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Abstract

Iterative Gaussianization is a fixed-point iter-
ation procedure that can transform any con-
tinuous random vector into a Gaussian one.
Based on iterative Gaussianization, we pro-
pose a new type of normalizing flow model
that enables both efficient computation of like-
lihoods and efficient inversion for sample gen-
eration. We demonstrate that these models,
named Gaussianization flows, are universal
approximators for continuous probability dis-
tributions under some regularity conditions.
Because of this guaranteed expressivity, they
can capture multimodal target distributions
without compromising the efficiency of sam-
ple generation. Experimentally, we show that
Gaussianization flows achieve better or compa-
rable performance on several tabular datasets
compared to other efficiently invertible flow
models such as Real NVP, Glow and FFJORD.
In particular, Gaussianization flows are easier
to initialize, demonstrate better robustness
with respect to different transformations of
the training data, and generalize better on
small training sets.

1 INTRODUCTION

Maximum likelihood is a widely adopted approach for
density estimation. However, for very expressive proba-
bilistic models, e.g ., those parameterized by deep neural
networks, evaluating likelihood can be intractable. Sev-
eral special architectures have been proposed to build
probabilistic models with tractable likelihoods. One
such family of models is normalizing flows (Rezende
and Mohamed, 2015; Dinh et al., 2014, 2015). These
models learn a bijective mapping T that pushes forward
the data distribution to a simple target distribution
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(typically Gaussian or uniform) such that the log deter-
minant of the transformation’s Jacobian (log | det JT|)
is efficient to compute. The corresponding likelihood
can then be efficiently computed via the change of vari-
ables formula, enabling efficient training via maximum
likelihood.

Given a density model, it is often desirable to generate
samples from it in an efficient way. This requires an
additional property for normalizing flow models: the in-
verse of T must also be easy to compute. Unfortunately,
even though flow models are invertible by construction,
they are not always efficiently invertible in practice.
For example, models like MAF (Papamakarios et al.,
2017), NAF (Huang et al., 2018), Block-NAF (De Cao
et al., 2019) all need D times more computation for
inversion than for likelihood evaluation, where D is the
data dimension. Continuous flow models, such as Neu-
ral ODE (Chen et al., 2018) and FFJORD (Grathwohl
et al., 2018), take roughly the same time for inversion
and likelihood evaluation, but both directions involve
slow numerical integration procedures. Models based
on coupling layers, e.g ., Real NVP (Dinh et al., 2016)
and Glow (Kingma and Dhariwal, 2018), have efficient
procedures for both inversion and likelihood computa-
tion, yet it is unclear whether their architectures are
sufficiently expressive to capture all distributions.

To explore different flow architectures that are expres-
sive and permit efficient sampling, we draw inspiration
from iterative Gaussianization. First proposed in Chen
and Gopinath (2001), it is an iterative approach to
transform the data distribution to a standard (mul-
tivariate) Gaussian distribution. Specifically, we first
transform each data point with a linear mapping (typi-
cally an orthogonal matrix computed by ICA or PCA),
and then individually “Gaussianize” the marginal dis-
tributions of each data dimension. This is achieved by
estimating each univariate CDF, mapping each data
dimension to a uniform random variable, and then
transforming it to a Gaussian by CDF inversion. Intu-
itively, the linear mapping in Gaussianization amounts
to finding a specific direction where the marginals of
the data distribution are as “non-Gaussian” as possible;
this “non-Gaussianity” is reduced by the subsequent
Gaussianization step performed for each marginal dis-
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tribution. As proved in Chen and Gopinath (2001), the
transformed data distribution converges to a standard
normal if this procedure is repeated a sufficiently large
number of times (under some conditions). Though theo-
retically satisfying, this method has many limitations in
practice. First, Gaussianizing marginal distributions is
practically difficult, even in the univariate case, because
non-parametric methods for CDF estimation (such as
kernel density estimation) can be inaccurate and hard
to tune. Second, finding optimal linear mappings such
that the marginal distributions are “non-Gaussian” is
challenging and traditional methods such as linear ICA
do not have closed-form solutions and can be very slow
to run for large scale datasets.

