
FLEET: FLEXIBLE EFFICIENT ENSEMBLE TRAINING FOR
HETEROGENEOUS DEEP NEURAL NETWORKS

Hui Guan 1 Laxmikant Kishor Mokadam 2 Xipeng Shen 1 Seung-Hwan Lim 3 Robert Patton 3 4

ABSTRACT
Parallel training of an ensemble of Deep Neural Networks (DNN) on a cluster of nodes is an effective approach
to shorten the process of neural network architecture search and hyper-parameter tuning for a given learning
task. Prior efforts have shown that data sharing, where the common preprocessing operation is shared across the
DNN training pipelines, saves computational resources and improves pipeline efficiency. Data sharing strategy,
however, performs poorly for a heterogeneous set of DNNs where each DNN has varying computational needs
and thus different training rate and convergence speed. This paper proposes FLEET, a flexible ensemble DNN
training framework for efficiently training a heterogeneous set of DNNs. We build FLEET via several technical
innovations. We theoretically prove that an optimal resource allocation is NP-hard and propose a greedy algorithm
to efficiently allocate resources for training each DNN with data sharing. We integrate data-parallel DNN training
into ensemble training to mitigate the differences in training rates and introduce checkpointing into this context
to address the issue of different convergence speeds. Experiments show that FLEET significantly improves the
training efficiency of DNN ensembles without compromising the quality of the result.

1 INTRODUCTION

Recent years have witnessed rapid progress in the develop-
ment of Deep Neural Networks (DNN) and their successful
applications to the understanding of images, texts, and other
data from sciences to industry (Patton et al., 2018; Math-
uriya et al., 2018; Ratnaparkhi & Pilli, 2012).

An essential step to apply DNNs to a new data set is hyper-
parameter tuning—that is, the selection of an appropriate
network architecture and hyper-parameters (e.g., the number
of layers, the number of filters at each layer, and the learn-
ing rate scheduling). It is called Neural Architecture Search
(NAS) when the tuned parameters determine a DNN’s archi-
tecture. Many different search strategies have been proposed
such as random search (Bergstra & Bengio, 2012; Li & Tal-
walkar, 2019), reinforcement learning (Zoph & Le, 2016;
Zoph et al., 2018), evolutionary methods (Salimans et al.,
2017), and Bayesian Optimization (Kandasamy et al., 2018).
Most existing methods used today need to train a large set
of DNN candidates with different architectures (e.g. 450
networks being trained concurrently in (Zoph et al., 2018))
to identify the best model for a particular task.

1North Carolina State University 2Google Inc. (The work was
done when he was at NCSU.) 3 Oak Ridge National Laboratory
4Rensselaer Polytechnic Institute. Correspondence to: Hui Guan
<hguan2@ncsu.edu>, Xipeng Shen <xshen5@ncsu.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

An effective strategy for shortening the process of hyper-
parameter tuning and NAS is to concurrently train a set
of DNNs on a cluster of nodes1, which is referred to as
ensemble training of DNNs. We refer to an ensemble of
DNNs with the same architecture as a homogeneous en-
semble. Otherwise, the ensemble is called heterogeneous
ensemble.

A common ensemble training strategy is to duplicate a train-
ing pipeline on multiple nodes to train DNNs in parallel. A
typical DNN training pipeline is an iterative process includ-
ing data fetching, preprocessing, and training. For the ease
of description, we refer to data fetching and preprocessing
together as preprocessing. In ensemble training, training
steps are not identical because we train models with different
architectures and configurations. However, preprocessing
is redundant across the pipelines, resulting in unnecessary
CPU usage and even poor pipeline performance.

To eliminate the redundancies, Pittman et al. (Pittman et al.,
2018) proposed data sharing where the common preprocess-
ing operations are shared across training pipelines of all
DNNs in an ensemble. They demonstrated that data sharing
is an effective strategy to reduce computational resource
utilization and improve pipeline efficiency. Their solution,
however, assumes relatively homogeneous computational
needs for DNNs in an ensemble. It may perform poorly

1A “node” in this paper refers to a machine in a cluster; one
node may contain one or more CPUs and GPUs

FLEET

Operation

State of DataStorage Data Access

PreprocessingTraining

Raw data

Preprocessed
Data

Figure 1: A DNN training pipeline (Pittman et al., 2018).

Data Storage

Model Gradients Averaged
Gradients

Model Gradients Averaged
Gradients

Model Gradients Averaged
Gradients

R
ed

uc
e

O
pe

ra
tio

n

Every process
reads different

data

Preprocessor

Preprocessor

Preprocessor

Figure 2: An illustration of data-parallel DNN train-
ing (Sergeev & Del Balso, 2018).

for an heterogeneous ensemble due to the variance of DNN
model training from two algorithmic characteristics.

The first algorithmic characteristic is varying training rate.
Training rate of a DNN is the compute throughput of pro-
cessing units (e.g., CPUs and GPUs) used for training the
DNN. Each DNN in an heterogeneous ensemble could have
varying computational needs and thus different training rates
with the same computing resources (Canziani et al., 2016;
Sze et al., 2017). If a DNN consumes preprocessed data
slower than other DNNs, others will have to wait for the
slower one before evicting current set of cached batches
when we employ synchronized data fetching for data shar-
ing to ensure that each DNN is trained using the entire
dataset. This waiting lowers the utilization of computing
resources in the cluster and delays the overall training time
of the ensemble.

The second one is varying convergence speed. Due to the
differences in network architecture or hyper-parameter set-
tings, some DNNs may require a larger number of epochs
(one epoch goes through all data samples once) to converge
than others (Krizhevsky et al., 2012; He et al., 2016; Huang
et al., 2017; Zagoruyko & Komodakis, 2016). There can be
scenarios where a subset of DNNs in the ensemble have al-
ready converged while the shared preprocessing operations
have to keep prepossessed data for the remaining DNNs.
Resources allocated to these converged DNNs will be under-
utilized until the training of all the DNNs is completed.

To address the issues, we propose FLEET, a flexible ensem-
ble training framework for efficiently training a heteroge-
neous set of DNNs. We build FLEET via several technical
innovations. First, we formalize the essence of the problem
into an optimal resource allocation problem. We analyze

the computational complexity of the problem and present
an efficient greedy algorithm that groups a subset of DNNs
into a unit (named flotilla) and effectively maps DNNs to
GPUs in a flotilla on the fly. The algorithm incurs marginal
runtime overhead while balancing the progressing pace of
DNNs. Second, we develop a set of techniques to seam-
lessly integrate distributed data-parallel training of DNN,
preprocessing sharing, and runtime DNN-to-GPU assign-
ments together into FLEET, the first ensemble DNN training
framework for heterogeneous DNNs. We introduce check-
pointing into this context to address the issue of different
convergence speeds. FLEET features flexible and efficient
communications and effective runtime resource allocations.

Experiments on 100 heterogeneous DNNs on SummitDev,
the Oak Ridge Leadership Computing Facility (Sec 6.1),
demonstrate that FLEET can speed up the ensemble training
by 1.12-1.92X over the default training method, and 1.23-
1.97X over the state-of-the-art framework that was designed
for homogeneous ensemble training.

2 BACKGROUND

This section provides the necessary background of DNN
training pipeline and data-parallel DNN training.

DNN Training Pipeline. As shown in Figure 1, a typical
DNN training pipeline is an iterative process containing
three main stages: data fetching, preprocessing, and training.
In each iteration, data is fetched to the main memory and
then run through a sequence of preprocessing operations
such as decoding, rotation, cropping, and scaling. The
preprocessed data is arranged into batches and consumed
by the training stage. The batch size is the number of data
samples used simultaneously per step.

