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Sharp L? estimates of the Schrodinger
maximal function in higher dimensions

By X1uMIN DU and RUIXIANG ZHANG

Dedicated to the memory of Jean Bourgain

Abstract

We show that, for n > 3, lims_, e™*® f(z) = f(z) holds almost every-
where for all f € H*(R"™) provided that s > ﬁ Due to a counterexam-
ple by Bourgain, up to the endpoint, this result is sharp and fully resolves
a problem raised by Carleson. Our main theorem is a fractal L? restriction
estimate, which also gives improved results on the size of the divergence
set of the Schrédinger solutions, the Falconer distance set problem and the
spherical average Fourier decay rates of fractal measures. The key ingre-
dients of the proof include multilinear Kakeya estimates, decoupling and
induction on scales.

1. Introduction
The solution to the free Schrédinger equation

iug —Au=0, (x,t) e R" xR,

(L) u(z,0) = f(z), xze€R"

is given by
(@) = (20" [l fg) e

In [8], Carleson proposed the problem of identifying the optimal s for
which limg_ ;o e™® f(2) = f(z) almost everywhere whenever f € H*(R"), and
he proved convergence for s > 1 when n = 1. Dahlberg and Kenig [10]
then showed that this result is sharp. The higher dimensional case has since
been studied by several authors [7], [9], [29], [31], [2], [27], [30], [22], [3], [23],
[11], [4], [25], [12], [13]. In particular, almost everywhere convergence holds if

s> % — 2= whenn > 2 (n =2 due to Lee [22] and n > 2 due to Bourgain [3]).

Keywords: Fourier restriction, weighted restriction, Schrédinger equation, Schrédinger
maximal function, decoupling, refined Strichartz
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838 X. DU and R. ZHANG

Recently Bourgain [4] gave counterexamples showing that convergence can fail

if s < 554y Since then, Guth, Li and the first author [12] improved the

sufficient condition when n = 2 to the almost sharp range s > % In higher

dimensions (n > 3), Guth, Li and the authors [13] proved the convergence for

s> n+1
2(n+2)"
In this article, we establish the following theorem, which is sharp up to

the endpoint.

THEOREM 1.1. Let n > 3. For every f € H*(R™) with s > 72(7::,1)7

lim;_,q €A f(x) = f(x) almost everywhere.

We use B™(z, ) to represent a ball centered at = with radius 7 in R™. By
a standard smooth approximation argument, Theorem 1.1 is a consequence of
the following estimate of the Schrédinger maximal function.

THEOREM 1.2. Letn > 3. For any s > %, the following bound holds.
For any function f € H*(R"),

(1.2) sup \eitAf\

< Csll f Nl s (mny-
0<t<1

L2(B"(0,1))

Via a localization argument, Littlewood-Paley decomposition and para-
bolic rescaling, Theorem 1.2 is reduced to the following theorem, which we will
prove in this paper.

THEOREM 1.3. Let n > 3. For any e > 0, there exists a constant C. such
that

< CLRT+0 4|l
LQ(B"(O,R))

(1.3) sup ]eimf]

0<t<R

holds for all R > 1 and all f with suppr A(l) ={£ eR™: || ~ 1}.

Remark 1.4. When n = 1,2, our proof of Theorem 1.3 remains valid
and recovers the almost sharp results of the pointwise convergence problem.
However, the sharp L? estimates of the Schrédinger maximal function are not
as strong as the previous sharp LP estimates in the cases n =1, 2:

(1.4) sup [eA f| < Ol fllgr/aw) (21, Kenig-Ponce-Vegal
t>0 L4(R)
and
; 1
(1.5) sup |eA f] < Cull fllprsrzy Vs> = [12, D-Guth-Li]. !
0<t<1 L3(]R2) 3

'The global L? estimate (1.5) follows easily from the local L? estimate in [12], via a
localization argument using wave packet decomposition.
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 839

Testing with the standard examples used in restriction theory seems to suggest
that the following estimate holds for all n > 1:

(1.6) <C|fll

2(n+1
L2 ()

sup |eA f|
0<t<1

H2(7;n:|»1) (Rn) ’

From (1.4) and (1.5) we see that (1.6) is true for n = 1 and is true
up to the endpoint for n = 2. However, the estimate (1.6) fails in higher
dimensions. In a recent work of Kim, Wang and the authors [15], by looking
at Bourgain’s counterexample [4] in every intermediate dimension, we showed
that the following local estimate,

. n
(1.7) sup |2 f] < Csllfllgsmny V5> =—,

0<t<1 Le(B(0,1)) (™) 2(n+1)
fails if p > pg := 2 + m. Note that @ > pg when n > 3 and

henceforth (1.6) fails. To our best knowledge, the following two problems are
still open when n > 3: determine the optimal p = p(n) for which we can
have (1.7), and identify the optimal s = s(n,p) for which (1.7) with p > 2
fixed holds.

Remark 1.5. In our proof of (1.3), no typical L? arguments such as
Plancherel and T'T™* are invoked to take advantage of the particular use of the
L? norm on the left-hand side of (1.3). In fact, the L? norm will be converted
to LP norm (see Proposition 3.1), where p = % is the sharp exponent for
the 12 decoupling theorem in dimension n. The L? is used on the left-hand

side of (1.3) mostly because the numerology adds up favorably for that space.

By lattice L-cubes we mean cubes of the form [ + [0, L]" with | € (LZ)".
Our main result is the following fractal L? restriction estimate, from which
Theorem 1.3 follows.