To mitigate these limitations while preserving theo-
retical guarantees, we propose to parameterize the
Gaussianization procedure to make it jointly trainable,
in lieu of following the original iterative refining ap-
proach. This results in a new family of flow models
named Gaussianization flows. More specifically, we
parameterize the linear mapping by stacking several
Householder transformations with learnable parame-
ters. After this linear mapping, we parameterize an
element-wise non-linear transformation by composing
the inverse Gaussian CDF with the CDF of a trainable
mixture of logistic distributions. Combining the linear
mapping and element-wise non-linear transformation,
we get a differentiable Gaussianization module whose
Jacobian determinant is available in closed-form, and
inversion is easy to compute. We can stack several
Gaussianization modules to form a Gaussianization
flow model which is also easy to invert.

We can show that Gaussianization flows are univer-
sal approximators when the model is sufficiently wide
and deep, meaning that the model architecture is theo-
retically expressive enough to transform any data dis-
tribution with strictly positive density to a Gaussian
distribution (under some regularity conditions). Due
to the connection between Gaussianization flows and
iterative Gaussianization, the layers of Gaussianization
flows have a natural interpretation. For example, the
mixture of logistics in a Gaussianization flow should
ideally capture the marginal distribution obtained af-
ter applying the Householder layer. We can therefore
initialize the parameters of the mixture of logistic used
for Gaussianization using a kernel density estimator
with logistic kernels for better training. Because of
the non-parametric nature of kernel density estimation,
this intialization is more adaptive, providing some ro-
bustness with respect to re-parameterizations of the
data.

In our experiments, we demonstrate that Gaussianiza-
tion flows achieve better or comparable performance
on density estimation for tabular data, compared to

some efficient invertible baselines such as Real NVP,
Glow and FFJORD. In particular, we achieve better
performance when the number of training data points
is limited, and our models show more robustness to
reparameterizations of the data.

2 BACKGROUND

2.1 Density Estimation with Flow Models

Let D = {xj ∈ R
D}Nj=1 be a dataset of continuous

observations which are i.i.d. samples from an unknown
continuous data distribution (denoted as pdata). Given
this dataset D, the goal of density estimation is to
approximate pdata with a probabilistic model parame-
terized by θ (denoted as pθ). Specifically, we learn an
invertible model Tθ : RD → R

D, which performs a bi-
jective, differentiable transformation of x to z = Tθ(x).
Using the change of variables formula,

pθ(x) = pz(Tθ(x))

∣

∣

∣

∣

det
∂Tθ(x)

∂x

∣

∣

∣

∣

= pz(z)| det JTθ
(x)|,

where det JTθ
(x) denotes the determinant of the Ja-

cobian matrix evaluated at x, and pz(z) is a simple
fixed distribution with tractable density (e.g . the mul-
tivariate standard Gaussian N (0, I)). Note that in
order to evaluate the likelihood pθ(x), the determi-
nant of Jacobian det JTθ

(x) must be easy to compute.
Models with this property are named normalizing flow

models (Rezende and Mohamed, 2015).

Multiple flow models T1,T2, · · · ,TL can be stacked
together to yield a deeper and more expressive model
T = T1 ◦T2 ◦ · · · ◦TL. Since T

−1 = T
−1
L ◦T−1

L−1 ◦ · · · ◦
T

−1
1 , and det JT = det JT1 det JT2 · · · det JTL

, as long
as each component Ti is invertible and has tractable
determinant of Jacobian, the combined model T also
shares such properties.

2.2 Iterative Gaussianization

Training a flow model with maximum likelihood
amounts to solving

min
θ

Epdata(x)[− log pθ(x)]

= min
θ

DKL (pdata(x) ‖ pθ(x) ) + const. (1)

When pθ(x) is the likelihood of a flow model Tθ(x)
given by Eq. (1), we can transform the above objec-
tive using the fact that KL divergence is invariant to
bijective mappings of random variables, which gives us

min
θ

DKL (pdata(x) ‖ pθ(x) ) + const

= min
θ

DKL (pTθ
(z) ‖ N (0, I) ) + const, (2)
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where pTθ
denotes the distribution of z = Tθ(x), when

x is sampled from pθ(x). Intuitively, Eq. (2) means
that training a flow model with maximum likelihood
is equivalent to finding an invertible transformation
to warp the data distribution to a multivariate stan-
dard normal distribution. This task is well-known as
Gaussianization (Chen and Gopinath, 2001).

