14(6):1353-1359.

Sheather, S. J. (2004). Density estimation. Statistical
science, pages b88-597.

Tomczak, J. M. and Welling, M. (2016). Improving vari-
ational auto-encoders using householder flow. arXiv
preprint arXiw:1611.09630.



Gaussianization Flows

A PROOFS

A.1 Mixtures of Logistics are Universal Approximators

First, we show that mixtures of logistics are universal approximators for any univariate continuous densities
supported on a compact set. The proof is based on the classic result on uniform convergence of kernel density
estimation (KDE):

Lemma 1 (Uniform convergence of KDE (Parzen, 1962)). Let f be a continuous probability density function
on a compact set X C R. Let K(y) denote a symmetric probability density function over R whose characteristic
function is absolutely integrable. Let {x1,xo, - ,x,} be i.i.d. samples from f(x). Given any h, — 0 such that
hnv/m — 00, we may define

Fale) = oo > K (I ;f)

as an approximation to f(x) over X with high probability; that is

max | fu(w) — f(2)] 50, asn — oo

The universal approximation of mixtures of logistics is an immediate result of Lemma 1.

Lemma 2 (Mixtures of logistics are universal approximators to probability densities). Let X be any compact
subset of R. Let P(X) denote the space of continuous probability densities on X. Then, given any € >0 and any
probability density p € P(X), there exist an integer N, real constants p; € R,o0; € R™T fori=1,--- N such
that we may define

1 & e
fn(z) = NZ

as an approxrimate realization of the probability density p over X'; that is
sup | fn () — p(x)| <e
reX

In other words, functions of the form fy(x) are dense in P(X).

Proof. We note that fy(x) is a kernel density estimator on data points {ui}ZN:l, with the logistic kernel
eV
It is a continuous probability distribution (logistic distribution), symmetric, and has an absolutely integrable

characteristic function. Using Lemma 1 we conclude that for any € > 0 and 0 < § < 1, there exists N and hy
such that

K(y) =

N =Xy
1 e PN
Pr sup —pz)|<e|l >1—-6>0.
Xi, Xnop(X) |zex | Nhy ; (1 + 6_%)2 )
Since the probability is non-zero, there exists x1, s, -,y such that
N _ =X

1 e N
sup —Z 5 —p(x)] <e

zex | N i=1 hp (1—1—6_%)

Letting y; = x; and 0; = hy for i =1,2,--- | N, we have
sup | fn () — p(x)] <e,
reX

which proves our statement. O
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Lemma 3. Let p be a continuous probability distribution on a compact set X C R. Assume there exists § > 0
such that inf,ex p(z) > §. Then, given any € > 0, there exist an integer N, real constants p; € R,0; € RTT for
1=1,--+- N such that we may define

N _T—n

to approzimate p(x) in terms of KL divergence; that is

Dk (p(z) || fn(2)) <e

Proof. Tt suffices to show that

/ p(z)log fn(z)dz 7/ p(z)log p(z)dz| < e.
reX

reX

Using Lemma 2 we know that

sup |fn(z) —p(z)] = 0, as N — oo.
reX

For €1 > 0, there exists an integer IV, real constants u; € R,0; € R™" for i = 1,--- | N such that
sup |fn(z) — p(x)] < €.
zeX

Because p(x) > §, we know fn(z) > § — €1, in which case

sup |log fn (z) — log p(z)| < ( sup 1) (Sup |[fn () —P($)|> =5 -

TEX t>5—e; TEX — €1 -
Then,
/ p(x)log fn(z)dx — / p(x) log p(x)dz| < / p(z)|log fn(z) — log p(z)|dz
reX x€EX reX
< [ plw)sup [log f(2) ~ logp(a)|da
rEX reX
€1

< .
— 60— €1

Our statement is proved by setting €; = ff:e. O

Corollary 1. Let p be a continuous probability distribution on a compact set X C R. Assume there exists § > 0
such that inf,ex p(z) > &. Then, given any € > 0, there exist an integer N, real constants p; € R,0; € R™T for
t=1,--- N such that if we define

where o(-) is the sigmoid function, and transform random variable X ~p to Y = ®~1(Fn (X)) where ®(-) is the
CDF of standard normal, we have