THEOREM 1.6. Let n > 1. For any € > 0, there exists a constant C;
such that the following holds for all R > 1 and all f with suppf C B™(0,1).
Suppose that X = |J,, By is a union of lattice unit cubes in B"*1(0, R) and
each lattice RY/2-cube intersecting X contains ~ X\ many unit cubes in X. Let
1<a<n+1 and~y be given by

#{By : B, C B(2',r)}

1.8 = .
(1.8) U Bn+1(z/,glg§n+1(o,}z) re

! eRn+1 r>1

Then

(1,9) ”e"tAfHLQ(X) < Cary(n+1)2(n+2) /\(n+1)n(n+2) R(n+1)ogn+2) +‘€Hf”2.
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840 X. DU and R. ZHANG

Note that in Theorem 1.6, A < yR*/2. As a direct result of Theorem 1.6,
there holds a slightly weaker fractal L? restriction estimate. It has a relatively
simpler statement:

COROLLARY 1.7. Let n > 1. For any € > 0, there exists a constant C,
such that the following holds for all R > 1 and all f with suppf C B™(0,1).
Suppose that X = |Ji By, is a union of lattice unit cubes in B"T1(0, R). Let
1<a<n+1 andy be given by

#{By : B, C B(z',r)}

(1.10) o= max .
Bntl(z/ r)CcB"t1(0,R) re
! eRn+1 r>1
Then
. 1 a
(1.11) €2 £ p2(x) < Ceymt RED 8| £,

We will see that Corollary 1.7 is sufficient to derive the sharp L? estimate
of the Schrédinger maximal function (Theorem 1.3) and all other applications
in Section 2. This corollary can also be proved directly by a slightly simpler ar-
gument. The case n = 1 of Corollary 1.7 can be recovered using the ingredients
in Wolff’s paper [32]. See Section 3.3 for a discussion.

Nevertheless, Theorem 1.6 has two advantages compared to Corollary 1.7.
Firstly, it gives us a better L? restriction estimate if the set X of unit cubes
is fairly sparse at the scale R'/2. Secondly, it tells us some geometric in-
formation about a set X of unit cubes when |e®2f|| r2(x) is comparable to
”eitAfHLz(B(O,R))' For example, taking o =n + 1 (hence v < 1), we have

COROLLARY 1.8. Letn > 1. Suppose that X = |Ji Bi is a union of lattice
unit cubes in B"T1(0, R) and each lattice R'/?-cube intersecting X contains ~ \
many unit cubes in X. Suppose there is a function f with supp]? C B™(0,1)
and | flla # 0 such that [ f||2x) = RY2||f|l2. Then A% R

As a remark, the scale R'/2 in Corollary 1.8 is the largest one can have.
Indeed, with the assumption of the corollary, the unit cubes in X do not have
to almost fill R°-cubes completely for f > 1/2. One can see this from the
Knapp example where we only have one wave packet.

To prove our main result, Theorem 1.6, we will use a broad-narrow anal-
ysis, which has similar spirit as the techniques in the work of Bourgain-Guth
[6], Bourgain [3], Bourgain-Demeter [5] and Guth [19].

In the broad case, we can exploit the transversality and apply the multi-
linear refined Strichartz estimate, which is a result obtained by Guth, Li and
the authors in [13]. (See [12], [14], [13] for applications of the refined Strichartz
estimate.) In the narrow case, we use the [? decoupling theorem of Bourgain-
Demeter [5] in a lower dimension and perform induction on scales. The way we
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 841

do induction has its roots in the proof of the linear refined Strichartz estimate,
due to Guth, Li and the first author (essentially proved in [12] — see [13] for
the statement in the general setting).

Our method is related to Bourgain’s in [3], where he has a similar broad-
narrow analysis. (Here we have the size of the small ball being K? instead of
K as in [3] for a technical issue similar to what one has in [5], [19].) He applied
multilinear restriction to control the broad part in the sharp range s > 52

2(n+1)
(except the endpoint). He speculated from this that the above range of s

might be sharp. (See the end of the introduction in [4].) In [3] the narrow part
was handled following the general approach from [6], which gives non-sharp
estimates. Historically, one could view the present non-endpoint solution to
Carleson’s problem as building on [3], providing a subtler way of handling the
narrow part and proving Corollary 1.7. For the stronger Theorem 1.6 and
Corollary 1.8, one needs a different ingredient, namely, the multilinear refined
Strichartz in [13], to handle the broad part.

In Section 2 we show how Corollary 1.7 and Theorem 1.3 follow from The-
orem 1.6, and we also present applications of Theorem 1.6 to other problems,
bounding the size of the divergence set of the Schrodinger solutions (Theo-
rem 2.4), the Falconer distance set problem (Theorems 2.6 and 2.7) and the
spherical average Fourier decay rates of fractal measures (Theorem 2.8). We
prove Theorem 1.6 in Section 3.

Notation. We write

e A < Bif A< CB for some absolute constant C';, A ~ B if A < B and
B < A

e A < B if Ais much less than B;

e AT Bif A<C.R*B for any ¢ > 0,R > 1.

Sometimes we also write
e A< Bif A< C.B for some constant C. depending on &

(when the dependence on ¢ is unimportant).

By an r-ball (cube) we mean a ball (cube) of radius (side length) r. An
r X -+ X r X L-tube (box) means a tube (box) with radius (short sides length)
r and length L. For a set S, #S denotes its cardinality.

Acknowledgements. The authors would like to thank Larry Guth and
Xiaochun Li for several discussions. They also thank Larry Guth for mak-
ing some historical remarks, as well as sharing his lecture notes on decoupling
online, from which they got much inspiration. The second author would like
to thank Jean Bourgain and Zihua Guo who introduced the problem to him.
The authors are also indebted to Daniel Eceizabarrena and Luis Vega for a
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842 X. DU and R. ZHANG

discussion on the history of the Schrédinger maximal estimate in dimension
1+1.

The material is based upon work supported by the National Science Foun-
dation under Grant No. DMS-1638352, the Shiing-Shen Chern Fund and the
James D. Wolfensohn Fund while the authors were in residence at the Institute
for Advanced Study during the academic year 2017-2018.

