
Cascade Attention Guided Residue Learning GAN
for Cross-Modal Translation

Bin Duan
Texas State University, USA

bin.duan@txstate.edu

Hugo Latapie
Cisco, USA

hlatapie@cisco.com

Wei Wang
EPFL, Switzerland
wei.wang@epfl.ch

Hao Tang
University of Trento, Italy

hao.tang@unitn.it

Yan Yan∗
Texas State University, USA

tom yan@txstate.edu

Abstract—Since we were babies, we intuitively develop the
ability to correlate the input from different cognitive sensors
such as vision, audio, and text. However, in machine learning,
this cross-modal learning is a nontrivial task because different
modalities have no homogeneous properties. Previous works
discover that there should be bridges among different modalities.
From neurology and psychology perspective, humans have the
capacity to link one modality with another one, e.g., associating
a picture of a bird with the only hearing of its singing and vice
versa. Is it possible for machine learning algorithms to recover
the scene given the audio signal?

In this paper, we propose a novel Cascade Attention-Guided
Residue GAN (CAR-GAN), aiming at reconstructing the scenes
given the corresponding audio signals. Particularly, we present a
residue module to mitigate the gap between different modalities
progressively. Moreover, a cascade attention guided network with
a novel classification loss function is designed to tackle the cross-
modal learning task. Our model keeps consistency in the high-
level semantic label domain and is able to balance two different
modalities. The experimental results demonstrate that our model
achieves the state-of-the-art cross-modal audio-visual generation
on the challenging Sub-URMP dataset.

I. INTRODUCTION

Cross-modal learning involves multiple modalities, aims
at learning knowledge from one modality to facilitate the
tasks (e.g., retrieval and generation) from another correlated
modality. Cross-modal learning gains long-lasting interest in
multimedia. Recently, with the increasing popularity of Gener-
ative Adversarial Networks (GANs) [1], cross-modal research
is not only limited to retrieval [2], [3] but also makes the
cross-modal generation possible, such as text-to-image [4], [5],
image-to-image [6], [7], story visualization and generation [8],
[9]. Recently, radio signals [10] have also been successfully
applied to human pose prediction. The radio signals which are
a form of waves that are robust to occlusions so that it can
predict human poses behind the wall. Another special wave is
an audio signal, which has also been explored to reconstruct
the scene [11]–[15].

Generating image from audio using GANs was first de-
scribed by Chen et al. [11] where they introduce a conditional
GANs (cGANs) [16] model to tackle the problem. Later, Hao
et al. presented the Cross-Modal Cycle GAN (CMCGAN) [12]

to solve the cross-modal visual-audio mutual generation prob-
lem. Although this paper conducts an interesting exploration,
we still observe unsatisfactory artifacts and missing contents
in the generated images, which are due to several reasons.
First, even if previous works [11], [12] showed there were
truly some connections between audio and visual modalities,
there is still a huge gap between different modalities, e.g., the
sound of the wind blowing trees and the image of shaking
leaves. Thus, without prior knowledge about this scenario, it
is hard to associate them together. Second, a random latent
vector was employed to assist the learning process. They tried
to represent the properties of the input audios accompanied
by some manually defined random latent vectors. However, we
argue that these latent vectors cannot represent the information
of the audios accurately since they are random Gaussian
noises, i.e., they are not directly withdrawn from the audios.
Consequently, we avoid employing random latent vectors in
our designed model.

Based on the above observations, in this paper, we propose a
novel Cascade Attention-Guided Residue GAN (CAR-GAN)
to handle the audio-to-image translation task. The proposed
CAR-GAN contains two-generation stages and the overall
framework of CAR-GAN is depicted in Fig. 1, in the first
stage, the Log-amplitude of Mel-Spectrum (LMS) [17] image
A (a representation of the raw audio) concatenated with La

(one-hot class label for the audio) is fed into the first self-
attention guided generator (G1) and G1 outputs a coarse result
I ′. Different from previous works [11], [12], we deprecate
the latent vector in our model. Note that to efficiently model
relationships between widely separated spatial regions, we
introduce self-attention to both generator and discriminator.

