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Abstract

Estimating the volume of a convex body is a central problem in convex geometry and can be
viewed as a continuous version of counting. We present a quantum algorithm that estimates the
volume of an n-dimensional convex body within multiplicative error ε using Õ(n3+n2.5/ε) queries
to a membership oracle and Õ(n5 + n4.5/ε) additional arithmetic operations. For comparison,
the best known classical algorithm uses Õ(n4 + n3/ε2) queries and Õ(n6 + n5/ε2) additional
arithmetic operations. To the best of our knowledge, this is the first quantum speedup for
volume estimation. Our algorithm is based on a refined framework for speeding up simulated
annealing algorithms that might be of independent interest. This framework applies in the
setting of “Chebyshev cooling”, where the solution is expressed as a telescoping product of
ratios, each having bounded variance. We develop several novel techniques when implementing
our framework, including a theory of continuous-space quantum walks with rigorous bounds on
discretization error.
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1 Introduction

Estimating the volume of a convex body is a central challenge in theoretical computer science.
Volume estimation is a basic problem in convex geometry and can be viewed as a continuous
version of counting. Furthermore, algorithms for a generalization of volume estimation—namely log-
concave sampling—can be directly used to perform convex optimization, and hence can be widely
applied to problems in statistics, machine learning, operations research, etc. See the survey [64] for
a more comprehensive introduction.

Volume estimation is a notoriously difficult problem. References [7, 21] proved that any deter-
ministic algorithm that approximates the volume of an n-dimensional convex body within a factor
of no(n) necessarily makes exponentially many queries to a membership oracle for the convex body.
Furthermore, Refs. [20, 31, 32] showed that estimating the volume exactly (deterministically) is
#P-hard, even for explicitly described polytopes.

Surprisingly, volumes of convex bodies can be approximated efficiently by randomized algo-
rithms. Reference [19] gave the first polynomial-time randomized algorithm for estimating the
volume of a convex body in Rn. It presents an iterative algorithm that constructs a sequence of
convex bodies. The volume of the convex body of interest can be written as the telescoping product
of the ratios of the volumes of consecutive convex bodies, and these ratios are estimated by Markov
chain Monte Carlo (MCMC) methods via random walks inside these convex bodies. The algorithm
in [19] has complexity1 Õ(n23) with multiplicative error ε = Θ(1). Subsequent work [6, 18, 30, 40–
42, 44] improved the design of the iterative framework and the choice of the random walks. The
state-of-the-art algorithm for estimating the volume of a general convex body [45] uses Õ(n4) queries
to the oracle for the convex body and Õ(n6) additional arithmetic operations. It has been an open
question for around 15 years to improve this Õ(n4) query complexity.2

It is natural to ask whether quantum computers can solve volume estimation even faster than
classical randomized algorithms. Although there are frameworks with potential quantum speedup
for simulated annealing algorithms in general, with volume estimation as a possible application [66],
we are not aware of any previous quantum speedup for volume estimation. There are several
reasons to develop such a result. First, quantum algorithms for volume estimation can be seen as
performing a continuous version of quantum counting [10, 11], a key algorithmic technique with
wide applications in quantum computing. Second, quantum algorithms for volume estimation can
exploit quantum MCMC methods (e.g., [49, 54, 65]), and a successful quantum volume estimation
algorithm may illuminate the application of quantum MCMC methods in other scenarios. Third,
there has been recent progress on quantum algorithms for convex optimization [5, 12], so it is
natural to understand the closely related task of estimating volumes of convex bodies.

Formulation Given a convex set K ⊂ Rn, we consider the problem of estimating its volume

Vol(K) :=

∫
x∈K

dx. (1.1)

To get a basic sense about the location of K, we assume that it contains the origin. Furthermore,
we assume that we are given inner and outer bounds on K, namely

B2(0, r) ⊆ K ⊆ B2(0, R), (1.2)

1Throughout the paper, Õ omits factors in poly(logR/r, log 1/ε, log n) where R and r are defined in (1.2).
2The volume estimation literature mainly focuses on improving the dependence on n, treating ε as a constant. To

be more explicit, the algorithm in [45] has query complexity Õ(n4/ε2).
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where B2(x, l) is the ball of radius l in `2-norm centered at x ∈ Rn. Denote D := R/r.
We consider the very general setting where the convex body K is only specified by an oracle. In

particular, we have a membership oracle3 for K that determines whether a given x ∈ Rn belongs to
K. The efficiency of volume estimation is then measured by the number of queries to the membership
oracle (i.e., the query complexity) and the total number of other arithmetic operations.

In the quantum setting, the membership oracle is a unitary operator OK. Specifically, we have

OK|x, 0〉 = |x, δ[x ∈ K]〉 ∀x ∈ Rn, (1.3)

where δ[P ] is 1 if P is true and 0 if P is false.4 In other words, we allow coherent superpositions
of queries to the membership oracle. If the classical membership oracle can be implemented by an
explicit classical circuit, then the corresponding quantum membership oracle can be implemented
by a quantum circuit of about the same size. Therefore, the quantum query model provides a useful
framework for understanding the quantum complexity of volume estimation.

1.1 Contributions

Our main result is a quantum algorithm for estimating volumes of convex bodies:

Theorem 1.1 (Main Theorem). Let K ⊂ Rn be a convex set with B2(0, r) ⊆ K ⊆ B2(0, R). Assume

0 < ε < 1/2. Then there is a quantum algorithm that returns a value Ṽol(K) satisfying

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε) Vol(K) (1.4)

using Õ(n3 + n2.5/ε) quantum queries to the membership oracle OK (defined in (1.3)) and Õ(n5 +
n4.5/ε) additional arithmetic operations.5

To the best of our knowledge, this is the first quantum algorithm that achieves quantum speedup
for this fundamental problem, compared to the classical state-of-the-art algorithm [16, 45] that uses
Õ(n4 + n3/ε2) classical queries and Õ(n6 + n5/ε2) additional arithmetic operations.6 Furthermore,
our quantum algorithm not only achieves a quantum speedup in query complexity, but also in the
number of arithmetic operations for executing the algorithm. This differs from previous quantum
algorithms for convex optimization [5, 12] where only the query complexity is improved, but the
gate complexity is the same as that of the classical state-of-the-art algorithm [33, 34].

On the other hand, we prove that volume estimation with ε = Θ(1) requires Ω(
√
n) quantum

queries to the membership oracle, ruling out the possibility of achieving superpolynomial quantum
speedup for volume estimation (see Theorem 6.1).

3The membership oracle is commonly used in convex optimization research (see for example [24]). This model is
not only general but also of practical interest. For instance, when K is a bounded convex polytope, the membership
oracle can be efficiently implemented by checking if all its linear constraints are satisfied; see also [36].

4Here x can be approximated just as in the classical algorithms, such as with floating point numbers. Our
algorithmic approach is robust under discretization (see Section 5), and our quantum lower bound holds even when x
is stored with arbitrary precision (Section 6). We mostly assume for convenience that OK operates on x ∈ Rn, since
this neither presents a serious obstacle nor conveys significant power.

5Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in principle implemented
by a universal set of quantum gates using the Solovay-Kitaev Theorem [17] up to a small overhead. In our quantum
algorithm, the number of arithmetic operations is dominated by n-dimensional matrix-vector products computed in
superposition for rounding the convex body (see Section 4.4).

6This is achieved by applying [45] to preprocess the convex body to be well-rounded using Õ(n4) queries and
then applying [16] using Õ(n3/ε2) queries to estimate the volume of the well-rounded convex body. The number of
additional arithmetic operations has an overhead of O(n2) due to the affine transformation in rounding.
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Technically, we refine a framework for achieving quantum speedups of simulated annealing
algorithms, which might be of independent interest. Our framework applies to MCMC algorithms
with cooling schedules that ensure each ratio in a telescoping product has bounded variance, an
approach known as Chebyshev cooling. Furthermore, we propose several novel techniques when
implementing this framework, including a theory of continuous-space quantum walks with rigorous
bounds on discretization error, a quantum algorithm for nondestructive mean estimation, and a
quantum algorithm with interlaced rounding and volume estimation of convex bodies (as described
further in Section 1.2 below). In principle, our techniques apply not only to the integral of the
identity function (as in Theorem 1.1), but could also be applied to any log-concave function defined
on a convex body, following the approach in [43].

We summarize our main results in Table 1.

Classical bounds Quantum bounds (this paper)

Query complexity Õ(n4 + n3/ε2) [16, 45], Ω̃(n2) [52] Õ(n3 + n2.5/ε), Ω(
√
n)

Total complexity Õ
(
(n2 + CMEM) · (n4 + n3/ε2)

)
[16, 45] Õ

(
(n2 + CMEM) · (n3 + n2.5/ε)

)
Table 1: Summary of complexities of volume estimation, where n is the dimension of the convex body, ε is the
multiplicative precision of volume estimation, and CMEM is the cost of applying the membership oracle once.
Total complexity refers to the cost of the of queries plus the number of additional arithmetic operations.

1.2 Techniques

We now summarize the key technical aspects of our work.

1.2.1 Classical volume estimation framework

Volume estimation by simulated annealing The volume of a convex body K can be estimated
using simulated annealing. Consider the value

Z(a) :=

∫
K
e−a‖x‖2 dx, (1.5)

where ‖x‖2 :=
√
x2

1 + · · ·+ x2
n is the `2-norm of x. On the one hand, Z(0) = Vol(K); on the other

hand, because e−‖x‖2 decays exponentially fast with ‖x‖2, taking a large enough a ensures that the
vast majority of Z(a) concentrates near 0, so it can be well approximated by integrating on a small
ball centered at 0. Therefore, a natural strategy is to consider a sequence a0 > a1 > · · · > am with
a0 sufficiently large and am close to 0. We consider a simulated annealing algorithm that iteratively
changes ai to ai+1 and estimates Vol(K) by the telescoping product

Vol(K) ≈ Z(am) = Z(a0)

m−1∏
i=0

Z(ai+1)

Z(ai)
. (1.6)

In the ith step, a random walk is used to sample the distribution over K with density proportional
to e−ai‖x‖2 . Denote one such sample by Xi, and let Vi := e(ai−ai+1)‖Xi‖2. Then we have

E[Vi] =

∫
K
e(ai−ai+1)‖x‖2 e

−ai‖x‖2

Z(ai)
dx =

∫
K

e−ai+1‖x‖2

Z(ai)
dx =

Z(ai+1)

Z(ai)
. (1.7)

Therefore, each ratio Z(ai+1)
Z(ai)

can be estimated by taking i.i.d. samples Xi, computing the corre-
sponding Vis, and taking their average.

We can analyze this volume estimation algorithm by considering its behavior at three levels:
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1) High level: The algorithm follows the simulated annealing framework described above, where the
volume is estimated by a telescoping product as in (1.6).

2) Middle level: The number of i.i.d. samples used to estimate E[Vi] (a ratio in the telescoping
product given by (1.7)) is small. Intuitively, the annealing schedule should be slow enough that
Vi has small variance.

3) Low level: The random walk converges fast so that we can take each i.i.d. sample of Vi efficiently.

Classical volume estimation algorithm Our approach follows the classical volume estimation
algorithm in [45] (see also Section 4.1). At the high level, it is a simulated annealing algorithm
that estimates the volume of an alternative convex body K′ produced by the pencil construction,
which intersects a cylinder [0, 2R/r] × K and a cone C := {x ∈ Rn+1 : x0 ≥ 0, ‖x‖2 ≤ x0}. This
construction replaces the integral (1.5) by Z(a) =

∫
K′ e
−ax0 dx, which is easier to calculate.

Without loss of generality, assume that r = 1. Reference [45] proves that if we take the sequence
a0 > · · · > am where a0 = 2n, ai+1 = (1− 1√

n
)ai, and m = Õ(

√
n), then Z(a0) ≈

∫
C e
−a0x0 dx and

Var[V 2
i ] = O(1) · E[Vi]

2 ∀ i ∈ [m], (1.8)

i.e., the variance of Vi is bounded by a constant multiple of the square of its expectation. Such a
simulated annealing schedule is known as Chebyshev cooling (see also Section 4.3.3). This establishes
the middle-level requirement of the simulated annealing framework. Furthermore, [45] proves that
the product of the average of Õ(

√
n/ε2) i.i.d. samples of Vi for all i ∈ [m] gives an estimate of

Vol(K′) within multiplicative error ε with high success probability.
At the low level, Ref. [45] uses a hit-and-run walk to sample Xi. In this walk, starting from a

point p, we uniformly sample a line ` through p and move to a random point along the chord `∩K
with density proportional to e−ax0 (see Section 2.4 for details). Ref. [44] analyzes the convergence of
the hit-and-run walk, proving that it converges to the distribution over K with density proportional
to e−ax0 within Õ(n3) steps, assuming that K is well-rounded (i.e., R/r = O(

√
n)).

Finally, Ref. [45] constructs an affine transformation that transforms a general K to be well-
rounded with Õ(n4) classical queries to its membership oracle, hence removing the constraint of
the previous steps that K be well-rounded. Because the affine transformation is an n-dimensional
matrix-vector product, this introduces an overhead of O(n2) in the number of arithmetic operations.

Overall, the algorithm has Õ(
√
n) iterations, where each iteration takes Õ(

√
n/ε2) i.i.d. samples,

and each sample takes Õ(n3) steps of the hit-and-run walk. In total, the query complexity is

Õ(
√
n) · Õ(

√
n/ε2) · Õ(n3) = Õ(n4/ε2). (1.9)

The number of additional arithmetic operations is Õ(n4/ε2) · O(n2) = Õ(n6/ε2) due to the affine
transformation for rounding the convex body.

1.2.2 Quantum algorithm for volume estimation

It is natural to consider a quantum algorithm for volume estimation following the classical frame-
work in Section 1.2.1. A naive attempt might be to develop a quantum walk that achieves a generic
quadratic speedup in mixing time. However, this is unfortunately difficult to achieve in general.
Quantum walks are unitary processes that do not converge to stationary distributions in the classi-
cal sense. As a result, alternative and indirect quantum analogues of mixing properties of Markov
chains have been proposed and studied (see Section 1.3.2 for more detail). None of these methods
provide a direct replacement for classical mixing, and we cannot directly apply them in our context.
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Instead, we adapt one of the frameworks proposed in [65]. To give a quantum speedup for
volume estimation by this method, we address the following additional technical challenges:

• Quantum walks in continuous space: Quantum walks are mainly studied in discrete spaces [47,
62], and we need to understand how to define a quantum counterpart of the hit-and-run walk.

• Quantum mean estimation: Quantum counting [10] is a general tool for estimating a prob-
ability p ∈ [0, 1] with quadratic quantum speedup compared to classical sampling. However,
estimating the mean of an unbounded random variable with a quantum version of Chebyshev
concentration requires more advanced tools.

• Rounding: Classically, rounding a general convex body takes Õ(n4) queries [45], more expensive
than volume estimation of a well-rounded body using Õ(n3/ε2) queries [16]. To achieve an overall
quantum speedup, we also need to give a fast quantum algorithm for rounding convex bodies.

• Error analysis of the quantum hit-and-run walk: We must bound the error incurred when
implementing the quantum walk on a digital quantum computer with finite precision. Existing
classical error analyses (e.g., [23]) do not automatically cover the quantum case.

We develop several novel techniques to resolve all these issues, outlined point-by-point as follows.

Theory of continuous-space quantum walks (Section 3) Our first technical contribution
is to develop a quantum implementation of the low-level framework, i.e., to replace the classical
hit-and-run walk by a quantum hit-and-run walk. However, although quantum walks in discrete
spaces have been well studied (see for example [47, 62]), we are not aware of comparable results that
can be used to analyze spectral properties and mixing times of quantum walks in continuous space.
Here we describe a framework for continuous-space quantum walks that can be instantiated to give
a quantum version of the hit-and-run walk. In particular, we formally define such walks and analyze
their spectral properties, generalizing Szegedy’s theory [62] to continuous spaces (Section 3.1). We
also show a direct correspondence between the stationary distribution of a classical walk and a
certain eigenvector of the corresponding quantum walk (Section 3.2).

Quantum volume estimation algorithm via simulated annealing (Section 4.2) Having
described a quantum hit-and-run walk, the next step is to understand the high-level simulated
annealing framework. As mentioned above, it is nontrivial to directly prepare stationary states
of quantum walks. In this paper, we follow a quantum MCMC framework proposed by [65] that
can prepare stationary states of quantum walks by simulated annealing (see Section 2.2). In this
framework, we have a sequence of slowly-varying Markov chains, and the stationary state of the
initial Markov chain can be efficiently prepared. In each iteration, we apply fixed-point amplitude
amplification of the quantum walk operator [26] due to Grover to transform the current stationary
state to the next one; compared to classical slowly-varying Markov chains, the convergence rate of
such quantum procedure is quadratically better in spectral gap.

Our main technical contribution is to show how to adapt the Chebyshev cooling schedule
in [45] to the quantum MCMC framework in [65] using our quantum hit-and-run walk. The con-
ductance lower bound together with the classical Õ(n3) mixing time imply that we can perform
one step of fixed-point amplitude amplification using Õ(n1.5) queries to OK. Furthermore, the
inner product between consecutive stationary states is a constant. These two facts ensure that the
stationary state in each iteration can be prepared with Õ(n1.5) queries to the membership oracle
OK. The total number of iterations is still Õ(

√
n), as in the classical case.
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Quantum algorithm for nondestructive mean estimation (Section 4.3.3) In the next
step, we consider how to estimate each ratio in the telescoping product at the middle level. Our
main tool is quantum counting [10], which estimates a probability p ∈ [0, 1] with error ε and high
success probability using O(1/ε) quantum queries, a quadratic speedup compared to the classical
complexity O(1/ε2) due to Chernoff’s bound. In our case, we need to estimate the expectation
of a random variable with bounded variance. This is achieved by truncating the random variable
with reasonable upper and lower bounds and reducing to quantum counting, using the “quantum
Chebyshev inequality” developed in [27] (see Section 2.3). Compared to the classical counterpart,
this achieves quadratic speedup in the dependences on both variance and multiplicative error.

There is an additional technical difficulty in quantum simulated annealing: classically, it is
implicitly assumed that in the (i+ 1)th iteration we have samples to the stationary distribution in
the ith iteration. Applying existing quantum mean estimation techniques to the quantum stationary
state in the ith iteration would ruin that state and make it hard to use in the subsequent (i + 1)th

iteration. To resolve this issue, we show how to estimate the mean nondestructively in the quantum
Chebyshev inequality while keeping its quadratic speedup in the error dependence.

We achieve this nondestructive property by the following observation. The basic quantum count-
ing algorithm with unitary operation U and state |φ〉 [10] is composed of a quantum Fourier trans-
form (QFT), controlled Us on |φ〉, and then an inverse QFT, giving an estimate of 〈0|〈0|U |0〉|φ〉.
If we apply a unitary operation that computes a function of 〈0|〈0|U |0〉|φ〉 in an ancilla register
and then uncompute the counting circuit, then we get the state |φ〉 back as well as the function
value we need. Although the amplitude estimation only succeeds with probability 8/π2, this can
be boosted to 1 − δ for any δ > 0 by executing O(log 1/δ) copies simultaneously and taking their
median. One technical issue is that amplitude estimation can either give positive or negative phase
angles (see (2.11)), but this can be fixed by applying a sine-square function in superposition on a
separate register for each copy (see (4.23)), computing the median of all the O(log 1/δ) copies, and
applying the inverse of all the sine-square functions and amplitude estimations.7

In our quantum volume estimation algorithm, we apply the quantum Chebyshev inequality
under the same compute-uncompute procedure. This gives a quadratic speedup in ε−1 when esti-
mating the E[Vi] in (1.7), so that Õ(

√
n/ε) copies of the stationary state suffice (see Lemma 4.3).

