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Abstract

A major obstacle to forming posterior distri-

butions in machine learning is the difficulty of

evaluating partition functions. Monte-Carlo ap-

proaches are unbiased, but can suffer from high

variance. Variational methods are biased, but

tend to have lower variance. We develop an

approximate inference procedure that allows

explicit control of the bias/variance tradeoff, in-

terpolating between the sampling and the vari-

ational regime. We use a normalizing flow to

map the integrand onto a uniform distribution.

We then randomly sample regions from a parti-

tion of this uniform distribution and fit simpler,

local variational approximations in the image of

these regions through the flow. When a partition

with only one region is used, we recover stan-

dard variational inference, and in the limit of an

infinitely fine partition we recover Monte-Carlo

sampling. We show experiments validating the

effectiveness of our approach.

1 INTRODUCTION

Integration of high-dimensional functions is a central

problem in many fields, serving as the workhorse that

powers posterior inference in probabilistic machine learn-

ing, inference with latent-variable models, and risk-

sensitive modelling in finance (Dick et al., 2013). How-

ever, methods that work well in low dimensions can

quickly become computationally intractable as the di-

mension increases: this is the so-called curse of dimen-

sionality. This challenge motivates the development of

approximate methods. The two main families of approx-

imate methods are: (1) variational approaches, which

fit an approximating function to the integrand, and (2)

Monte-Carlo methods, which take random samples from

the domain of the integrand to compute its average value
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(Bishop, 2006). While Monte-Carlo methods are guar-

anteed to give the correct result in the limit of infinite

samples (i.e., they are unbiased), they can suffer from

high variance. Conversely, variational methods are bi-

ased, but the resulting Evidence Lower Bound (ELBO)

(Ranganath et al., 2013) has zero variance if evaluated

analytically. Monte Carlo methods for approximating the

ELBO introduce some variance, but this variance is typi-

cally smaller than pure sampling-based methods. Viewing

the two families of methods as two extremes on the bias-

variance tradeoff (Bishop, 2006), we observe that it is

frequently useful to move along the bias/variance curve,

e.g. incurring some bias in order to reduce the variance to

manageable levels, or in order to speed up computation

time.

We describe a method that allows continuous interpola-

tion along the bias-variance curve, from the high-bias,

low variance variational inference (VI) regime to the high-

variance, low-bias sampling regime. We randomly sam-

ple from a partition of the integration domain and fit

variational approximations inside each ‘cell’ of the par-

tition. Stratification in Monte-Carlo methods refers to

sub-sampling the integration domain to increase sample-

efficiency: we can view our method as a form of stratifica-

tion for variational inference. In the limiting case where

the size of the cells goes to zero, we recover ordinary

importance sampling, where the proposal distribution is

given by the normalizing flow’s induced probability dis-

tribution, and in the limit with a single partition cell we

recover ordinary variational inference.

The variance of our method depends heavily on the choice

of partition. Similarly to importance sampling (IS), we

want to choose a partition which is adapted to the objec-

tive function, with most of the partition cells in regions

where the objective function is large. Normalizing flows

provide a natural method to provide this partition of the

integration domain, by choosing a uniform partition of

the flow’s base space and observing the image in the in-

tegration domain. In a toy experiment we show that the





appear to converge quickly, but to an incorrect value. This

is because significant contributions to the estimate can

come from very rare points under the proposal, with large

importance weights (Owen & Zhou, 2000). Our method

allows interpolation between the fully-variational and the

fully-importance-sampled extremes, allowing the amount

of bias and variance to be tuned according to the specific

problem.

2.1 NORMALIZING FLOWS

A normalizing flow (Rezende & Mohamed, 2015; Papa-

makarios et al., 2019) is a density model constructed by

applying an invertible transformation T : U ! Z to a

base density ⇡0, resulting in a density q on Z . The change

of variables equation gives an expression for q:

q(T (u)) = ⇡0(u)

�

�

�

�

det
dT

du

�

�

�

�

, (4)

where dT
du

is the Jacobian of T with respect to u. Flow

models allow for exact likelihood evaluation, unlike some

other models, such as variational autoencoders (Kingma

& Welling, 2013), where we can only tractably evaluate

a lower bound on the likelihood. However, the exact

likelihood comes at a cost: parameterising T such that it

is invertible is not straightforward, and can require a large

number of parameters to develop expressive flow models.