2. Applications of Theorem 1.6

2.1. Sharp L? estimates of the Schrédinger mazimal function. In this sub-
section, we show how Corollary 1.7 and Theorem 1.3 follow from Theorem 1.6,
via the dyadic pigeonholing argument and the locally constant property.

Proof of (Theorem 1.6 = Corollary 1.7). Given X = |J; Bk, a union of
lattice unit cubes in B"*1(0, R) satisfying the assumptions of Corollary 1.7,
we sort the lattice RY/2-cubes in R"*! intersecting X by the number X of unit
cubes By, contained in it. Since 1 < A < R there are only O(log R) choices
for the dyadic number A. So we can choose a dyadic number A and a subset B),
of { By} such that for each unit cube B in By, the lattice R'/?-cube containing
it contains ~ A many unit cubes from B) and

1€ Fllzai) £ N llepes, B)

By applying Theorem 1.6 to HeimeLz(UBEB B)» we get
A

€2 fll 20y & 70D AT e RT3 | £,
and (1.11) follows from the fact that A < yR/2. O

Proof of the case o =n of Corollary 1.7 = Theorem 1.3. We will show
that

S R £l
L2(B™(0,R))
holds for all R > 1 and all f with Fourier support in B"(0, 1).
By viewing |2 f(z)| essentially as constant on unit balls,> we can find
a set X described as follows: X is a union of unit balls in B™(0, R) x [0, R]
satisfying the property that each vertical thin tube of dimensions 1 x---x1x R
contains exactly one unit ball in X, and

sup |e"2 f|
0<t<R

(2.1)

(2.2) sup [e/"2 f]

< ||eitAfHL2(X)-
0<t<R

L2(B"(0,R))

2We refer the readers to [6, §§2-5] for the standard formalism of this locally constant
property.
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 843
The desired estimate (2.1) follows by applying Corollary 1.7 to |2 f|| L2(X)
with « = n and v < 1. O

2.2. Other applications. By formalizing the locally constant property, from
Corollary 1.7 we derive some weighted L? estimates, Theorems 2.2 and 2.3,
which in turn have applications to several problems described below.

Definition 2.1. Let a € (0,d]. We say that p is an a-dimensional measure
in R? if it is a probability measure supported in the unit ball B%(0,1) and
satisfies that

(2.3) w(B(x,r)) < Cur® Vr >0, Ve R,
Denote dug(-) :== Rdu(3).

THEOREM 2.2. Letn > 1, € (0,n] and p be an a-dimensional measure
in R™. Then

< RTD | o,
L2(B"(0,R);dur(z))

(2.4) sup |eitAf|

0<t<R

whenever R > 1 and f has Fourier support in B™(0,1).

THEOREM 2.3. Let n > 1, € (0,n + 1] and p be an a-dimensional
measure in R"*1. Then

< RZF0 | £,

(2.5) L2(B"+1(0,R)dpg(z,t) ~

eitAf‘

whenever R > 1 and f has Fourier support in B™(0,1).

We defer the proof of these weighted L? estimates to the end of this
subsection. Let us first see their applications. We omit history and various
previous results on the following three problems and refer the readers to [13],
[14], [24] and the references therein.

(I) Hausdorff dimension of the divergence set of the Schrédinger solutions.
A natural refinement of Carleson’s problem was initiated by Sjogren and Sjolin
[28]: Determine the size of the divergence set; in particular, consider

ap(s):= sup dim {.’L‘ e R™ : lim 2 f(z) # f(x)} ,
feHs(R) t—0
where dim stands for the Hausdorff dimension.

The following theorem is a direct result of Theorem 2.2 (cf. [13], [24]).
When n = 2, it recovers the corresponding result derived from the sharp L3
estimate of the Schrédinger maximal function in Du-Guth-Li [12]. When n > 3,
it improves the previous best known result in Du-Guth-Li-Zhang [13].
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844 X. DU and R. ZHANG

THEOREM 2.4. Letn > 2. Then

2(n+1)s n n
2.6 < 1-— —.
(2.6) an(s) <n+ o amr D <

(I1) Falconer distance set problem. Let E C RY be a compact subset. Its
distance set A(F) is defined by

A(E):={lx —y|:z,y € E}.
CONJECTURE 2.5 (Falconer [16]). Letd > 2, and let E C R be a compact
set. Then
d
dim(E) > 5= |A(E)| > 0.

Here | -| denotes the Lebesgue measure and dim(-) is the Hausdorff dimension.

Following a scheme due to Mattila (cf. [14, Prop. 2.3]), Theorem 2.3 im-
plies the following result towards Falconer’s conjecture. When d = 2,3, this
recovers the previous best known results of Wolff (d=2, [32]) and Du-Guth-Ou-
Wang-Wilson-Zhang (d=3, [14]), via a different approach. In the case d > 4,
this improves the previous best known result in [14]:

THEOREM 2.6. Let d > 2 and E C R? be a compact set with
d? d 1 1

5d-1 2 74178d-41

dim(E) >

Then |A(E)| > 0.

By applying a very recent work of Liu [20, Th. 1.4], Theorem 2.3 also
implies the following result for the pinned distance set problem, with the same
threshold.

THEOREM 2.7. Let d > 2, and let E C R? be a compact set with
d? a1 1
2d—1 2 4 8d—4

Then there exists x € E such that its pinned distance set

Ay(E)={lr—y|: ye E}

dim(E) >

has positive Lebesgue measure.

(ITT) Spherical average Fourier decay rates of fractal measures. Let Bq(«)
denote the supremum of the numbers 5 for which

(2.7) IA(R) | Z2g-1) < CapR™’

whenever R > 1 and p is an a-dimensional measure in R?. The problem of
identifying the precise value of S4(«) was proposed by Mattila [26].
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 845

A lower bound of S4(«) as in Theorem 2.8 follows from Theorem 2.3 (cf.
[14, Rem. 2.5]). When d = 2, this recovers the sharp result of Wolff [32].
When d = 3 and a € (%,2], this recovers the previous best known result
of Du-Guth-Ou-Wang-Wilson-Zhang [14]. In the case d = 3,a € (2,3) or
d >4, € (d/2,d), this improves the previous best known result in [14].