For one-dimensional (univariate) data x ∼ pdata(x),
one could perform Gaussianzation by estimating its
cumulative density function (CDF, e.g . using kernel
density estimation) and applying the inverse Gaussian
CDF. To see this, let Φ be the CDF of the standard
normal distribution, and Fdata be the CDF of the data
distribution, we can transform any random variable
x ∼ pdata to a Gaussian random variable z by z =
Φ−1 ◦ Fdata(x).

For high dimensional data, one key observation is that
the KL divergence between a distribution p(x) and
a multivariate standard Gaussian distribution can be
decomposed as follows (Chen and Gopinath, 2001):

DKL (p(x) ‖ N (0, I) ) , J(x) = I(x) + Jm(x) (3)

where I(x) is the multi-information that measures the
statistical dependence among components of x:

I(x) = DKL

(

p(x)

∥

∥

∥

∥

∥

D
∏

i

pi(x
(i))

)

, (4)

and Jm(x) is the sum of KL divergences between the
marginal distributions and univariate standard normal
distributions:

Jm(x) =

D
∑

i=1

DKL

(

pi(x
(i))

∥

∥

∥ N (0, 1)
)

. (5)

Here we represent x = (x(1), x(2), · · · , x(D))⊺, and let
pi(x

(i)) be the marginal distribution of p(x). Intuitively,
to transform the data distribution into a multivariate
unit Gaussian, we need to make each dimension inde-
pendent (I(x) = 0), and each marginal distribution
univariate standard normal (Jm(x) = 0).

Based on the decomposition Eq. (3), a particular it-
erative Gaussianization (Chen and Gopinath, 2001)
approach—Rotation-Based Iterative Gaussianization
(RBIG, Laparra et al. (2011))—alternates between ap-
plying one-dimensional Gaussianization and rotations
to the data. Specifically, RBIG estimates the marginal
distribution corresponding to each dimension of the
data distribution, and performs one-dimensional Gaus-
sianization of all marginal distributions. Then, RBIG
applies a rotation matrix to the transformed data.

The rationale behind RBIG is that dimension-wise
Gaussianization will decrease Jm(x) and leave I(x)

invariant, due to the fact I(x) is invariant under
dimension-wise invertible transformations (Laparra
et al., 2011), whereas applying rotation to p(x) will not
modify the overall KL divergence objective I(x)+Jm(x)
since KL is invariant under bijective transformations
(rotation in particular) and N (0, I) is rotationally in-
variant. Therefore, DKL (p(x) ‖ N (0, I) ) will not in-
crease (typically decreases) at each RBIG iteration. To
improve the performance of RBIG, one could consider
rotation operators that make Jm(x) as large as possi-
ble, so that the subsequent marginal Gaussianization
step removes Jm(x) and results in a large decrease in
DKL (p(x) ‖ N (0, I) ). Popular choices of rotation ma-
trices include random matrices and those computed by
independent component analysis (ICA) and principal
component analysis (PCA). However, all three candi-
dates are less than desirable. For random rotations
and PCA, the procedure could require many RBIG
steps to converge (Laparra et al., 2011). ICA, on the
other hand, is optimal yet does not have closed-form
solutions and is expensive to compute in practice.

3 METHOD

While iterative Gaussianization possesses the ability to
transform a complex distribution to standard normal,
density estimation with iterative Gaussianization is
still difficult, because of the following challenges:

• One-dimensional (1D) Gaussianization is challeng-
ing for certain data distributions;

• Finding optimal rotation matrices is challenging
(as in the case of ICA rotation matrices, which
have no closed form solution).

In this section, we address these challenges with a new
type of invertible flow model based on the iterative
Gaussianization (RBIG) method, named Gaussianiza-

tion Flows (GF). Specifically, GF improves the two
components of RBIG where we replace 1D Gaussianiza-
tion with a trainable kernel layer and a fixed rotation
matrix with a trainable orthogonal matrix layer.