The modern computing clusters and data centers have
evolved into a hybrid structure that contains both CPUs and
GPUs on each node. These heterogeneous CPU-GPU clus-
ters are particularly useful for DNN training as CPUs and
GPUs can work together to accelerate the training pipeline.
Compared to the training stage, preprocessing is usually
less computation intensive. To pipeline the preprocessing
and DNN training, typically preprocessing is performed
on CPUs while training on another batch of data happens
simultaneously on GPUs.

Data-Parallel DNN Training. Data-parallel DNN training
trains a single DNN using multiple training pipelines where
each pipeline handles a different subset of data. As illus-
trated in Figure 2, each pipeline fetches a different subset of
data from storage and prepossesses data independently. In
the training stage, gradients are calculated by each pipeline
and are reduced so that every pipeline has the same aver-
aged gradients. The averaged gradients are used to update
the model to make sure each pipeline has the same copy of

FLEET

Table 1: The job of different processes.

Process Type Job Description

Preprocesser fetch data from storage, preprocess the data, and send
the preprocessed data to its paired training group master.

Training Group Master

receive the preprocessed data from its paired preprocesser,
scatter it within its training group, broadcast the data to
other training group masters, and train the DNN using
the assigned batch of data.

Training Worker receive the assigned batch of data from its training
group master and use it to train the DNN.

P1

P2

T1
(D1)

T2
(D2)

T3
(D2)

T4
(D3)

T5
(D4)

T6
(D4)

T7
(D4)

T8
(D4)

Figure 3: An illustration of the ensemble training pipeline in
FLEET. P1 and P2 are preprocessors and T1-T8 are trainers.
There are four training groups, (T1), (T2, T3), (T4), (T5,
T6, T7, T8), which train the four DNNs D1-D4 respectively.
Edges indicate transfers of preprocessed images.

model parameters.

Pipelines in data-parallel DNN training can run either on
the same computing node using intra-node communication
(single node multiple GPU training) or different nodes us-
ing inter-node communication (multiple node multiple GPU
training). For the existing communication interfaces (e.g.,
MPI), the intra-node communication is usually more effi-
cient than inter-node communication. Thus, it is preferred to
allocate pipelines on the same computing node rather than
on different nodes. As it is common to run only one pipeline
on a single GPU, the number of GPUs available to train
a DNN model practically limits the maximum number of
pipelines that can be created in data-parallel DNN training.

3 OVERVIEW OF FLEET
This section gives an overview of FLEET. FLEET is a flex-
ible pipeline software architecture for efficient ensemble
training of heterogeneous DNNs. It provides flexibility for
configuring the scheduling of DNNs on nodes and GPUs
via separation of preprocessing and training into different
processes and a collection of communication schemes. It
creates efficiency via heterogeneity-conscious runtime re-
source allocation and scheduling, plus sharing of prepro-
cessing results among DNNs.

FLEET uses two types of processes, called preprocessor and
trainer, to perform preprocessing and training separately.
A trainer group contains at least one trainer processes and
is responsible for training one DNN in the ensemble. A
trainer process uses one GPU for training. When a trainer

group contains more than one trainer process, they perform
data-parallel DNN training for one DNN. Each trainer group
has a trainer as the training group master and zero or more
trainers as the training workers. The preprocessors commu-
nicate directly with only some master trainers, and those
master trainers forward the preprocessed data to other train-
ers. Figure 3 illustrates the ensemble training pipeline in
FLEET. The job of each process is summarized in Table 1.

Efficiency and Flexibility. Two important features of
FLEET are its efficiency and flexibility.

The efficiency of FLEET comes from its novel resource allo-
cation strategy developed for DNN ensemble training. The
strategy is powered by some fundamental understanding of
this resource allocation problem, and a greedy scheduling
algorithm designed specifically to heterogeneous ensemble
training. The algorithm seamlessly integrates data-parallel
distributed training with ensemble training. As illustrated
in Figure 3, different number of GPUs can be allocated to
each DNN so that the DNNs can reach a similar training
rate, avoiding the pipeline inefficiency caused by the slowest
DNNs. It overcomes the NP-hardness of the resource allo-
cation problem through a greedy design, grouping DNNs
into multiple flotillas and periodically (re)allocate GPUs
to remaining DNNs in a global efficient manner. It further
leverages check-pointing to mitigate the issue of varying
convergence speeds among DNNs. Together, FLEET is able
to achieve efficient ensemble training while enabling data
sharing to save CPU usage.

The flexibility of FLEET is in two aspects. First, decoupling
preprocessing and training using different processes2 pro-
vides the flexibility in configuring the number of preproces-
sors such that the preprocessing throughput can match the
trainers’ throughput without creating too many preproces-
sors that may waste computing resource and power. Second,
as each trainer is associated with one GPU, resources for
training can be allocated in the granularity of GPUs (rather
than nodes as in prior work (Pittman et al., 2018)). Each
GPU in a node can be assigned independently to DNNs.
Each DNN in an ensemble can be trained using different
numbers of GPUs concurrently, giving flexibility for han-
dling the heterogeneity in DNNs.

Two-fold Enabling Techniques. The key technical contri-
butions that make FLEET possible are two-fold. The first
is theoretical, consisting of a deep understanding of the re-
source allocation problem and some novel algorithms for
assigning DNNs to GPUs. The second is empirical, con-
sisting of a set of solutions to the various challenges for
implementing FLEET above the array of complex software

2The reason we used processes instead of threads is due to
the Global Interpreter Lock in Python. As FLEET is built on
TensorFlow which is in Python, multi-processing brings maximum
parallelism into the training pipeline.

FLEET

Table 2: Notations.

Notation Description
N the number of DNNs in an ensemble.
M the number of GPUs available in a cluster.
K the number of DNN flotillas.
D the list of DNNs in an ensemble,D = [D1, · · · , DN].
F the list of flotillas of DNNs, F = [F1, · · · ,FK].
Fk the k-th flotilla of DNNs, Fk = [D

(k)
1 , · · · , D(k)

Nk
].

D
(k)
i the i-th DNN in the k-th flotilla.

Nk the number of DNNs in the k-th flotilla.
A the list of GPU allocations,A = [A1, · · · , AK]
Ak a Nk-by-M matrix, the GPU allocations for the k-th flotilla of DNNs.
a
(k)
i,j whether the j-th GPU is assigned to D

(k)
i .

m
(k)
i

∑M
j=1 a

(k)
i,j , the number of GPUs assigned to D

(k)
i .

r
(k)
i (m) the training rate of D(k)

i trained with m GPUs.

components (TensorFlow, Horovod, Python, MPI, etc.) on
a heterogeneous Multi-GPU supercomputer like Summit-
Dev (Sum, 2019). We present the two-fold contributions in
the next two sections respectively.

4 RESOURCE ALLOCATION ALGORITHMS

Efficient ensemble training is essentially an optimal resource
allocation problem. The resources involve CPUs and GPUs
in the modern heterogeneous computing clusters. Under the
context of data sharing, an optimal CPU allocation sets the
number of preprocessors to be the one that just meets the
computing requirement of training DNNs. GPU allocation,
however, is much more complex and determines the pipeline
efficiency. We formalize it as an optimal resource alloca-
tion problem and analyze its computational complexity; the
understanding motivates our later designs of the practical
algorithms and the FLEET architecture. We next start with
the problem definition.

4.1 Problem Definition

There are two possible paradigms for scheduling DNNs
on GPUs. A local paradigm assigns a DNN to a GPU
immediately when the GPU becomes vacant. A global
paradigm periodically examines the remaining DNNs and
does a global (re)assignment of the DNNs to all GPUs.
The local paradigm is relatively easy to understand; the
global paradigm has the potential to avoid the local optimal
but is more difficult to design. Particularly, to effectively
realize the global paradigm, several open questions must be
answered: Is an optimal scheduling algorithm feasible? If
so, what is it? If not, how to efficiently approximate it? This
section focuses on the global paradigm and explores these
open questions. For easy reference, we put into Table 2 the
important notations used in the rest of this paper.