THEOREM 2.8. Let d > 2 and o € (%,d). Then

(d—1)a

Bala) > y

The proofs of Theorems 2.2 and 2.3 are entirely similar and we only do
the proof of the former here, which is slightly more involved.

Proof of Theorem 2.2. Denote "2 f(x) by Ef(x,t) and (z,t) by Z. Since
suppf C B™(0,1), we have suppf?? C B™1(0,1). Thus there exists a Schwartz
bump function ¢ on R"*! (we require » = 1 on B"(0,100)) such that
(Ef)? = (Bf)? 0.

The function max;_z <c10n [¢(7)] is rapidly decaying. We call it ¢1(2).
Note also that any (x,t) in R"*! belongs to a unique integral lattice cube
whose center we denote by m = (m,my41) = (mq,...,mpy1) = m(x,t).

Then we have

(2.8)
2

sup |2 f|
0<t<R

L2(B™(0,R);dur)

= [ s [Bf ) dpn(e)
B"(0,R) 0<t<R

< oo o2 (B2 #191) 2 ()

0<t<R

0<t<R

< Y ([ A s (B

m:(m17"'7mn)ezn7 OZ’Ln+1€<ZR
Img|<R =Ml

< oo o212 (1P £01) (e, 1))

For each m € Z", let b(m) be an integer in [0, R] such that

sup  (|Ef? #91)(m, mps1) = (IEf? % 41)(m, b(m)).

mn+1€Z
0<mp, 4 1<R

This content downloaded from
129.2.19.102 on Tue, 14 Jul 2020 23:20:04 UTC
All use subject to https://about.jstor.org/terms



846 X. DU and R. ZHANG

Also we assume ||f|2 = 1 so |e2f| is uniformly bounded pointwisely. For
each m € Z™, we define

Um ‘= dug(r) S 1.
|z—m|<10
By (2.8), we have
2
sup |€ztAf|
0<t<R L2(B"(0,R);dur)

2.9
=9 S X Y. v (IBfPgpr)(m,b(m)) + R,

v dyadic meZ”,|m;|<R
ve[R—1007 1) Um ~V
For each dyadic v, denote A, = {m € Z" : |m;| < R, vy, ~ v}. Performing
a dyadic pigeonholing over v we see that there exists a dyadic v € [R7100" 1]
such that for any small € > 0,
2

sup_[e"2 f|
0<t<R

L2(B"(0,R);dur)
~ Z v (|Ef|* * 1) (m, b(m)) + R~

(2.10) medy
s () en
m% B (m,b(m)), Re)
<v- |Ef|> + R85,
UmeAu Brtt ((m7b(m))’R£)

Consider the set X, = (Jnea, B" 1 ((m,b(m)), R). It is a union of a col-
lection of distinct R®-balls and at the same time, it is also a union of unit balls.
These balls’ projection onto the (x1,...,z,)-plane are essentially disjoint. (A
point can be covered < R° times.) For every r > R%*. by the definition of
A,, the intersection of X, and any r-ball can be contained in no more than
R10ney~1ra disjoint R*-balls. Hence we can apply Corollary 1.7 to X, with
v < RO~ and . With (2.10) this gives

2
A n—-1l _ = _a 2 _a 2
(2.11) sup _[e" 2 f| S v R fllg S Rl
O<t<h L2(B™(0,R);dur)
This concludes the proof. O

3. Main inductive proposition and proof of Theorem 1.6

To prove Theorem 1.6, we will use a broad-narrow analysis, which involves
inductions. To make everything work we introduce another parameter K and
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 847

state the theorem in a slightly different way. We say that a collection of quan-
tities are dyadically constant if all the quantities are in the same interval of the
form [27, 2711 where j is an integer. This is our main inductive proposition:

PROPOSITION 3.1. Let n > 1. For any 0 < € < 1/100, there exist con-
stants C. and 0 < § = §(¢) < ¢ (e.g. § = &'%) such that the following holds
for all R > 1 and all f with suppf C B™(0,1). Let p = % (p = oo when
n = 1). Suppose that Y = UM, By is a union of lattice K?-cubes in B"*1(0, R)
and each lattice RY?-cube intersecting Y contains ~ X\ many K?2-cubes in Y,
where K = R°. Suppose that

HeitAfHLp(Bk) is dyadically a constant in k =1,2,..., M.
Let 1 <a<n-+1 and~ be given by
By : Br C B(a'
(3.1) = max #{ By : By C B(z ,r)}.

Bntl(g! r)CBn+1(0,R) re
2/ eRNH1 p> K2

Then
. 2 n o
(32) ”eltAfHLp(y) < CEM_%-H"}/ (n+1)(n+2) )\ (n+1)(n+2) R (n+1)(n+2) +e Hf”2

Theorem 1.6 follows from Proposition 3.1 by a dyadic pigeonholing argu-
ment:

Proof of (Proposition 3.1 = Theorem 1.6). Given X = |J; Bk, a union
of lattice unit cubes satisfying the assumptions of Theorem 1.6, we sort these
unit cubes By, according to the value of HeimeLp(Bk). Assuming ||f|l2 = 1,
there are only O(log R) significant dyadic choices for this value. Therefore, we
can choose X’ C X, a union of unit cubes B, such that

{||e"tA fllergy: B€X /} are dyadically constant
and
HeitAfHLQ(X) é HeitAfHLQ(X/)-
Let M be the total number of unit cubes B in X’. Since f has Fourier support

in the unit ball, by locally constant property, |e®*? f| is essentially constant on
unit balls. Therefore, the estimate (1.9) is equivalent to

. 2 n e}
(3.3) 1€ Fl o xn S M ™7 GG AT D READ 0 || £,
where p = 2(::1), and v, A are as in the assumptions of Theorem 1.6.