3.1 Building Trainable Kernel Layers

Marginal Gaussianization plays a crucial role in RBIG
since it reduces the objective value Jm(x) in Eq. (5) and
is the only procedure that decreases the KL objective
in Eq. (3) (rotation does not change the KL divergence
because KL is invariant to bijective mappings, however,
it enables progress in the next iteration). For a set of 1D
scalars {xj}Mj=1, one could perform Gaussianization by
first estimating a CDF (denoted as Fdata(x)), and then
applying the transformation φ : x 7→ Φ−1 ◦ Fdata(x)
where Φ is the CDF for a 1D standard Gaussian.
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One approach to estimate the CDF is via 1D density
estimation, where the CDF can be computed from
the PDF by taking the integral. As we are assum-
ing the underlying data distribution is continuous, we
can naturally employ kernel density estimation (KDE)
methods to fit the data PDF, and then obtain the CDF
by integrating out the kernels in closed-form. How-
ever, there are two shortcomings of KDE for large-scale
density estimation. Firstly, the complexity of com-
puting the KDE for each sample scales quadratically
with the number of samples, making it prohibitive for
larger batches/datasets; secondly, the performance of
KDE largely depends on the sample size (Parzen, 1962;
Devroye and Wagner, 1979) and bandwidth selection
(Sheather, 2004), yet optimal bandwidths are difficult
to obtain even with good bandwidth selection heuristics
(Scott and Sheather, 1985).

To alleviate the limitations of existing non-parametric
KDE approaches, we propose to learn a “parameter-
ized KDE” for each data dimension, leading to train-

able kernel layers. For each data dimension (indexed
by d = 1, 2, · · · , D), we learn a set of anchor points

{µ(d)
j }Kj=1 and bandwidth parameters {h(d)

j }Kj=1. This
leads to a total of 2KD parameters for a trainable
kernel layer. Mathematically, we parameterize a CDF
with the following

F
(d)
θ

(x) ,
1

K

K
∑

j=1

σ

(

x(d) − µ
(d)
j

h
(d)
j

)

, d = 1, · · · , D, (6)

where σ(·) denotes the sigmoid function throughout
the paper, and θ denotes the collection of all trainable

parameters ({µ(d)
j }Kj=1 and {h(d)

j }Kj=1). Learning this
CDF amounts to performing KDE with a logistic kernel
when σ(·) is the sigmoid function. Then, the Gaussian-
ization procedure for dimension d can be parameterized
as

Ψ
(d)
θ

(x) , Φ−1 ◦ F (d)
θ

(x), d = 1, · · · , D, (7)

and we denote Ψθ = (Ψ
(1)
θ

,Ψ
(2)
θ

, · · · ,Ψ(D)
θ

)⊺.

By making anchor points and bandwidths trainable,
our parametric trainable kernel layer can be more sam-
ple efficient compared to the traditional non-parametric
KDE approach (when trained, for example, with maxi-
mum likelihood). We find that 20 to 100 anchor points
work well in practice. In stark contrast, naïve KDE
needs thousands of sample points to get comparable
results, which is particularly inefficient given that the
computational complexity scales quadratically with
respect to K.

We note that Ψ is a transformation with a Jacobian
whose determinant is tractable. Additionally, Ψ can be
efficiently inverted:

• Φ,Φ′,Φ−1 are not computable by elementary func-
tions, yet they can be efficiently evaluated via
numerical methods.

• As both Φ−1 and F
(d)
θ

are monotonic, Ψ
(d)
θ

= Φ−1◦
F

(d)
θ

is also monotonic. We can therefore efficiently
invert Ψθ by inverting all of its dimensions with the
bisection method in parallel, as Ψθ is element-wise.

• The Jacobian of Ψ is a diagonal matrix. The
log-determinant is therefore the sum of the log-

derivatives of Φ−1 ◦ F (d)
θ

(x) over all dimensions.

3.2 Building Trainable Rotation Matrix

Layers

In iterative Gaussianization, we transform the data
using a rotation matrix after the marginal Gaussian-
ization step. As mentioned in Section 2.2, finding a
good rotation matrix is challenging using methods like
ICA or PCA. Here, we discuss our approach to finding
rotations by optimizing trainable rotation matrices.

3.2.1 Householder Reflections

We can parameterize the rotation matrix using House-
holder reflections, defined for any vector v ∈ R

D:

H = I − 2vv⊺

‖v‖22
. (8)

Any D×D orthogonal matrix R can be represented as
the product of at most D Householder reflections (Tom-
czak and Welling, 2016), i.e., R = H1H2 · · ·HD.

By parameterizing the rotation matrix with multiple
trainable Householder reflections, we define a trainable

orthogonal matrix layer. Since the inverse of a rotation
matrix is the transpose of itself, one can efficiently
obtain the inverse by multiplying the transpose of the
orthogonal matrix. Moreover, because the Jacobian
determinant of an orthogonal transformation is always
one, we can easily compute the Jacobian determinant
of this layer, which is also equal to one.