In this scheduling problem, the entire execution trains N
DNNs on M GPUs in K rounds. The beginning of a round
is the time for globally (re)scheduling remaining DNNs on
GPUs. The set of DNNs being trained in each round is

called a flotilla. So there are K flotillas being trained in the
execution, one flotilla a round.

Theoretically, a round can be a time period of an arbitrary
length. We first focus on a simple case where a round
finishes when and only when the training of all the DNNs in
a flotilla finishes (e.g., converges or the maximum training
epochs reached). In this setting, the GPUs that are done
with its work in the current flotilla earlier than other GPUs
would have some idle waiting time. The simplicity of this
setting, however, makes the analysis easy to understand. We
will briefly discuss the complexities of the more general
settings at the end of Section 4.2.

We now give a formal definition of the resource allocation
problem in the focused setting. Each DNN in the ensemble
are placed into at least one of the flotillas Fk, k = 1, · · · ,K
such that a list of K flotillas F = [F1, · · · ,FK] cover all
the DNNs. Each flotilla, Fk = [D

(k)
1 , · · · , D(k)

Nk
], contains

no more than M DNNs (i.e., Nk ≤ M) such that each
DNN in the flotilla can have at least one GPU. Let A =
[A1, · · · , AK] be the GPU assignment for the K flotillas of
DNNs. Each assignment Ak is a Nk-by-M matrix (a

(k)
i,j)

with:

a
(k)
i,j =

{
1, if the j-th GPU is assigned to the model D(k)

i ,
0, otherwise,

s.t.

Nk∑
i=1

a
(k)
i,j ≤ 1 (j = 1, 2, · · · ,M),

M∑
j=1

a
(k)
i,j ≥ 1 (i = 1, 2, · · · , Nk).

An optimal resource allocation is an allocation strategy of
available GPUs in a cluster to DNNs in an ensemble such
that the end-to-end training time of the DNNs is minimized.
The definition is as follows:

Definition 1 Optimal Resource Allocation. Given a DNN
ensemble D and a cluster of nodes with totally M GPUs,
let T (D|F ,A) be the end-to-end time to finish the training
of all the DNNs according to the list F and the correspond-
ing GPU assignment A. The optimal resource allocation
problem is to find a schedule (F∗,A∗) such that

F∗,A∗ =argmin
F,A

T (D|F ,A) (1)

=argmin
F,A

K∑
k=1

T (Fk|Ak), (2)

where, T (Fk|Ak) is the time spent on training the DNNs in
the Fk with the assignment Ak for some epochs.

FLEET

Algorithm 1 Greedy Algorithm
Input: D,M // DNN ensemble and the number of GPUs
Output: F ,A // A list of flotillas and GPU assignments
1: R = profile(D) // Profile training rates of each DNN trained

using m = 1, · · · ,M number of GPUs.
2: F ,A, cands, k = [], [],D, 1
3: while |cands| > 0 do
4: Fk,mk = createFlotilla(cands,R,M) // Step 1: Create

a new flotilla from candidate DNNs; return the flotilla of
DNNs (Fk) and GPU count vector (mk)

5: Ak = getGPUAssignment(Fk,mk) // Step 2: Figure out a
GPU assignment for the flotilla

6: dels = train(Fk, Ak) // Step 3: Load the latest checkpoint if
available; train DNNs in the flotilla for some epochs; return
converged models (dels).

7: cands− = dels // Remove converged models from candi-
dates (cands)

8: F .append(Fk); A.append(Ak); k+ = 1
9: end while

4.2 Complexity Analysis

In this part, we argue that the Optimal Resource Allocation
problem is NP-hard in general. The argument comes from
the classic results in Parallel Task System Scheduling. As
Du and Leung have proved (Du & Leung, 1989), finding an
optimal non-preemptive schedule for a Parallel Task Sys-
tem with the precedence constraints consisting of chains is
strongly NP-hard for each n > 2 (n is the number of proces-
sors). And, when the precedence constraints are empty, the
problem is strongly NP-hard for each n ≥ 5. The Optimal
Resource Allocation problem can be viewed as a parallel
task system scheduling problem with each DNN as a task
and each GPU as a parallel processor. One subtle aspect
is that even though the DNNs are independent, to leverage
shared preprocessing data among DNNs, a newly freed GPU
does not take on a new DNN until the new round starts. It
could be viewed as there are some pseudo precedence con-
straints between the DNNs in two adjacent rounds. So in
general, the optimal solution is unlikely to be found in poly-
nomial time. Recall that our discussion has been assuming
that a new round starts only when the training of the DNNs
in the previous round is all done. If the condition is relaxed
such that a round can be a time period of an arbitrary length,
the problem becomes even more complex to solve.

4.3 Greedy Allocation Algorithm

Motivated by the complexity in finding optimal solutions
to the problem, we have designed a greedy algorithm for
FLEET to assign DNNs to GPUs efficiently. It is worth
noting that, even though the Optimal Resource Allocation
problem connects with the classic Parallel Task System
Scheduling, several special aspects of it make it unique and
demand new algorithm designs. First, unlike what is often
assumed in the classic scheduling problems, the length of

a task (DNN training) is hard if ever possible to predict:
There is no known method that can accurately predict the
number of epochs (and hence the time) needed for a DNN
to converge. Second, the relations among tasks (DNNs)
are “fluid”. The training of two DNNs are theoretically
independent: One does not depend on another’s data or
control. But when they are put into the same flotilla, they
become related: They would share the same preprocessed
data and hence need to keep a similar progressing pace.
These special aspects make the problem different from prior
problems and call for new algorithms to be designed.

This section describes our algorithm. It first introduces
four principles we followed in developing the solution and
then elaborates our greedy algorithm. We will explain the
solution in the context of the global paradigm and discuss
how it is also applicable to the local paradigm at the end of
this section.

4.3.1 Principles

A resource allocation strategy involves grouping the DNNs
into flotillas and assigning the DNNs in each flotilla to the
GPUs. We develop our solution by following four principles.
The core of these principles is to organize tasks with less
variation and dependencies at the flotilla level (Principles 1
and 2) and at the node level (Principles 3 and 4).

Principle 1 DNNs in the same flotilla should be able to
reach a similar training rate (e.g., images per sec) if a
proper number of GPUs are assigned to each of the DNNs.

This principle helps ensure a balanced pace of all GPUs,
which helps the DNNs in consuming the shared prepro-
cessed data in a similar rate to minimize the waiting time
of certain GPUs. This may result in multiple flotillas to be
created if not all DNNs in the ensemble are similar.

Principle 2 Packing into one flotilla as many DNNs as pos-
sible.

The reason for this principle is two-fold. First, the through-
put of multi-GPU training scales sublinearly3 with the num-
ber of GPUs due to the communication overhead of ex-
changing gradients. The principle is to help maintain good
efficiency of the DNNs. Second, it allows more DNNs to
share preprocessed data.

Principle 3 When assigning multiple GPUs to a DNN, try
to use GPUs in the same node.

3If all DNNs in an ensemble has a perfect linear scaling in
throughput, training the DNNs one after another would be the
optimal strategy. It is however often not the case in our observation.
Another practical reason for concurrently training multiple DNNs
is hyperparameter tuning. By checking the intermediate training
results of those DNNs, the unpromising ones can be discarded.

FLEET

This principle is to reduce the variation in communication
latency: inter-node communications are slower and have
more variations than intra-node communications.

Principle 4 Try to assign DNNs that need a small number
of GPUs to the same node.

This principle is similar to Principle 2 but at the node level.
The rationale is that, although it is hard to reduce the com-
munication overhead of DNNs that need to be trained us-
ing multiple nodes, we can minimize the communication
overhead of DNNs that need a small number of GPUs by
assigning them to the GPUs in the same node.