Quantum algorithm for volume estimation with interlaced rounding (Section 4.4) The
stationary states of the quantum hit-and-run walk can be prepared with Õ(n1.5) queries to OK only
when the corresponding density functions are well-rounded (i.e., every level set with probability µ
contains a ball of radius µr, and the variance of the density is bounded by R2, with R/r = O(

√
n)).

It remains to show how to ensure that the convex body is well-rounded.
Classically, Ref. [45] gave a rounding algorithm that transforms a convex body to ensure that

all the densities sampled in the volume estimation algorithm are well-rounded. This algorithm uses
Õ(n4) queries, via Õ(n) iterations of simulated annealing. A quantization of this algorithm along
the same lines as detailed above gives an algorithm with Õ(n3.5) quantum queries.

To improve over that approach, we instead follow a classical framework for directly rounding
logconcave densities [43]. The rounding is interlaced with the volume estimation algorithm, so that
in each iteration of the simulated annealing framework, we use some of the samples to calculate
an affine transformation that makes the next stationary state well-rounded. This ensures that the
quantum hit-and-run walk continues to take only Õ(n1.5) queries for each sample. Our algorithm

7A recent paper of Harrow and Wei [28] independently shows how to perform nondestructive amplitude estimation
using a different approach: they directly apply a state restoration procedure inspired by [63] that first boosts the
fidelity to 1/2 and then repeats the projection onto the measured state until it is restored.
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maintains Õ(n) extra quantum states for rounding, and the quantum hit-and-run walk is used to
transform them from one stationary distribution to the next. In each iteration, we use a nonde-
structive measurement to sample the required affine transformation. With Õ(

√
n) iterations this

results in an additional Õ(
√
n) · Õ(n) · Õ(n1.5) = Õ(n3) cost for rounding.

We also show that this framework can be used as a preprocessing step that puts the convex
body itself in well-rounded position (i.e., B2(0, r) ⊆ K ⊆ B2(0, R) with R/r = O(

√
n)) using Õ(n3)

quantum queries. Putting a convex body in well-rounded position implies that several random
walks used in simulated annealing algorithms (including the hit-and-run walk) mix fast without
the need for further rounding. Therefore, as an alternative, we could preprocess the convex body to
be well-rounded and then apply the simulated annealing algorithm to obtain a volume estimation
algorithm that uses Õ(n3 + n2.5/ε) quantum queries.

Error analysis of discretized hit-and-run walks (Section 5) Although we defined quantum
hit-and-run walks abstractly in Section 3, implementing a continuous-space quantum walk on a
digital quantum computers will lead to discretization error, and the error analysis of classical
walks in a discrete space approximating Rn (such as [23]) does not automatically apply to the
quantum counterpart. To ensure that discretization errors do not affect a realistic implementation
of our algorithm, we propose a discretized hit-and-run walk and provide rigorous bounds on the
discretization error.

The basic idea of the discretization is to represent the coordinates with rational numbers. We
approximate K by a set of discretized points in K and define a Markov chain on these points (see
Section 5.1). We use a two-level discretization: the hit-and-run process is performed with a coarser
discretization and then a point in a finer discretization of the coarse grid is chosen uniformly at
random as the actual point to jump to. This ensures that the starting and ending points (in the
coarser discretization) of one jump are far from the boundary so that a small perturbation does
not change the length of the chord induced by the two points significantly. Then in Section 5.2, the
discrete conductance can be bounded by bounding the distance between the discrete and continuous
transition probabilities as well as the distance between the discrete and continuous subset measures.
In Section 5.3, we prove that the quantum gate complexity of implementing the discretized quantum
hit-and-run walk is Õ(n), the same overhead as for implementing classical hit-and-run walks.

Summary Our quantum volume estimation algorithm can be summarized as follows.

1) High level: The quantum algorithm follows a simulated annealing framework using a quantum
MCMC method [65], where the volume is estimated by a telescoping product (as in (1.6)); the
number of iterations is Õ(

√
n).

2) Middle level: We estimate the E[Vi] in (1.7), a ratio in the telescoping product, using the nonde-
structive version of the quantum Chebyshev inequality [27]. This takes Õ(

√
n/ε) implementations

of the quantum hit-and-run walk operators.

3) Low level: If the convex body K is well-rounded (i.e., R/r = O(
√
n)), each quantum hit-and-run

walk operator can be implemented using Õ(n1.5) queries to the membership oracle OK in (1.3).

Finally, we give a quantum algorithm that interlaces rounding and volume estimation of the
convex body, using an additional Õ(n2.5) quantum queries to OK in each iteration. Because the
affine transformation is an n-dimensional matrix-vector product, it introduces an overhead of O(n2)
in the number of arithmetic operations (just as in the classical rounding algorithm).

7



Overall, our quantum volume estimation algorithm has Õ(
√
n) iterations. Each iteration im-

plements Õ(
√
n/ε) quantum hit-and-run walks, and each quantum hit-and-run walk uses Õ(n1.5)

queries; there is also a cost of Õ(n2.5) for rounding. Thus the quantum query complexity is

Õ(
√
n) ·

(
Õ(
√
n/ε) · Õ(n1.5) + Õ(n2.5)

)
= Õ(n3 + n2.5/ε). (1.10)

The number of additional arithmetic operations is Õ(n3 + n2.5/ε) ·O(n2) = Õ(n5 + n4.5/ε) due to
the affine transformations for interlaced rounding of the convex body.

Figure 1 summarizes the techniques in our quantum algorithm. The volume estimation and
interlaced rounding algorithms are given as Algorithm 3 and Algorithm 4, respectively, in Section 4.

Quantum volume estimation
algorithm (Section 4.2)

Continuous-space
quantum walk (Section 3)

Discretized quantum
hit-and-run walk (Section 5)

Quantum convex body
rounding algorithm (Section 4.4)

Chebyshev cooling via nondestructive
mean estimation (Section 4.3.3)

Fixed-point amplitude
amplification (Section 2.2)

implement

implement

Step 1 Step 2 (simulated annealing)

Figure 1: The structure of our quantum volume estimation algorithm. The four purple frames represent the
four novel techniques that we propose, the yellow frame represents the known technique from [26], and the
green frame at the center represents our quantum algorithm.

1.2.3 Quantum lower bound (Section 6)

While we do not know whether the query complexity of our algorithm is tight, we prove that volume
estimation requires Ω(

√
n) quantum queries to a membership oracle, ruling out the possibility of

exponential quantum speedup. We establish this lower bound by a reduction to search: for a hyper-
rectangle K =×n

i=1[0, 2si ] specified by a binary string s = (s1, . . . , sn) ∈ {0, 1}n with |s| = 0 or 1,
we prove that a membership query to K can be simulated by a query to s. Thus, since Vol(K) = 2
if and only if |s| = 1, the Ω(

√
n) quantum lower bound on search [8] applies to volume estimation.

1.3 Related work

While our paper gives the first quantum algorithm for volume estimation, classical volume esti-
mation algorithms have been well-studied, as we review in Section 1.3.1. Our quantum algorithm
builds upon quantum analogs of Markov chain Monte Carlo methods that we review in Section 1.3.2.

1.3.1 Classical volume estimation algorithms

There is a rich literature on classical algorithms for estimating volumes of convex bodies (e.g., see
the surveys [37, 64]). The general approach is to consider a sequence of random walks inside the
convex body K whose stationary distributions converge quickly to the uniform distribution on K.
Applying simulating annealing to this sequence of walks (as in Section 1.2), the volume of K can
be approximated by a telescoping product.

The first polynomial-time algorithm for volume estimation was given by [19]. It uses a grid walk
in which the convex body K is approximated by a grid mesh Kgrid of spacing δ (i.e., Kgrid contains
the points in K whose coordinates are integer multiples of δ). The walk proceeds as follows:
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1. Pick a grid point y uniformly at random from the neighbors of the current point x.

2. If y ∈ Kgrid, go to y; else stay at x.

Reference [19] proved that for a properly chosen δ, the grid walk converges to the uniform
distribution on Kgrid in Õ(n23) steps, and that δn|Kgrid| is a good approximation of Vol(K) (in
the sense of (1.4)). Subsequently, more refined analysis of the grid walk improved its cost to
Õ(n8) [6, 18, 41]. However, this is still inefficient in practice.

Intuitively, the grid walk converges slowly because each step only moves locally in K. Subsequent
work improved the complexity by considering other types of random walk. These improvements
mainly use two types of walk: the hit-and-run walk and the ball walk. In this paper, we use the
hit-and-run walk (see also Section 2.4), which behaves as follows:

1. Pick a uniformly distributed random line ` through the current point p.

2. Move to a uniformly random point along the chord ` ∩K.

Reference [58] proved that the stationary distribution of the hit-and-run walk is the uniform
distribution on K. Regarding the convergence of the hit-and-run walk, [40] showed that it mixes in
Õ(n3) steps from a warm start after appropriate preprocessing, and [44] subsequently proved that
the hit-and-run walk mixes rapidly from any interior starting point (see also Theorem 2.4). Under
the simulated annealing framework, the hit-and-run walk gives the state-of-the-art volume estima-
tion algorithm with query complexity Õ(n4) [43, 45]. Our quantum volume estimation algorithm
can be viewed as a quantization of this classical hit-and-run algorithm.

Given a radius parameter δ, the ball walk is defined as follows:

1. Pick a uniformly random point y from the ball of radius δ centered at the current point x.

2. If y ∈ K, go to y; else stay at x.

Lovász and Simonovits [42] proved that the ball walk mixes in Õ(n6) steps. Reference [30] sub-
sequently improved the mixing time to Õ(n3) starting from a warm start, giving a total query
complexity of Õ(n5) for the volume estimation problem.

Technically, the analysis of the ball walk relies on a central conjecture in convex geome-
try, the Kannan-Lovász-Simonovits (KLS) conjecture (see [37]). The KLS conjecture states that
the Cheeger constant of any log-concave density is achieved to within a universal, dimension-
independent constant factor by a hyperplane-induced subset, where the Cheeger constant is the
minimum ratio between the measure of the boundary of a subset to the measure of the subset or its
complement, whichever is smaller. Although this quantity is conjectured to be a constant, the best
known upper bound is only O(n1/4) [35], which can be used to prove that the ball walk converges
in Õ(n2.5) steps from a warm start. If the KLS conjecture were true, the ball walk would converge
in Õ(n2) steps from a warm start, implying a volume estimation algorithm with query complexity
Õ(n3) for arbitrary convex bodies.

If R/r = O(
√
n), then we say the body is well-rounded. In that special case, a recent break-

through by Cousins and Vempala [15, 16] proved the KLS conjecture for Gaussian distributions. In
other words, they established a volume estimation algorithm with query complexity Õ(n3) in the
well-rounded case.

Table 2 summarizes classical algorithms for volume estimation.

1.3.2 Quantum Markov chain Monte Carlo methods

The performance of Markov chain Monte Carlo (MCMC) methods is determined by the rate of
convergence to their stationary distributions (i.e., the mixing time). Suppose we have a reversible,
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Method
State-of-the-art

query complexity
Restriction on the convex body

Grid walk Õ(n8) [18] General (R/r = poly(n))

Hit-and-run walk Õ(n4) [43, 45] General (R/r = poly(n))

Ball walk Õ(n3) [15, 16] Well-rounded (R/r = O(
√
n))

Table 2: Summary of classical methods for estimating the volume of a convex body K ⊂ Rn when ε = Θ(1),
where R, r are the radii of the balls centered at the origin that contain and are contained by the convex
body, respectively.

ergodic Markov chain with unique stationary distribution π. Let πk denote the distribution obtained
by applying the Markov chain for k steps from some arbitrary initial state. It is well-known (see
for example [38]) that O( 1

∆ log(1/ε)) steps suffice to ensure ‖πk − π‖ ≤ ε, where ∆ is the spectral
gap of the Markov chain.

Many authors have studied quantum analogs of Markov chains (in both continuous [22] and
discrete [1, 4, 62] time) and their mixing properties. While a quantum walk is a unitary process
and hence does not converge to a stationary distribution, one can define notions of quantum mixing
time by choosing the number of steps at random or by adding decoherence [1, 3, 4, 13, 14, 53, 54],
and compare them to the classical mixing time. Note that distribution sampled by such a process
may or not be the same as the stationary distribution π of the corresponding classical Markov
process, depending on the structure of the process and the notion of mixing. It is also natural to
ask how efficiently we can prepare a quantum state close to

|π〉 :=
∑
x

√
πx|x〉 (1.11)

(which can be viewed as a “quantum sample” from π). However, it is unclear how to do this
efficiently in general, even in cases where a corresponding classical Markov process mixes quickly;
in particular, a generic quantum algorithm for this task could be used to solve graph isomorphism
[2, Section 8.4].

It is also possible to achieve quantum speedup of MCMC methods by not demanding speedup
of the mixing time of each separate Markov chain, but only for the procedure as a whole. In
particular, MCMC methods are often implemented by simulated annealing algorithms where the
final output is a telescoping product of values at different temperatures. From this perspective,
Somma et al. [9, 59, 60] used quantum walks to accelerate classical simulated annealing processes
by exploiting the quantum Zeno effect, using measurements implemented by phase estimation of
the quantum walk operators of these Markov chains. References [63, 67] also introduced how to
implement Metropolis sampling on quantum computers.

Our quantum volume estimation algorithm is most closely related to work of Wocjan and
Abeyesinghe [65], which achieves complexity Õ(1/

√
∆) for preparing the final stationary distri-

bution of a sequence of slowly varying Markov chains, where ∆ is the minimum of their spectral
gaps. Their quantum algorithm transits between the stationary states of consecutive Markov chains
by fixed-point amplitude amplification [26], which is implemented by amplitude estimation with
Õ(1/

√
∆) implementations of the quantum walk operators of these Markov chains (see Section 2.2

for more details).
Our simulated annealing procedure preserves the slowly-varying property, so we adopt the

framework of [65] in our algorithm for volume estimation (see Section 4.3.2). We develop several
novel techniques (described in Section 1.2) that allow us to implement the steps of this framework

10



efficiently. Note that the slowly-varying property also facilitates other frameworks that give effi-
cient adiabatic [2] or circuit-based [51] quantum algorithms for generating quantum samples of the
stationary state.

Previous work has mainly applied these quantum simulated annealing algorithms to estimat-
ing partition functions of discrete systems. Given an inverse temperature β > 0 and a classical
Hamiltonian H : Ω→ R where Ω is a finite space, the goal is to estimate the partition function

Z(β) :=
∑
x∈Ω

e−βH(x) (1.12)

within multiplicative error ε > 0. Reference [66] gave a quantum algorithm that achieves quadratic
quantum speedup with respect to both mixing time and accuracy.

The classical algorithm that Ref. [66] quantizes uses Õ(log |Ω|) annealing steps to ensure that
each ratio Z(βi+1)/Z(βi) is bounded. In fact, it is possible to relax this requirement and use a
cooling schedule with only Õ(

√
log |Ω|) steps such that the variance of each ratio is bounded, so its

mean can be well-approximated by Chebyshev’s inequality; this is exactly the Chebyshev cooling
technique [61] introduced in Section 1.2 (see also Section 4.3.3). Reference [49] improves upon [66]
using Chebyshev cooling; more recently, Harrow and Wei [28] further quadratically improved the
spectral gap dependence of the estimation of the partition function.

1.4 Open questions

This work leaves several natural open questions for future investigation. In particular:

• Can we improve the complexity of our quantum volume estimation algorithm? The current
gap between the upper bound Õ(n3 + n2.5/ε) and the lower bound Ω(

√
n) is large; possible

improvements might result from designing a shorter simulated annealing schedule, giving
better analysis of the conductance of the hit-and-run walk, or even using other types of
walks.

• Can we prove better quantum query lower bounds on volume estimation? Note that classically
there is an Ω̃(n2) query lower bound [52].

• Can we give faster quantum algorithms for volume estimation in some special circumstances?
For instance, volume estimation of well-rounded convex bodies only takes Õ(n3) classical
queries [16] (see also Section 1.3.1), and the volume of polytopes with m faces can be estimated
with only Õ(mn2/3) classical queries [36]. Specifically, it is a natural question to ask whether
the ball walk in [16] or the Riemannian Hamiltonian Monte Carlo (RHMC) method in [36]
can be implemented by continuous-space quantum walks (and their discretizations).

• Can we apply our simulated annealing framework to solve other problems? As a concrete
example, it may be of interest to check whether our framework can recover the results of
Ref. [28] on estimating the partition functions in counting problems.

Organization We review necessary background in Section 2. We describe the theory of continuous-
space quantum walks in Section 3. In Section 4, we first review the classical state-of-the-art volume
estimation algorithm in Section 4.1, and then give our quantum algorithm for estimating volumes
of well-rounded convex bodies in Section 4.2. The proofs of our quantum algorithm are given in
Section 4.3, and the quantum algorithm for rounding convex bodies is given in Section 4.4. Next,
we propose our discretized hit-and-run walk in Section 5. We conclude with our quantum lower
bound on volume estimation in Section 6.
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2 Preliminaries

2.1 Classical and quantum walks

A Markov chain over a finite state space Ω is a sequence of random variables X0, X1, . . . such that
for each i ∈ N, the probability of transition to the next state y ∈ Ω,

Pr[Xi+1 = y | Xi = x,Xi−1 = xi−1, . . . , X0 = x0] = Pr[Xi+1 = y | Xi = x] =: px→y (2.1)

only depends on the present state x ∈ Ω. The Markov chain can be represented by the transition
probabilities px→y satisfying

∑
y px→y = 1. For each i ∈ N, we denote by πi the distribution over Ω

with density πi(x) = Pr[Xi = x]. A stationary distribution π satisfies
∑

x∈Ω px→yπ(x) = π(y). A
Markov chain is reversible if πi(x)px→y = πi(y)py→x for each i ∈ N and x, y ∈ Ω. The conductance
of a reversible Markov chain is defined as

Φ := inf
S⊆Ω

∑
x∈S

∑
y∈Ω/S π(x)px→y

min{
∑

x∈S π(x),
∑

x∈Ω/S π(x)}
. (2.2)

The theory of discrete-time quantum walks has also been well developed. Given a classical
reversible Markov chain on Ω with transition probability p, we define a unitary operator Up on
C|Ω| ⊗ C|Ω| such that

Up|x〉|0〉 = |x〉|px〉, where |px〉 :=
∑
y∈Ω

√
px→y|y〉. (2.3)

The quantum walk is then defined as [62]

Wp := S
(
2Up(IΩ ⊗ |0〉〈0|)U †p − IΩ ⊗ IΩ

)
, (2.4)

where IΩ is the identity map on C|Ω| and S :=
∑

x,y∈Ω |x, y〉〈y, x| = S† is the swap gate on

C|Ω| ⊗ C|Ω|.
To understand the quantum walk, it is essential to analyze the spectrum of Wp. First, observing

that Wp = S(2Π − I) where Π = Up(IΩ ⊗ |0〉 〈0|)U †p =
∑

x∈Ω |x〉 〈x| ⊗ |px〉 〈px| projects onto the
span of the states |x〉 ⊗ |px〉, we consider the eigenvector |λ〉 of ΠSΠ with eigenvalue λ. We
have ΠSΠ =

∑
x∈ΩDxy |x〉 〈y| ⊗ |px〉 〈py| where Dxy :=

√
px→ypy→x. Since Wp |λ〉 = S |λ〉 and

WpS |λ〉 = 2λS |λ〉 − |λ〉, the subspace span{|λ〉 , S |λ〉} is invariant under Wp. The eigenvalues of
Wp within this subspace are λ± i

√
1− λ2 = e±i arccosλ. For more details, see [62].