We further sort the unit cubes B in X’ as follows:

1) Let 3 be a dyadic number and Bg a sub-collection of the unit cubes in X’
B
such that for each B in Bg, the lattice K 2_cube B containing B satisfies

12 £l o i) ~ B

Denote the collection of relevant K2-cubes by B/g.
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848 X. DU and R. ZHANG

(2) Fix 5. Let X be a dyadic number and Bg y a sub-collection of Bg such
that for each B € Bg y/, the lattice RY2_cube Q containing B contains
~ X many K2-cubes from 5’5. Denote the collection of relevant K 2-cubes
by Bﬁ, A
Since there are only O(log R) many significant choices for all dyadic num-

bers 3, X', we can choose some 3 and N so that #Bg x £ M. Then it follows

easily by definition that

M':=#Bsgy 2 M, N <)\

and _ _ _
B e Bgy: BC B(2,
S max #1 B (@, )} <.
Brtl(x!r)CB"T1(0,R) re
a’:’ERn"'l,’PZKz

Applying Proposition 3.1 to ||eitAf||Lp(y) with ¥ = UBEBB N B and pa-

rameters M’, ', N, we get

HeitAfHLp(X) é HeitAfHLP(y) é M_%H’y(n+l)2(n+2) )\(n+1)n(n+2)R(n+lfén+2) HfH2=
as desired. O

The rest of this section is devoted to a proof of Proposition 3.1. Note
that when the radius R is < 1, the estimate (3.2) is trivial. So we can assume
that R is sufficiently large compared to any constant depending on €. We will
induct on radius R in our proof.

In the proof, we will sometimes have paragraphs starting with “Intuition.”
We hope that these will help the readers understand what we do next.

Intuition. For our union Y of K?-cubes, we want to use decoupling theory
on each K?2-cube. This will relate the whole e®2 f to its contributions e*4 f,
from various 1/K-caps 7 in the frequency space. Instead of doing decoupling
in dimension n + 1, we are going to do a broad-narrow analysis following
Bourgain-Guth [6], Bourgain [3], Bourgain-Demeter [5] and Guth [19]. For
each K?-cube, one of the following two has to happen:

(i) It is broad in the sense that there are n + 1 contributing caps that are
transversal. In this case the function is controlled by multilinear estimates
that are usually strong enough.

(ii) It is narrow (i.e., not broad). In this case all the contributing caps have
normal directions close to a hyperplane, which enables us to use decoupling
in dimension n.

Either way we get better estimates than a direct (n+1)-dimensional decoupling.
We control the broad part directly and do an induction on the narrow part.
Our induction has its roots in the proof of the refined Strichartz estimate in
[12], [13].
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L2 ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 849
Q(n"irll). In the frequency space we
decompose B™(0,1) into disjoint K ~!-cubes 7. Denote the set of K~ !-cubes 7
by S. For a function f with suppf C B™(0,1), we have f =Y. f;, where f;
is f restricted to 7. Given a K?-cube B, we define its significant set as

S(B) = {T €S| frll po(n) HeitAfHLP(B)} :

Throughout this section we fix p =

>_ -
— 100(#S)
Note that due to the triangle inequality,

H Z eitAfT

T7€S(B)

itA
o(B) "~ 1€ fllr(B)-

We say that a K?2-cube B is narrow if there is an n-dimensional subspace V/
such that for all 7 € S(B),
1
< )
~ 100nK

where G(7) C S™ is a spherical cap of radius ~ K1 given by

. (_257 1) n .
G(r) = {|(—2571)|€S .EET},
and Angle(G(7),V) denotes the smallest angle between any non-zero vector
v eV and v € G(1). Otherwise, we say the K2-cube B is broad. It follows
from this definition that for any broad B, there exist 71, ...,7,+1 € S(B) such
that for any v; € G(7y),

Angle(G(1),V)

(34) ‘Ul/\va--'/\anrﬂZK_n.

Denote the union of broad K2-cubes By, in Y by Yi;0aq and the union of narrow
K?-cubes By, in Y by Yarrow. We call it the broad case if Yi,;0aq contains > M /2
many K2-cubes, and the narrow case otherwise. We will deal with the broad
case in Section 3.1, using the multilinear refined Strichartz estimate from [13].
We handle the narrow case in Section 3.2 by an inductive argument via the
Bourgain-Demeter [? decoupling theorem [5] and induction on scales.

3.1. Broad case. Recall that K = R°. A key tool we are using in the
broad case is the following multilinear refined Strichartz estimate from [13],
which is proved using (? decoupling, induction on scales and multilinear Kakeya
estimates (see [1], [17]).

THEOREM 3.2 (cf. [13, Th. 4.2]). Let q = w Let f be a function with
Fourier support in B"(0,1). Suppose that 11,...,Tny1 € S and (3.4) holds for
any v; € G(t5). Suppose that Q1,Q2,...,QnN are lattice RY2_cubes in BEH,
so that

Heimfﬂ.HLq(Qj) is dyadically a constant in j for each i =1,2,...,n+ 1.
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850 X. DU and R. ZHANG

Let Y denote U;VZI Qj. Then for any e > 0,

n+1

I1

=1

1
n+1

< C.REN™ T || £l
La(Y)

(3.5) eitAfﬁ'

Throughout the remainder of this subsection we will prove Proposition 3.1
in the broad case. In the broad case, there are ~ M many broad K?-cubes B.
Denote the collection of (n + 1)-tuple of transverse caps by I':

I''={7=(m,...,Ty1) : 7; € S and (3.4) holds for any v; € G(7;)}.
Then for each broad B,

n+1 » %
A O(1 A "
(3.6) il ooy < KOV (/B et )
j=1
for some 7 = (11,...,7h+1) € I'. In order to exploit the transversality, we want

to bound the above geometric average of integrals by an integral of geometric
average up to a loss of K1), We can do this by using translations and
locally constant property. Given a K2-cube B, denote its center by zz. We
break B into finitely overlapping balls of the form B(zp + v,2), where v €
B(0,K?) N Z". For each 7;, we can view |2 f, | essentially as constant on
each B(zp + v,2). Choose v; € B(0, K?) N Z"™! such that Heimj} | Lo () is
attained in B(xp + vj;,2). Denote v; = (z;,t;), and define f .. b