Based on the four principles, we propose a greedy algorithm
to solve the resource allocation problem, as described below.

4.3.2 Algorithm

The greedy algorithm is shown in Algorithm 1 (Complexity
analysis in Appendix A). It uses training rates of the DNNs,
R = {ri(m)}, i = 1, · · · , N,m = 1, · · · ,M , which are at-
tained through a short profiling process (line 1). We propose
profiling of fewer than 50 batches of training for each DNN.
We defer the detailed profiling process to Section 6.1.

The greedy algorithm dynamically determines the grouping
of the DNNs in an ensemble based on whether the DNN is
converged or not and the training rate of each DNN. Once
a flotilla is created, an optimal GPU assignment can be
derived. Initially, all DNNs are considered as candidates
(cands) when a new flotilla needs to be created (line 2). The
greedy algorithm then iterates over three main steps, flotilla
creation (line 4), GPU allocation (line 5), and training (line
6), until all the DNNs in the ensemble are converged (i, e,
cands are empty).

We next describe the three steps in detail.

Flotilla Creation. This first step selects a set of DNNs from
candidates to create a new flotilla whose DNNs are trained
concurrently with data sharing, following Principles 1 and
2. The Pseudo-code is in Appendix A. The algorithm first
identifies the largest training rate with a single GPU, rfast =
max{r1(1), · · · , r|cands|(1)}, and the corresponding DNN,
Dfast, from the candidate set of DNNs. Then rfast is
used as the reference training rate to search for other DNNs
that can be placed in the same flotilla. Mathematically, the
algorithm searches for the next DNN that can be placed into
the flotilla by solving the following optimization problem:

min
Di∈cands−Fk,

m=1,··· ,M

|ri(m)− rfast|,

s.t. |ri(m)− rfast| ≤ δ,
m ≤M −Mk, (3)

where δ is the threshold that determines if two training rates

are close, and Mk is the total number of GPUs that are
already assigned to DNNs. In our experiments, δ is set to 20
(images/sec). The algorithm stops adding DNNs to a flotilla
if no solution exists to Eq. 3.

After a flotilla is formed, if there are still GPUs available,
we assign the next GPU to the DNN in the flotilla that has
the smallest training rate iteratively until all the GPUs are
assigned. The DNN with the smallest training rate deter-
mines the pipeline efficiency. Assigning extra GPUs to the
slowest DNN can improve pipeline efficiency.

The flotilla creation step produces a flotilla of DNNs as well
as the GPU count vector that specifies the number of GPUs
assigned to each DNN. We next explain how to properly
assign GPUs to each DNN based on the GPU count vector
and considering GPU locality.

GPU Assignment. This procedure assigns GPUs to DNNs
in a flotilla, following Principles 3 and 4. The goal of
this procedure is to find an assignment Ak to minimize the
number of nodes involved in training each DNN. Let c(.)
be the function that counts the number of nodes involved in
training a DNN given its GPU assignment a(k)i , which is the
i-th row of the assignment matrix Ak, the GPU assignment
is an optimization problem:

min
Ak

Nk∑
i=1

c(a
(k)
i)

m
(k)
i

,

s.t.
M∑
j=1

aki,j = m
(k)
i , i = 1, · · · , N, (4)

where c(a
(k)
i)

m
(k)
i

is the number of nodes involved to train the

i-th DNN, scaled by m(k)
i , the number of GPUs assigned.

The solution space is as large as M !∏Nk
i=1(m

(k)
i !)

.

Instead of exhaustively searching for an optimal solution in
the space, we propose a greedy approach that assigns GPUs
to each DNN in an incremental fashion. For example, if the
j-th GPU is already assigned to a DNN, then the next GPU
to be assigned to the DNN is the j+1-th GPU. The solution
space is reduced to the space of possible permutations of
the GPU count vector (Nk!). This algorithm assumes the
number of GPUs per node is the same among nodes, which
holds in major supercomputers. It assigns GPUs to DNNs in
the following order: (1) the DNNs whose required number
of GPUs is a multiple of the number of GPUs per node; (2)
the pairs of DNNs whose sum of the required number of
GPUs is a multiple of the number of GPUs per node; (3) the
remaining DNNs by searching for an optimal assignment of
GPUs. The Pseudo-code is in Appendix A.

The flotilla creation and GPU assignment steps ensure that
DNNs in the same flotilla can achieve similar training rate

FLEET

to improve GPU utilization. We next describe how the
training step addresses the varying convergence speed issue
via check-pointing.

Training. The training step trains the DNNs on their as-
signed GPUs concurrently with data sharing. Due to the
architectural difference of DNNs in a heterogeneous ensem-
ble, these DNNs require a different number of epochs to
converge. With data sharing, converged models need to wait
for the un-converged models to complete, leading to the
waste of computing resources. We leverage check-pointing
to address the varying convergence speed issue. Specifically,
each flotilla is trained until only α ·M GPUs remain ac-
tive for training. α is set to 0.8 in all our experiments. We
monitor whether a model is converged at the end of each
epoch. Once a model is converged, it is marked as complete
and its GPUs are released. If the total number of GPUs that
are not released falls below α ·M , the training of all the
DNNs in the flotilla stops. The parameters, loss history, and
epoch count of all the DNNs are check-pointed for recover-
ing their training later. A DNN marked as complete will not
be packed into any of the following flotillas.

4.3.3 Application in the Local Paradigm

Although the discussion has been assuming the global
paradigm, the greedy algorithm applies the local paradigm
of resource allocation as well. The training proceeds as
follows: (1) At the beginning, the algorithm forms the first
flotilla of DNNs and starts training them. (2) Whenever a
DNN is done, the algorithm fills the released GPUs with
new DNNs. If no DNN remains untrained, terminate when
all current training is done.

5 IMPLEMENTATION

This section describes an efficient training pipeline imple-
mentation of FLEET. We focus on the following two main
implementation challenges:

Challenge 1: Recall that FLEET has two types of pro-
cesses, preprocessor and trainer. The number of prepro-
cessors needs to be set to meet the requirement of trainers’
throughput. Thus, it is necessary for FLEET to support cre-
ating a different number of processes per node on a cluster
and also enable flexible communications between prepro-
cessors and trainers.

Challenge 2: With data-parallel DNN training, prepro-
cessed data from a processor is received by its paired train-
ing group master, scattered to trainers within the group (in-
cluding the training group master), and broadcasted to the
other training group masters. How do we build the dataflow
to enable efficient training pipeline?

We next describe the solutions and the implementation de-

tails.

Communications between Preprocessors and Trainers.
A preprocessor process is created through the fork opera-
tion. The number of preprocessors can be controlled by
the number of trainer group masters that execute the fork
operation. We establish the communications between a pre-
processor and its paired trainer group master through server
process. A server process holds Python objects and allows
other processes to manipulate them using proxies. A proxy
is an object in the multiprocessing package of Python
and refers to a shared object which lives (presumably) in
another process. A preprocessor sends the processed data
to its training group master by writing to a Numpy object
using the object’s proxy.

Dataflow Implementation. Pipeline is the essential
scheme organizing the different stages of DNN processing
together. It allows the stages to run in parallel. For example,
while a DNN is trained on some set of data, preprocessors
can be preprocessing another set of data. Figure 4 illustrates
the dataflow implementation in FLEET.

The dataflow contains three pipelined steps: (1) Training
group masters receive preprocessed data from their paired
preprocessor and put the data into a preprocessed queue QP .
(2) Preprocessed data from QP are broadcast to all the train-
ing group masters through MPI. Each training group master
receives all the preprocessed data, but handles the data dif-
ferently, depending on whether data-parallel training is used.
If a training group contains only one trainer (i.e., only one
GPU is used to train a DNN), the training group master puts
all the data into its trainer queue QT . Otherwise, the train-
ing group master scatters the data to its trainer queue QT

and the distribution queue QD∗ . The data in the distribution
queue is sent to the trainer queue QT of each training group
worker via MPI point-to-point communication in a separate
thread. (3) Each trainer (T1-T4) reads preprocessed data
from the trainer queueQT toQD, creates batches, and feeds
each batch to the DNN model for training.