The coarse output I ′ from the first generation network is
taken as input to the proposed residue module to obtain the
corresponding class label vector L′i, which is a high-level
semantic class label for the coarse output I ′ produced by the
embedded classifier in our proposed residue module. The label
Li reflects how realistic the first generator is by measuring
the embedding in the high-level class label space. Then we
subtract L′i from label La to obtain the residue class label
vector Lr. Lr reflects the discrepancy between the generated
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Fig. 1. Overview of CAR-GAN framework. Generator G1 takes the audio LMS (A) and its class label (La) as input to generate coarse image I′. Generator G2

takes I′ and the output of our specific-designed residue module (Lr) as inputs to synthesize fine-grained image I′′. Note that to detect the most distinguished
part in different modality spaces, we introduce the self-attention mechanism to both generators. Two generators of different stages are jointly optimized
in an end-to-end fashion that aims at enjoying the mutually improved benefits from different modalities, i.e., audio and image. +© denotes channel-wise
concatenation.

image I ′ and the audio in the semantic label domain based on
the coarse output I ′, which is corresponding to the discrepancy
between L′i and La. By taking means of Lr, our proposed
model makes compensation for the information lost in the
first stage, and generates more realistic results in the second
stage. Next, the coarse output I ′ from the first stage, together
with the residue class label Lr, are input into the second
stage network and generate more fine-grained final results.
The intuition behind the residue module is that the second
generator G2 can flexibly preserve the similarities between
audio and image space and only model the differences when it
is necessary, which can be regarded as a progressive generation
strategy. Finally, to optimize the proposed CAR-GAN in an
end-to-end fashion, the cascaded residue classification loss is
further used to generate more realistic images and preserve
the consistency between two stages. It is worth noting that,
the classifier in our proposed residue module is pre-trained
with the real images from the Sub-URMP dataset. During the
training of our CAR-GAN model, the classifier parameters are
fixed, and only the gradients of the synthesized images will
be backpropagated to guide the generator to synthesize images
with correct semantic labels. In this way, the label consistency
between the synthesized images and the audio labels could
be preserved. Through extensive experimental evaluations, we
demonstrate that CAR-GAN produces better results than the
baselines such as S2IC [11] and CMCGAN [12].

Overall, the contributions of this paper are summarized as
follows:

• A novel Cascade Attention-Guided Residue GAN frame-
work (CAR-GAN) for the cross-modal audio-to-image
translation task is proposed. It explores cascaded attention
guidance with a coarse-to-fine generation, aims at pro-
ducing a more detailed synthesis from the jointly learned
representation of both audio and image spaces.

• A novel residue module is presented, which is utilized
to smooth the gaps between different modalities at class
label space and is able to find correlations between

different modalities. We also propose a new cascaded
residue classification loss for more robust optimization. It
not only helps the model generate more realistic images
but also keeps the consistency between the two stages’
generation processes.

• Qualitative and quantitative results demonstrate the effec-
tiveness of the proposed CAR-GAN on the cross-modal
audio-to-image translation task, and show state-of-the-art
performance on the challenging Sub-URMP dataset [18]
with remarkable improvements.

II. RELATED WORK

Generative adversarial Networks (GANs) is proposed by
Goodfellow et al. [1], complemented with adversarial method.
A vanilla GAN is composed of a generator and a discrimi-
nator. The discriminator is trying to discriminate whether an
image is real or fake. Conversely, the generator is to learn
to output images that can fake the discriminator. Since the
GANs appeared, plenty of works such as [6], [9], [19] on
computer vision are based on GANs. With the success of
GANs, conditional GANs encode additional information as a
reference into the GAN framework which will make sure the
generator can run more straightforward to the target. cGANs
have achieved remarkable results in image-to-image translation
[6], [7], [20], super-resolution image generation [21], [22] and
style transfer [23], [24].
Image-to-Image Translation adopt input-output data to learn
a translation mapping between input and output domains. For
instance, Isola et al. propose Pix2Pix [6], which is a general-
purpose solution to image-to-image translation problems. TO
further improve the quality of the generated images, works
such as [25], [26] try to employ the attention mechanism to
force the generator to pay more attention to the distinguished
content between different input and output domains. In this
paper, we embed the proposed attention mechanism into our
cross-modal GAN model, which allows the generator to effec-
tively pay attention to the most distinguished representations
between audio and image modalities. Moreover, previous