Most density-modelling applications of flows involve

modelling the inverse transform T�1 Dinh et al. (2017);

Grathwohl et al. (2019), using the equivalent formulation

q(z) = ⇡0(T
�1(z))

�

�

�det dT�1

dz

�

�

�
, since learning a flow to

maximize the likelihood of samples z from a distribution

requires evaluating and optimizing q(z). By contrast, our

application does not assume that we can sample from

our objective f (in fact f does not even need to be a nor-

malized density). Therefore, we train our flow by taking

samples u from the base distribution, and only model the

forward transform T . Since we implemented our flow

using RealNVP, a coupling flow, we can tractably evalu-

ate both T and T�1. However these considerations are

important if future work uses autoregressive flows, where

generally only one of T or T�1 are able to be tractably

evaluated, and computing the other may be up to d times

slower, for a d-dimensional flow (Papamakarios et al.,

2019).

The base distribution ⇡0 is generally chosen to be a unit

multivariate normal distribution, which has a tractable

density, unbounded support, and is easy to sample from.

However, we use a base distribution which is the uniform

distribution on the unit cube [0, 1]d, since we want to

choose partition cells with equal probability mass. These

are easily obtained with cubes in the base space for the

uniform distribution, and is somewhat more involved in

the Gaussian case. Using the uniform density requires

some care, which we discuss in section 4.2.

3 METHOD

Recall that our goal is to compute integrals of the form
R

Z
f(z)dz. Given a distribution q, we have a lower bound:

log

Z

Z

f(z) � Ez⇠q [log f(z)� log q(z)] . (5)

We can form a finite partition PN of Z: a family of N
disjoint nonempty sets Bi such that

S

i Bi = Z . In each

cell we define a separate distribution qi (supported only

on Bi) and observe that

Z

Bi

f(z)dz � exp (Ez⇠qi [log f(z)� log qi(z)]) . (6)

Summing the lower bounds from each cell, we have

Z

Z

f(z)dz �
X

i

expEz⇠qi



log
f(z)

qi(z)

�

. (7)

If we introduce a distribution QN over cells in PN , we

can introduce importance-weighting to obtain our lower

bound LQN
,

Z

Z

f(z)dz � EBi⇠QN



1

QN (Bi)
expEz⇠qi



log
f(z)

qi(z)

��

= LQN
. (8)

This expression reduces to familiar cases in two natural

limits. In the case with a single cell which encompasses

Z , we have the standard variational lower bound. At the

other extreme, in the limit when the size of the cells is

very small, f is approximately constant, and so the qi that

gives the tightest bound is the uniform distribution over

Bi. The family of distributions QN over cells approaches

a distribution Q over points in Z , and so we recover a

lower bound Ez⇠Q [f(z)/Q(z)], which is the standard

importance sampling expression. A special case that we

will use heavily is when we choose uniformly from a

partition R splitting Z into N pieces, where we get a

lower bound

LN = NEBi⇠U(R) [expEz⇠qi [log f(z)� log qi(z)]] ,
(9)

which we can estimate with an estimator

L̂N =
N

n

n
X

i=1

exp

0

@

1

n0

n0

X

j=1

log f(zi,j)� log qi(zi,j)

1

A ,

(10)



where we take the average from a sample of n cells (out

of a partition with N cells), in each cell computing the

ELBO using n0 samples, where zi,j is the jth point in a

batch of n0 points drawn from the distribution qi.