6 EVALUATION

We conduct a set of experiments to examine the efficacy
of FLEET by answering the following questions: (1) How
much speedup can FLEET bring to ensemble training of
heterogeneous DNNs? (2) How do the pros and cons of
the two paradigms in FLEET designs, local and global,
play out in handling the variations among DNNs? More
specifically, does the greedy scheduling algorithm in FLEET
produce favorable schedules? How much waiting time does
the round-by-round scheme in FLEET cause, compared
to eager scheduling schemes? (3) What is the overhead of
runtime profiling, scheduling, and checkpointing in FLEET?

We first describe the experiment settings (machines, base-

FLEET

Rank 3

Rank 2

Rank 1

Rank 0
P1

P2

QP QT

QP QT

QD

QD

QT QD

QT

QD

∗QD

T1
(D1)

T2
(D2)

T3(D2)

T4
(D2)

Process 0
CPU Thread 1

(if forked)
Process 1
Thread 0

Process 0
Thread 0

Process 0
Thread 2

Data Flow
MPI Broadcast
MPI Point-to-point Communication

Figure 4: Illustration of the dataflow implementation. Two
DNNs, D1 and D2, are trained using four GPUs (Ranks 0-
3) by two training groups, (T1) and (T2, T3, T4). T1 and
T2 are training group masters. Sizes of QP , QT and QD

are 2048 images, 2048 images and 10 batches respectively.

lines, etc.) in Section 6.1 and then report our experiment
results in Sections 6.2 and 6.3 to answer the questions.

6.1 Experiment Settings

DNNs. The DNNs used in this experiment are derived from
DenseNets (Huang et al., 2017) and ResNets (He et al.,
2016). Both models are the state-of-the-art network archi-
tectures that achieve high performance in various learning
tasks. We select these networks as the basis because, as
structural DNNs, they are composed of many Convolutional
blocks, which have a standard interface making a block
ready to be connected with any other blocks. As a result, it
is easy to derive new DNNs from them—one just needs to
remove or insert some Convolutional blocks. Based on the
public DNNs, we derive 100 experimental DNNs (50 from
DenseNet and 50 from ResNet) by randomly changing the
block size of DenseNet and ResNet variations. The sizes of
the DNN models vary from 232MB to 1.19GB. The distri-
bution of their training rates on a single GPU which vary
from 21 to 176 images/sec. (DNN details in Appendix B.1)

System. All experiments are conducted on Summit-
Dev (Sum, 2019) at Oak Ridge National Lab. Each node is
equipped with two IBM POWER8 CPUs, 256GB DRAM,
and four NVIDIA Tesla P100 GPUs. FLEET is built on
Tensorflow 1.12 (as the core training engine), Horovod
v0.15.2 (Sergeev & Del Balso, 2018) (as the basis for dis-
tributed DNN training), and mpi4py v3.0.0 (for the pipeline
construction). CUDA version is 9.2. (System details in
Appendix B.2)

Datasets. The datasets used in the experiments are Ima-
geNet (Deng et al., 2009) and Caltech256 Object Category
Dataset (Cal, 2007). ImageNet contains 1,261,406 training
images and Caltech256 contains 30,606 training images.
We use ImageNet whenever possible (e.g.,for throughput

comparisons), but use Caltech256 for the measurement of
end-to-end ensemble training times such that the training
can converge within the maximum 240 minutes limit that
SummitDev permits.

Profiling. To minimize the overhead of profiling, we only
profile the training rates of each DNN in the ensemble with
the number of GPUs varying from one to Mt(Mt < M),
where Mt is determined based on the training rates of each
DNN on a single GPU. For profiling onm (m = 1, · · · ,Mt)
GPUs, we train a DNN for a maximum of 48 batches and
use the training time of the last 20 batches to calculate the
exact training rate: ri(m), i = 1, · · · , N . Based on the
profiled training rates, we estimate the training rates of each
DNN when m > Mt. Profiling details are in Appendix
B.3. The profiling process also measures the throughput of
a range of preprocessors and uses it to set the number of
preprocessors.

Counterparts for Comparisons.

• Baseline The baseline uses the default TensorFlow to
train each DNN on one GPU independently. Each
DNN trainer has a preprocessor that preprocesses data
for itself independently. A GPU randomly picks one
yet-to-be-trained DNN whenever it becomes free until
there are no DNN left.

• Homogeneous Training This is the state-of-the-art
framework recently published (Pittman et al., 2018)
for ensemble DNN training. This framework allows
the DNNs that get trained at the same time to share
the preprocessed data. But it is designed for homoge-
neous DNN training, assuming no variations among
DNNs or the situation where the number of DNNs is no
greater than the number of GPUs. In our experiments,
when there are more DNNs than GPUs, the framework
randomly picks a subset of the remaining DNNs to
train, one DNN per GPU with shared preprocessed
data. After that subset is done, it picks another subset
and repeats the process until all DNNs are done.

• FLEET-G This is FLEET in the global paradigm.

• FLEET-L This is FLEET in the local paradigm as
described in Section 4.3.3. Its difference from FLEET-
G is that as soon as a DNN is done, the released GPUs
are immediately used to train some remaining DNNs;
which DNNs are picked is determined by the greedy
algorithm as in FLEET-G, but only locally (for the
newly released GPUs) rather than globally.

6.2 End-to-End Speedups

Figure 5 reports the speedups of the three methods over
the baseline method, in terms of the end-to-end ensemble
training time of the 100 DNNs. All runtime overhead for

FLEET

 0

 0.5

 1

 1.5

 2

 2.5

(20,100) (40,100) (60,100) (80,100) (100,100) (120,100) (140,100) (160,100)

S
p

e
e

d
u

p

(#GPUs, #DNNs)

Homogeneous[24]
FLEET-L

FLEET-G

Figure 5: The averaged speedups over the baseline in terms
of the end-to-end time for training a 100-DNN ensemble.
The error bars show the variations.

W
ai

t t
im

e/
#G

PU
 in

 s
ec

on
ds

5.0

10.0

50.0

100.0

20 GPU
100 DNN

40 GPU
100 DNN

60 GPU
100 DNN

80 GPU
100 DNN

100 GPU
100 DNN

120 GPU
100 DNN

140 GPU
100 DNN

160 GPU
100 DNN

Homogeneous[24] FLEET-L FLEET-G

Figure 6: Waiting time per GPU.

FLEET is included. We repeat each measurement multiple
times and report the average and error bars.

It shows the results in eight settings. The prior homoge-
neous framework shows large slowdowns in the first four
settings where the number of GPUs is less than the number
of DNNs. The slowdowns are due to the waiting of other
GPUs for the slowest DNN to finish in each round, shown
in Figure 6. In the other four settings, the homogeneous
framework performs similarly as the baseline does: As there
are more GPUs than DNNs, there is only one round, in
which, the two methods use resource similarly. The shar-
ing of preprocessing in the homogeneous framework does
not generate speedups for these DNN trainings because the
preprocessing is not the bottleneck for them.

FLEET-G gives the best overall performance, producing
1.12-1.92X speedups over the baseline. The primary reason
for the speedups come from its better resource allocation
to the DNNs. The bottom of Table 3 reports the mean and
standard deviations of the running lengths of DNNs in the

Table 3: Mean and standard deviation of the running length
of DNNs in seconds. (80 GPUs, 100 DNNs)

Technique Flotilla ID Mean Std. Dev.
Baseline - 10372.2 4178.9
FLEET-L - 6213 3580.0

0 2067.9 54.7
1 335.6 48.4
2 2291.9 26.0

FLEET-G 3 415.5 51.9
4 1072.2 364.0
5 2322.3 216.0

Table 4: Scheduling and checkpointing overhead.