works such as [27], [28] generate images using residual images
which is different from ours, we employ the residual class-
label to guide the generator for producing photo-realistic
images. In this way, the generator only needs to focus on
the high-level difference between the audio representation and
image representation.
Cross-Modal Learning represents any kind of learning that
involves information obtained from more than one modality.
Earlier work such as [29]–[32] show cross-modal perception
phenomena from the perspective of the neurological and
psychological field. They try to figure out the mutual relation
between auditory and visual information from a neurologist’s
or psychologist’s view. Later, cross-modal multimedia retrieval
starts booming since the revolution of multimedia technol-
ogy. Works such as [2], [3] take advantage of cross-modal
learning to help retrieving. Afterwards, cross-modal learning
is popular together with generative models, e.g., Variational
Autoencoders (VAEs) [33] and GANs [4], [34], [35].
Audio-to-Image Translation. There are few works to address
audio-to-image translation. Hao et al. propose a cycle encoder-
decoder architecture to tackle audio-to-image translation prob-
lem, under this framework, there are two sets of encoder-
decoder, one for audio modality, and one for image modality.
They try to solve the problem by making use of the cycle of the
encoders and decoders. Besides, existing methods [11], [12],
[36] on audio-to-image translation take the advantage of latent
Gaussian vector, where they design front convolution neural
networks encoder to extract feature maps out of input audios.
Later, the extracted feature maps are concatenated with the
latent vector as new feature maps, the combined feature maps
are fed into the generator to produce corresponding images,
i.e., the latent vector plays an important role in this trans-
lation. However, different from these existing methods, we
propose replacing the latent vector with the proposed residue
class-label since it contains more meaningful representations
between different modalities.

III. CASCADE ATTENTION GUIDED RESIDUE LEARNING
GAN

In this section, we describe our proposed Cascade Attention-
Guided Residue GAN (CAR-GAN) framework for cross-
modal translation in detail. We start with the model formu-
lation and then introduce the proposed objectives. Finally, we
present the implementation details including network archi-
tecture and training procedure. The overall framework of the
proposed CAR-GAN is illustrated in Fig. 1.

In stage one, we present a cascade attention guided gen-
eration sub-network, which utilizes both the audio signal A
and its class label La as inputs to generate an image. The
generated image I ′ is further fed into the proposed residue
module to obtain the corresponding image class label L′i.
Next, we calculate the residual cross-modal label Lr between
the audio label La and the image label L′i. Lr reflects the
distance between the generated images and the real images in
the semantic domain.

In stage two, the coarse synthesis I ′ and the residual cross-
modal label Lr are combined together as the input. In this
way, the semantic difference between the generated images
and audio signals, Lr can be employed to guide the generator
to further refine the generated image I ′. As a result, the cross-
modality semantic distance could be further reduced after the
refinement.