Ty (€) 1= o ()@ ertlel),
Then
eztAij - (x) — ez(t+tj)Aij (x " xj),

and |e® f, , (x)| attains [|e™2 f, || () in B(zp,2). Therefore,

(3.7) / e“AfT.‘p < KO(l)/ eitdg I

B ! B(zp.,2) 7

Now for each broad B, we find some 7 = (71,...,741) € [’ and 0 =
(v1,...,Un+1) such that
itA KOO e it A p T

f’LP(B }:[1 </B(wB,2) ey )

(3.8)
n+1

itA n+1
I

<K©0 / H
fEB, :

Since there are only KM choices for 7 and @, we can choose some 7 and @
such that (3.8) holds for at least K ~“M broad balls B. From now on, fix
7 and 0, and let f; denote fr;,,. Next we further sort the collection B of
remaining broad balls as follows:
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 851

(1) For a dyadic number A, let B4 be a sub-collection of B in which for each B,

we have
n+1 ) 1
H eztAfj n+1 ~ A.
J=1 L*(B(zp,2))
(2) Fix A, and for dyadic numbers A U1y iy, let Bas, . -~ be a sub-

collection of B4 in which for each B, the RY2-cube Q containing B contains
~ X cubes from B4 and

€™ fill Laggy ~ tj, 4 =1,2,...,n+1.

Here g = 2(n;r2)_
Recall that p > ¢, where p = 2(:j11) is the sharp exponent for decoupling in
dimension n, and ¢ = 2(n7:2) is the exponent for which the multilinear refined

Strichartz estimate in dimension n + 1 holds. The first dyadic pigeonholing
together with the locally constant property enables us to dominate LP-norm
by Li-norm using reverse Holder. The second dyadic pigeonholing allows us
to apply the multilinear refined Strichartz estimate to control the L?-norm.
We can assume that || f||2 = 1. Then all the above dyadic numbers making
significant contributions can be assumed to be between R~¢ and R® for a
large constant C. Therefore, there exist some dyadic numbers A, A, 1, . . ., tnt1
such that BA75\7L17~--,L7L+1

AN t1, ..., tnt1, and denote BA,XLL..-,

contains > K~“M many cubes B. Fix a choice of

- by B for convenience (a mild abuse
of notation). Then, in the broad case, it follows from (3.8) and our choice of

A that
n+1

I1

J=1

. . 1
”e’LtAfHLP(Y) SKO(l) eztAfj nt1

LP(UpepB(zB,2))

n+1 1
it A nt+1
H 62 fj n+1

j=1

(3.9) <KOW N s

Li(UpesB(zB,2))
n+1

I1

j=1

1 . 1
gKO(l)M— D) (nr2) eztAfj n+1

9

L1(Ugeo®)

where Q is the collection of relevant R'/2-cubes @ when we define B. Note
that

(F#Q\ > (#Q\ ~ #B> K M,

SO

(3.10) N:=#Q> K—C¥.
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852 X. DU and R. ZHANG

Applying Theorem 3.2, we get

n+1 1 . n

; T M\~ e+
IT |25 < Ko (7) [ £ll2
7=l L1(UgeoQ)

and therefore by (3.9),
€4 fllzneyy < KOO M2 AT | £

Note that

1 n 1 2 n «
MR\ erD < KO N~ 4 T ) \ D (a2 R D) (n2)

holds if and only if M < KOM~2R*, Indeed, by definition (3.1) of v, we have
M < yR® and v > K 2%, So the broad case is done.

3.2. Narrow case. For each narrow ball, we have the following lemma,
which is a consequence of the [? decoupling theorem in dimension n and
Minkowski’s inequality. This argument is essentially contained in Bourgain-
Demeter’s proof of the I decoupling conjecture, and we omit the details. (See
the proof of Proposition 5.5 in [5].)

LEMMA 3.3. Suppose that B is a narrow K?-cube in R"*1. Then for any

e >0,
) 1/2
it A it A
1" fllir () < CK*° (Z I LP@JB)) ’
TES
Here p = %, S denotes the set of K~ '-cubes that tile B™(0,1), and wp

is a weight function that is essentially a characteristic function on B. More
precisely, wg has Fourier support in B(0, K=2) and satisfies

1 — C(B)|>—1000n

1m@5wm@g(u- <

For each 7 € S, we will deal with e**2 f, by parabolic rescaling and induc-
tion on radius. In order to do so, we need to further decompose f in physical
space and perform dyadic pigeonholing several times to get the right setup for
our inductive hypothesis at scale Ry := R/K? after rescaling.

Intuition. For each 1/K-cap T, all wave packets associated with f through
a given point have to lie in a common box that has one side length R and other
side lengths R/K. Every single box of this type will become an R/K?-ball if
we perform a parabolic rescaling to transform 7 into the standard 1-cap. We
want to use the inductive hypothesis for radius R/K? in an efficient way. A
few dyadic pigeonholing steps will be needed.
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L? ESTIMATES OF THE SCHRODINGER MAXIMAL FUNCTION 853

First, we break the physical ball B"(0, R) into R/K-cubes D. For each
pair (7, D), let fo_, be the function formed by cutting off f on the cube
D (with a Schwartz tail) in physical space and the cube 7 in Fourier space.
Note that e?*® Jo,p, restricted to B"1(R), is essentially supported on an
R/K x --- x R/K X R-box,?> which we denote by O p. The box O, p is in
the direction given by (—2¢(7),1) and intersects t = 0 at the cube D, where
c(7) is the center of 7. For a fixed 7, the different boxes O, p tile B"*1(0, R).
In particular, for each 7, a given K?-cube B lies in exactly one box O, p. We
write f = S_p fo for abbreviation. By Lemma 3.3, for each narrow K?2-cube B,

) 1/2
LP(wg)

We will have a gain ﬁ from induction on radius. Therefore, in (3.11)
we are allowed to lose a small power of K. This small power depends on £ and
should be smaller than 2e. It could be £2,¢3,?, etc.