The phase gap arccosλ ≥
√

2(1− λ) ≥
√

2δ, where δ is the spectral gap of D. Therefore,
applying phase estimation using O(1/

√
δ) calls to Wp suffices to distinguish the state corresponding

to the stationary distribution of the classical Markov chain from the other eigenvectors.

2.2 Quantum speedup of MCMC sampling via simulated annealing

Consider a Markov chain with spectral gap ∆ and stationary distribution π. Classically, it takes
Θ( 1

∆ log(1/επmin))) steps to sample from a distribution π̃ such that ‖π̃ − π‖ ≤ ε, where πmin :=
mini πi. Quantumly, [65] proved the following result about a sequence of slowly varying Markov
chains:

Theorem 2.1 ([65, Theorem 2]). Let p1, . . . , pr be the transition probabilities of r Markov chains
with stationary distributions π1, . . . , πr, spectral gaps δ1, . . . , δr, and quantum walk operators W1, . . . ,
Wr, respectively; let ∆ := min{δ1, . . . , δr}. Assume that |〈πi|πi+1〉|2 ≥ p for some 0 < p < 1 and
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all i ∈ [r− 1], and assume that we can efficiently prepare the state |π1〉 (where each |πi〉 is a quan-
tum sample defined as in (1.11)). Then, for any 0 < ε < 1, there is a quantum algorithm that
produces a quantum state |π̃r〉 such that ‖|π̃r〉 − |πr〉‖ ≤ ε, using Õ(r/p

√
∆) steps of the quantum

walk operators W1, . . . ,Wr.

Their quantum algorithm produces the states |π1〉, . . . , |πr〉 sequentially, and can do so rapidly
if consecutive states have significant overlap and the walks mix rapidly. Intuitively, this is achieved
by amplitude amplification. However, to avoid overshooting, the paper uses a variant of standard
amplitude amplification, known as π/3-amplitude amplification [26], that we now review.

Given two states |ψ〉 and |φ〉, we let Πψ := |ψ〉〈ψ|, Π⊥ψ := I−Πψ, Πφ := |φ〉〈φ|, and Π⊥φ := I−Πφ.
Define the unitaries

Rψ := ωΠψ + Π⊥ψ , Rφ := ωΠφ + Π⊥φ where ω = ei
π
3 . (2.5)

Given |〈ψ|φ〉|2 ≥ p, it can be shown that |〈φ|RψRφ|ψ〉|2 ≥ 1 − (1 − p)3. Recursively, one can
establish the following:

Lemma 2.1 ([65, Lemma 1]). Let |ψ〉 and |φ〉 be two quantum states with |〈ψ|φ〉|2 ≥ p for some
0 < p ≤ 1. Define the unitaries Rψ, Rφ as in (2.5) and the unitaries Um recursively as follows:

U0 = I, Um+1 = UmRψ U
†
mRφ Um. (2.6)

Then we have

|〈φ|Um|ψ〉|2 ≥ 1− (1− p)3m , (2.7)

and the unitaries in {Rψ, R†ψ, Rφ, R
†
φ} are used at most 3m times in Um.

Taking m = dlog3(ln(1/ε)/p)e, the inner product between |φ〉 and Um|ψ〉 in (2.7) is at least

1− ε, and we use 3m = O(log(1/ε)/p) unitaries from the set {Rψ, R†ψ, Rφ, R
†
φ}.

To establish Theorem 2.1 by Lemma 2.1, it remains to construct the unitaries Ri := ω|πi〉〈πi|+
(I − |πi〉〈πi|). In [65], this is achieved by phase estimation of the quantum walk operator Wi with
precision

√
∆/2. Recall that if a classical Markov chain has spectral gap δ, then the corresponding

quantum walk operator has phase gap of at least 2
√
δ (see Section 2.1). Therefore, phase estimation

with precision
√

∆/2 suffices to distinguish between |πi〉 and other eigenvectors of Wi. As a result,
we can take

Ri = PhaseEst(Wi)
†(I ⊗ (ω|0〉〈0|+ (I − |0〉〈0|)

))
PhaseEst(Wi). (2.8)

2.3 Quantum Chebyshev inequality

Assume we are given a unitary U such that

U |0〉|0〉 =
√
p|0〉|φ〉+ |0⊥〉, (2.9)

where |φ〉 is a normalized pure state and (〈0|⊗I)|0⊥〉 = 0. If we measure the output state, we get 0
in the first register with probability p; by the Chernoff bound, it takes Θ(1/ε2) samples to estimate
p within ε with high success probability. However, there is a more efficient quantum algorithm,
called amplitude estimation [10], that estimates the value of p using only O(1/ε) calls to U :
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Theorem 2.2 ([10, Theorem 12]). Given U satisfying (2.9), the amplitude estimation algorithm
in Figure 2 outputs an angle θ̃p ∈ [−π, π] such that p̃ := sin2(θ̃p) satisfies

|p̃− p| ≤
2π
√
p(1− p)
M

+
π2

M2
(2.10)

with success probability at least 8/π2, using M calls to U and U †.

|0〉
QFT

•

QFT†
...

... |θ̃p〉
|0〉 •

QU |0〉 ...
...

Figure 2: The quantum circuit for amplitude estimation.

Here QFT denotes the quantum Fourier transform over ZM and Q := −US0U
†S1 where S0 and

S1 are reflections about |0〉 and the target state, respectively; the controlled-Q gate denotes the
operation

∑M−1
j=0 |j〉〈j| ⊗ Qj . In fact, it was shown in the proof of [10, Theorem 12] that the state

after applying the circuit in Figure 2 is

eiθp√
2
|θ̃p〉|0〉 −

e−iθp√
2
| − θ̃p〉|0⊥〉 (2.11)

where θp ∈ [0, π] such that p = sin2(θp), and θ̃p ∈ [0, π] such that p̃ = sin2(θ̃p). Measuring the first
register either gives θ̃p or −θ̃p with probability 1/2, but since sin2(θ̃p) = sin2(−θ̃p) = p̃, this does
not influence the success of Theorem 2.2.

In (2.10), if we take M =
⌈
2π
(2
√
p
ε + 1√

ε

)⌉
= O(1/ε), we get

|p̃− p| ≤
2π
√
p(1− p)
2π

ε+
π2

4π2
ε2 ≤ ε

2
+
ε

4
≤ ε. (2.12)

Furthermore, the success probability 8/π2 can be boosted to 1 − ν by executing the algorithm
Θ(log 1/ν) times and taking the median of the estimates.

Amplitude estimation can be generalized from estimating a single probability p ∈ [0, 1] to
estimating the expectation of a random variable. Assume that U is a unitary acting on CS ⊗ C|Ω|
such that

U |0〉|0〉 =
∑
x∈Ω

√
px|ψx〉|x〉 (2.13)

where S ∈ N and {|ψx〉 : x ∈ Ω} are unit vectors in CS . Let

µU :=
∑
x∈Ω

pxx, σ2
U :=

∑
x∈Ω

px(x− µU )2 (2.14)
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denote the expectation and variance of the random variable, respectively. Several quantum algo-
rithms have given speedups for estimating µU . Specifically, Ref. [49] showed how to estimate µU
within additive error ε by Õ(σU/ε) calls to U and U †. Given an upper bound H and a lower bound
L > 0 on the random variable, Ref. [39] showed how to estimate µU with multiplicative error ε
using Õ(σU/εµU · H/L) calls to U and U †. More recently, Ref. [27] mutually generalized these
results and proposed a significantly better quantum algorithm:

Theorem 2.3 ([27, Theorem 3.5]). There is a quantum algorithm that, given a quantum sampler
U as in (2.13), an integer ∆U , a value H > 0, and two reals ε, δ ∈ (0, 1), outputs an estimate µ̃U .

If ∆U ≥
√
σ2
U + µ2

U/µU and H > µU , then |µ̃U − µU | ≤ εµU with probability at least 1− δ, and the

algorithm uses Õ(∆U/ε · log3(H/µU ) log(1/δ)) calls to U and U †.

The quantum algorithm works as follows. First, assume Ω ⊆ [L,H ] for given real numbers
L,H ≥ 0, there is a basic estimation algorithm (denoted BasicEst) that estimates H−1µU up to
ε-multiplicative error:

Algorithm 1: BasicEst: the basic estimation algorithm.

Input: A quantum sampler U acting on CS ⊗ C|Ω|, interval [L,H ], precision parameter
ε ∈ (0, 1), failure parameter δ ∈ (0, 1).

Output: ε-multiplicative approximation of H−1µU .
1 Use controlled rotation to implement a unitary RL,H acting on C|Ω| ⊗ C2 such that for all

x ∈ Ω, RL,H |x〉|0〉 =

{
|x〉(

√
1− x

H |0〉+
√

x
H |1〉) if L ≤ x < H

|x〉|0〉 otherwise
;

2 Let V = (IS ⊗RL,H)(U ⊗ I2) and Π = IS ⊗ IΩ ⊗ |1〉〈1|;
3 for i = 1, . . . ,Θ(log(1/δ)) do

4 Compute p̃i by Theorem 2.2 with U ← V , S1 ← Π, and M ← Θ(1/ε
√
H−1µU );

5 Return p̃ = median{p̃1, . . . , p̃Θ(log(1/δ))}.

However, usually the bounds L and H are not explicitly given. In this case, Ref. [27] considered
the truncated mean µ<b defined by replacing the outcomes larger than b with 0. The paper then
runs Algorithm 1 (BasicEst) to estimate µ<b/b. A crucial observation is that

√
b/µ<b is smaller

than ∆U for large values of b, and it becomes larger than ∆U when b ≈ µU∆2
U . As a result,

by repeatedly running BasicEst with ∆U quantum samples, and applying O(log(H/L)) steps of a
binary search on the values of b, the first non-zero value is obtained when b/∆2

U ≈ µU . In [27],
more precise truncation means are used to improve the precision of the result to Õ(1/ε) and remove
the dependence on L.

Note that the quantum algorithm for Theorem 2.3 only relies on BasicEst. This is crucial when
we estimate the mean of our simulated annealing algorithm in different iterations nondestructively
(see Section 4.2 for more details).

2.4 Hit-and-run walk

As introduced in Section 1.3.1, there are various of random walks that mix fast in a convex body K,
such as the grid walk [19] and the ball walk [16, 42]. In this paper, we mainly use the hit-and-run
walk [40, 44, 58]. It is defined as follows:

1. Pick a uniformly distributed random line ` through the current point p.
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2. Move to a uniform random point along the chord ` ∩K.

For any two points p, q ∈ K, we let `(p, q) denote the length of the chord in K through p and q.
Then the transition probability of the hit-and-run walk is determined by the following lemma:

Lemma 2.2 ([40, Lemma 3]). If the current point of the hit-and-run walk is u, then the density
function of the distribution of the next point x ∈ K is

pu(x) =
2

nvn
· 1

`(u, x)|x− u|n−1
, (2.15)

where vn := π
n
2 /Γ(1+ n

2 ) is the volume of the n-dimensional unit ball. In other words, the probability
that the next point is in a (measurable) set A ⊆ K is

Pu(A) =

∫
A

2

nvn
· 1

`(u, x)|x− u|n−1
dx. (2.16)

In general, we can also define a hit-and-run walk with a given density. Let f be a density
function in Rn. For any point u, v ∈ Rn, we let

µf (u, v) :=

∫ 1

0
f((1− t)u+ tv) dt. (2.17)

For any line `, let `+ and `− be the endpoints of the chord `∩K (with + and − assigned arbitrarily).
The density f specifies the following hit-and-run walk:

1. Pick a uniformly distributed random line ` through the current point p.

2. Move to a random point x along the chord ` ∩K with density f(x)
µf (`−,`+)

.

Let πK denote the uniform distribution over K. Reference [58] proves that the stationary
distribution of the hit-and-run walk with uniform density is πK. Furthermore, Ref. [44] proves that
the hit-and-run walk mixes rapidly from any initial distribution:

Theorem 2.4 ([44, Theorem 1.1]). Let K be a convex body that satisfies (1.2): B2(0, r) ⊆ K ⊆
B2(0, R). Let σ be a starting distribution and let σ(m) be the distribution of the current point after
m steps of the hit-and-run walk in K. Let ε > 0, and suppose that the density function dσ/dπK is
upper bounded by M except on a set S with σ(S) ≤ ε/2. Then for any

m > 1010n
2R2

r2
ln
M

ε
, (2.18)

the total variation distance between σ(m) and πK is less than ε.

Theorem 2.4 can also be generalized to exponential distributions on K:

Theorem 2.5 ([44, Theorem 1.3]). Let K ⊂ Rn be a convex body and let f be a density supported

on K that is proportional to e−a
T x for some vector a ∈ Rn. Assume that the level set of f of

probability 1/8 contains a ball of radius r, and Ef (|x − zf |2) ≤ R2, where zf is the centroid of f .
Let σ be a starting distribution and let σm be the distribution for the current point after m steps
of the hit-and-run walk applied to f . Let ε > 0, and suppose that the density function dσ

dπf
is upper

bounded by M except on a set S with σ(S) ≤ ε
2 . Then for

m > 1030n
2R2

r2
ln5 MnR

rε
,

the total variation distance between σm and πf is less than ε.
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Roughly speaking, the proofs of Theorem 2.4 and Theorem 2.5 have two steps. First, for any
random walk on a continuous domain Ω with transition probability p, stationary distribution π,
and initial distribution σ, we define its conductance (which generalizes the discrete case in Eq.
(2.2)) as

Φ := inf
S⊆Ω

∫
S

∫
Ω/S dx dy πxpx→y

min{
∫

S dxπx,
∫

Ω/S dxπx}
. (2.19)

It is well-known that the mixing time of this random walk is proportional to 1/Φ2. This is captured
by the following proposition:

Proposition 2.1 ([42, Corollary 1.5]). Let M := supS⊆Ω
σ(S)
π(S) . Then for every S ⊆ Ω,

∣∣σ(k)(S)− π(S)
∣∣ ≤ √M(1− 1

2
Φ2
)k
. (2.20)

Furthermore, the conductance in Proposition 2.1 can be relaxed to that of sets with a fixed small
probability p:

Proposition 2.2 ([42, Corollary 1.6]). Let M := supS⊆Ω
σ(S)
π(S) . If the conductance for all A ⊆ Ω

such that π(A) = p ≤ 1/2 is at least Φp, then for all S ⊆ Ω, we have

∣∣σ(k)(S)− π(S)
∣∣ ≤ 2Mp+ 2M

(
1− 1

2
Φ2
p

)k
. (2.21)

Second, Ref. [44] proved a lower bound on the conductance of the hit-and-run walk with expo-
nential density:

Proposition 2.3 ([44, Theorem 6.9]). Let f be a density in Rn proportional to e−a
T x whose

support is a convex body K of diameter d. Assume that B2(0, r) ⊆ K. Then for any subset S with
πf (S) = p ≤ 1/2, the conductance of the hit-and-run walk satisfies

φ(S) ≥ r

1013nd ln(nd/rp)
. (2.22)

Proposition 2.1 and Proposition 2.3 imply Theorem 2.4 and Theorem 2.5; complete proofs are
given in [44].

For the conductance of the hit-and-run walk with a uniform distribution, Ref. [44] established
a stronger lower bound that is independent of p:

Proposition 2.4 ([44, Theorem 4.2]). Assume that K has diameter d and contains a unit ball.
Then the conductance of the hit-and-run in K with uniform distribution is at least 1

224nd
.

3 Theory of continuous-space quantum walks

In this section, we develop the theory of continuous-space, discrete-time quantum walks.
Specifically, we generalize the discrete-time quantum walk of Szegedy [62] to continuous space.

Let n ∈ N and suppose Ω is a continuous8 subset of Rn. A probability transition density p on Ω is

8We say that Ω is continuous if for any x, y ∈ Ω there is a continuous function fx,y : [0, 1]→ Ω such that fx,y(0) = x
and fx,y(1) = y.
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a continuous function p : Ω× Ω→ [0,+∞) such that9∫
Ω

dy p(x, y) = 1 ∀x ∈ Ω. (3.1)

We also write px→y := p(x, y) for the transition density from x to y. Together, Ω and p specify a
continuous-space Markov chain that we denote (Ω, p) throughout the paper.

For background on the mathematical foundations of quantum mechanics over continuous state
spaces, see [57, Chapter 1]. In this section, we use |x〉 (for x ∈ Rn) to denote the computational
basis; we have ∫

Ω
dx |x〉〈x| = I (3.2)

and

〈x|x′〉 = δ(x− x′) (3.3)

for all x, x′ ∈ Rn, where δ is the Dirac δ-function satisfying δ(0) = +∞, δ(x) = 0 for all x 6= 0, and∫
Rn δ(x) dx = 1.10 The pure states in Ω correspond to functions in the set

St(Ω) :=
{
f : Ω→ R

∣∣∣ ∫
Ω

dx |f(x)|2 = 1
}
. (3.4)

In general, a function f : Ω→ R is in L2(Ω) if
∫

Ω dx |f(x)|2 <∞. The inner product 〈·, ·〉 on L2(Ω)
is defined by

〈f, g〉 :=

∫
Ω

dx f(x)g(x) ∀ f, g ∈ L2(Ω) (3.5)

(note that by the Cauchy-Schwarz inequality, |〈f, g〉|2 ≤ (
∫

Ω dx |f(x)|2)(
∫

Ω dx |g(x)|2) < ∞); the

norm of an f ∈ L2(Ω) is subsequently defined as ‖f‖ :=
√
〈f, f〉.

3.1 Continuous-space quantum walk

Given a transition density function p, the quantum walk is characterized by the following states:

|φx〉 := |x〉 ⊗
∫

Ω
dy
√
px→y|y〉 ∀x ∈ Rn. (3.6)

Now, denote

U :=

∫
Ω

dx |φx〉(〈x| ⊗ 〈0|), Π :=

∫
Ω

dx |φx〉〈φx|, S :=

∫
Ω

∫
Ω

dx dy |x, y〉〈y, x|. (3.7)

9This setting covers real applications in theoretical computer science, including volume estimation. Because
continuous functions on continuous sets are Riemann integrable, the integrals throughout the paper are simply the
Riemann integrals.