(#GPU,
#DNN)

Total Training
Time (in sec)

Scheduling
Overhead

Checkpointing
Overhead

in sec in % in sec in %
(20,100) 55200.1 20.1 0.037 1496.0 2.7
(40,100) 30204.8 15.8 0.054 1156.0 3.8
(60,100) 24495.0 14.0 0.060 986.0 4.0
(80,100) 21891.0 12.0 0.057 816.0 3.7
(100,100) 18359.1 10.1 0.058 782.0 4.3
(120,100) 15323.9 9.9 0.068 680.0 4.4
(140,100) 13366.3 9.3 0.073 680.0 5.1
(160,100) 11825.2 10.2 0.092 748.0 6.3

first five flotillas in FLEET-G (80GPU,100DNN). In com-
parison to the data in the baseline and FLEET-L (top rows in
Table 3), the DNNs show much smaller variations in length,
which indicate the effectiveness of the GPU allocations in
FLEET-G in evening out the differences among DNNs. At
the beginning, we thought that the catch to FLEET-G is
the waiting time of some GPUs after they are done with
their work in a round. Our experiments, however, show
the opposite effects. As Figure 6 shows, the average wait-
ing time per GPU is smallest for FLEET-G. The reason is
that the other methods all suffer long waiting time at the
end; because of their suboptimal resource allocation, some
GPUs have to work long after others to finish up the last
few DNNs. FLEET-L gives notable but fewer speedups for
its less favorable decisions at resource allocation due to the
local view.

Overall, FLEET gives larger speedups when #GPU >
#DNN. It is worth noting that in such a setting, there are
still many flotillas to schedule and FLEET scheduler plays
an important role. The reason is that in many cases, the
FLEET scheduler assigns multiple GPUs to one DNN. For
instance, 20 flotillas were created when training 100 DNN
on 120 GPUs and 22 flotillas were created when training 100
DNNs on 160 GPUs. When #GPU<#DNN, the speedups
from FLEET are not that significant but still substantial:
113–120% for three out of the four such settings in Figure 5.

6.3 Overhead

Table 4 reports the breakdown of the runtime overhead of
FLEET-G. The overhead of scheduling and checkpointing is
at most 0.1% and 6.3% of the end-to-end training time in all
the settings. Recall that, due to wall-clock-time limitation
of SummitDev, we have used the small Caltech256 dataset.

FLEET

For large datasets (e.g., ImageNet), the overhead would be-
come negligible. The profiling overhead is independent of
dataset size and solely depends on ensemble size. Recall
that, profiling needs the DNN to train for only a few steps in
parallel. Its overhead is marginal for typical DNN trainings
on large datasets that take hours or days to train. On recent
GPUs, a feature called Multi-Process Services (MPS) could
potentially allow multiple DNNs to be co-scheduled to a
single GPU and run concurrently. It is not considered in the
current FLEET. To consider it, some co-run predictive mod-
els could help, which could quickly predict the performance
of a DNN when it co-runs with a set of other DNNs on one
GPU. The predictive performance can then be combined
with the existing performance models in FLEET to guide
the scheduling of DNNs.

7 RELATED WORK

Much research has been done to accelerate the training of
a single DNN over distributed systems, such as Tensor-
flow from Google (Dean et al., 2012; Abadi et al., 2016),
Project Adams from Microsoft (Chilimbi et al., 2014), Fire-
Caffe (Iandola et al., 2016), PipeDream (Harlap et al., 2018),
and GPipe (Huang et al., 2018). All those studies have fo-
cused on improving the training speed of an individual DNN
rather than ensemble training.

Recently, ensemble training starts drawing more atten-
tion. Besides the work by Pittman et al. (Pittman et al.,
2018), there are some other efforts (Garipov et al., 2018;
Loshchilov & Hutter, 2016) on ensemble training, but
they focus on designing lightweight methods to form high-
performing ensembles instead of improving pipeline effi-
ciency of ensemble training. HiveMind (Narayanan et al.,
2018) is a system designed for accelerating the training of
multiple DNNs on a single GPU by fusing common opera-
tions (e.g., preprocessing) across models. It, however, lacks
the essential support for distributed DNN training.

Another line of research that is relevant to this work is task
scheduling on clusters or workflow management systems.
The scheduling of a set of tasks or workloads on clusters
or multiprocessor systems has been extensively studied in
the literature (Turek et al., 1992; Shmoys et al., 1995; Ur-
gaonkar et al., 2002; Augonnet et al., 2011; Zaharia et al.,
2008; Grandl et al., 2015; Chowdhury et al., 2016; Xu et al.,
2018; Ousterhout et al., 2013; Cheng et al., 2016; Delim-
itrou & Kozyrakis, 2014; Feitelson et al., 1997). Recent
work including Gandiva (Xiao et al., 2018) and Tiresias (Gu
et al., 2019) design GPU cluster managers tailored for DNN
workloads. They, however, lack the flexibility supported
in FLEET. First, they treat different jobs as independent
black boxes. Without the MPI communication mechanisms
we put into FLEET to enable flexible data exchanges of
TensorFlow-based workers and preprocessors, these sched-

ulers cannot flexibly adjust the number of workers for a
DNN training. Second, as they treat the DNNs as separate
jobs, they cannot support the coordinations across DNNs
in an ensemble, such as, the sharing of preprocessed data,
cooperated checkpointing at the appropriate times.

Load balancing techniques for parallel computers such as
nearest neighbor assignment to dynamically distribute work-
loads have been studied in (Kumar et al., 1994). The way
FLEET distributes DNN training workloads are fundamen-
tally different because an initial task assignment is not set
at the beginning but dynamically determined based on both
the convergence status and the training rate of each DNN.

8 CONCLUSIONS

This paper presents a systematic exploration on enabling
flexible efficient ensemble training for heterogeneous DNNs.
It addresses two-fold challenges. First, it formalizes the
essence of the problem into an optimal resource alloca-
tion problem, analyzes its computational complexity, and
presents an efficient greedy algorithm to effectively map
DNNs to GPUs on the fly. Second, it develops a set of
techniques to seamlessly integrate distributed data-parallel
training of DNN, preprocessing sharing, and runtime DNN-
to-GPU assignments together into a software framework,
FLEET. Experiments on 100 heterogeneous DNNs on Sum-
mitDev demonstrate that FLEET can speed up the ensemble
training by 1.12-1.92X over the default training method,
and 1.23-1.97X over the state-of-the-art framework that was
designed for homogeneous ensemble training.

ACKNOWLEDGEMENTS

We thank the anonymous MLSys reviewers for the helpful
comments. This material is based upon work supported by
the National Science Foundation (NSF) under Grant No.
CCF-1525609 and CCF-1703487. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of NSF. This manuscript has been authored by
UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the US Department of Energy (DOE). The US govern-
ment retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains
a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

FLEET

REFERENCES

Caltech256 object category dataset caltechauthors. https:
//authors.library.caltech.edu/7694/, 12
2007. Accessed On 4/3/2019.

Summit user guide oak ridge leadership comput-
ing facility. https://www.olcf.ornl.
gov/for-users/system-user-guides/
summitdev-quickstart-guide/, 2019. Ac-
cessed 3/3/2019.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-
A. Starpu: a unified platform for task scheduling on
heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, 23(2):187–198,
2011.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(Feb):281–305, 2012.

Canziani, A., Paszke, A., and Culurciello, E. An analysis
of deep neural network models for practical applications.
arXiv preprint arXiv:1605.07678, 2016.