Next, we perform a dyadic pigeonholing to get our inductive hypothesis
for each fo. Recall that K = R?, where 6 = £'%°. Denote

Ry :=R/K?>=R"® K :=R=R2"

Tile O by KK? x --- x KK} x K?K}-tubes S, and also tile O by R'/? x
- x RY?2 x KRY?-tubes S’ (all running parallel to the long axis of O). To
understand these scales, see Figure 1 for the change in physical space (3.20)

(3.11) e o < 6 (3
a

oitA fa '

during the process of parabolic rescaling. In particular, after rescaling the O
/
K %—cubes respectively. We apply the following to regroup tubes S and S’ inside
each O:

(1) Sort those tubes S that intersect Y according to the value ||e®® fq| Lr(S)

and the number of narrow K?2-cubes contained in it. For dyadic numbers
n, B1, we use Sg, g, to stand for the collection of tubes S C O, each of

becomes an Ri-cube, and the tubes S’ and S become lattice R} ?_cubes and

which containing ~ 7 narrow K2-cubes in Yarrow and || fo| Lr(s) ~ Bi-

(2) For fixed 0, 31, we sort the tubes S’ C O according to the number of tubes
S € Sy, contained in it. For dyadic number A1, let Sg;, g, », be the sub-
collection of S g, such that for each S € Sg, 3, 1, , the tube S’ containing
S contains ~ A1 tubes from S, g, -

(3) For fixed n, 1, A1, we sort the boxes O according to the value || fol|2, the
number #8g, 5, 1, and the value 71 defined below. For dyadic numbers
B2, M1,v1, let By, g, A, 8,0,y denote the collection of boxes O, each of

3In reality, our boxes will have edge length slightly larger, say being larger by K =" times.
See, e.g., the wave packet decomposition theorem in [18]. This would not hurt us in any way,
and we omit this technicality for reading convenience.
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Parabolic
rescaling

RI2(=RI%/K)

R (~R/K?)

Figure 1. Tubes of different scales in the O.

which satisfying that

| falle ~ B2, #Some.a ~ M1

and

(3.12) max #{S € Sompn S CT} .
. T.COwr>K? ro ,

where T are Kr x --- x Kr x K?r-tubes in O running parallel to the long
axis of 0.

Let Yo, 8,,», be the union of the tubes S in Sp, g, ,,, and XYD%BLAl the
corresponding characteristic function. Then on Yjarow, We can write

eitAf: Z Z eitAfD : XYD,U,Bl,Al +O(R71000n)||f||2'

7,81,A1,82,M1,71 \DEBy, 81,71,89,M7 11

The small error term O(R~1999%)||f||o will prove to be harmless in our
computations. We will neglect this term in the sequel. Again, to make the
statement really rigorous one needs to increase the side lengths of O by a tiny
power of R, say R™ ~ K9, As before, we choose to ignore this technicality
in order to facilitate the main exposition.
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In particular, on each narrow B we have

(313) eitAf _ Z Z eitAfD

,61,A1,82,M1,m 0€B,,51,71,8,Mq v,
BCYo,n,81.01
Without loss of generality, we assume that || f||2 = 1. Then we can further
assume that the dyadic numbers above are in reasonable ranges, say

1<n<K9W R C<p <KM 1<) <ROW

and
RC<p <1, 1<M <ROW, K2 <4 < RO,

where C is a large constant such that the contributions from those ; and
B2 less than R~C are negligible. Therefore, there are only O(log R) significant
choices for each dyadic number. Because of (3.11) and (3.13), by pigeonholing,
we can choose 1, 81, A1, B2, M1,y1 so that

1/2

. 4 .
(3.14) [|e"2 fl1o(p) < (log R)°K* > €2 foll 2o ()
D€EBy, 51, A1,80.M71,71
BCYo 5,810

holds for a fraction > (log R)~% of all narrow K?2-cubes B
We fix n, 81, A1, B2, M1, for the rest of the proof. Let Yg and B stand for
the abbreviations of Yn ,, g, x, and By, g, 1, 8,0, 7, Tespectively. Finally we sort

the narrow balls B satisfying (3.14) by #{0 € B: B C Ya}. Let Y’ C Yiarow
be a union of narrow K?2-cubes B, each of which obeying

1/2
(3.15) 1 fll o (p) < (log R)PK*" < > HeitAfDH%p(wB)>
DeB:BC Yo
and
(3.16) #{OeB:BCYn}~p

for some dyadic number 1 < p < K91, Moreover, the number of K2-cubes
BinY'is > (logR)™"

Now we are done with dyadic pigeonholing argument. Let us put all
these together. By our assumption that ||e®® f|| L»(By) is essentially constant

ink=1,2,..., M, in the narrow case we have
(3.17) 1" Il vy S (Qog R)T 3 [l fII7s
BCY’
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For each B C Y’, it follows from (3.15), (3.16) and Holder’s inequality that

; 4 p_
(818) [, S (og RYPETPUE™ Y [l fol, .
OeB:BCYo

Putting (3.17) and (3.18) together and, as before, omitting the rapidly decaying

tails,
1/p
L (Yo ))

Next, to each [|e® fo|| L»(va) We apply parabolic rescaling and induction
on radius. For each 1/K-cube 7 = 7o in B"(0, 1), we write { = o+ K¢ € 7,
where £ is the center of 7. Then

ltAf ‘

(319) [ o) S (log RSP pt (Z
OeB

€2 fu(z)| = K72 g(7)|

for some function g with Fourier support in the unit cube and ||g||2 = || foll2,
where the new coordinates (Z, ) are related to the old coordinates (z,t) by

T =K~ 2K L&,
(3.20) {gf ot 0
f— K2

For simplicity, denote the above relation by (z,t) = F(z,t). Therefore
(3.21)

) 5 __1 it -
”eltAf\](x)”LP(Yg) K p ) ||eltAg(x)||Lp(}~/) = K n#l ||e tAg(:L’)HLp(f/)v

where Y is the image of Yn under the new coordinates.