Although LN is always a valid lower bound, we want

the tightest lower bound possible. The key idea behind

our approach is that since LN is valid for all choices of

inner-cell distributions qi, we can improve the estimator

by optimizing each qi before evaluating L̂N . Since we

expect the variational optimization task in each cell to be

easier than optimization over the entire space, we would

hope to be able to find a qi which is a close approximation

to f . However, the easier optimization task in each cell

comes at the cost of increased variance in the estimate of

the objective LN as we try to estimate the global ELBO

with individual ELBOs. The pseudocode in algorithm 1

describes this procedure. We can also interpret our ap-

proach as lazily sampling parts of a very good variational

function, which is defined piecewise in the cells of Z .

Theorem 1 illustrates that this procedure reduces to esti-

mation of
R

Z
f(z)dz using importance sampling in the

limit of N ! 1, and Theorem 3 (in the appendix)

shows that finite-sample estimates of LN are indeed lower

bounds with high probability. In the next section, we dis-

cuss how to find a good partition of Z , which determines

the variance of our estimator.

Theorem 1. For any distribution q, we can construct a

sequence of partitions PN and probability distributions

over the cells QN such that the distribution of points

obtained by sampling a cell from QN then uniformly sam-

pling from that cell converges in distribution to q. Under

that choice of PN and QN , the importance-weighted ex-

ponential of the ELBO obtained in the cell as a function

of z converges pointwise to f(z)/q(z).

Proof. We choose a partition of R
d into rectangular

cells with side length 2�n, and a probability distribu-

tion over the cells QN (Bi) =
R

Bi

q(z0)dz0. If we

choose a point Z in Z by choosing a cell Bi with prob-

ability QN (Bi) and then choose a point uniformly in

the cell, Z has a piecewise-constant density RN (z) =
1

Vol(B(z))

R

B(z)
q(z0)dz0, where we define B(z) = {Bi :

z 2 Bi}. By the Lebesgue differentiation theorem,

limN!1 RN (z) = q(z) almost everywhere, and since

the densities are a.e. the same, the random variables con-

verge in distribution.

Now consider as a function of z, the corresponding value

obtained, SN (z) = QN (B(z))�1 expELBO(B(z)). In

the limit n ! 1, we have

lim
N!1

SN (z) = lim
N!1

1

QN (B(z))
exp



E
z0⇠qi

log
f(z0)

qi(z0)

�

.

(11)

Noting that our choice of the uniform distribution over

the cell has qi(z) = vol(Bi(z)), we also have QN (Bi) =
RN (z) vol(Bi), so cancelling the log q term we obtain

lim
N!1

SN (z) = lim
N!1

1

RN (z)
exp

Z

B(z)

log f(z0)

vol(B(z))
dz0,

(12)

so limN!1 SN (z) = f(z)/q(z).

Theorem 2. For a variational distribution q sup-

ported on Z with ELBO ELBO(Z), and a parti-

tion of Z into two parts A,B with
R

A
q =

R

B
q,

log [expELBO(A) + expELBO(B)] � ELBO(Z),
where ELBO(A) is the renormalized q with q(z) = 0
if z /2 A, q(z)/

R

A
q(z0)dz0 otherwise, similarly for B.

Proof. Expanding ELBO(Z),

ELBO(Z) = 1
2

Z

Z

qA(z)



log
f(z)

qA(z)
+ log 2

�

dz

(13)

+ 1
2

Z

Z

qB(z)



log
f(z)

qB(z)
+ log 2

�

dz (14)

= 1
2 ELBO(A) + 1

2 ELBO(B) + log 2,
(15)

If we use those two ELBO estimates separately in our

estimator and compare to the log of our lower bound,

logL2 = log [expELBO(A) + expELBO(B)] ,

using Jensen’s inequality,

logL2 �
1

2
[ELBO(A) + ELBO(B) + 2 log 2] (16)

� ELBO(Z). (17)

4 IMPROVING OUR ESTIMATOR

Recall our estimator from equation (10). We can see that

its bias and variance will depend on both our choice of

a partition of Z and of the individual variational distri-

butions qi. In this section we discuss how to find a good

partition which will allow us to train flexible variational

distributions.