10Note that the δ-function here is a generalized function, and rigorously it should be regarded as a (singular)
Lebesgue measure (see the textbook [56]). Also note that in the discrete-space case, δ is the Kronecker δ-function
defined as δ(x) = 0 for all x 6= 0, and δ(0) = 1; this is one main difference between the theory of continuous-space
and discrete-space quantum walks.
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Notice that Π is the projection onto span{|φx〉}x∈Rn because

Π2 =

∫
Ω

∫
Ω

dx dx′ |φx〉〈φx|φx′〉〈φx′ | =
∫

Ω

∫
Ω

dx dx′ δ(x− x′)|φx〉〈φx′ | =
∫

Ω
dx |φx〉〈φx| = Π, (3.8)

and S is the swap operator for the two registers. A single step of the quantum walk is defined as
the unitary operator

W := S(2Π− I). (3.9)

The first main result of this subsection is the following theorem:

Theorem 3.1. Let

D :=

∫
Ω

∫
Ω

dx dy
√
px→ypy→x|x〉〈y| (3.10)

denote the discriminant operator of p. Let Λ be the set of eigenvalues of D, so that D =
∫

Λ dλλ|λ〉〈λ|.
Then the eigenvalues of the quantum walk operator W in (3.9) are ±1 and λ ± i

√
1− λ2 for all

λ ∈ Λ.

To prove Theorem 3.1, we first prove the following lemma:

Lemma 3.1. For any λ ∈ Λ, we have |λ| ≤ 1.

Proof. Since λ is an eigenvalue of D, we have D|λ〉 = λ|λ〉. As a result, we have11

|λ|δ(0) = |λ|〈λ|λ〉 = |〈λ|D|λ〉| (3.11)

=
∣∣∣ ∫

Ω

∫
Ω

dx dy
√
py→xpx→y〈λ|x〉〈y|λ〉

∣∣∣ (3.12)

(by Cauchy-Schwarz) ≤

√(∫
Ω

∫
Ω

dx dy py→x|〈y|λ〉|2
)(∫

Ω

∫
Ω

dx dy px→y|〈λ|x〉|2
)

(3.13)

(by

∫
Ω

dy px→y = 1) ≤

√(∫
Ω

dy |〈y|λ〉|2
)(∫

Ω
dx |〈λ|x〉|2

)
(3.14)

=

∫
Ω

dx 〈λ|x〉〈x|λ〉 (3.15)

(by (3.2)) = 〈λ|
(∫

Ω
dx |x〉〈x|

)
|λ〉 (3.16)

= δ(0). (3.17)

Hence the result follows.

Proof of Theorem 3.1. Define an isometry

T :=

∫
Ω

dx |φx〉〈x| =
∫

Ω

∫
Ω

dx dy
√
px→y|x, y〉〈x|. (3.18)

11This proof is not fully rigorous as δ(0) is ill-defined. However, δ can be regarded as the limit (in the sense of

distributions) of the sequence of zero-centered normal distributions δσ(x) = 1
|σ|
√
π
e−(x/σ)2 as σ → 0. Then the LHS

of (3.11) is replaced by |λ| · 1
|σ|
√
π

and the RHS of (3.17) is replaced by 1
|σ|
√
π

, so |λ| ≤ 1, and this also holds in the

limit σ → 0. For convenience we use similar arguments (regarding δ(0) as a positive real number) in this section, but
keep in mind that rigorous proofs can be given by limit arguments.
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Then

TT † =

∫
Ω

∫
Ω

dx dy |φx〉〈x|y〉〈φy| =
∫

Ω
dx |φx〉〈φx| = Π, (3.19)

and

T †T =

∫
Ω

∫
Ω

dx dy |x〉〈φx|φy〉〈y| (3.20)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω

dx dy da db 〈x|y〉〈a|b〉√px→apy→b|x〉〈y| (3.21)

=

∫
Ω

∫
Ω

dx da px→a|x〉〈x| (3.22)

=

∫
Ω

dx |x〉〈x| (3.23)

= I. (3.24)

Furthermore,

T †ST =

∫
Ω

∫
Ω

dx dy |x〉〈φx|S|φy〉〈y| (3.25)

=

∫
Ω

∫
Ω

∫
Ω

∫
Ω

dx dy da db 〈x, a|S|y, b〉√px→apy→b|x〉〈y| (3.26)

=

∫
Ω

∫
Ω

dx da
√
px→apa→x|x〉〈a| (3.27)

= D. (3.28)

As a result, for any λ ∈ Λ we have

WT |λ〉 = S(2Π− I)T |λ〉 = (2STT †T − ST )|λ〉 = (2ST − ST )|λ〉 = ST |λ〉. (3.29)

Similarly, we have

WST |λ〉 = S(2Π− I)ST |λ〉 = (2STT †ST − S2T )|λ〉 = (2STD − T )|λ〉 = (2λS − I)T |λ〉. (3.30)

By Lemma 3.1, |λ| ≤ 1. As a result, we have

W
(
I − (λ+ i

√
1− λ2)S

)
T |λ〉 = WT |λ〉 − (λ+ i

√
1− λ2)WST |λ〉 (3.31)

= ST |λ〉 − (λ+ i
√

1− λ2)(2λS − I)T |λ〉 (3.32)

=
(
S − (λ+ i

√
1− λ2)(2λS − I)

)
T |λ〉 (3.33)

= (λ+ i
√

1− λ2)
(
I − (λ+ i

√
1− λ2)S

)
T |λ〉; (3.34)

in other words, λ + i
√

1− λ2 is an eigenvalue of W with eigenvector
(
I − (λ + i

√
1− λ2)S

)
T |λ〉.

Similarly, we have

W
(
I − (λ− i

√
1− λ2)S

)
T |λ〉 = (λ− i

√
1− λ2)

(
I − (λ− i

√
1− λ2)S

)
T |λ〉, (3.35)

i.e., λ− i
√

1− λ2 is an eigenvalue of W with eigenvector
(
I − (λ− i

√
1− λ2)S

)
T |λ〉.

Finally, note that for any vector |u〉 in the orthogonal complement of spanλ∈Λ{T |λ〉, ST |λ〉}, W
simply acts as −S since

Π = TT † =

∫
Λ

dλT |λ〉〈λ|T †, (3.36)

which projects onto spanλ∈Λ{T |λ〉}. In this orthogonal complement subspace, the eigenvalues are
±1 because S2 = I.
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3.2 Stationary distribution

Classically, the density π = (πx)x∈Ω corresponding to the stationary distribution of a Markov chain
(Ω, p) satisfies ∫

Ω
dxπx = 1;

∫
Ω

dy py→xπy = πx ∀x ∈ Ω. (3.37)

In other words, we can naturally define a transition operator as

P :=

∫
Ω

∫
Ω

dx dy py→x|x〉〈y|, (3.38)

and the stationary density π satisfies Pπ = π. The Markov chain (Ω, p) is reversible if there exists
a classical density σ = (σx)x∈Ω such that

py→xσy = px→yσx ∀x, y ∈ Ω. (3.39)

(This is called the detailed balance condition.) Notice that for all x ∈ Ω,∫
Ω

dy py→xσy =

∫
Ω

dy px→yσx = σx

∫
Ω

dy px→y = σx; (3.40)

therefore, we must have Pσ = σ, i.e., σ is a stationary density of P . In this paper, we focus on
Markov chains (Ω, p) that are reversible and have a unique stationary distribution (i.e., σ = π).
Such assumptions are natural for Markov chains in practice, including the Metropolis-Hastings
algorithm, simple random walks on graphs, etc.

We point out that if π is the classical stationary density of a reversible Markov chain (Ω, p),
then

|πW 〉 :=

∫
Ω

dx
√
πx|φx〉 (3.41)

is the unique eigenvalue-1 eigenstate of the quantum walk operator W restricted to the subspace
spanλ∈Λ{T |λ〉, ST |λ〉}. First, a simple calculation shows that

W |πW 〉 = S(2Π− I)|πW 〉 (3.42)

= S|πW 〉 (3.43)

=
(∫

Ω

∫
Ω

dx dy |x, y〉〈y, x|
)(∫

Ω

∫
Ω

dx dy
√
πypy→x|y, x〉

)
(3.44)

=

∫
Ω

∫
Ω

dx dy
√
πypy→x|x, y〉 (3.45)

=

∫
Ω

∫
Ω

dx dy
√
πxpx→y|x〉|y〉 (3.46)

=

∫
Ω

dx
√
πx|x〉

(∫
Ω

dy
√
px→y|y〉

)
(3.47)

=

∫
Ω

dx
√
πx|φx〉 (3.48)

= |πW 〉, (3.49)

where (3.43) follows from |πW 〉 ∈ spanx∈Ω{|φx〉}, (3.44) follows from the definition of S in (3.7),
(3.46) follows from (3.39), and (3.46) follows from the definition of |φx〉 in (3.6). Thus |πW 〉 is an
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eigenvector of W with eigenvalue 1. On the other hand, since (Ω, p) is reversible, P is similar to
D: if we denote Dπ :=

∫
Ω dx

√
πx|x〉〈x|, then

DπDD
−1
π =

(∫
Ω

dx
√
πx|x〉〈x|

)(∫
Ω

∫
Ω

dx dy
√
px→ypy→x|x〉〈y|

)(∫
Ω

dy

√
π−1
y |y〉〈y|

)
(3.50)

=

∫
Ω

∫
Ω

dx dy

√
πxπ

−1
y px→ypy→x|x〉〈y| (3.51)

(by (3.39)) =

∫
Ω

∫
Ω

dx dy py→x|x〉〈y| (3.52)

= P. (3.53)

As a result, D and P have the same set of eigenvalues. Furthermore, Lemma 3.1 implies that all
eigenvalues of P have norm at most 1, and the proof of Theorem 3.1 shows that |πW 〉 is the unique
eigenvector with this eigenvalue within spanλ∈Λ{T |λ〉, ST |λ〉}.

The state

|π〉 :=

∫
Ω

dx
√
πx|x〉 (3.54)

represents a quantum sample from the density π; in particular, measuring |π〉 in the computational
basis gives a classical sample from π. Furthermore, the unitary operator in (3.7) satisfies

U †|πW 〉 =
(∫

Ω
dx |x〉|0〉〈φx|

)(∫
Ω

dx
√
πx|φx〉

)
=

∫
Ω

dx
√
πx|x〉|0〉 = |π〉|0〉, (3.55)

so we have U |π〉|0〉 = |πW 〉.

4 Quantum speedup for volume estimation

In this section, we present and analyze our quantum algorithm for volume estimation. First, we
review the classical state-of-the-art volume estimation algorithm in Section 4.1. We then describe
our quantum algorithm for estimating the volume of well-rounded convex bodies (i.e., R/r =
O(
√
n)) with query complexity Õ(n2.5/ε) in Section 4.2, with detailed proofs given in Section 4.3.

Finally, we remove the well-rounded condition by giving a quantum algorithm with interlaced
rounding and volume estimation with additional cost Õ(n2.5) in each iteration in Section 4.4.

4.1 Review of classical algorithms for volume estimation

The state-of-the-art classical algorithm for volume estimation uses Õ(n4 + n3/ε2) classical queries,
where Õ(n4) queries are used to construct the affine transformation that makes convex body well-
rounded [45] and Õ(n3/ε2) queries are used to estimate the volume of the well-rounded convex
body (after the affine transformation) [16].

We now review the algorithm of [45] for estimating volumes of well-rounded convex bodies. This
algorithm estimates the volume of a convex body obtained by the following pencil construction.
Define the cone

C :=
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2
i ≤ x2

0

}
. (4.1)
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Let K′ be the intersection of the cone C and a cylinder [0, 2D]×K, i.e.,

K′ := ([0, 2D]×K) ∩ C (4.2)

(recall D = R/r). Without loss of generality we renormalize to r = 1, so that B2(0, 1) ⊆ K ⊆
B2(0, D). Since DVol(K) ≤ Vol(K′) ≤ 2DVol(K), we can estimate Vol(K) with multiplicative
error ε by generating O(1/ε2) sample points from the uniform distribution on [0, 2D]×K and then
counting how many of them fall into K′. Such an approximation succeeds with high probability by
a Chernoff-type argument (see Section 4.3.1 for a formal proof).

Reference [45] considers simulated annealing under the pencil construction. For any a > 0,
define

Z(a) :=

∫
K′
e−ax0 dx. (4.3)

It can be shown that for any a ≤ ε/D,

(1− ε) Vol(K′) ≤ Z(a) ≤ Vol(K′). (4.4)

On the other hand, for any a ≥ 2n,

(1− ε)
∫

C
e−ax0 dx ≤ Z(a) ≤

∫
C
e−ax0 dx. (4.5)

This suggests using a simulated annealing procedure for estimating Vol(K′). Specifically, if we
select a sequence a0 > a1 > · · · > am for which a0 = 2n and am ≤ ε/D, then we can estimate
Vol(K′) by

Z(am) = Z(a0)
m−1∏
i=0

Z(ai+1)

Z(ai)
. (4.6)

(Note that this procedure uses an increasing sequence of temperatures 1/ai, unlike standard simu-
lated annealing in which temperature is decreased.)

Let πi be the probability distribution over K′ with density proportional to e−aix0 , i.e., dπi(x) =
e−aix0
Z(ai)

dx. Let Xi be a random sample from πi, and let (Xi)0 be its first coordinate; define Vi :=

e(ai−ai+1)(Xi)0 . We have

Eπi [Vi] =

∫
K′
e(ai−ai+1)x0 dπi(x) =

∫
K′
e(ai−ai+1)x0 e

−aix0

Z(ai)
dx =

Z(ai+1)

Z(ai)
. (4.7)

Furthermore, if the simulated annealing schedule satisfies ai+1 ≥ (1 − 1√
n

)ai, then Vi satisfies

(see [45, Lemma 4.1])

Eπi [V 2
i ]

Eπi [Vi]2
≤
( a2

i+1

ai(2ai+1 − ai)

)n+1
< 8 ∀ i ∈ [m], (4.8)

i.e., the variance of Vi is bounded by a constant multiple of the square of its expectation. Thus,
this simulated annealing procedure constitutes Chebyshev cooling (see also Section 4.3.3), ensuring
its correctness (see Proposition 4.1).

Algorithm 2 presents this approach in detail. Note that sampling from π0 in Line 2 is straightfor-
ward: select a random positive real number X0 from the distribution with density e−2nx and choose
a uniformly random point (V1, . . . , Vn) from the unit ball. If X = (X0, X0V1, . . . , X0Vn) /∈ K′, try
again; else return X. Equation (4.5) ensures that we succeed with probability at least 1 − ε for
each sample.
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Algorithm 2: Volume estimation of well-rounded K with Õ(n4/ε2) classical queries [45].

Input: Membership oracle OK of K; R such that B2(0, 1) ⊆ K ⊆ B2(0, R); R = O(
√
n), i.e.,

K is well-rounded.
Output: ε-multiplicative approximation of Vol(K).

1 Set m = 2d
√
n ln(n/ε)e, k = 512

ε2
√
n ln(n/ε), δ = ε2n−10, and ai = 2n(1− 1√

n
)i for i ∈ [m];

2 Take k samples X
(1)
0 , . . . , X

(k)
0 from π0;

3 for i ∈ [m] do

4 Take k samples from πi with error parameter δ and starting points X
(1)
i−1, . . . , X

(k)
i−1,

giving points X
(1)
i , . . . , X

(k)
i ;

5 Compute Vi = 1
k

∑k
j=1 e

(ai−ai+1)(X
(j)
i )0 ;

6 Return n!vn(2n)−(n+1)V1 · · ·Vm as the estimate of the volume of K′, where

vn := π
n
2 /Γ(1 + n

2 ) is the volume of the n-dimensional unit ball;

4.2 Quantum algorithm for volume estimation

As introduced in Section 1.2, our quantum algorithm has four main improvements that contribute
to the quantum speedup of Algorithm 2:

1. We replace the classical hit-and-run walk in Section 2.4 by a quantum hit-and-run walk, defined
using the framework of Section 3. Classically, the hit-and-run walk mixes in Õ(n3) steps in a
well-rounded convex body given a warm start (see Theorem 2.4). Quantumly, we can use the
quantum hit-and-run walk operator to prepare its stationary state given a warm start state using
only Õ(n1.5) queries to the membership oracle fora the well-rounded convex body.

2. We replace the simulated annealing framework in Algorithm 2 by the quantum MCMC frame-
work described in Section 2.2. Classically, we sample from πi in the ith iteration by running the
classical hit-and-run walk starting from the samples taken in the (i− 1)st iteration. Quantumly,
we prepare the quantum sample |πi〉 in the ith iteration by applying π/3-amplitude amplification
to a quantum sample produced in the (i−1)st iteration, where the unitaries in the π/3-amplitude
amplification are implemented by phase estimation of the quantum hit-and-run walk operators
as in (2.8).

3. We use the quantum Chebyshev inequality (see Section 2.3) to give a quadratic quantum speedup
in ε−1 when taking the average e(ai−ai+1)(X̄i)0 in Line 5 of Algorithm 2. However, we must be

cautious because the resulting points X
(1)
i , . . . , X

(k)
i in Line 4 follow the distribution πi, which

varies in different iterations of simulated annealing. Instead, our quantum algorithm must be
nondestructive: it must still have a copy of |πi〉 after estimating the average e(ai−ai+1)(X̄i)0 , so
that we can map this state to |πi+1〉 by π/3-amplitude amplification for the next iteration. This
is achieved in Section 4.3.3.

4. In Section 4.4, we show how the densities can be transformed to be well-rounded by an affine
transformation at each stage of the algorithm. This is to ensure that the hit-and-run walk mixes
fast assuming the densities πi to be sampled from are well-rounded (see Theorem 2.5). The
high-level idea is to sample points from density πi and compute an affine transformation Si+1

that rounds πi and the next density πi+1 (see Lemma 4.11). To sample these points, we use
π/3-amplitude amplification to map the states corresponding to the uniform distributions for
one stage to those for the next. The affine transformation can be computed coherently using
nondestructive mean estimation, with Õ(n2.5) quantum queries in each iteration.
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Algorithm 3 is our quantum volume estimation algorithm that satisfies our main theorem:

Theorem 1.1 (Main Theorem). Let K ⊂ Rn be a convex set with B2(0, r) ⊆ K ⊆ B2(0, R). Assume

0 < ε < 1/2. Then there is a quantum algorithm that returns a value Ṽol(K) satisfying

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε) Vol(K) (1.4)

using Õ(n3 + n2.5/ε) quantum queries to the membership oracle OK (defined in (1.3)) and Õ(n5 +
n4.5/ε) additional arithmetic operations.12

Algorithm 3: Volume estimation of convex K with Õ(n3 + n2.5/ε) quantum queries.

Input: Membership oracle OK for K; R = O(
√
n) such that B2(0, 1) ⊆ K ⊆ B2(0, R).