Dy, (Y || N(O, 1)) < €.
Proof. Let Z ~ N(0,1). Since KL divergence is invariant to bijective transformations, we get

Di. (Y || Z) = Do (Fx(X) | #(2)) = Dict, (X || Fy*(®(2))) £ Dxw. (pla) || fn()),

where fn(z) = Fj(x). Here (i) is because ®(Z) is a uniform random variable and the inverse CDF trick of
producing samples from a distribution with CDF Fy(z) and PDF fy(x). O
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A.2 Gaussianization Flows are Universal Approximators

Theorem 1. Let p be any continuous distribution supported on a compact set X C RY, and inf,cx p(z) > § for
some constant § > 0. Let U : RP — RP denote a marginal Gaussianization layer of the Gaussianization flow,
where for each element z; of x, we choose an integer N;, real constants p;; € R 0,5 € RYY for j=1,--- | N; such
that

N,
a1 Ti — fij
(x) = 37! Niza(% ﬂ)

Jj=1

Then, there exists a sequence of marginal Gaussianization layers {\If(l), @ o gk -} and rotation matrices
{RW RP) ... R®) ...} such that the transformed random variable

X®) & gk (REgE-1(RE-D . yO(ROX))) 4 A(0,T),

where X ~ p.

Proof. The proof closely parallels Theorem 10 in Chen and Gopinath (2001) and Huber’s proof of weak convergence
for projection pursuit density estimates (Huber, 1985). Let ¢" denote the distribution of X, and let ¢(7)
denote the j-th marginal distribution of X*. Because U(Y) and R(* are continuous operations for all i, and
p is supported on a compact set X, we know ¢(*9) is also supported on a compact set, which we denote as
X(3) . In addition, we observe that the determinant of Jacobian of W) is always strictly positive, and the
determinant of R is +1. Combining this observation with the condition that infyxex p(x) > 8, we know there
exists a constant (%) > 0 such that infcxe.a q) (x) > 69 for all i,j. Therefore, ¢(*/) and W) satisfy the
conditions in Lemma 3 and Corollary 1, which entails that for any €/ > 0 and €?) > 0 there exists U such
that Vj : Dy, (¢ (2) || M(0,1)) < €®9) and J,,, (X)) < €.

The KL divergence of X(*) is
JX®) = 1(X®)) 4 7,,(X*))
- I(R(k)x(k—l)) + Jm(q;(k)R(k)X(k—l))_

After ¢*=1)(X*=1)) is obtained, we always choose R*) = arginf 5 I(RX*~1), and then select ¥(*) appropriately
such that

k1)

2

Jm(\y(k)R(k)X(kfl)) <R = e

Let A®) denote the reduction in the KL divergence in the k-th layer:
AF) — J(X(k)) _ J(X(k"'l))
= I(X®)) 4 ) i%fI(RXU“)) — b+

> 0.

Since {J(X(*))} is a monotonically decreasing sequence and bounded from below by 0, we have

lim A®) = 0.

k—o00
Also since e®) = e(k_l)/2, we have limy_, o ¢®) = 0.
Next, we consider the following quantity

J*(X) = max J(aTX).

llexll;=1
For any unit vector a, we let Uy be an orthogonal completion of o, i.e.,

UOL = [a7a27“' aan]'
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Then, for any a with ||a||, = 1, we have
J(@TX®)) < J,, (U X )
= J(UaX®)) — [(U4 X0
< J(XW) — inf 1(RX")
= I(X®)) 4 ) — inf I(RX )
=AW k+D)
Therefore,

J(X®) = sup J(aTXHF) < AR 4 (kt1)

llexll,=1

Since A®) — 0 and e*+t1) — 0, we know J*(X*)) — 0. Applying Lemma 6 from Chen and Gopinath (2001), we
get

X® 4 Ar(0,1),

which proved our statement. O

B MORE DETAILS ON PATCH-BASED ROTATION MATRICES

horizontal shift ¥

3 positions / | / \

vertical shift
3 positions []

TR

Figure 5: The shifting operation for constructing patch-based rotation matrices.