4.1 CHOICE OF PARTITION

We can see from inspection of equation (10) that the

variance of L̂N is minimized when the ELBO is the same





where ⇡0 is the uniform distribution on the unit cube, and

JTθ(u) is the Jacobian of T at u. The requirement of be-

ing able to compute rzf(z) does not seem particularly

onerous given that we assume we have a method to com-

pute f(z) and the mature tools available for automatic

differentiation (Maclaurin et al., 2015).

However, if we cannot evaluate rzf(z), then we

must use the higher-variance score function esti-

mator (Williams, 1992), with a gradient estimator

�Ez⇠qθ [log(f(z)/qθ(z))rθ log qθ(z)], using the reverse

Jacobian to compute qθ(z) and rθ log qθ(z). Since our

approach would then require evaluation of both T and

T�1, this would be slow for flow architectures such as

autoregressive models.

4.3 JOINT TRAINING

Until now we have only discussed finding good partitions

PN and variational functions qi separately. However,

we might find that optimization difficulties or limited

model expressiveness result in a partition which is not

well-suited for our task. For example, if the flow col-

lapses to a single mode of a multimodal distribution, most

of the cells would be in that mode, resulting in a high

variance estimator. Exactly matching the density of f is

certainly a sufficient condition for providing a partition-

ing with minimal variance, but it is not necessary. Indeed

when evaluating LN using algorithm 1, any partitioning

which splits up Z into regions of equal f density will

work equally well given flexible qi. We want to obtain

our partitioning flow by solving the easiest possible prob-

lem, which raises the question of whether it is possible to

directly optimize the flow parameters for the task of pro-

viding good partition cells, not simply density matching.

The most straightforward approach would be to directly

optimize LN from estimates using equation 10. However,

the exponentials involved give the gradient a very high

variance, with almost all of the gradient contribution to

the base flow’s parameters coming from the cell which

happens to have a higher ELBO than the rest. This con-

tinues until the cell with the largest ELBO has become

very large. Taking a more heuristic approach, we could

also sample cells and optimize the mean ELBO. However,

since we do not sample all the cells and the non-active

cells do not contribute to the objective being optimized,

there is a danger of the active cells expanding to take all

of the density of f , essentially overfitting the active cells

onto the density. We found that we could regularize this

optimization procedure by including a term in the loss

equal to the ELBO using a partition with only a single

cell, with a variational density provided by the uniform

distribution over the flow base space. In other words, the

regularization term is the ELBO using the partitioning

flow as a variational approximation on the whole space.

Since the ELBO over the whole space will suffer if indi-

vidual cells become too large, including the ELBO over

the whole space penalises the behaviour of cells growing

too large. Therefore the surrogate loss we use in training

with n cells is

1� �

n

X

i

ELBO(Bi) + �ELBO(Z), (22)

where ELBO(Z) is the ELBO taken over the whole space.

Figure 3 shows a comparison of the two methods on a

two-dimensional mixture-of-sixteen-Gaussians objective.

We see that the plain variational approach has large areas

of the support of the objective where there is little support

from the variational function, and has some partition cells

with quite pathologically stretched out shapes, while the

method trained with the joint approach covers all of the

modes.

4.4 IMPLEMENTATION DETAILS

We implemented our method with the RealNVP normal-

izing flow archtitecture (Dinh et al., 2017), using four

layers for the partitioning normalizing flow and another

four layers to model each of the instantiated variational

distributions qi. Each scale-and-shift function was mod-

elled with a 256-hidden-unit multilayer perceptron with

ReLU nonlinearities. Since a scale-and-shift from a unit

cube does not result in support over R
d, we added an

elementwise inverse sigmoid operation before the first

scale-and-shift, updating the log Jacobian accordingly. To

model the densities in individual cells, we used a flow

with an elementwise sigmoid after the final shift-and-

scale layer, mapping into the unit box, and then scaled

and shifted the output into the required cell, again incor-

porating the shift into the total log Jacobian. We incorpo-

rated a small ✏ = 10�5 into the sigmoid (i.e. mapping to

[✏, 1�✏]d instead of (0, 1)d) to avoid numerical instability

from samples that were very near the box boundary and

so mapped to areas with extremely low objective density.