One caveat is that each Householder reflection requires
D parameters, and thus fully parameterizing a rota-
tion matrix will require O(D2) parameters. This is
reasonable when the data dimension is small. How-
ever, this may no longer be feasible in cases where D
is large. For example, CIFAR-10 (Krizhevsky et al.,
2009) images have D = 3072, and ImageNet (Deng
et al., 2009) images can have D as large as 106. In
such cases, one may need to trade off model flexibility
for computational efficiency by using a smaller number
(< D) of Householder reflections. Below, we explore
one such approach that exploits the structure of im-
ages and utilizes a patch-based parameterization of
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A PROOFS

A.1 Mixtures of Logistics are Universal Approximators

First, we show that mixtures of logistics are universal approximators for any univariate continuous densities
supported on a compact set. The proof is based on the classic result on uniform convergence of kernel density
estimation (KDE):

Lemma 1 (Uniform convergence of KDE (Parzen, 1962)). Let f be a continuous probability density function

on a compact set X ⊂ R. Let K(y) denote a symmetric probability density function over R whose characteristic

function is absolutely integrable. Let {x1, x2, · · · , xn} be i.i.d. samples from f(x). Given any hn → 0 such that

hn

√
n → ∞, we may define

f̂n(x) =
1

nhn

n
∑

i=1

K

(

x− xi

hn

)

as an approximation to f(x) over X with high probability; that is

max
x∈X

|f̂n(x)− f(x)| p→ 0, as n → ∞.

The universal approximation of mixtures of logistics is an immediate result of Lemma 1.

Lemma 2 (Mixtures of logistics are universal approximators to probability densities). Let X be any compact

subset of R. Let P(X ) denote the space of continuous probability densities on X . Then, given any ǫ > 0 and any

probability density p ∈ P(X ), there exist an integer N , real constants µi ∈ R, σi ∈ R
++ for i = 1, · · · , N such

that we may define

fN (x) =
1

N

N
∑

i=1

e
−

x−µi
σi

σi

(

1 + e
−

x−µi
σi

)2

as an approximate realization of the probability density p over X ; that is

sup
x∈X

|fN (x)− p(x)| < ǫ.

In other words, functions of the form fN (x) are dense in P(X ).

Proof. We note that fN (x) is a kernel density estimator on data points {µi}Ni=1, with the logistic kernel

K(y) =
e−y

(1 + e−y)2
.

It is a continuous probability distribution (logistic distribution), symmetric, and has an absolutely integrable
characteristic function. Using Lemma 1 we conclude that for any ǫ > 0 and 0 < δ < 1, there exists N and hN

such that

Pr
X1,··· ,XN∼p(X)






sup
x∈X

∣

∣

∣

∣

∣

∣

∣

1

NhN

N
∑

i=1

e
−

x−Xi
hN

(

1 + e
−

x−Xi
hN

)2 − p(x)

∣

∣

∣

∣

∣

∣

∣

< ǫ






> 1− δ > 0.

Since the probability is non-zero, there exists x1, x2, · · · , xN such that

sup
x∈X

∣

∣

∣

∣

∣

∣

∣

1

N

N
∑

i=1

e
−

x−Xi
hN

hN

(

1 + e
−

x−Xi
hN

)2 − p(x)

∣

∣

∣

∣

∣

∣

∣

< ǫ.

Letting µi = xi and σi = hN for i = 1, 2, · · · , N , we have

sup
x∈X

|fN (x)− p(x)| < ǫ,

which proves our statement.
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Lemma 3. Let p be a continuous probability distribution on a compact set X ⊂ R. Assume there exists δ > 0
such that infx∈X p(x) > δ. Then, given any ǫ > 0, there exist an integer N , real constants µi ∈ R, σi ∈ R

++ for

i = 1, · · · , N such that we may define

fN (x) =
1

N

N
∑

i=1

e
−

x−µi
σi

σi

(

1 + e
−

x−µi
σi

)2

to approximate p(x) in terms of KL divergence; that is

DKL (p(x) ‖ fN (x) ) < ǫ.

Proof. It suffices to show that
∣

∣

∣

∣

∫

x∈X

p(x) log fN (x)dx−
∫

x∈X

p(x) log p(x)dx

∣

∣

∣

∣

< ǫ.