The motivation for patch-based rotation is based on the following:

1. Naive Householder reflections are too expensive for high dimensional data.

2. For image datasets, a pixel should be more correlated to its neighboring pixels than pixels that are far away.

Instead of parameterizing a rotation for the entire image, a patch-based rotation only focuses on the local image
structure: it first partitions an image into non-overlapping groups of neighboring pixels, and then parametrizes a
(smaller) rotation matrix for each group independently. To introduce dependency across different groups, we also
shift the inputs at each layer. More specifically, we shift each pixel by ¢ positions horizontally (or vertically) in a
circular way by wrapping around pixels that are discarded after the shift (see Fig. 5).
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Figure 7: Uncurated Fashion-MNIST samples from various models. Left: MADE. Middle: RBIG. Right: GF.

C SAMPLES

We provide uncurated samples from GF, MADE and RBIG for both MNIST and Fashion-MNIST datasets (see
Fig. 6 and Fig. 7).

D ADDITIONAL EXPERIMENTAL DETAILS FOR GF

D.1 Tabular and Image Datasets

We report the architectures and hyperparameters of our GF models in Tab. 3. We tested the following three
different parameterizations of the trainable rotation matrix layer.

Table 3: Model architectures and hyperparameters for Gaussianization Flows.

Method ‘ POWER GAS HEPMASS MINIBOONE BSDS300 MNIST FMNIST
layers 50 150 100 90 30 10 10
anchor points 50 50 100 50 60 50 50
Householder refl. 6 8 21 43 63 50 50
patch size - - - - - 4 4
learning rate 0.005 0.005 0.005 0.005 0.005 0.01 0.01
epoch 200 200 200 200 200 200 200
batch size 2000 2000 500 500 1000 100 100
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(1) Naive Householder reflections.

(2) Patch-based rotation matrices.

(3) Alternating between (1) and (2).

We only use (1) for tabular datasets, where each rotation matrix is constructed using D Householder reflections
(D denotes the dimensionality of datasets). We try all three parameterizations for MNIST and Fashion-MNIST.
In the case of (1), we use 50 Householder reflections to trade off between computational efficiency and model
expressivity. In the case of (2), we set patch size to 4 and randomly choose a different shifting constant ¢ for each
layer. We observe that (2) achieves the best results on MNIST while (3) performs the best on Fashion-MNIST.
We report the best results out of all parameterizations for MNIST and Fashion-MNIST in Tab. 1.

D.2 Stretched Tabular Datasets

We report the architectures and hyperparameters of our GF models in Tab. 3. For other models, we adopt the
default architectures and hyperparameters as mentioned in their original papers, except that we train each model
for 100 epochs.

D.3 Small Training Sets

We report the architectures and hyperparameters of our GF models in Tab. 3. For other models, we adopt the
default architectures and hyperparameters as mentioned in their original papers, except that we train each model
for 200 epochs on a smaller shuffled subset.

E ADDITIONAL EXPERIMENTAL DETAILS FOR RBIG

For the marginal Gaussianization step, we fit the 1D distributions with KDE (logistic kernel) and tune the kernel
bandwidth with the rule-of-thumb bandwidth estimator. For the rotation step, we use rotation matrices obtained
from PCA rather than random, as we empirically observe that PCA exhibits better performance and faster
convergence than random rotation matrices.

To obtain better results, we perform KDE on 50000 data points for all the tabular datasets, except for BSDS300
where the number of samples is reduced to 20000 for faster computation. We use 10000 data points for both
MNIST and Fashion-MNIST. The number of RBIG iterations is set to 5 for all datasets, as we found it performs
the best within the range 1-100.
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