Cheng, D., Rao, J., Guo, Y., Jiang, C., and Zhou, X. Improv-
ing performance of heterogeneous mapreduce clusters
with adaptive task tuning. IEEE Transactions on Parallel
and Distributed Systems, 28(3):774–786, 2016.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable deep
learning training system. In 11th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pp. 571–582, 2014.

Chowdhury, M., Liu, Z., Ghodsi, A., and Stoica, I. {HUG}:
Multi-resource fairness for correlated and elastic de-
mands. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), pp.
407–424, 2016.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Delimitrou, C. and Kozyrakis, C. Quasar: resource-efficient
and qos-aware cluster management. In ACM SIGARCH

Computer Architecture News, volume 42, pp. 127–144.
ACM, 2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Du, J. and Leung, J. Y.-T. Complexity of scheduling parallel
task systems. SIAM Journal on Discrete Mathematics, 2
(4):473–487, 1989.

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik,
K. C., and Wong, P. Theory and practice in parallel job
scheduling. In Workshop on Job Scheduling Strategies
for Parallel Processing, pp. 1–34. Springer, 1997.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of dnns. In Advances in Neural Information
Processing Systems, pp. 8789–8798, 2018.

Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., and
Akella, A. Multi-resource packing for cluster schedulers.
ACM SIGCOMM Computer Communication Review, 44
(4):455–466, 2015.

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M., Qian,
J., Liu, H., and Guo, C. Tiresias: A {GPU} cluster man-
ager for distributed deep learning. In 16th {USENIX}
Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19), pp. 485–500, 2019.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V.,
Devanur, N., Ganger, G., and Gibbons, P. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le,
Q. V., and Chen, Z. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. arXiv preprint
arXiv:1811.06965, 2018.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: near-linear acceleration of deep neural
network training on compute clusters. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2592–2600, 2016.

https://authors.library.caltech.edu/7694/
https://authors.library.caltech.edu/7694/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/

FLEET

Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B.,
and Xing, E. P. Neural architecture search with bayesian
optimisation and optimal transport. In Advances in Neural
Information Processing Systems, pp. 2016–2025, 2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Kumar, V., Grama, A. Y., and Vempaty, N. R. Scalable load
balancing techniques for parallel computers. Journal of
Parallel and Distributed computing, 22(1):60–79, 1994.

Li, L. and Talwalkar, A. Random search and repro-
ducibility for neural architecture search. arXiv preprint
arXiv:1902.07638, 2019.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Mathuriya, A., Bard, D., Mendygral, P., Meadows, L., Arne-
mann, J., Shao, L., He, S., Kärnä, T., Moise, D., Penny-
cook, S. J., et al. Cosmoflow: using deep learning to learn
the universe at scale. In SC18: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pp. 819–829. IEEE, 2018.

Narayanan, D., Santhanam, K., Phanishayee, A., and Za-
haria, M. Accelerating deep learning workloads through
efficient multi-model execution. In NIPS Workshop on
Systems for Machine Learning (December 2018), 2018.

Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Spar-
row: distributed, low latency scheduling. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, pp. 69–84. ACM, 2013.

Patton, R. M., Johnston, J. T., Young, S. R., Schuman, C. D.,
March, D. D., Potok, T. E., Rose, D. C., Lim, S.-H.,
Karnowski, T. P., Ziatdinov, M. A., et al. 167-pflops
deep learning for electron microscopy: from learning
physics to atomic manipulation. In Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis, pp. 50. IEEE
Press, 2018.

Pittman, R., Shen, X., Patton, R. M., and Lim, S.-H. Ex-
ploring Flexible Communications for Streamlining DNN
Ensemble Training Pipelines. Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’18), 2018.

Ratnaparkhi, A. A. and Pilli, E. Networks. 2016 In-
ternational Conference on Emerging Trends in Com-
munication Technologies (ETCT), pp. 1–6, 2012. doi:
10.1109/ETCT.2016.7882969.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever,
I. Evolution strategies as a scalable alternative to rein-
forcement learning. arXiv preprint arXiv:1703.03864,
2017.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Shmoys, D. B., Wein, J., and Williamson, D. P. Scheduling
parallel machines on-line. SIAM J. Comput., 24(6):1313–
1331, December 1995. ISSN 0097-5397. doi: 10.1137/
S0097539793248317. URL http://dx.doi.org/
10.1137/S0097539793248317.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

Turek, J., Wolf, J. L., Pattipati, K. R., and Yu, P. S. Schedul-
ing parallelizable tasks: Putting it all on the shelf. In
ACM SIGMETRICS Performance Evaluation Review, vol-
ume 20, pp. 225–236. ACM, 1992.

Urgaonkar, B., Shenoy, P., and Roscoe, T. Resource over-
booking and application profiling in shared hosting plat-
forms. ACM SIGOPS Operating Systems Review, 36(SI):
239–254, 2002.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra,
N., Han, Z., Patel, P., Peng, X., Zhao, H., Zhang, Q.,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
595–610, 2018.

Xu, L., Butt, A. R., Lim, S.-H., and Kannan, R. A
heterogeneity-aware task scheduler for spark. In 2018
IEEE International Conference on Cluster Computing
(CLUSTER), pp. 245–256. IEEE, 2018.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H.,
and Stoica, I. Improving mapreduce performance in het-
erogeneous environments. In Osdi, volume 8, pp. 7,
2008.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697–8710, 2018.

http://dx.doi.org/10.1137/S0097539793248317
http://dx.doi.org/10.1137/S0097539793248317

FLEET

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

T
ra

in
in

g
 R

a
te

 (
im

a
g

e
s
/s

e
c
)

DNNs used in experiments

Figure 7: Training rate of each DNN on a single GPU.

A COMPLEXITY ANALYSIS OF THE
GREEDY ALLOCATION ALGORITHM

Algorithm 2 shows the flotilla creation algorithm. Flotilla
creation first searches for the reference training rate (line 1,
time complexityO(N)), then iteratively finds the best candi-
date DNN to add in the flotilla (lines 3-11, time complexity
O(Nk × N × M), and finally assigns all the remaining
GPUs available to the DNNs in the flotilla (lines 12- 15,
time complexity O(Nk ×M)). So the time complexity of
flotilla creation is O(Nk ×N ×M).

GPU assignment first prunes the factorial solution space by
identifying and assigning GPUs to the DNNs whose training
rate meets certain requirements in O(Nk) time complexity.
It then searches for the optimal GPU assignment strategy
for the remaining DNNs. The algorithm is shown in Al-
gorithm 3. This algorithm assumes the number of GPUs
per node is the same among nodes (GPUsPerNode), which
holds in major supercomputers. It assigns GPUs to DNNs
in the following order:

1. the DNNs whose required number of GPUs is a multi-
ple of the number of GPUs per node; (lines 5-11)

2. the pairs of DNNs whose sum of the required number
of GPUs is a multiple of the number of GPUs per node;
(lines 12-24)

3. the remaining DNNs by searching for an optimal as-
signment of GPUs. (lines 25-39)

Let N ′k be the number of remaining DNNs. The solution
space is N ′k!. Most of the time, N ′k is a small number less
than five. However, enumerating all the possible solutions
is still in factorial time complexity. We set the maximum
number of solutions to explore as 1024, reducing the time
complexity to O(1). The time complexity of GPU assign-
ment is thus O(Nk).