Using Lemma 2 we know that

sup
x∈X

|fN (x)− p(x)| → 0, as N → ∞.

For ǫ1 > 0, there exists an integer N , real constants µi ∈ R, σi ∈ R
++ for i = 1, · · · , N such that

sup
x∈X

|fN (x)− p(x)| < ǫ1.

Because p(x) > δ, we know fN (x) > δ − ǫ1, in which case

sup
x∈X

| log fN (x)− log p(x)| ≤
(

sup
t≥δ−ǫ1

1

t

)(

sup
x∈X

|fN (x)− p(x)|
)

≤ ǫ1
δ − ǫ1

.

Then,
∣

∣

∣

∣

∫

x∈X

p(x) log fN (x)dx−
∫

x∈X

p(x) log p(x)dx

∣

∣

∣

∣

≤
∫

x∈X

p(x)| log fN (x)− log p(x)|dx

≤
∫

x∈X

p(x) sup
x∈X

| log fN (x)− log p(x)|dx

≤ ǫ1
δ − ǫ1

.

Our statement is proved by setting ǫ1 = ǫδ
1+ǫ

.

Corollary 1. Let p be a continuous probability distribution on a compact set X ⊂ R. Assume there exists δ > 0
such that infx∈X p(x) > δ. Then, given any ǫ > 0, there exist an integer N , real constants µi ∈ R, σi ∈ R

++ for

i = 1, · · · , N such that if we define

FN (x) =
1

N

N
∑

i=1

σ

(

x− µi

σi

)

,

where σ(·) is the sigmoid function, and transform random variable X ∼ p to Y = Φ−1(FN (X)) where Φ(·) is the

CDF of standard normal, we have

DKL (Y ‖ N (0, 1)) < ǫ.

Proof. Let Z ∼ N (0, 1). Since KL divergence is invariant to bijective transformations, we get

DKL (Y ‖ Z ) = DKL (FN (X) ‖ Φ(Z) ) = DKL

(

X
∥

∥ F−1
N (Φ(Z))

) (i)
= DKL (p(x) ‖ fN (x) ) ,

where fN (x) = F ′
N (x). Here (i) is because Φ(Z) is a uniform random variable and the inverse CDF trick of

producing samples from a distribution with CDF FN (x) and PDF fN (x).
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A.2 Gaussianization Flows are Universal Approximators

Theorem 1. Let p be any continuous distribution supported on a compact set X ⊂ R
D, and infx∈X p(x) ≥ δ for

some constant δ > 0. Let Ψ : RD → R
D denote a marginal Gaussianization layer of the Gaussianization flow,

where for each element xi of x, we choose an integer Ni, real constants µij ∈ R, σij ∈ R
++ for j = 1, · · · , Ni such

that

Ψi(x) = Φ−1





1

Ni

Ni
∑

j=1

σ

(

xi − µij

σij

)



 .

Then, there exists a sequence of marginal Gaussianization layers {Ψ(1),Ψ(2), · · · ,Ψ(k), · · · } and rotation matrices

{R(1), R(2), · · · , R(k), · · · } such that the transformed random variable

X
(k) , Ψ(k)(R(k)Ψ(k−1)(R(k−1) · · ·Ψ(1)(R(1)

X)))
d→ N (0, I),

where X ∼ p.

Proof. The proof closely parallels Theorem 10 in Chen and Gopinath (2001) and Huber’s proof of weak convergence
for projection pursuit density estimates (Huber, 1985). Let q(i) denote the distribution of X(i), and let q(i,j)

denote the j-th marginal distribution of X
i. Because Ψ(i) and R(i) are continuous operations for all i, and

p is supported on a compact set X , we know q(i,j) is also supported on a compact set, which we denote as
X (i,j). In addition, we observe that the determinant of Jacobian of Ψ(i) is always strictly positive, and the
determinant of R(i) is ±1. Combining this observation with the condition that infx∈X p(x) > δ, we know there
exists a constant δ(i,j) > 0 such that infx∈X (i,j) q(i,j)(x) > δ(i,j) for all i, j. Therefore, q(i,j) and Ψ(i) satisfy the
conditions in Lemma 3 and Corollary 1, which entails that for any ǫ(i,j) > 0 and ǫ(i) > 0 there exists Ψ(i) such
that ∀j : DKL

(

q(i,j)(x)
∥

∥ N (0, 1)
)

< ǫ(i,j) and Jm(X(k)) < ǫ(i).