A. Stage I: Cascade attention guided generation

Class-Label Guided Generation with Self-Attention. Trans-
lating audio into an image is an extremely challenging task
since it is difficult to tell any relationship between audio and
image modalities directly. To handle this challenge, previous
works such as S2IC [11] and CMCGAN [12] tried to employ a
random Gaussian noise vector as input to guide the generator
to produce a synthetic image. We argue that the Gaussian noise
vector will introduce some errors misguiding the generator.
Different from them, we input a more accurate audio class-
label into the generator similar to [20], [37]. Specifically, as
shown in Fig. 1, we first replicate La spatially along with both
height and weight dimension and then perform channel-wise
concatenation with input LMS A from audio space. Finally,
we input them into the first generator G1 and synthesize its
corresponding coarse image I ′ as I ′ = G1(A,La). In this
way, the audio class-label La provides stronger supervision to
guide cross-modal translation in the deep network. Moreover,
to force the generators paying more attention to the most
distinguished content between different modalities, we further
introduce the self-attention mechanism into the generators.
Zhang et al. [26] proposed the Self-Attention Generative
Adversarial Network (SAGAN) for image generation tasks.
Differently, in this paper, we propose a self-attention image-
to-image translation network which allows long-range depen-
dency modeling for cross-modal image translation task with
drastic domain change. Once the generators know which part
they should pay attention to, the next goal is to generate
images with more fine-grained details. Therefore, we cascade
two generators and train them simultaneously.
Coarse-to-Fine Cascade Generation. Due to the complexity
of the cross-modal audio-to-image translation task, we observe
that the first stage generator G1 only outputs a coarse synthesis
with blurred artifacts, missing content and high pixel-level dis-
similarity. This thus inspires us to explore a cascade generation
strategy to boost the synthesis performance from the coarse
predictions. The Coarse-to-fine strategy has been used in
different computer vision applications achieving promising
performances, such as semantic segmentation [38] and object
detection [39], [40]. In this paper, we adapt the coarse-to-
fine strategy to handle a more challenging audio-to-image
translation task. We observe significant improvement using the
proposed cascade coarse-to-fine strategy, which is illustrated
in the experimental section.

B. Stage II: Cross-modal residue label guided generation

The overview of our proposed residue cross-modal label
guided generation module is shown in Fig. 2. This module



Fig. 2. Residue Module: I′ denotes the output of the first generator G1. The output of the classifier C is L′
i, which is the predicted label of I′. La is the

label of the audio, Lr denotes the difference between two different modalities, i.e., audio label La and image label L′
i. -© denotes channel-wise subtraction.

consists of a pre-trained classifier to preserve the cross-modal
label cycle consistency and a cross-modal residue label guided
generation sub-network.
Cross-Modal Label Cycle Consistency. Based on the theory
[20], we expand it into our label consistency method. The
coarse output I ′ of stage I is fed into the classifier C to
generate an image classification label L′i. To further reduce
the space of possible mismatch between audio and image
modalities, we hypothesize that the learned mapping functions
should be cycle-consistent in cross-modal translation. For the
audio class label La, the translation cycle should be able to
bring it quite close to the image label L′i, i.e., G1(A,La) →
I ′ → C(I ′) → L′i ≈ La. We name this as cross-modal
label cycle consistency since L′i is a label representation of
the coarse output I ′ in the image modality and La is a label
representation of the audio A in the audio modality. Note that
the proposed cross-modal cycle consistency is different from
the cycle consistency in CycleGAN [7] which adapts the cycle-
consistency between the input image and the reconstruction
image in the image space, in this paper, we employ making two
different modalities cycle consistent in the class-label space.
Cross-Modal Residue Label Guided Generation. Previous
works have shown that residual images can be effectively
learned and used for image generation task. For instance,
Shen and Liu [27] used the learned residual image as the
difference between images before and after the face attribute
manipulation. Zhao et al. [28] trained networks to learn
residual motion between the current and future frames for the
image-to-video generation task, which avoids learning motion-
irrelevant details. Instead of manipulating the whole image,
both approaches proposed to learn the residual images. In
this way, the manipulation can be operated efficiently with
modest pixel modification. However, in the paper, we propose
the residue label rather than residue image for the cross-modal
image translation task. Specifically, we first obtain the residue
label Lr between the image label L′i and the audio label La

by calculating Lr = La −L′i. Then we intend to generate the
missing information Lr in the second generator stage, which
can be expressed as,

I ′′ = G2(I
′, Lr) = G2(G1(A,La), Lr). (1)

In this way, the generation process can be operated efficiently
with modest pixel modification, i.e., the generator G2 can

flexibly preserve the similarities between the audio and image
representations, and only model the differences between them.