Output: ε-multiplicative approximation of Vol(K).
1 Set m = Θ(

√
n log(n/ε)) to be the number of iterations of simulated annealing and

ai = 2n(1− 1√
n

)i for i ∈ [m]. Let πi be the probability distribution over K′ with density

proportional to e−aix0 ;

Set error parameters δ, ε′ = Θ(ε/m2), ε1 = ε/2m; let k = Θ̃(
√
n/ε) be the number of copies of

stationary states for applying the quantum Chebyshev inequality; let l = Θ̃(n) be the
number of copies of stationary states needed to obtain the affine transformation Si;

Prepare k + l (approximate) copies of |π0〉, denoted |π̃(1)
0 〉, . . . , |π̃

(k+l)
0 〉;

2 for i ∈ [m] do
3 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with

parameters ε1, δ to estimate the expectation Eπi [Vi] (in Eq. (4.7)) as Ṽi (Lemma 4.9 and

Figure 4). The post-measurement states are denoted |π̂(1)
i−1〉, . . . , |π̂

(k)
i−1〉;

4 Use the l copies of the state |πi−1〉 to nondestructively obtain the affine transformation
Si that rounds πi−1 and πi (Section 4.4). The post-measurement states are denoted

|π̂(k+1)
i−1 〉, . . . , |π̂

(k+l)
i−1 〉;

5 Apply π/3-amplitude amplification with error ε′ (Section 2.2 and Lemma 4.8) and affine

transformation Si to map |Siπ̂(1)
i−1〉, . . . , |Siπ̂

(k+l)
i−1 〉 to |Siπ̃(1)

i 〉, . . . , |Siπ̃
(k+l)
i 〉, using the

quantum hit-and-run walk ;
6 Invert Si to get k + l (approximate) copies of the stationary distribution |πi〉 for use in

the next iteration;

7 Compute an estimate Ṽol(K′) = n!vn(2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where vn is the
volume of the n-dimensional unit ball;

8 Use Ṽol(K′) to estimate the volume of K as Ṽol(K) (Section 4.3.1).

More generally, our framework could be used to provide quantum speedup for any classical
simulated annealing algorithm based on Chebyshev cooling, which might be of independent interest.

The proof of Theorem 1.1 is organized as follows. We first assume that in each iteration, Si+1

puts πi+1 in isotropic position, i.e., the densities are promised to be well-rounded. The rest of

12Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in principle implemented
by a universal set of quantum gates using the Solovay-Kitaev Theorem [17] up to a small overhead. In our quantum
algorithm, the number of arithmetic operations is dominated by n-dimensional matrix-vector products computed in
superposition for rounding the convex body (see Section 4.4).
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· · ·
...

...
...

|0〉 • • · · ·
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U1,l

· · ·
...
|π1〉 · · ·

......
|0〉

UCB,1

•

U †CB,1
UCB,2

•

U †CB,2

· · ·
...

...
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|0〉 • • · · ·

|π1〉
U1,l

· · ·
...
|π1〉 · · ·

Figure 3: The quantum circuit for Algorithm 3 (assuming well-roundedness). Here UCB,i is the circuit of the
quantum Chebyshev inequality (Theorem 2.3) in the ith iteration and Ui,l is π/3-amplitude amplification
from |πi〉 to |πi+1〉.

this subsection presents an overview of the proof of Theorem 1.1 (including a quantum circuit
in Figure 3), and proofs details are given in Section 4.3. In Section 4.4, we show how the well-
roundedness be maintained at an additional cost of Õ(n2.5) quantum queries in each iteration.

Following the discussion in Section 1.2, our proof can be described at three levels:

High level (the simulated annealing framework) In Section 4.3.1, we show how to estimate
Vol(K) given an estimate of the volume of the pencil construction, Vol(K′):

Lemma 4.1. If we have access to Ṽol(K′) such that

1

1 + ε/2
Vol(K′) ≤ Ṽol(K′) ≤ (1 + ε/2) Vol(K′) (4.9)

with probability at least 0.7, then we can return a value Ṽol(K) such that

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε) Vol(K) (4.10)

holds with probability at least 2/3, using Õ(n2.5/ε) quantum queries to the membership oracle OK.

In Section 4.3.2, we prove that the inner product between stationary states of consecutive
simulated annealing steps is at least a constant:
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Lemma 4.2. Let |πi〉 be the stationary distribution state of the quantum walk Wi for i ∈ [m] defined
in (3.54). For n ≥ 2, we have 〈πi|πi+1〉 > 1/3 for i ∈ [m− 1].

This allows π/3-amplitude amplification to transform the stationary state of one Markov chain
to that of the next. The total number of iterations of π/3-amplitude amplification is thus Õ(

√
n),

just as in the classical volume estimation algorithm of [45].

Middle level (each telescoping ratio) In Section 4.3.3, we describe how we apply the quantum
Chebyshev inequality (Theorem 2.3) to the Chebyshev cooling schedule.

Lemma 4.3. Given Õ(log(1/δ)/ε) copies of the quantum states |πi−1〉, there exists a quantum
algorithm that outputs an estimate of Eπi [Vi] (in Eq. (4.7)) with relative error less than ε with
probability at least 1−O(δ).

Furthermore, we show how to make Lemma 4.3 nondestructive on the stationary states. Be-
cause the relative error for estimating the volume via Chebyshev cooling is Θ(ε/m) = Θ̃(ε/

√
n),

Lemma 4.3 implies that O(log(1/δ)/(ε/
√
n)) = Õ(

√
n/ε) copies of the stationary state suffice for

the simulated annealing framework.

Low level (the quantum hit-and-run walk) In Section 4.3.4, we give a careful analysis of the
errors coming from the quantum Chebyshev inequality as well as the π/3-amplitude amplification:

Lemma 4.4. Given Õ(log(1/δ)/ε1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤ ε1,
there exists a quantum procedure (using π/3-amplitude amplification and the quantum Chebyshev
inequality) that outputs a Ṽi such that |Ṽi−Eπi [Vi]| ≤ ε1Eπi [Vi] (where Eπi [Vi] is defined in Eq. (4.7))
with success probability 1 − δ4 using Õ(n3/2 log(1/δ)/ε1 + n3/2 log(1/ε′)) calls to the membership
oracle and returns a final state |π̃i〉 such that ‖|π̃i〉 − |πi〉‖ = O(ε1 + δ + ε′).

Having the four lemmas above from all the three levels, we establish Theorem 1.1 as follows.

Proof of Theorem 1.1. We prove the correctness and analyze the cost separately.

Correctness By Lemma 4.1, it suffices to compute the volume of the pencil construction K′

to relative error ε/2 with probability at least 0.7 in order to compute the volume of the well-
rounded convex body K. This is computed as a telescoping sum of m = O(

√
n log n/ε) products

of the form Z(ai+1)/Z(ai). The random variable Vi is an unbiased estimator for Z(ai+1)/Z(ai),
i.e., Eπi [Vi] = Z(ai+1)/Z(ai). Consider applying Lemma 4.4 m times with δ, ε′ = Θ(ε/8m2) and
ε1 = ε/2m. At each iteration i we have a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤ O(ε/4m).
Thus each telescoping sum can be computed with a relative error of ε/2m, resulting in a relative
error of less than ε/2 for the final volume. The probability of success for each iteration is at
least 1 − δ4 = 1 − Θ(ε4/4m8). Thus the probability of success for the whole algorithm is at least
1−Θ(ε4/4m7) = 1− Õ(ε11/n3.5), which is greater than 0.7 for a large enough n.

Cost Ignoring the cost of obtaining the affine transformation to round the logconcave densities to
be sampled (assuming that all the relevant densities are well rounded), we have from Lemma 4.4, the
number of calls to the membership oracle in each iteration is Õ(n3/2 log(1/δ)/ε1 +n3/2 log(1/ε′)) =
Õ(n2/ε). The total number of oracle calls is thus Õ(n2.5/ε). The argument for correctness above
applies for well-rounded logconcave densities. This is ensured by maintaining Θ̃(n) states that are
used to round the densities in each iteration (Algorithm 4). By Proposition 4.5, this procedure
uses Õ(n2.5) calls to the membership oracle in each iteration, resulting in a final query complexity
of Õ(n3 + n2.5/ε). Since the affine transformation is an n-dimensional matrix-vector product, the
number of additional arithmetic operations is hence O(n2) · Õ(n3 + n2.5/ε) = Õ(n5 + n4.5/ε).
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4.3 Proofs of lemmas in Section 4.2

We now prove the lemmas in Section 4.2 that establish Theorem 1.1.

4.3.1 From the pencil construction to the original convex body

Here we prove

Lemma 4.1. If we have access to Ṽol(K′) such that

1

1 + ε/2
Vol(K′) ≤ Ṽol(K′) ≤ (1 + ε/2) Vol(K′) (4.9)

with probability at least 0.7, then we can return a value Ṽol(K) such that

1

1 + ε
Vol(K) ≤ Ṽol(K) ≤ (1 + ε) Vol(K) (4.10)

holds with probability at least 2/3, using Õ(n2.5/ε) quantum queries to the membership oracle OK.

Proof. We follow the same notation in Section 4.1, i.e., without loss of generality we assume that
r = 1 and denote D = R/r = R. In other words, the pencil construction is

K′ := ([0, 2D]×K) ∩
{
x ∈ Rn+1 : x0 ≥ 0,

n∑
i=1

x2
i ≤ x2

0

}
. (4.11)

By the definition of D, for any (x1, . . . , xn) ∈ K we have
∑n

i=1 x
2
i ≤ D2, so [D, 2D]×K ⊆ K′. This

implies that DVol(K) ≤ Vol(K′) ≤ 2DVol(K). In other words, letting ξK := Vol(K′)
2DVol(K) , we have

0.5 ≤ ξK ≤ 1.
Classically, we consider a Monte Carlo approach to approximating Vol(K): we take k (ap-

proximately) uniform samples x1, . . . , xk from [0, 2D] × K, and if k′ of them are in K′, we return
k′

k · Ṽol(K′). For each i ∈ [k], δ[xi ∈ K′] is a boolean random variable with expectation ξK = Θ(1).
Any boolean random variable has variance O(1). Therefore, by Chebyshev’s inequality, taking
k = O(1/ε2) suffices to ensure that

Pr
[∣∣∣k′
k
− ξK

∣∣∣ ≤ εξK

2

]
≥ 0.99. (4.12)

Quantumly, we adopt the same Monte Carlo approach but we implement two steps using quan-
tum techniques:

• We take an approximately uniform sample from K ′ = [0, 2D] × K via the quantum hit-and-run
walk. To obtain a quantum stationary state, we use a similar idea as in [19] to construct a
sequence of m = dn log2(2D)e convex bodies. Let K̂0 := B and K̂i := 2i/nBn ∩K′ for i ∈ [m]. As
the length of the pencil is 2D, K̂m = K′. The state |π0〉 corresponding to K̂0 is easy to prepare.
It is straightforward to verify that 〈πi|πi+1〉 ≥ c for some constant c, as Vol(K̂i+1) ≤ 2 Vol(K̂i).
To utilize the quantum speedup for MCMC framework (Theorem 2.1), it remains to lower bound
the phase gap of the quantum walk operator for K̂i. It can be shown that the mixing property of
the hit-and-run walk in Theorem 2.5 implies that the phase gap of the quantum walk operator
is Ω̃(n−1.5); see the proof of Lemma 4.8. Thus, by Theorem 2.1, |πm〉 can be prepared using
Õ(n) · Õ(n1.5) = Õ(n2.5) quantum queries to OK.
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• We estimate ξK with multiplicative error ε/2 using the quantum Chebyshev inequality (Theo-
rem 2.3) instead of its classical counterpart. This means that O(1/ε) executions of quantum
sampling in the first step suffice.

Overall, Õ(n2.5/ε) quantum queries to OK suffice to ensure that we obtain an estimate of ξK

within multiplicative error ε/2 with success probability at least 0.99. Since (4.9) ensures that

Ṽol(K′) estimates Vol(K′) up to multiplicative error ε/2 with probability at least 0.7, Ṽol(K′)
2DξK

esti-
mates Vol(K) up to multiplicative error ε/2 + ε/2 = ε with success probability 0.99 · 0.7 > 2/3.

4.3.2 Inner product between stationary states of consecutive steps

We now show that the inner product between stationary states of consecutive steps is at least a
constant. More precisely, we have the following:

Lemma 4.2. Let |πi〉 be the stationary distribution state of the quantum walk Wi for i ∈ [m] defined
in (3.54). For n ≥ 2, we have 〈πi|πi+1〉 > 1/3 for i ∈ [m− 1].

Proof. Recall that the stationary distribution πi of step i has density proportional to e−aix0 as dis-

cussed in Section 4.1. The corresponding stationary distribution state is |πi〉 =
∫

K′ dx
√

e−aix0
Z(ai)

|x〉.
Reference [45, Lemma 3.2] proves that an+1Z(a) is log-concave (noting that the dimension of K′ is
n+ 1). This implies that√

an+1
i Z(ai)

√
an+1
i+1 Z(ai+1) ≤

(
ai + ai+1

2

)n+1

Z

(
ai + ai+1

2

)
. (4.13)

Now, we have

〈πi|πi+1〉 =

∫
K′

dx
exp
(
−ai+ai+1

2 x0

)
√
Z(ai)

√
Z(ai+1))

(4.14)

≥
(

2
√
ai
√
ai+1

ai + ai+1

)n+1
∫

K′ dx exp
(
−ai+ai+1

2 x0

)
Z
(
ai+ai+1

2

) (4.15)

=

(
2
√
ai
√
ai+1

ai + ai+1

)n+1

(4.16)

=

2
√
ai
√
ai(1− 1√

n
)

ai + ai(1− 1√
n

)

n+1

=

2
√

1− 1√
n

2− 1√
n

n+1

, (4.17)

where the inequality follows from (4.13). To lower bound the above quantity, we use the fact that√
1− 1/

√
n ≥ 1− 1

2
√
n
− 1

2n . Hence, for n ≥ 2 we have

〈πi|πi+1〉 ≥

(
2− 1√

n
− 1

n

2− 1√
n

)n+1

=

(
1−

1
n

2− 1√
n

)n+1

≥

(
1− 1

(2− 1√
2
)n

)n+1

>
1

3
(4.18)

as claimed.
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4.3.3 Chebyshev cooling and nondestructive mean estimation

Now we briefly review the classical framework for Chebyshev cooling and discuss how to adapt it
to quantum algorithms. Suppose we want to compute the expectation of a product

V =
m∏
i=1

Vi (4.19)

of independent random variables. The following theorem of Dyer and Frieze [18] upper bounds the
number of samples from the Vi that suffices to estimate E[V ] with bounded relative error.

Proposition 4.1 ([18, Section 4.1]). Let V1, . . . , Vm be independent random variables such that
E[V 2

i ]

E[Vi]2
≤ B for all i ∈ [m]. Let X

(1)
j , . . . , X

(k)
j be k samples of Vj for j ∈ [m], and define Xj =

1
k

∑k
`=1X

(`)
j . Let V =

∏m
j=1 Vj and X =

∏m
j=1Xj. Then, taking k = 16Bm/ε2 ensures that

Pr
[
(1− ε)E[V ] ≤ X ≤ (1 + ε)E[V ]

]
≥ 3

4
. (4.20)

With standard techniques, the probability can be boosted to 1 − δ with a log(1/δ) overhead.
In applications such as volume estimation [44] and estimating partition functions [61], the sam-

ples are produced by a random walk. Let the mixing time for each random walk be at most T .
Then the total complexity for estimating E[V ] with success probability 1−δ is O(TBm log(1/δ)/ε2).
Replacing the random walk with a quantum walk can potentially improve the mixing time; see Sec-
tion 1.3.2 for relevant literature. In particular, Montanaro [49] proposed a quantum algorithm for
the simulated annealing framework with complexity Õ(TBm log(1/δ)/ε), which has a quadratic
improvement in precision. Note that the dependence on T was not improved, as multiple copies
of quantum states were prepared for the mean estimation (which uses measurements). In this
paper, we use the quantum Chebyshev inequality (see Theorem 2.3) to estimate the expecta-
tion of Vi in a nondestructive manner which, together with Theorem 2.1, achieves complexity
Õ(
√
TBm log(1/δ)/ε).

The random variables Vi (determined by the cooling schedule) satisfy the following:

Proposition 4.2 (Eq. (4.8)). Let X be a random sample from πi and let Vi = e(ai−ai+1)X0. Then

Eπi [V 2
i ]

Eπi [Vi]2
≤ 8. (4.21)

The following lemma uses this property of the simulated annealing procedure to show that the
quantum Chebyshev inequality can be used to estimate the mean of Vi on the distribution πi, which
gives an estimate of the ratio Z(ai+1)

Z(ai)
in the volume estimation algorithm. We first show that our

random variables can be made to satisfy the conditions of Theorem 2.3, and then we outline how
the corresponding circuit can be implemented. A detailed error analysis is deferred to Section 4.3.4.

Lemma 4.3. Given Õ(log(1/δ)/ε) copies of the quantum states |πi−1〉, there exists a quantum
algorithm that outputs an estimate of Eπi [Vi] (in Eq. (4.7)) with relative error less than ε with
probability at least 1−O(δ).

Proof. We achieve nondestructive mean estimation by the quantum Chebyshev inequality (Theo-
rem 2.3). For the random variables Vi, we let µi denote their mean and σ2

i their variance. From

Proposition 4.2,
√
σ2
i − µ2

i /µi ≤
√

8 < 3. For a small constant c, we use log(1/δ)/c2 copies of
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|πi−1〉 to create copies of |πi〉 using π/3-amplitude amplification. We now use a quantum circuit
that given |x〉|0〉 computes |x〉|eaix0−ai−1x0〉, and then apply a circuit Umedian that computes the
median of all the ancilla registers:

Umedian|0〉|a1〉 · · · |as〉 = |median{a1, . . . , as}〉|a1〉 · · · |as〉. (4.22)

By the classical Chebyshev inequality, we measure µ̂i such that |µ̂i − µi| ≤ cµi with probability
at least 1 − δ. Thus the probability that µ̂i/(1 − c) < µ is less than δ. Taking H = µ̂i/(1 − c),
our variables satisfy the conditions of the quantum Chebyshev inequality. In order to output
an estimate of the mean with relative error at most ε, the quantum Chebyshev inequality now
requires Õ(log(1/δ)/ε) calls to a sampler for the state |πi〉, which we construct using π/3-amplitude
amplification on copies of |πi−1〉. By the union bound, the probability of failure of the whole
procedure is O(δ).

To be more specific, we replace U |0〉 in BasicEst (Algorithm 1) by Ui−1,l|πi−1〉, and replace Q
by −Ui−1,l(Πi−1 − Π⊥i−1)U †i−1,l(Πi − Π⊥i ) (where Πi = |πi〉〈πi| and Π⊥i = I − Πi for all i ∈ [m]).
The quantum circuit for nondestructive BasicEst is shown in Figure 4. Here, we run Θ(log(1/δ))
executions of amplitude estimation (Figure 2) in parallel. Note that by (2.11), each amplitude

estimation returns a state eiθp√
2
|θ̃p〉 − e−iθp√

2
| − θ̃p〉. We use an ancilla register and apply the unitary

Usin2 |θ〉|0〉 := |θ〉| sin2 θ〉; (4.23)

because sin2(θ̃p) = sin2(−θ̃p) = p̃, the ancilla register becomes |p̃〉, where p̃ estimates p well as
claimed in Theorem 2.2. We then take the median of such Θ(log(1/δ)) executions using (4.22),
and finally run the inverse of Usin2 gates and amplitude estimations. This circuit is nondestructive
because the states |πi〉 are recovered after implementing the inverse amplitude amplifications, and
a measurement that has a high probability of a single outcome does not disturb the input quantum
state by much. The correctness follows from the proof of Theorem 2.3 in [27]. A detailed error
analysis is given in the next subsection (see Lemma 4.9).