The KL divergence of X(k) is

J(X(k)) = I(X(k)) + Jm(X(k))

= I(R(k)
X

(k−1)) + Jm(Ψ(k)R(k)
X

(k−1)).

After q(k−1)(X(k−1)) is obtained, we always choose R(k) = arg infR I(RX
(k−1)), and then select Ψ(k) appropriately

such that

Jm(Ψ(k)R(k)
X

(k−1)) ≤ ǫ(k) =
ǫ(k−1)

2

Let ∆(k) denote the reduction in the KL divergence in the k-th layer:

∆(k) = J(X(k))− J(X(k+1))

= I(X(k)) + ǫ(k) − inf
R

I(RX
(k))− ǫ(k+1)

≥ 0.

Since {J(X(k))} is a monotonically decreasing sequence and bounded from below by 0, we have

lim
k→∞

∆(k) = 0.

Also since ǫ(k) = ǫ(k−1)/2, we have limk→∞ ǫ(k) = 0.

Next, we consider the following quantity

J∗(X) = max
‖α‖2=1

J(α⊺
X).

For any unit vector α, we let Uα be an orthogonal completion of α, i.e.,

Uα = [α,α2, · · · ,αn].
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Figure 6: Uncurated MNIST samples from various models. Left: MADE. Middle: RBIG. Right: GF.

Figure 7: Uncurated Fashion-MNIST samples from various models. Left: MADE. Middle: RBIG. Right: GF.

C SAMPLES

We provide uncurated samples from GF, MADE and RBIG for both MNIST and Fashion-MNIST datasets (see
Fig. 6 and Fig. 7).

D ADDITIONAL EXPERIMENTAL DETAILS FOR GF

D.1 Tabular and Image Datasets

We report the architectures and hyperparameters of our GF models in Tab. 3. We tested the following three
different parameterizations of the trainable rotation matrix layer.

Table 3: Model architectures and hyperparameters for Gaussianization Flows.

Method POWER GAS HEPMASS MINIBOONE BSDS300 MNIST FMNIST

layers 50 150 100 90 30 10 10
anchor points 50 50 100 50 60 50 50
Householder refl. 6 8 21 43 63 50 50
patch size - - - - - 4 4
learning rate 0.005 0.005 0.005 0.005 0.005 0.01 0.01
epoch 200 200 200 200 200 200 200
batch size 2000 2000 500 500 1000 100 100
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(1) Naïve Householder reflections.

(2) Patch-based rotation matrices.

(3) Alternating between (1) and (2).

We only use (1) for tabular datasets, where each rotation matrix is constructed using D Householder reflections
(D denotes the dimensionality of datasets). We try all three parameterizations for MNIST and Fashion-MNIST.
In the case of (1), we use 50 Householder reflections to trade off between computational efficiency and model
expressivity. In the case of (2), we set patch size to 4 and randomly choose a different shifting constant c for each
layer. We observe that (2) achieves the best results on MNIST while (3) performs the best on Fashion-MNIST.
We report the best results out of all parameterizations for MNIST and Fashion-MNIST in Tab. 1.

D.2 Stretched Tabular Datasets

We report the architectures and hyperparameters of our GF models in Tab. 3. For other models, we adopt the
default architectures and hyperparameters as mentioned in their original papers, except that we train each model
for 100 epochs.

D.3 Small Training Sets

We report the architectures and hyperparameters of our GF models in Tab. 3. For other models, we adopt the
default architectures and hyperparameters as mentioned in their original papers, except that we train each model
for 200 epochs on a smaller shuffled subset.

E ADDITIONAL EXPERIMENTAL DETAILS FOR RBIG

For the marginal Gaussianization step, we fit the 1D distributions with KDE (logistic kernel) and tune the kernel
bandwidth with the rule-of-thumb bandwidth estimator. For the rotation step, we use rotation matrices obtained
from PCA rather than random, as we empirically observe that PCA exhibits better performance and faster
convergence than random rotation matrices.

To obtain better results, we perform KDE on 50000 data points for all the tabular datasets, except for BSDS300
where the number of samples is reduced to 20000 for faster computation. We use 10000 data points for both
MNIST and Fashion-MNIST. The number of RBIG iterations is set to 5 for all datasets, as we found it performs
the best within the range 1–100.
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