C. Label consistency: Backpropagating via the classifier

A vanilla cGAN conducts backpropagation mainly deter-
mined by the discriminator. The discriminator judges from
the image-level information, but not the label-level seman-
tic information. We argue that different but corresponding
modalities can match with the same semantic label. Therefore,
apart from performing backpropagation from the discriminator,
we also backpropagate from the label classifier to make sure
the generated images belong to the same label domain with
input audios. During the training, the corresponding label, i.e.,
the instrument type of the input audio signals, is fed to the
classifier. When we update the model during backpropagation,
the parameters of the pre-trained classifier are fixed. Only the
gradients of input images are passed back such that the images
can be revised accordingly to match its semantic label. In
this way, label consistency can be guaranteed. The classifier
is re-trained using a pre-trained model using ImageNet [41].
The backpropagating path is described in Fig. 3. During the
backpropagation of the classifier, we design a joint loss LC

for our two-stage generations. LC is composed of two parts:
the classification loss of stage I and stage II,

LC = L(I ′, I ′′) =λI′L(I ′) + λI′′L(I ′′), (2)

where L is the cross-entropy loss function. λI′ and λI′′

are coefficients to control the relative importance of the two
objectives.

D. Universal optimization objective

Adversarial Loss. Our adversarial loss is composed of two
parts since we adapt two stages generation. During the stage
I, the adversarial loss of discriminator D for differentiating
generated audio-image pairs [A, I ′] from real audio-image
pairs [A, I] is formulated as following:

LcG1(A, I
′) = EA,I [logD(A, I)]+

EA,I′
[
log(1−D(A, I ′))

]
,

(3)

where I is the ground truth image. During the stage II,
the adversarial loss of discriminator D for differentiating
generated audio-image pairs [A, I ′′] from real audio-image
pairs [A, I] is formulated as following:

LcG2(A, I
′′) = EA,I [logD(A, I)]+

EA,I′′
[
log(1−D(A, I ′′))

]
.

(4)



Fig. 3. The backpropagation path of the proposed CAR-GAN. The solid line denotes the path for the forward process, the red dashed line denotes the
backpropagation path. We use the same pretrained classifier C twice in our model, so does the discriminator D but without pretrained. I′′ denotes the final
generated cross-modal image. +©, -© denote channel-wise concatenation and subtraction, respectively.

The above two adversarial losses both target to reduce the
disagreements with ground truth images and generate more
realistic synthesized images. Therefore, our adversarial loss is
the total sum of the two stages:

LcG = λG1LcG1(A, I
′) + λG2LcG2(A, I

′′) (5)

Universal Loss. Besides the adversarial loss LcG, we also
introduce the classification loss LC and L1 loss function for
better optimizing our CAR-GAN. Our final loss function is a
combination of the three losses.

min
{G1,G2,C}

max
{D}
L = λcLC + λcGLcG + λL1LL1, (6)

where LL1 = LL1(I, I
′) + LL1(I, I

′′). λc, λcG and λL1

denote the trade-off parameters to control the significance of
its corresponding loss function, respectively. Our model is
trying to balance the min-max problem while training.

E. Implementation details

Network Architecture. Inspired by the work of Isola et al. [6],
we employ U-Net [42] as the backbone of our generators
G1 and G2. U-Net is a Convolution Neural Network (CNN)
architecture with skip connections between a down-sampling
encoder and an up-sampling decoder, and it retains complex
texture information of the input. We share the same network
architecture in both generators. The convolutions of down-
sampling layers and up-sampling layers are 4×4 kernel with
stride 2 and padding 1. The filters in attention convolution
layers are 1×1 with stride 1. For the discriminator D, we
adapt PatchGAN as in [6], [7]. The kernel size of the attention
convolution layers is also 1×1. Both the generators and dis-
criminator have attention layers before the last two convolution
layers. The other convolution layers in the discriminator have
a kernel size of 4×4 kernel with stride 2 and padding 1. Batch
normalization is used in our model. As for the classifier, we
employ ResNet50 [43] architecture which is pre-trained on the
ImageNet. Then we add a fully connected layer at the end of