4.3.4 Error analysis

In this section, we analyze the error incurred by both the quantum Chebyshev inequality (Line 3)
and π/3-amplitude amplification (Line 5) in Algorithm 3.

Lemma 4.4. Given Õ(log(1/δ)/ε1) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤ ε1,
there exists a quantum procedure (using π/3-amplitude amplification and the quantum Chebyshev
inequality) that outputs a Ṽi such that |Ṽi−Eπi [Vi]| ≤ ε1Eπi [Vi] (where Eπi [Vi] is defined in Eq. (4.7))
with success probability 1 − δ4 using Õ(n3/2 log(1/δ)/ε1 + n3/2 log(1/ε′)) calls to the membership
oracle and returns a final state |π̃i〉 such that ‖|π̃i〉 − |πi〉‖ = O(ε1 + δ + ε′).

We first show that π/3-amplitude amplification can be used to rotate |πi〉 into |πi−1〉 with error
ε′ using Õ(log(1/ε)) oracle calls. This procedure is used as a subroutine in a mean estimation circuit
that estimates the mean of the random variable Vi using multiple approximate copies of |πi−1〉. We
ensure that the measurement probabilities are highly peaked so that the state is not disturbed very
much. Finally π/3-amplitude estimation is used again to rotate the approximate copies of the state
|πi−1〉 to approximate copies of the state |πi〉.
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Figure 4: The quantum circuit for nondestructive BasicEst.

Large effective spectral gap Consider an ergodic, reversible Markov chain (Ω, p) with tran-
sition matrix P and a unique stationary distribution with density π. Let a(x) be a probability
measure over Ω such that the Markov chain mixes to its stationary distribution with a correspond-
ing probability density π(x) within a total variation distance of ε within t steps. From the definition
of the transition matrix P (x, y) = 〈x|P |y〉 = py→x.

The discriminant matrix D defined in (3.10) is related to the transition matrix as P = DπDD
−1
π ,

as shown in (3.53). For a hit-and-run walk, the transition matrix P maps a density concentrated
at one point to a uniform density over a compact subset of Rn. Thus a convergent sequence of
distributions is still convergent after one step of the walk, and P is a compact linear operator.
Since D is similar to P , D is a compact Hermitian operator over L2(Ω) and thus has a countable
set of real eigenvalues λi and corresponding orthonormal eigenvectors (eigenfunctions) vi ∈ L2(Ω).
Orthonormality implies that

∫
Ω vi(x)vj(x) dx = δi,j . Notice that

PDπvi = DπD(vi) = λjDπvi; (4.24)

thus fi = Dπvi is an eigenvector of P ′ with eigenvalue λi. The eigenvectors fi may not be orthogonal
under the standard inner product on L2(Ω). However, we can define an inner product

〈f, g〉π := 〈D−1
π f,D−1

π g〉 =

∫
Ω

f(x)g(x)

π(x)
dx (4.25)

over the space L2(Ω). It is easy to see that 〈fi, fj〉π = 〈φi, φj〉 = δi,j .

32



It can be verified that
√
π(x) is an eigenfunction of D with eigenvalue 1. Thus the stationary

state π(x) is an eigenfunction of the transition operator P with eigenvalue 1. Since P is stochastic,
this is the leading eigenvalue. The eigenfunctions of P are thus 1, λ1, λ2, . . . with correspond-
ing eigenfunctions π(x), f2(x), f3(x), . . . . From the orthonormality of the f under 〈·, ·〉π, for any
function g in L2(Ω) we have

g =

∞∑
i=1

〈g, fi〉πfi = 〈g, π〉+

∞∑
i=2

〈g, fi〉πfi (4.26)

=

(∫
Ω

g(x)π(x)

π(x)
dx

)
π +

∞∑
i=2

〈g, fi〉πfi (4.27)

=

(∫
Ω
g(x) dx

)
π +

∞∑
i=2

〈g, fi〉πfi. (4.28)

Since a is a probability density, a = π+
∑∞

i=2〈a, fi〉πfi. After t steps of the Markov chain M on a we
obtain the state P ta = π+

∑∞
i=2 λ

t
i〈a, fi〉πfi. Since ‖P ta−π‖2 ≤ ε, we have ‖

∑∞
i=2 λ

t
i〈a, fi〉πfi‖ ≤ ε

and from the orthonormality of f , 〈a, fi〉πλti ≤ ε. If 1 > λi ≥ 1 − 1
O(t) then λti = Ω(1) and

〈a, fi〉π = O(ε).
The above analysis indicates that if a probability density a mixes in t steps under a Markov

chain (Ω, p), then it has small overlap with each of the “bad” eigenfunctions (with spectral gap less
than 1

O(t)). Thus P effectively has a large spectral gap when it acts on a.
Corresponding to a, consider the quantum states

|a〉 :=

∫
Ω

√
a(x)|x〉 dx, |φa〉 :=

∫
Ω

∫
Ω

√
axpx→y|x〉|y〉 dx dy. (4.29)

For an eigenvector vi of D (with eigenvalue λi), define the state |vi〉 :=
∫

Ω vi(x) dx =
∫

Ω
fi(x)√
π(x)

dx.

Then the walk operator W has the corresponding eigenvector |ui〉 =
(
I − (λi − i

√
1− λ2

i )S
)
T |vi〉.

Let Ci := λi − i
√

1− λ2; then 〈φa|ui〉 = 〈φa|T |vi〉 − Ci〈φa|ST |ui〉. Furthermore,

〈φa|T |vi〉 = 〈a|vi〉 =

∫
Ω

√
a(x)fi(x)√
π(x)

dx, (4.30)

and

〈φa|ST |vi〉 =

(∫
Ω

√
axpx→y〈y|〈x|

)(∫
Ω

√
vx′px′→y′ |x′〉|y′〉

)
(4.31)

=

∫
Ω

√
ax

(∫
Ω

√
px→ypy→xvi(y) dy

)
dx (4.32)

=

∫
Ω

√
ax(Dvi)(x) dx (4.33)

= λi

∫
Ω

√
axvi(x) (4.34)

= λi〈a|vi〉. (4.35)

We have 〈φa|ui〉 = (1− λiCi)〈a|vi〉 and therefore

|〈φa|ui〉| = |(1− λi|Ci|)|〈a|vi〉 =
√

(1− λ2
i )

2 + (1− λi)2〈a|vi〉 ≤ 2〈a|vi〉. (4.36)
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In addition,

〈a|vi〉 =

∫
Ω

√
a(x)fi(x)√
π(x)

dx =

∫
Ω

√
π(x)

a(x)

a(x)fi(x)

π(x)
dx. (4.37)

The above discussion establishes the following proposition indicating that if a distribution with
density a(x) mixes fast and the stationary distribution with density π(x) has a bounded L2-norm
with respect to a(x), then the quantum walk operator W acting on the subspace spanned by |π〉
and |a〉 has a large spectral gap.

Proposition 4.3. Let M = (Ω, p) be an ergodic reversible Markov chain with a transition operator
P and unique stationary state with a corresponding density π ∈ L2(Ω). Let {(λi, fi)} be the set
of eigenvalues and eigenfunctions of P , and |ui〉 be the eigenvectors of the corresponding quantum
walk operator W . Let a ∈ L2(Ω) be a probability density that mixes up to total variation distance ε

in t steps of M . Furthermore, assume that
∫

Ω
π(x)
a(x) π(x)dx ≤ c for some constant c. Define

|a〉 =

∫
Ω

√
a(x)|x〉 dx; (4.38)

|φa〉 =

∫
Ω

√
a(x)

∫
Ω

√
px→y|x〉|y〉 dx dy. (4.39)

Then 〈φa|ui〉 = O(ε1/2) for all i such that 1 > λi ≥ 1− 1
O(t) .

Proof. Define S = {x|π(x)
a(x) ≥

√
c
ε}. Because

∫
Ω
π(x)2

a(x)2
a(x)dx =

∫
Ω
π(x)
a(x) π(x)dx ≤ c, Markov’s

inequality implies that
∫
S a(x)dx ≤ ε.

We now define the quantum state |a′〉 such that 〈x|a′〉 = 〈x|a〉 if x /∈ S and 〈a|x′〉 = 0 otherwise,
and |φa′〉 = T |a′〉. Then

‖|φa〉 − |φa′〉‖ =
∥∥∥ ∫

S

√
a(x)T |x〉 dx

∥∥∥ =

√∫
Ω
a(x) dx =

√
ε. (4.40)

From (4.36) and (4.37), if 1 > λi ≥ 1− 1
O(t) , then

|〈φa′ |ui〉| ≤ 2

∫
Ω

√
π(x)

a(x)

a(x)fi(x)

π(x)
dx ≤ 2c1/4〈a, fi〉π

ε1/4
≤ 2c1/4ε3/4. (4.41)

Finally,

〈φa|ui〉 = 〈φa′ |ui〉+ 〈φa − φa′ |ui〉 ≤ 2c1/4ε3/4 +
√
ε = O(

√
ε) (4.42)

if 1 > λi ≥ 1− 1
O(t) . Hence the result follows.

Warmness of πi+1 with respect to πi We show that density πi mixes to πi+1 under the walk
Wi+1 and vice versa. To apply Theorem 2.5, we show that the two distributions are warm with
respect to each other.

The L2-norm of a distribution with density π1 ∈ L2(Ω) with respect to another with density
π2 ∈ L2(Ω) is defined as

‖π1/π2‖ = EX∼π1
[
π1(X)

π2(X)

]
=

∫
Ω

π1(x)

π2(x)
π1(x) dx. (4.43)

A density π1 ∈ L2(Ω) is said to be a warm start for π2 ∈ L2(Ω) if the L2-norm ‖π1/π2‖ is bounded
by a constant.
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Lemma 4.5 ([45, Lemma 4.4]). The L2-norm of the probability distribution with density πi = e−aix0
Z(ai)

with respect to that with density πi+1 = e−ai+1x0

Z(ai+1) is at most 8.

Lemma 4.6. The L2-norm of the probability distribution with density πi+1 = e−ai+1x0

Z(ai+1) with respect

to that with density πi = e−aix0
Z(ai)

is at most 1.

Proof. Since anZ(a) is a log-concave function [45, Lemma 3.2], we have

EX∼πi+1

[
πi+1(X)

πi(X)

]
=

∫
K′ e

(ai−ai+1)x0e−ai+1x0dx
∫

K′ e
−aix0dx∫

K′ e
−ai+1x0dx

∫
K′ e
−ai+1x0dx

(4.44)

=
Z(2ai+i − ai)Z(ai)

Z(ai+1)2
(definition of Z) (4.45)

≤
(

a2
i+1

ai(2ai+1 − ai)

)n+1

(logconcavity of anZ(a)) (4.46)

≤

(1− 1√
n

)2
1− 2√

n

n+1

(definition of ai) (4.47)

≤
(

1− 1

n

)n+1

< 1 (4.48)

as claimed.

Error analysis of π/3-amplitude amplification Consider a simulated annealing procedure
that follows a sequence of Markov chains M1,M2, . . . with steady states µ1, µ2, . . . . Consider an
alternate walk operator (used in [65]) of the form

W ′i = U †i SUiRAU
†
i SUiRA (4.49)

where RA denotes the reflection about the subspace A := span{|x〉|0〉 : x ∈ K} and S is the

swap operator. We have Ui|x〉|0〉 =
∫
y∈K

√
p

(i)
x→y|x〉|y〉 dy where p(i) is the transition probability

corresponding to the ith chain.
The W ′i operator is related to the walk operator Wi = S(2Πi − I) via conjugation by Ui, i.e.,

Wi = UiW
′
iU
†
i . Thus W ′i has the same eigenvalues as Wi, and if |uj〉 is an eigenvector of Wj then

|v〉 = U †i |u〉 is an eigenvector of Wi with the same eigenvalue λj . For any classical distribution

f , we define |f〉 =
∫

Ω

√
f(x)|x〉 dx and |φ(i)

f 〉 =
∫

Ω

√
f(x)|x〉

∫
Ω

√
p

(i)
x→y|y〉 dy dx. Since |φ(i)

πi 〉 is a
stationary state of Wi with eigenvalue 1, it follows that |πi〉|0〉 is an eigenvalue of Wi with eigenvalue
1.

In each stage of the volume estimation algorithm, we sample from a state with density πi(x) =
e−aix0
Z(ai)

. Each such distribution is the stationary state of a hit-and-run walk with the corresponding

target density. Thus the corresponding states |πi〉 are the stationary states of the corresponding
walk operators Wi and W ′i . Both Wi and Wi′ can be implemented using a constant number of Ui
gates.

From Lemma 4.2, we know that the inner product 〈πi|πi+1〉 between the states at any stage of
the algorithm is at least 1

3 . This implies that the inner product between |πi〉|0〉 and |πi+1〉|0〉 is also
at least 1

3 . In the following we abuse notation by sometimes writing only |πi〉 to denote |πi〉|0〉, as
it is easy to tell from context whether the ancilla register should be present.
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Lemma 2.1 in Section 2.2 indicates that π/3-amplitude amplification can be used to rotate the
state |πi〉 to |πi+1〉 if we can implement the rotation unitaries

Ri = ω|πi〉〈πi|+ (I − |πi〉〈πi|) and Ri+1 = ω|π1+1〉〈πi+1|+ (I − |πi+1〉〈πi+1|) . (4.50)

To implement these rotations we use the fact that πi and πi+1 are the leading eigenvectors of the
operators W ′i and W ′i+1, respectively. We show the following lemmas which are adapted variants
of Lemma 2 and Corollary 2 in [65]:

Lemma 4.7. Let W be a unitary operator with a unique leading eigenvector |ψ0〉 with eigenvalue 1.
Denote the remaining eigenvectors by |ψj〉 with corresponding eigenvalues e2πiξj . For any ∆ ∈ (0, 1]
and ε2 < 1/2, define a := log(1/∆) and c := log(1/

√
ε). There exists a quantum circuit V that uses

ac ancilla qubits and invokes the controlled-W gate 2ac times such that

V |ψ0〉|0〉⊗ac = |ψ0〉|0〉⊗ac (4.51)

and

V |ψj〉|0〉⊗ac =
√

1− ε2|ψj〉|χj〉+
√
ε2|ψj〉|0〉⊗ac (4.52)

where |χj〉 is orthogonal to |0〉⊗ac for all |ψj〉 such that ξj ≥ ∆.

Proof. Consider a quantum phase estimation circuit U with a ancilla qubits that invokes the
controlled-W gate 2a times (see Figure 5). The phase estimation circuit first creates an equal super-
position over a ancilla qubits using Hadamard gates. For k = 0, . . . , a−1 we apply a controlled-W k

operator to the input register, controlled by the (a − k)th register. Finally the inverse quantum
Fourier transform is applied on the ancilla registers. Then

U |ψj〉|0〉⊗a = |ψj〉 ⊗ QFT†

(
1√
2a

2a−1∑
m=0

e2πimξj |m〉

)
(4.53)

= |ψj〉 ⊗
1

2a

2a−1∑
m,m′=0

e2πim(ξj−m′/2a)|m′〉. (4.54)

The amplitude corresponding to |0〉 on the ancilla registers is

aj,0 :=
1

2a

2a−1∑
m=0

e2πimξj =
1− e2πi2aξj

2a(1− e2πiξj )
(4.55)

for j 6= 0, and a0,0 = 1. If j 6= 0 then

|aj,0| =
∣∣∣ 1− e2πi2aξj

2a(1− e2πiξj )

∣∣∣ ≤ ∣∣∣ 1

2a−1(1− e2πiξj )

∣∣∣ ≤ 1

2a+1|ξj |
. (4.56)

Thus |aj,0| ≤ 1
2 if ξj ≥ δ. Using c copies of the circuit (resulting in ac ancilla registers and 2ac

controlled-W gates), the amplitude for 0 in all the ancilla registers if ξj ≥ δ is 1
2c =

√
ε.

Corollary 4.1. Let W be a unitary operator with a unique leading eigenvector |ψ0〉 with eigenvalue
1. Denote the remaining eigenvectors by |ψj〉 with corresponding eigenvalues e2πiξj . For any ∆ ∈
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|0〉 H . . . •

QFT−1
2a

. .
.

|0〉 H • . . .
...

|0〉 H • . . .

|ψj〉 W 20 W 21 . . . W 2a−1

Figure 5: The quantum phase estimation circuit. Here W is a unitary operator with eigenvector |ψj〉; in
π/3-amplitude estimation it is the quantum walk operator W ′

i in (4.49).

(0, 1] and ε2 < 1/2, define a := log(1/∆) and c := log
(
1/
√
ε2
)
. There exists a quantum circuit R̃

that uses ac ancilla qubits and invokes the controlled-W gate 2a+1c times such that

R̃|ψ0〉|0〉⊗ac = (R|ψ0〉)|0〉⊗ac (4.57)

(where R = ω|ψ0〉〈ψ0| − (I − |ψ0〉〈ψ0|)) and

‖R̃|ψj〉|0〉⊗ac − (R|ψj〉)|0〉⊗ac‖ ≤ 2
√
ε2 (4.58)

for j 6= 0 such that ξj ≥ ∆.

Proof. Let R̃ := V †(I ⊗Q)V where V is the quantum circuit in Lemma 4.7 and Q := ω|0〉〈0|⊗ac +
(I − |0〉〈0|⊗ac). Then we have

R̃|ψ0〉|0〉⊗ac = V †(I ⊗Q)|ψ0〉|0〉⊗ac = V †|ψ0〉|0〉⊗ac = ω|ψ0〉|0〉⊗ac = R|ψ0〉|0〉⊗ac. (4.59)

For j 6= 0 such that ξj ≥ δ,

R̃|ψj〉|0〉⊗ac = V †(I ⊗Q)(
√

1− ε2|ψj〉|χj〉+
√
ε2|ψj〉|0〉⊗ac) (4.60)

= V †(
√

1− ε2|ψj〉|χj〉+
√
ε2ω|ψj〉|0〉⊗ac (4.61)

= V †(|ψj〉 ⊗ (
√

1− ε2|χj〉+
√
ε2|0〉⊗ac) +

√
ε2(ω − 1)|ψj〉|0〉⊗ac) (4.62)

= |ψj〉|0j〉+ V †
√
ε2(ω − 1)|ψj〉|0〉⊗ac. (4.63)

Thus ‖R̃|ψj〉|0〉⊗ac − (R|ψj〉)|0〉⊗ac‖ ≤ ‖V †
√
ε2(ω − 1)|ψj〉|0〉⊗ac‖ ≤ 2

√
ε2.

Finally, we prove the following lemma for analyzing the error incurred by π/3-amplitude am-
plification in our quantum volume estimation algorithm:

Lemma 4.8. Starting from |πi〉, we can obtain a state |π̃i+1〉 such that ‖|πi+1〉 − |π̃i+1〉‖ ≤ ε using
Õ(n3/2 log(1/ε)) calls to the controlled walk operators W ′i ,W

′
i+1. This results in Õ(n3/2 log(1/ε))

calls to the membership oracle OK.