B EXPERIMENT DETAILS

B.1 Characteristics of Experimental DNNs

The DNNs used in this experiment are derived from six
popular DNNs, DenseNet-121, DenseNet-169, DenseNet-

Algorithm 2 createFlotilla
Input: cands,R,M // The indices of DNNs that are not con-

verged, the training rates of the DNNs, and the number of
GPUs available

Output: Fk,mk // the k-th flotilla and the GPU count vector
1: Dfast, rfast = fastestDNN(cands,R) // Find the DNN with

the largest training rate with a single GPU
2: Fk,Mk,mk = [Dfast], 1, [1]
3: while |Fk| < |cands| do
4: Dbest, rbest,Mbest = findNext(rfast, R, cands,Fk,M −

Mk) // Find the next DNN, its training rate and required
GPU count

5: if Dbest == −1 then
6: break
7: end if
8: Fk.append(Dbest)
9: mk.append(Mbest)

10: Mk+ = Mbest

11: end while
12: while Mk < M do
13: Dslow = slowestDNN(Fk,mk, R) // in terms of speed

on the currently assigned GPUs
14: mk[slow]+ = 1
15: Mk+ = 1
16: end while

Model Size

Tr
ai

ni
ng

 R
at

e
(#

G
PU

=1
)

Ep
oc

hs

0

50

100

150

200

0

5

10

15

20

25

250 500 750 1000

Training Rate Epochs

Figure 8: Correlations between model size of a DNN and the
training rate and the number of epochs until convergence.

201, ResNet-50, ResNet-101 and ResNet-152. The first
three are variations of DenseNet (Huang et al., 2017). The
three variations share the same structure, but differ in the
number of DNN layers, indicated by their suffixes. The
latter three are variations of ResNet (He et al., 2016).

The 100 DNNs used in our experiments have a range of
model sizes, from 232 MB to 1.19GB. Different DNNs
have different GPU memory requirements and thus require
different batch sizes to maximize GPU utilization. For each,
we use the maximum batch size that can fit into GPU’s
memory. Figure 7 shows the distribution of their training
rates on a single GPU which vary from 21 to 176 images/sec.

Figure 8 outlines the relations between the training rates and
model sizes of the DNNs, as well as the relations between
convergence rates (i.e., the number of epochs needed for the

FLEET

Algorithm 3 getGPUAssignment
Input: Fk,mk // The k-th flotilla and the GPU count vector
Output: Ak

1: j = 1 // The current available GPU with the smallest index.
2: Ak = 0Nk,M // The GPU assignment matrix of dimension

Nk ×M
3: remaining = {1, · · · , N} // The indices of DNNs to allo-

cate GPUs
4: assigned = {} // The indices of DNNs that have assigned

GPUs
5: for all i ∈ remaining do
6: if m(k)

i %GPUsPerNode == 0 then
7: assigned.add(i)
8: j = assignGPUs(Ak, i, j,m

(k)
i)

9: end if
10: end for
11: remaining -= assigned
12: memo, assigned = {}, {}
13: for all i ∈ remaining do
14: if −m(k)

i %GPUsPerNode not in memo then
15: memo[m

(k)
i %GPUsPerNode] = i

16: else
17: for ii ∈ {i,memo[−m(k)

i %GPUsPerNode]} do
18: assigned.add(ii)
19: j = assignGPUs(Ak, ii, j,m

(k)
ii)

20: end for
21: del memo[m

(k)
i %GPUsPerNode]

22: end if
23: end for
24: remaining -= assigned
25: if |remaining| > 0 then
26: m̃(k), bestScore, bestA, jcopy, Acopy =

[],∞, j, clone(Ak)
27: for all i ∈ remaining do
28: m̃(k).append((i,m(k)

i))
29: end for
30: for permutation in allPermutations(m̃(k)) do
31: j, Ak = jcopy, clone(Acopy)

32: for i,m
(k)
i in permutation do

33: j = assignGPUs(Ak, i, j,m
(k)
i)

34: end for
35: score = calculateScore(Ak) // Score is calculated based

on the loss function in Eq. 7
36: if score < bestScore then
37: bestScore, bestA = score,Ak

38: end if
39: end for
40: Ak = bestA
41: end if

Algorithm 4 assignGPUs

Input: Ak, i, j,m
(k)
i

Output: j // The index of the next available GPU to assign
1: while m

(k)
i > 0 do

2: ak
i,j = 1; j+ = 1; m(k)

i − = 1
3: end while

DNNs to converge) and their model sizes. As model size in-
creases, the training rate tends to drop as more computations
are involved in the DNN, but there are no clear correlations
with the convergence rate. It is the reason that the resource
allocation algorithm in FLEET primarily considers training
rate explicitly, and relies on the periodical (re)scheduling to
indirectly adapt to the variations of DNNs in the converging
rates.

B.2 System Settings

All experiments are conducted on SummitDev (Sum, 2019),
a development machine for Summit supercomputer at Oak
Ridge National Lab. Each node is equipped with two IBM
POWER8 CPUs and 256GB DRAM, and four NVIDIA
Tesla P100 GPUs. Each POWER8 CPU has 10 cores with 8
HW threads each. The default SMT level is set to one unless
noted otherwise. The number of cores allocated per GPU
is five in all the experiments. NVLink 1.0 is the connection
among all GPUs and between CPUs and GPUs within a
node. EDR InfiniBand connects different nodes in a full fat-
tree. The file system is an IBM Spectrum Scale file system,
which provides 2.5 TB/s for sequential I/O and 2.2 TB/s for
random I/O. Our experiments show that thanks to the large
I/O throughput of the file system, I/O is not the bottleneck
of DNN training. The used CUDA version is 9.2.

FLEET is built on Tensorflow 1.12 (as the core train-
ing engine), Horovod v0.15.2 (Sergeev & Del Balso,
2018) (as the basis for distributed DNN training),
and mpi4py v3.0.0 (for the pipeline construction).
We set inter op parallelism threads and
intra op parallelism threads to # logical cores
for parallel TensorFlow operaitons on CPU. The used
CUDA version is 9.2.

B.3 Profiling Details

To minimize the overhead of profiling, we only profile the
training rates of each DNN in the ensemble with the num-
ber of GPUs varying from one to Mt(Mt < M). For
profiling on m (m = 1, · · · ,Mt) GPUs, we train a DNN
for a maximum of 48 batches and use the training time
of the last 20 batches to calculate the exact training rate:
ri(m), i = 1, · · · , N . Based on the profiled training rates,
we estimate the training rates of each DNN when m > Mt.
Specifically, the profiling has three steps:

1. Collect the training rates of each DNN on a single
GPU, R(1) = {ri(1)}, i = 1, · · · , N .

2. Estimate the number of GPUs required to make the
DNN that has the smallest training rate on a single GPU
achieve the largest single-GPU training rate, Ma =⌈max(R(1))
min(R(1))

⌉
.

FLEET

1 2 3 4 5 6 7 8
Number of GPUs

0

200

400

600

800

1000

Tr
ai

ni
ng

 R
at

e

Figure 9: The profiled training rates (images/sec) of 100
DNNs in an ensemble with Imagenet.

3. Collect the training rates of each DNN with the number
of GPUs varying from two to Mt = max(Ma,Mb),
where Mb = 2×GPUsPerNode.

Note that steps 1 and 3 can be done in parallel because the
trainings of different DNNs with different number of GPUs
are independent. The training rate of the i-th DNN with
the number of GPUs higher than Mt is estimated via the
following equation:

ri(m) = m× ri(Mb)

Mb
×
(ri(Mb)

ri(Mb − 1)
×Mb − 1

Mb

)m−Mb

. (5)

The formula for Mb and Equation 5 are the result of perfor-
mance modeling on our observations on the DNN perfor-
mance trend as illustrated in Figure 9. It achieves a good
tradeoff between the profiling cost and the performance
prediction accuracy.

The profiling process also measures the throughput of a
range of preprocessors (#cores=1, 2, 4, 8, 16, 32) in the
pipeline. This step is quick since preprocessing does not
exhibit large variations. Based on the profiled information,
FLEET calculates the minimum number of preprocessors
that can meet the demands of an arbitrary M DNNs (with
one running on one GPU), and uses it to set the number of
preprocessors.