the network and conducted transfer learning in the Sub-URMP
dataset for high classification accuracy. The classifier is fixed
while training our model.
Training Details. First, we employ preprocessing for every
audio, where the audios are converted from waveform pattern
to LMS pattern, which is a frequency warping pattern that
allows for better representation of audio clip. After prepro-
cessing all audios, we then input the LMS pattern into our
proposed CAR-GAN. Moreover, the proposed CAR-GAN is
trained and optimized in an end-to-end style. C is pre-trained
and fixed while training. We first train G1, G2 with D fixed,
and update parameters of G1 and G2 by the sum of gradients
from C’s and D’s backpropagation, and then we train D with
G1 and G2 fixed, but the backpropagation of C has no influ-
ence on the optimization of D, i.e., the optimization is only
determined by G1 and G2. We apply Adam algorithm [44]
for optimizing both the generators (G1, G2) and discriminator
(D) jointly. The betas of the Adam algorithm set to 0.9 and
0.999, respectively. Weights are initialized from a Gaussian
distribution with standard deviation 0.2 and mean 0.

IV. EXPERIMENTS

A. Experimental settings

Datasets. Following [11], we adapt the widely used Sub-
URMP (University of Rochester Musical Performance)
dataset [18] to evaluate the proposed model. This dataset
consists of 17,555 pairs of audios and images and has 13 kinds
of instruments played by different people. It maps an image
to half-second long audio, and the image is the first frame of
the half-second long audio.
Parameter Settings. We resize images to 256×256 resolution
as inputs. We implement with Pytorch and the experiments
are running at 4 Nvidia GeForce GTX 1080 Ti GPUs with
batch size 64. We set the learning rate to 0.0008, and stop
our training at the epoch of 200. Both λI′ and λI′′ in Eq. (2)



Fig. 4. Ablation study: synthesized images by different models of the proposed CAR-GAN. LMS represents the LMS of the input audios.

TABLE I
RESULTS OF THE PROPOSED CAR-GAN FOR FID AND IS METRICS.

Baseline A B C D E GT
FID 279.3022 332.1574 380.1104 307.3725 207.3734 -
IS 3.2221 3.4337 2.0699 3.7215 3.8180 4.7552

TABLE II
THE CLASSIFICATION ACCURACY OF DIFFERENT METHODS.

Method Accuracy
Training Testing

S2IC 0.8737 0.7556
CMCGAN 0.9105 0.7661

Ours 0.9954 0.9068

are set to 0.5. We set λG1
, λG2

in Eq. (5), and λc, λcGAN in
Eq. (6) all equal to 1, and λL1 equal to 100 in Eq. (6).
Evaluation Metrics. To compare with previous work [11],
[12], we employ the classification accuracy as the metric,
the only metric used in the previous two papers. The way
we measure our model is that we first train a model with
99.56% classification accuracy using ResNet50 trained on
the Sub-URMP dataset. Specifically, the 99.56% classification
accuracy is obtained by training and testing on both the
training and testing set. Then we test the pre-trained ResNet50
on our generated results. Following the same train/test split
employed in Table 2 of [11], our model is trained using Sub-
URMP dataset. The intuition behind this is that if the generated
images are realistic, the classifier trained on the real images
will also achieve decent accuracy on the generated images
during the testing stage. In addition to classification accuracy,
we also employ Fréchet Inception Distance (FID) [45] and
Inception Score (IS) [46] metrics to further evaluate the fidelity
of the generated images. Due to the lack of a pre-trained model
and released code of previous work, we are not able to get FID
and IS of their works.