Proof. From Theorem 2.5, Lemma 4.5, and Lemma 4.6, we find that

• πi(x) mixes up to total variation distance ε1 in O
(
n3 log5 n

ε1

)
steps of the Markov chain Mi+1,

and
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• πi+1(x) mixes up to total variation distance ε1 in O
(
n3 log5 n

ε1

)
steps of the Markov chain Mi.

From Proposition 4.3, we find the following:

• |πi〉 = |π′i〉+|e1〉 where |π′i〉 lies in the space of eigenvectors |v(i+1)
j 〉 of W ′i+1 such that λ

(i+1)
j = 1

or λ
(i+1)
j ≤ 1− 1

O(n3 log5(n/ε1))
, and ‖|e1〉‖ ≤ ε1; and

• |πi+1〉 = |π′i+1〉 + |e2〉 where |π′i+1〉 lies in the space of eigenvectors |v(i)
j 〉 of W ′i such that

λ
(i)
j = 1 or λ

(i)
j ≤ 1− 1

O(n3 log5(n/ε1))
, and ‖|e2〉‖ ≤ ε1.

Note that |πi〉 and |πi+1〉 are simply the leading eigenvectors of Wi and Wi+1, respectively. Thus
both |πi〉 and |πi+1〉 lie ε1 close to the “good” subspaces corresponding to W ′i (respectively W ′i+1)

which are spanned by eigenvectors |v(i)
j 〉 (respectively |v(i+1)

j 〉) with eigenvalues e2πiξ
(i)
j (respectively

e2πiξ
(i+1)
j ) such that ξ

(i)
j = 0 or ξ

(i)
j ≥ 1

O(n3/2 log5/2(n/ε1))
. Each state that occurs during π/3-

amplitude amplification to rotate |πi〉 to |πi+1〉 or vice versa is a linear combination of |πi〉 and
|πi+1〉 and is thus also close to the good subspaces of W ′i and W ′i+1.

Applying Corollary 4.1 with ∆ = 1
n3/2 ln5/2(n/ε1)

and ε2 = ε21, we can implement a quantum opera-

tors R̃i, R̃i+1 such that ‖Ri−R̃i‖ ≤ 2ε1 and ‖Ri+1−R̃i+1‖ ≤ 2ε1, usingO(n3/2 log5/2(n/ε1) log(1/ε1))
calls to the controlled-W ′i and controlled-W ′i+1 operators, respectively.

The above shows how to approximately implement Ri and Ri+1. If these operators could be
implemented perfectly, Lemma 2.1 and Lemma 4.2 show that we can prepare a state |π̃i+i〉 such
that 〈πi+1|π̃i+1〉 ≤ 1−(2/3)3m by applying m recursive levels of π/3-amplitude amplification to |πi〉,
using 3m calls to Ri, R

†
i , Ri+1, R

†
i+1. Since ‖πi+1− π̃i+1‖ =

√
2(1− 〈πi+1|π̃i+1〉), after O(log(1/ε2))

calls to the rotation gates we obtain a final state with error ε2. However, each rotation gate can
cause an error of ε1 by itself. By making O(n3/2 log5/2(n/ε1) log(1/ε1) log(1/ε2)) calls to controlled-
W ′i and controlled-W ′i+1 operators, we obtain a final error of O(ε1 log(1/ε2)+ε2). Choosing ε2 = ε/2
and ε1 = ε/(2 ln(2/ε)) gives the result.

Error analysis for the quantum Chebyshev inequality We also analyze the error from the
quantum Chebyshev inequality (Theorem 2.3), giving a robust version of Lemma 4.3.

Lemma 4.9. Suppose we have Õ(log(1/δ)/ε) copies of a state |π̃i−1〉 such that ‖|π̃i−1〉 − |πi−1〉‖ ≤
ε. Then the quantum Chebyshev inequality can be used to output Ṽi such that |Ṽi − Eπi [Vi]| ≤
O(ε)Eπi [Vi] with success probability 1− δ4 using Õ(n3/2 log(1/δ)/ε) calls to the membership oracle.
The output state |π̂i−1〉 satisfies ‖|π̂i−1〉 − |πi−1〉‖ = O(ε+ δ).

Proof. The quantum Chebyshev inequality uses an implementation of US0U
†Si where U is a unitary

operator satisfying U |πi−1〉 = |πi〉. From Lemma 4.8, using ln(1/ε2) iterations of π/3-amplitude
amplification (Ulog 1/ε2 in (2.6)) instead of U induces an error of ε2 and uses O(n3/2 log(1/ε2)) oracle
calls. Using approximate phase estimation as in Corollary 4.1 and Lemma 4.8, Πi−1 and Πi can
be implemented up to error ε3 using O(n3/2 log(1/ε3)) oracle calls. Thus each block corresponding
to Theorem 2.2 induces an error of O(ε2 + ε3), and the final state before the median is measured
has an error of O(ε + ε2 + ε3). Therefore, using O(log(1/δ1)/ε) copies of |π̃i−1〉 returns a sample
Ṽi such that |Ṽi − Eπi [Vi]| ≤ O(ε2 + ε3 + ε)Eπi [Vi] with success probability 1 − δ1. Performing a
measurement with success probability 1−δ1 implies that the posterior state has an overlap

√
1− δ1

with the initial state. This induces an error of magnitude at most
√

2(1−
√

1− δ1) = O(δ
1/4
1 ).
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The measurement on the log(1/δ)/c copies of |π̃i−1〉 used to estimate µ̂ has relative error at most

c with probability 1−δ. This causes an error O(δ
1/4
1 ) in addition to the error ε2 from π/3-amplitude

amplification.
Finally, note that the basic amplitude estimation circuit (analyzed in Theorem 2.2) is a subrou-

tine of the quantum Chebyshev inequality (Theorem 2.3), and uncomputing the block corresponding
to Theorem 2.2 induces an error of O(ε2 + ε3), giving an overall error of O(ε2 + ε3 + ε+ δ1/4). The
result follows by taking ε2 = ε3 = ε and δ1 = δ4.

Proof of Lemma 4.4 We finally prove Lemma 4.4 here.

Proof. Lemma 4.9 is used to estimate the mean with ε = ε1 and leaves a posterior state |π̂i−1〉 such
that ‖|π̂i−1〉 − |πi−1〉‖ = O(ε1 + δ). We can then use π/3-amplitude amplification to rotate this
state into |π̃i〉, adding error O(ε′) at the cost of O(n3/2 log(1/ε′)). This completes the proof.

4.4 Quantum algorithms for rounding logconcave densities

We first define roundedness of logconcave density functions as follows:

Definition 4.1. A logconcave density function f is said to be c-rounded if

1. The level set of f of probability 1/8 contains a ball of radius r;

2. Ef (|x− zf |) ≤ R2, where zf is the centroid of πf ;

and R/r ≤ c
√
n.

In the previous section we assumed that the distributions πi sampled during the hit-and-run
walk are O(1)-rounded (i.e., well-rounded). From Theorem 2.5, this implies that the hit-and-run
walk for the distribution πi mixes from a warm start in time Õ(n3). In this subsection we show
how the distributions πi can be transformed to satisfy this condition.

Following the classical discussion in [43], we actually show a stronger condition: the distributions
are transformed to be in “near-isotropic” position. A density function f is said to be in isotropic
position if

Ef [x] = 0 and Ef [xxT ] = I. (4.64)

In other words,
∫
Rn(uTx)2f(x) dx = |u|2 for every vector u ∈ Rn. We say that K is near-isotropic

up to a factor of c if

1

c
≤
∫
Rn

(uT (x− zf ))2f(x) dx ≤ c (4.65)

for every unit vector u ∈ Rn.
The following lemma shows that logconcave density functions in isotropic position are also

O(1)-rounded:

Lemma 4.10 ([46, Lemma 5.13]). Every isotropic logconcave density is (1/e)-rounded.

The following lemma shows that any logconcave density function can be put into isotropic
position by applying an affine transformation, generalizing the same result for uniform distributions
by Rudelson [55]:

39



Lemma 4.11 ([43, Lemma 2.2]). Let f be a logconcave function in Rn that is not concentrated on
a subspace, and let X1, . . . , Xk be independent random points from the corresponding distribution.
There is a constant C0 such that if k > C0t

3 lnn, then the transformation g(x) = T−1/2x where

X̄ =
1

k

k∑
i=1

Xi, T =
1

k

k∑
i=1

(X i − X̄)(X i − X̄)T (4.66)

puts f in 2-isotropic position with probability at least 1− 1/2t.

From Lemma 4.11, k = dC0n ln5 ne = Θ̃(n) samples from a logconcave density f suffice to put
it into near-isotropic position. However, efficiently obtaining samples from a density πi requires it
to be well-rounded to start with. To overcome this difficulty, we interlace the rounding with the
stages of the volume estimation algorithm where in each stage, we obtain an affine transformation
that puts the density to be sampled in the next stage into isotropic position. The density π0 is
very close to an exponential distribution (since it is concentrated inside the convex body) and can
hence be sampled without resorting to a random walk.

To show that samples from πi can be used to transform πi+1 into isotropic position, we use the
following lemma:

Lemma 4.12 ([29, Lemma 4.3]). Let f and g be logconcave densities over K with centroids zf and
zg respectively. Then for any u ∈ Rn,

Ef [(u · (x− zf ))2] ≤ 16Ef
[
f

g

]
Eg[(u · (x− zg))2]. (4.67)

We now have the following proposition:

Proposition 4.4. If affine transformation Si puts πi in near-isotropic position then it also puts
πi+1 in near-isotropic position.

Proof. Let Si put πi in 2-isotropic position. Applying Lemma 4.12 with f = πi+1, g = πi, we have
that for any unit vector u ∈ Rn,

Eπi+1 [(u · (x− zπi+1))2] ≤ 16Eπi+1

[
πi+1

πi

]
Eπi [(u · (x− zπi))2] ≤ 32 (4.68)

from Lemma 4.6, and

1

2
≤ Eπi [(u · (x− zπi))2] ≤ 144Eπi+1 [(u · (x− zπi+1))2] (4.69)

from Lemma 4.5. Thus Eπi+1 is also put in near-isotropic position.

We finally have the main result of this section:

Proposition 4.5. At each stage i of Algorithm 4, the affine transformation puts the distribution
πi+1 in near-isotropic position using an additional Õ(n2.5) quantum queries to OK .

Proof. Since π1 is nearly an exponential distribution, it can be sampled without using a random
walk and thus the proposition is true for i = 0. Assume that the proposition is true for 1, 2, . . . , k.
Then an affine transformation can be found to put πk in near-isotropic position. Thus a classical
hit-and-run walk starting from πk−1 converges to πk in Õ(n3) steps. By the analysis in Section 4.3.4,
a quantum sample |πk−1〉 can be rotated to |πk〉 using Õ(n1.5) quantum queries. Õ(n) such samples
suffice to compute the covariance matrix T in (4.66), which puts πk in 2-isotropic position. By
Proposition 4.4, this also puts πk+1 in near-isotropic position. This concludes the proof.
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Algorithm 4: Volume estimation of convex K with interlaced rounding.

Input: Membership oracle OK for K; R = O(
√
n) such that B2(0, 1) ⊆ K ⊆ B2(0, R).

Output: ε-multiplicative approximation of Vol(K).
1 Set m = Θ(

√
n log(n/ε)) to be the number of iterations of simulated annealing and

ai = 2n(1− 1√
n

)i for i ∈ [m]. Let πi be the probability distribution over K′ with density

proportional to e−aix0 ;

Set error parameters δ, ε′ = Θ(ε/m2), ε1 = ε/2m; let k = Θ̃(
√
n/ε) be the number of copies of

stationary states for applying the quantum Chebyshev inequality; let l = Θ̃(n) be the
number of copies of stationary states needed to obtain the affine transformation Si;

Prepare k + l (approximate) copies of |π0〉, denoted |π̃(1)
0 〉, . . . , |π̃

(k+l)
0 〉;

2 for i ∈ [m] do
3 Use the quantum Chebyshev inequality on the k copies of the state |π̃i−1〉 with

parameters ε1, δ to estimate the expectation Eπi [Vi] (in Eq. (4.7)) as Ṽi (Lemma 4.9 and

Figure 4). The post-measurement states are denoted |π̂(1)
i−1〉, . . . , |π̂

(k)
i−1〉;

4 Use the l copies of the state |πi−1〉 to nondestructively13 obtain the affine transformation

Si = T = 1
l

∑l
q=1(Xq − X̄)(Xq − X̄)T where the Xq are samples from the density πi−1

and X̄ = 1
l

∑l
q=1X

q. The post-measurement states are denoted |π̂(k+1)
i−1 〉, . . . , |π̂

(k+l)
i−1 〉;

5 Apply π/3-amplitude amplification with error ε′ (Section 2.2 and Lemma 4.8) and affine

transformation Si to map |Siπ̂(1)
i−1〉, . . . , |Siπ̂

(k+l)
i−1 〉 to |Siπ̃(1)

i 〉, . . . , |Siπ̃
(k+l)
i 〉, using the

quantum hit-and-run walk ;
6 Invert Si to get k + l (approximate) copies of the stationary distribution |πi〉 for use in

the next iteration;

7 Compute an estimate Ṽol(K′) = n!vn(2n)−(n+1)Ṽ1 · · · Ṽm of the volume of K′, where vn is the
volume of the n-dimensional unit ball;

8 Use Ṽol(K′) to estimate the volume of K as Ṽol(K) (Section 4.3.1).

Rounding the convex body as a preprocessing step: Consider applying only the rounding
part of Algorithm 4. By Proposition 4.5, the final affine transformation puts the density πm ∝
e−amx0 in near-isotropic position. Since am ≤ ε2/n, we have

(1− ε2)EK′ [|X − X̄|]2 ≤
∫

K′

e−amx0 |x− x̄|2

Z(am)
dx ≤ 2n; (4.70)

thus EK′ [|X − X̄|]2 ≤ 2n/(1 − ε2). From [43, Lemma 3.3], all but an ε-fraction of the body is
contained inside a ball of radius O(

√
n). Combined with our assumption that B2(0, 1) ⊆ K′, this

shows that Sm+1 puts the convex body K′ in well-rounded position.

13Similar to Lemma 4.3, we do not directly measure the states; instead we use a quantum circuit to (classically)
compute the affine transformation Si and apply it to the convex body coherently for the next iteration. Note that
the quantum register holding the affine transformation will be in some superposition, but by using O(log n) copies
and taking the mean (as in Lemma 4.3), the amplitude of the correct affine transformation will be arbitrarily close
to 1.
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5 Implementation of the quantum hit-and-run walk

Due to the precision of representing real numbers, the implementation of volume estimation algo-
rithms in practice requires to walk in a discrete domain that is a subset of Rn. It is known that
walks only taking local steps within a short distance (such as the grid walk and the ball walk)
can be discretized with good approximation by dividing Rn into small hypercubes and walking on
their centers (see e.g. [23]), but such error analysis does not automatically apply to the quantum
counterpart due to the subtleties of implementing quantum walks.

In this section, we introduce a discretized quantum hit-and-run walk and give an explicit anal-
ysis of its implementation. We give its definition in Section 5.1, lower bound its conductance in
Section 5.2, and explain its implementation details in Section 5.3.

5.1 Discretization of the hit-and-run walk

For a convex body K ⊆ Rn, we let Kε denote the set of vectors in K whose coordinates can be
represented by some floating-point representation using log(1/ε) bits. We call Kε an ε-discretization
of K. The finite set Kε provides an ε-net for K. We also define (Rn)ε as a ε-discretization of Rn.

We consider a Markov chain whose states are the points in Kε. For any v ∈ Rn, we define the
ε-box bε(v) := {x ∈ Rn : x(i) ∈ [v(i)−ε/2, v(i)+ε/2], ∀i ∈ [n]}. Let Kε be the continuous set formed
by the ε-boxes of the points in Kε, i.e., Kε =

⋃
x∈Kε

bε(x). For two distinct points u, v ∈ Rn, we

denote by `uv the line through them. For a line ` ⊆ Rn, let `(Kε) be the segment of ` contained in Kε,
i.e., `(Kε) = {x ∈ ` : x ∈ Kε}. In addition, for u ∈ `, we define `(Kε, u, ε

′) as the ε′-discretization
of `(Kε) starting from u, i.e., `(Kε, u, ε

′) = {x ∈ `(Kε) : |x − u| = kε′ for some k ∈ {0, 1, . . .}}.
Analogous to the distribution πf for the continuous-space case, we define its corresponding discrete
distribution π̂f with π̂f (S) =

∑
x∈S f(x)/

∑
x∈(Rn)ε

f(x).
To implement the hit-and-run walk (see Section 2.4), we sample a uniformly random direction

from a point u. We achieve this by sampling n coordinates according to the standard normal
distribution from the corresponding coordinate of u and normalizing the new point to have unit
length; the uniformity of such sampling is well known (see for example [48, 50]).14 Let this normal-
ized point be v, so that the sampled direction is `uv. Note that the coordinate we sample from is
discrete. The directions we can sample form a discrete set denoted L(u, ε′), where ε′ is the precision
for sampling directions.

Now we compute the probability that a specific direction is sampled. After normalization,
the point will “snap” to a point in (Rn)ε. Consider the body

⋃
v: bε′ (v)∩Bn 6=∅ bε(v). We use the

(n− 1)-dimensional volume (surface area) of this body to approximate that of Bn, with up to a
√

2
enlargement factor due to the fact that ε-boxes have sharp corners. Thus, the number of points
that v can snap to is in the range [nVol(Bn)/εn−1,

√
2nVol(Bn)/εn−1], which is also the range of

|L(u, ε′)|. To make the lines in L(u, ε′) cover every ε-box on the boundary of
√
nBn (so that it is

possible to sample all the points in Kε), we need ε′ ≤ ε/
√
n.

Let L := |L(u, ε′)|. We label the lines in L(u, ε′) as {`1, . . . , `L} (ordered arbitrarily). For each
i ∈ [L], let vi be the point after normalization. Intuitively, vi approximates a point on the “surface”
of the unit ball around u (see Figure 6). There are hyperfaces of bε′(vi) that are not adjacent to any
ε′-box in

⋃
v: bε′ (v)∩Bn

bε(v) (intuitively, these hyperfaces are out-facing hyperfaces, as labeled by

dashed edges in Figure 6). For all points v′′ in these hyperfaces, the line segments from u through

14A one-line proof is that this distribution is invariant under orthogonal transformations, but the uniform distribu-
tion on the n-dimensional unit sphere Bn is the unique distribution that satisfies this property. Although the Gaussian
distributions we sample from are discretized, the invariance under orthogonal transformations holds approximately,
so we have approximate uniformity.
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v′′ of length
√
n form a set, which we refer to as a hyperpyramid, denoted by Pi. The apex of each

hyperpyramid is u, and the base of each hyperpyramid is a subset of the hyperspherical surface.
Intuitively, the bases of P1, . . . ,PL form a partition of the “surface” of the ball of radius

√
n around

u, and therefore {P1, . . . ,PL} forms a partition of the ball of radius
√
n around u.