Note that we can apply our inductive hypothesis (3.2) at scale Ry =
R/K? to ||e"£Ag(a~c)HLp(§,) with new parameters My, v, A1, R1. More precisely,
Y = F(Yg) consists of ~ M distinct K7-cubes F(S) in an R;-ball F(O), and
the K2?-cubes F(S) are organized into R}/2—cubes F(S’) such that each cube
F(S') contains ~ A; cubes F(S). Moreover, ||¢/2¢(i M e (r(s)) is dyadically a
constant in S C Yn. By our choice of 7;, we have

#{F'(S) : F(S) C B(a',r)}
Bnt1(g/ r)CF(O) ro
m’eR"H,Qkf

~ -

Henceforth, by (3.21) and inductive hypothesis (3.2), at scale R; we have
||eitAfD(fU)||Lp(YD)

1 _ 1 2 n
a1 n+l ., (n+1)(n+2) y (n+1)(n+2)
SKE™m M, A Al <

(3.22) R )M’Emz)*a

= | folla
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From (3.19) and (3.22) we obtain
(3.23)

€2l Loy

o 1/p

1 2 n +e

2et Lol T DD \ D (R0 P

SK* prtt K ¥t M,y "1 A K2 ZHfDHz
DeB

R ) CESyCE= R

_1 1 P n
24 (M \nHL L1 T D (12 y (nF ) (nt2)
<B <7) B n+1 2\41 ryl )\1 72

~

1£1l2,

where the last inequality follows from orthogonality S"q || foll3 < || £]13 and the
assumption that ||fo||2 ~ constant in O € B.

Intuition. To finish our inductive argument, we have to relate the old and
new parameters. Our setup allows us to do this in a nice way: Given Mi, Ay
and 71, if 7 is small, i.e., each S contains very few narrow K2-cubes, then M
is relatively small; if 7 is large, i.e., each S contains a lot of narrow K2-cubes,
then A and v are relatively large. Both make the right-hand side of what we
want to prove reasonably large. This is the reason why one could believe the
numerology will work out.

Consider the cardinality of the set {(0,B): 0 € B, B C Yo NY’}. By our
choice of p as in (3.16), there is a lower bound

#{(0,B): DB, BCYanY'} 2 (logR)~"Mp.

On the other hand, by our choices of M; and 7, for each O € B, Y5 contains
~ Mj tubes S and each S contains ~ 7 narrow cubes in Yjarrow, SO

#{(0,B):0€B,BCYanY'} < (#B) M.
Therefore, we get

w (log R)" M
#B ~ M ’
Next by our choices of 77 as in (3.12) and 7,

(3.24)

Y1M
#{S:SCYonT,}

~  1max

T,COr>K? re

-#{B : B C SN Yharow for any fixed S C Yn}

. (0%

< max #{BCY:BCT} < K~(Kr)

T,COr>K? e re

— ")/Ka+1

where the last inequality follows from the definition (3.1) of v and the fact
that we can cover a K7 x --- x Kr x K?r-tube T, by ~ K finitely overlapping
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Kr-balls. Hence,
’yKO‘"H
no

(3.25) ns

Finally we relate A; and A by considering the number of narrow K 2-balls
in each relevant RY/2 x --- x RY2 x KRY?-tube S'. Recall that each relevant
S’ contains ~ A1 tubes S in Yg, and each such S contains ~ 1 narrow balls.
On the other hand, we can cover S’ by ~ K finitely overlapping R'/2-balls
and by assumption each R'/2-ball contains < A many K2-cubes in Y. Thus it
follows that

3.26 M S —.
(3.26) 15
By inserting (3.24) and (3.26) into (3.23),
1”2 fll 2o (v

K%' (g \GEnee 1 T o
< ( ) M ™A NG 02 RGADEED) || f |2

~ K2€ KaJrl
384 1 2 n o +
— £
5 7% M ™ nFT 4 (1) (n4+2) N FD(n+2) R (1) (n+2) Hf”2,

where the last inequality follows from (3.25). Since K = R’ and R can be

assumed to be sufficiently large compared to any constant depending on ¢, we
4

have % < 1 and the induction closes for the narrow case. This completes
the proof of Proposition 3.1. U

3.3. Remark. In Section 2, we have seen that Corollary 1.7 is a direct
result of Theorem 1.6, and they are equally useful in the applications to the
sharp L? estimate of the Schrédinger maximal function. We can also prove
Corollary 1.7 from scratch using a similar argument as in this section, which
is slightly easier in two aspects compared to that of Theorem 1.6. First, in
the broad case, it is sufficient to use multilinear restriction estimates and not
necessary to invoke the multilinear refined Strichartz. Secondly, because there
is one parameter less, the dyadic pigeonholing argument in the narrow case
would be slightly reduced; for example, see Figure 2 for tubes of different
scales in the O under the setting of Corollary 1.7.

In fact, an adaptation of some arguments in the work [32] of Wolff on the
Falconer distance set problem in dimension 2 can already imply Corollary 1.7
when n = 1. In the special case n = 1, the broad versus narrow dichotomy
becomes the one on bilinear versus linear. To handle the linear part, the idea
of induction on scales and splitting the ball into rectangular boxes “0O0” of size
R x R/K in our proof already existed in Wolff’s paper. We thank Hong Wang
for pointing this out to us.
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