B. Experimental results

Settings of Ablation Study. We perform ablation studies on
the proposed CAR-GAN. We break down our model and as-
semble it into five different models. The following five models
share a similar backbone, but a particular part is abandoned.

Fig. 5. Generated images of different stages of our model.

Model A avoids using attention guided generations. Model
B drops out the Lc loss. Residue module is taken out from
model C and Lr is replaced by La. Model D is running without
stage II (no second generator). And the last model E is our
fully proposed model. Fig. 4 shows the corresponding cross-
modal generated images of different models. Table I depicts
how models perform based on the metrics we employed.
Influence of Attention Mechanism. Compared with our
proposed full model E, model A which avoids attention mech-
anism performs slightly worse. The results of model A shows
the overall contour of images, but some details are left out.
That is, attention mechanism does enhance the representation
ability of our model.
Influence of Classification Loss. If we add our proposed
classification loss into the model, we make an improvement by
37.56% in FID and 11.19% in IS since the classification loss
Lc awards the generators strong guidance towards the ground-
truth. This tells generators from an overall classification view.
Therefore, the generators know the appropriate direction to go
from the label domain.
Influence of Residue Module. With our residue module, we
achieve an amazing improvement on FID by 45.44% and on
IS by 84.45%. Our residue module supplements the missing
information during the generation of Stage I, making that the
generated images belong to the same domain and keep balance



Fig. 6. Synthesized images of different methods on the Sub-URMP dataset.

Fig. 7. Impact of L1 regularizer. y denotes the performance for each metric.
The figure shows how the metrics’ value changing with different weight of L1
regularizer in loss function. We adapt ln function on y for better visualization.

in the label domain between inputs and outputs.
Influence of Two-Stage Generation. Our two stages of gen-
erators lead to the improvement of 32.53% in FID and 2.59%
in IS. The single generator has weak representation ability for
a complicated cross-modal generation. Thus, the union of two
or more generators can progressively improve representation
ability and performance. To visualize the influence of the two-
stage generation, we display synthesized images by different
stages in Fig. 5. The generated images by the second stage
have more fine-grained details and are more realistic, i.e.,
it certifies that the two-stage generation is beneficial for the
whole generation procedure.
Impact of L1 regularizer. To show the model is not overfitting
by L1 loss, a more detailed experiment is performed to
evaluate the impact of the structural L1 regularizer for the
generated images. To better show the different results, we plot
the trajectory of the metrics’ value in Fig. 7.
State-of-the-art Comparisons. We show the quantitative and
qualitative results with comparison methods in Table II and
Fig. 6. We make an improvement in training accuracy by
13.93%, 9.32% compared to S2IC [11] and CMCGAN [12],
respectively. As for the testing, we achieve an increase of

Fig. 8. Failure cases during inference on the Sub-URMP dataset.

20.01% and 18.37% compared with S2IC and CMCGAN.
Furthermore, we produce more realistic and detailed images
compared with the previous methods as illustrated in Fig. 6.
Failure Cases and Analysis. During our experiments, we
find there are some synthesized images like Fig. 8 which are
randomly combined by learned features. Moreover, when we
carefully look into these cases, we finally find out that the
corresponding inputs of these failure cases are more like noises
that are randomly distributed, and the GT images show people
mostly hold the instrument still and wait, that is, there is no
sound making by instruments, the audios mainly consist of
background and other noises.

V. CONCLUSION

In this paper, we design a novel Cascade Attention Guided
Residue Learning GAN (CAR-GAN) to solve the challenging
cross-modal audio-to-image translation task. Particularly, it
employs cascaded attention guidance and a coarse-to-fine
generation strategy. A novel residue learning model is also
proposed to tackle the cross-modal class-label dis-match prob-
lem between audio and image modality. By introducing the
residue module, generators learn to produce residue features
between two stages, which pushes the output closer to its
corresponding real image in a high-level semantic space.
Finally, the proposed joint classification loss facilitates the
model generation and keeps consistency in the label domain.
Experimental results show the state-of-the-art performance on
the cross-modal translation task.
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