5 EXPERIMENTS

5.1 GAUSSIAN GRIDS

A setting where we expect our approach to help is the

situation when the target density f has multiple modes.

It has been noted that normalizing flows struggle with

multi-modal densities (Dinh et al., 2019), and we would

hope that our model would be able to focus on particular

modes in each cell.

We generate a mixture-of-Gaussians density, with modes

evenly spaced between �1 and 1, in four to twelve dimen-







Figure 5: The data distribution used in the Bayesian

marginalization task, and the lines corresponding to the

ground-truth parameters.

6 RELATED WORK

6.1 FLEXIBLE IMPORTANCE SAMPLING

There is a large body of work on finding good importance

sampling distributions (Cappé et al., 2004; Liang, 2002;

Martino et al., 2015). In general, importance sampling

proposal distributions require fast sampling of a sample

z ⇠ q and fast exact evaluation of q(z), requirements

which are naturally satisfied by normalizing flows. Pre-

vious work has investigated the application of flows to

importance sampling, with an application to ray tracing

in animation (Müller et al., 2019).

6.2 FLOWS AND MULTIMODALITY

The Real And Discrete (RAD) architecture (Dinh et al.,

2019) combines a continuous flow with a categorical dis-

tribution. This allows separate modes to be assigned to

different values of the categorical distribution, obtaining

better log-likelihoods for multi-modal density estimation

tasks such as the two-moons dataset. Similarly, the Lo-

calised Generative Flow family of models introduced in

Cornish et al. (2019) are comprised of a collection of

flows, where each individual flow only has to learn a lo-

cal region of the objective function. They demonstrate

that Masked Autoregressive Flows (Papamakarios et al.,

2017) fail to learn a probability distribution comprised

of two separated uniform distributions: the fact that the

transform used is bijective means that some density must

exist in a path between modes, leading to pathological

distributions and unstable learning.

6.3 ADAPTIVE INFERENCE METHODS

Deliberately over or under-sampling regions of parameter

space in order to reduce variance is a mature statistical

technique known as stratified sampling (Neyman, 1934).

A key aim of our method is to use the samples collected

so far to learn which regions to over- or under-sample.

This idea has a long history, with initial work such as the

VEGAS algorithm (Lepage, 1978) significantly speeding

up high-dimensional integration by forming a proposal

distribution using histograms over the input space, fitted

with the observed density. Adaptive inference methods

can fail to converge on the correct value (Cappé et al.,

2008) since they generally use samples from the previous

proposal distributions to fit the next proposal distribution.

Recent work introduces inference trees (Rainforth et al.,

2018), a method for recursive partitioning the parameter

space to give guarantees on the result obtained.

7 DISCUSSION AND CONCLUSION

We have introduced the stratified normalizing flow ap-

proach to approximate inference, allowing us to trade off

between the high-bias, low-variance variational methods

and the low-bias, high-variance Monte-Carlo methods

with an approach that fits variational approximations in-

side a set of learned partition cells. In the limit of a single

partition we recover the standard variational approach,

while with an infinite number of cells our approach is

equivalent to importance sampling. Through experiments

on a highly multimodal toy problem and a more realistic

Bayesian inference problem, we observe that this gives

more accurate inference. We avoid the mode-collapsing

tendency of variational methods (Bishop, 2006) while

retaining their relatively quick optimization and good per-

formance, but can reduce their bias by moving towards

the importance sampling case by increasing the number

of cells used. There are many possible avenues for further

work. For instance, how exactly does the bias-variance

tradeoff evolve as we increase the number of cells–is there

an optimal size for the partition cells? It is plausible that

the number of partition cells needed could be learned

through optimization–perhaps by encoding the number

of cells as a random variable and using a continuous re-

laxation of this (Maddison et al., 2017) to learn the best

distribution.
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