Figure 6: Constructing a hyperpyramid. The inner circle represents the unit ball and the outer circle
represents the ball of radius

√
n. The grids represents the ε′-discretization of Rn; each grid is a ε′-box. The

shaded boxes are points where a direction “snaps” to after normalization, and the dashed edges of bε′(vi) is
its “outer face.” The hyperpyramid Pi is represented by a circular sector.

5.2 Conductance lower bound on the discretized hit-and-run walk

The discretized hit-and-run walk on Kε described above can be summarized as Algorithm 5.

Algorithm 5: One step of the discretized hit-and-run walk.

Input: Current point u ∈ Kε.
1 Uniformly sample a line ` ∈ L(u, ε) by independently sampling n coordinates around u

according to the standard normal distribution and then normalizing to unit length;

2 Sample a point v′ in `(Kε, u, ε
′) according to f ;

3 Let v′′ ∈ K√εn1/4 that is closest to v′;

4 Output a uniform sample v in b√εn1/4(v′′) ∩ (Rn)ε;

Note that we have used a two-level discretization of K, as illustrated in Figure 7. The first level
is a coarser discretization K√εn1/4 and the second level is a finer discretization Kε. We first choose a
temporary point v′′ in K√εn1/4 . Then we choose a point v uniformly at random in b√εn1/4(v′′)∩(Rn)ε
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to jump to. The purpose of this two-level discretization is to avoid having a small change of the
original point u cause a huge difference in `uv(Kε) (when u is very close to the boundary).

Figure 7: A demonstration of the 2-level discretization of K. The thicker grid represents the coarser dis-
cretization K√

εn1/4 and the thinner grid represents the finer discretization Kε. When v′′ is chosen from
K√

εn1/4 , an actual point v to jump is chosen uniformly at random in b√εn1/4(v′′) ∩ (Rn)ε marked by the
points in the shaded region.

We first compute the transition probability of the discretized hit-and-run walk.

Lemma 5.1. The transition probabilities defined by Algorithm 5 satisfy

Puv ≥
∑

v′∈`(Kεu,ε′):`∈L(x,ε),`(Kε,u,ε′)∩b√εn1/4 (v)6=∅

εn−1(
√
ε)nf(v′)√

2n1+n/4 Vol(Bn)(
√
n)n−1µ̂f (`(Kε, u, ε′))

, (5.1)

where for any S ⊆ Rn, we define

µ̂f (S) :=
∑
x∈S

f(x). (5.2)

Proof. First note that the probability of a line ` ∈ L(u, ε) being sampled is at least εn−1
√

2nVol(Bn)(
√
n)n−1 .

Along `, the probability of v′ being sampled is f(v′)/µ̂f (`(Kε, u, ε
′)), and the probability of choosing

v in b√εn1/4(v′′) ∩Kε is (
√
ε)n/nn/4.

According to the definition in (2.2), the conductance of any subset S ⊆ Kε is

φ(S) =

∑
u∈S

∑
v∈Kε\S Puvπ̂f (u)

min{π̂f (S), π̂f (Kε \ S)}
, (5.3)

where π̂f is defined as π̂f (A) =
∑

x∈A f(x). The conductance of the Markov chain is then

φ = min
S⊆Kε

φ(S). (5.4)

44



Now we prove the main theorem of this section, which shows that the conductance of the discretized
hit-and-run walk does not differ significantly from that of the continuous hit-and-run walk.

Theorem 5.1. Let Kε be the discretization of convex body K that contains a unit ball and is
contained in a ball with radius R ≤

√
n. Let the density function be f(x) = e−a

T x having support
K where a = (1, 0, . . . , 0). Let ε′ ≤

√
εn−3/4. For S ⊆ Kε such that π̂f (S) ≤ 1/2, we have

φ(S) ≥ 1

1016n
√
n ln

(
n
√
n

π̂f (S)

) − ε. (5.5)

Proof. We first consider the transition probability for the continuous hit-and-run walk in K. For
u, v ∈ K, recall that

P ′u(bε(v)) =
2

nVol(Bn)

∫
bε(v)

f(x) dx

µf (u, x)|x− u|n−1
, (5.6)

where µf (u, x) is a shorthand for µf (`ux(Kε)). We compare P ′u(b√εn1/4(v)) with Puv for u ∈ Kε and
v ∈ K√εn1/4 . To this end, we use µ̂f to approximate µf : for each `, we have

ε′µ̂f (`(Kε, u, ε
′)) ≤ eε′µf (`(Kε)). (5.7)

Consider each hyperpyramid Pi defined in Section 5.1 whose associated line through its apex is `i
and `i(Kε, u, ε

′) ∩ b√εn1/4(v) 6= ∅. Note that the distance between each u ∈ Kε and the boundary

of Kε is at most ε/2. Inside each hyperpyramid, the length of the chords through u can differ by
a factor at most 2. For each ` ⊂ Pi, µ̂f (`i(Kε, u, ε

′)) ≤ 2eε
′
µ̂f (`(Kε, u, ε

′)). Together with (5.7), it
follows that

ε′µ̂f (`i(Kε, u, ε
′)) ≤ 2e2ε′µf (`(Kε)) (5.8)

for all ` ⊂ Pi. Define ci := |`i(Kε, u, ε
′) ∩ b√εn1/4(v)| (the number of points in this set) and

di := |`i(Kε) ∩ b√εn1/4(v)| (the length of this line). Note that ci ≤ di/ε
′. We further partition Pi

into ci sets Qi,1, . . . ,Qi,ci along the direction of `i so that the distance between the hyperplanes
that separate adjacent sets is at most ε′. For each j ∈ [ci], we have

εn−1f(v′)

nVol(Bn)(
√
n)n−1µ̂f (`i(Kε, u, ε′))

=
εn−1f(v′)ε′|v′ − u|n−1

ε′nVol(Bn)(
√
n)n−1µ̂f (`i(Kε, u, ε′))|v′ − u|n−1

(5.9)

≥
f(v′) Vol(Qi,j ∩ b√εn1/4(v))

2ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1
, (5.10)

where we have used the fact that the distance between adjacent Qi,j and Qi,j+1 can be bounded
from below by |Qi,j ∩ `i|/(1 + ε′/2) ≥ |Qi,j ∩ `i|/2.

Now we consider the integration in Qi,j ∩ b√εn1/4(v). We use f(v) to approximate f(v′) which

causes a relative error at most e
√
εn1/4

, and use |v′ − u|n−1 to approximate |x − u|n−1 for all
x ∈ Qi,j ∩ b√εn1/4(v) which causes a relative error at most e provided ε′ ≤

√
εn−3/4 (noting that
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the distance between x and u is at most
√
εn1/4). We have∫

Qi,j∩b√εn1/4 (v)

f(x) dx

nVol(Bn)µf (u, x)|x− u|n−1

≤ 2e
√
εn1/4+2ε′+1f(v′)

ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1

∫
Qi,j∩b√εn1/4 (v)

dx (5.11)

=
2e
√
εn1/4+2ε′+1f(v′) Vol(Qi,j ∩ b√εn1/4(v))

ε′nVol(Bn)µ̂f (`i(Kε, u, ε′))|v′ − u|n−1
, (5.12)

where the inequality follows from (5.8). Let i1, . . . , it be the indices such that Pij ∩ b√εn1/4(v) 6= ∅
for j ∈ [t]. We use

⋃
j∈[t] Pij ∩ b√εn1/4(v) as a partition to approximate b√εn1/4(v), which causes a

relative error at most (1 + ε)n for Vol(b√εn1/4(v)). We have∫
b√
εn1/4

(v)

f(x) dx

µf (u, x)|x− u|n−1
≤ (1 + ε)n

∑
j∈[t]

∫
b√
εn1/4

(v)∩Pij

f(x) dx

µf (u, x)|x− u|n−1
. (5.13)

Hence,

(
√
ε)n

nn/4
P ′u(b√εn1/4(v)) =

2(
√
ε)n

n1+n/4 Vol(Bn)

∫
b√
εn1/4

(v)

f(x) dx

µf (u, x)|x− u|n−1
(5.14)

≤ 2(
√
ε)n(1 + ε)n

nVol(Bn)

∑
j∈[t]

∫
b√
εn1/4

(v)∩Pij

f(x) dx

µf (u, x)|x− u|n−1
(5.15)

=
2(
√
ε)n(1 + ε)n

nVol(Bn)

∑
j∈[t]

∑
k∈[cij ]

∫
b√
εn1/4

(v)∩Qij ,k

f(x) dx

µf (u, x)|x− u|n−1
(5.16)

≤
∑
j∈[t]

∑
k∈[cij ]

4(1 + ε)ne
√
εn1/4+2ε′+1(

√
ε)nf(v′) Vol(Qi,j ∩ b√εn1/4(v))

ε′nVol(Bn)µ̂f (`ij (Kε, u, ε′))|u− v′|n−1
(5.17)

≤ 4(1 + ε)ne
√
εn1/4+2ε′+1

∑
j∈[t]

∑
k∈[cij ]

2εn−1(
√
ε)nf(v′)

nVol(Bn)(
√
n)n−1µ̂(`ij (Kε, u, ε′))

(5.18)

= 4(1 + ε)ne
√
εn1/4+2ε′+1Puv ≤ e5+2ε′Puv, (5.19)

where the last inequality holds when ε ≤ 1/n.
For u ∈ Kε and v ∈ K√εn1/4 , we use εnPuv to approximate

∫
x∈bε(u) P

′
u(b√εn1/4(v)) dπf (x). Note

that for all u′ ∈ bε(u), we have |u′ − v|n ≤ e|u − v|n. Also, the lengths of `uv and `u′v can
differ by at most a factor of 2. As a result, π̂f (`u′v(Kε, u, ε

′) ≤ 2π̂f (`uv(Kε, u
′, ε′). It follows that

Puv ≥ Pu′v/(2e). Therefore,∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) ≤
∫
x∈bε(u)

2e5+2ε′nn/4

(
√
ε)n

Pxv dπf (x) (5.20)

≤ 2e5+2ε′+εnn/4

(
√
ε)n

Puvπ̂f (u)εn. (5.21)

Next, for the relationship between π̂f and πf , we consider the sets Kε ∩K, Kε \K, and K \Kε

separately. Without loss of generality, assume π̂f (S) ≤ π̂f (Kε \S). We partition S as S1∪S2, where
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S1 = {x ∈ S : bε(x) ⊆ K} and S2 = S \ S1. We also define S1 :=
⋃
x∈S1

bε(x) and S2 :=
⋃
x∈S2

bε(x).

For S1, we use f(v) to approximate f(x) for all x ∈ bε(v); it follows that

π̂f (S1) ≤ e2επf (S1) and πf (S1) ≤ e2επ̂f (S1). (5.22)

For S2, we have

π̂f (S2) ≤ 2e2επf (S2 ∩K), (5.23)

so

π̂f (S) = π̂f (S1) + π̂f (S2) (5.24)

≤ e2επf (S1) + 2e2επf (S2 ∩K) (5.25)

≤ 3πf (K ∩ S). (5.26)

Now we bound the numerator of the conductance:
∑

u∈S

∑
v∈Kε\S Puvπ̂f (u). For u ∈ S and

v ∈ K \ S, we consider four cases. First, when bε(u), bε(v) ⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x). (5.27)

Second, when bε(u) ⊆ K and bε(v) 6⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) (5.28)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v) ∩K) dπf (x). (5.29)

Third, when bε(u) 6⊆ K and bε(v) ⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) (5.30)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)∩K

P ′u(b√εn1/4(v)) dπf (x). (5.31)

Fourth, when bε(u) 6⊆ K and bε(v) 6⊆ K, we have

Puvπ̂f (u) ≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)

P ′u(b√εn1/4(v)) dπf (x) (5.32)

≥ (
√
ε)n

2e5+2ε′+εnn/4

∫
x∈bε(u)∩K

P ′u(b√εn1/4(v) ∩K) dπf (x). (5.33)

We also need to consider the set K \ Kε. There exists a small subset E ⊆ K \ Kε such that
πf (E) ≤ επf (S). We need to consider the transition from E to ⊆ K \Kε \ E: we have

∫
x∈E P

′
x(K \

Kε \ E) dπf (x) ≤ πf (E) ≤ επf (S). Putting everything together, we have∑
u∈S

∑
v∈Kε\S

Puvπ̂f (u) +

∫
x∈E∩K

P ′x(K \Kε \ E) dπf (x)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x), (5.34)
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which further implies that∑
u∈S

∑
v∈Kε\S

Puvπ̂f (u) ≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)− επf (S) (5.35)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E

P ′x(K \ (S ∩K ∪ E)) dπf (x)− εeεπ̂f (S). (5.36)

By Proposition 2.3, we have

φ(S) =

∑
u∈S

∑
v∈Kε\S Puvπ̂f (u)

π̂f (S)
(5.37)

≥ 1

2e5+2ε′+ε

∫
x∈S∩K∪E P

′
x(K \ (S ∩K ∪ E)) dπf (x)

π̂f (S)
− ε

2e4+2ε′
(5.38)

≥ 1

6e5+2ε′+ε

∫
x∈S∩K∪E P

′
x(K \ (S ∩K ∪ E)) dπf (x)

πf (S ∩K) + πf (E)
− ε

2e5+2ε′
(5.39)

≥ 1

1014e5+2ε′+εn
√
n ln

(
n
√
n

πf (S∩K)

) − ε

2e5+2ε′
(5.40)

≥ 1

1014e5+2ε′+εn
√
n ln

(
n
√
n

(1−e−ε/2)eεπ̂f (S)

) − ε

2e5+2ε′
, (5.41)

where the third inequality follows from (5.26). The above inequality can be simplified to

φ(S) ≥ 1

1016n
√
n ln

(
2n
√
n

π̂f (S)

) − ε, (5.42)

which is exactly the claim in Theorem 5.1.

The mixing time for the discrete hit-and-run walk can be bounded by the following corollary.

Corollary 5.1. Let Kε be the discretization of convex body K that contains a unit ball and is
contained in a ball with radius R ≤

√
n. Let the density function be f(x) = e−a

T x having support
K where a = (1, 0, . . . , 0). Let ε′ ≤

√
εn−3/4. Let the initial distribution be σ and the distribution

after m steps be σm. If
∑

x∈Kε
σ(x)
π̂f (x)σ(x) ≤M then, after

m ≥ 1033n3 ln2 Mn
√
n

ε
ln
M

ε
(5.43)

steps, we have dTV(σm, π̂f ) ≤ ε.

Proof. First note that, since
∑

x∈Kε
σ(x)
π̂f (x)σ(x) ≤ M , the set S = {x : σ(x)/π̂f (X) > 2M/ε} has

measure σ(S) ≤ ε/2. Then a random point in Kε can be thought of as being generated with

probability 1 − ε/2 from a distribution σ′ satisfying σ′(S′)
π̂f (S′) ≤ 2M/ε for any subset S′ ⊆ Kε and

with probability ε/2 from some other distribution. As a consequence of Theorem 5.1, for any such
subset S′ with π̂f (S′) = p, the conductance of S′ is at least

Φp =
1

1016n
√
n ln(2n

√
n/p)

− ε. (5.44)
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For the purpose of analysis, we use p = ε
2M . When ε is reasonably small (say, ε ≤ 1

2·1016n
√
n ln(Mn

√
n/ε)

),

the ε term in the conductance bound can be ignored with an additional 1/2 factor. Then we have
Φp ≥ 1

2·1016n
√
n ln(2n

√
n/p)

. By the condition that σ′(S′) ≤ (2M/ε)π̂f (S′), as well as the way a

random point in Kε is generated, Proposition 2.2 implies that

dTV(σ(m), π̂f ) ≤ ε

2
+
(

1− ε

2

)(
ε+

4M

ε

(
1− Φp

2

)m)
. (5.45)

Therefore, after the claimed number of steps, the total variation distance is at most ε.

As the uniform distribution is a special case of a log-concave distribution, the proof of Theo-
rem 5.1 also applies to this case. More specifically, we use Proposition 2.4 in (5.40), which yields
the following stronger corollary.

Corollary 5.2. Let Kε be the discretization of a convex body K that contains a unit ball and is
contained in a ball with radius R ≤

√
n. Let ε′ ≤

√
εn−3/4. The conductance of the hit-and-run

walk in Kε with uniform distribution satisfies

φ ≥ 1

226n
√
n
− ε. (5.46)

Note that Corollary 5.2 is stronger than Theorem 5.1 because (5.46) is independent of S ⊆ Kε.

5.3 Implementing the quantum walk operators

We now describe how to implement the discretized quantum walk. Following (1.2), consider a
convex body K such that B2(0, r) ⊆ K ⊆ B2(0, R). Each stage of the volume estimation algorithm
involves a hit-and-run walk over the convex body with target density e−ax0 . In order to use
techniques from [65] to obtain a speedup in mixing time, we implement the quantum walk operator
W corresponding to an ε-discretized version of this walk Algorithm 5.

Let |x〉 be the register for the state of the walk, and U be a unitary that satisfies U |x〉|0〉 = |x〉|px〉
for all |x〉 (recall that |px〉 =

∑
y∈Kε

√
px→y|y〉 where px→y is the probability of a transition from x

to y). Since the state of the hit-and-run walk is given by points on an ε-grid that can be restricted
to B2(0, R), there are

(
2R
ε

)n
possible values of x and thus |x〉 can be represented using n log

(
2R
ε

)
qubits. In the rest of the section, we abuse notation by letting x refer to both a point on the grid
and its corresponding bit representation. Then the quantum walk operator [65] can be realized as

W ′ = U †SURAU
†SURA (5.47)

where RA is the reflection around the subspace A = span{|x〉|0〉 | x ∈ Kε} and S is the swap
operator. It thus remains to implement the operator U .

Continuous case We first explain a continuous version of the implementation before explaining
how it can be discretized. Given an input |x〉, consider n real ancilla registers, each in the state∫ 1

0 |z〉 dz. Given a pair of uniformly distributed random variables ξ1, ξ2, the Box-Muller transform

φ1 =
√
−2δ2 ln ξ1 cos 2πξ2 (5.48)

φ2 =
√
−2δ2 ln ξ1 sin 2πξ2 (5.49)
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yields two variables φ1, φ2 that are distributed according to a univariate normal distribution with
mean 0 and variance δ2. Thus applying the unitary mapping

|ξ1〉|ξ2〉 7→
∣∣√−4 ln ξ1 cos 2πξ2

〉∣∣√−4 ln ξ1 sin 2πξ2

〉
(5.50)

to
∫ 1

0 |z〉 dz⊗
∫ 1

0 |z〉 dz yields the state
∫
R

1√
4π
e−z

2/4|z〉 dz⊗
∫
R

1√
4π
e−z

2/4|z〉 dz. With n such regis-

ters, we have the state ∫
Rn

1√
4π
e−(

∑n
i=1 z

2
i /4)|z〉 dz. (5.51)

We now compute the unit vector (direction) corresponding to each x in a different ancilla register,
and uncompute the Gaussian registers. Since 1√

4π
e−(

∑n
i=1 x

2
i /4) is independent of the direction of

the vector z, we obtain a uniform distribution over all the directions on the n-dimensional sphere
Sn given by √

nπn/2

Γ
(
n+ 1

2

) ∫
Sn
|u〉 du. (5.52)

Corresponding to each direction u, the line {x + tu : t ∈ R} intersects the convex body K at two
points with parameters t1, t2. These points as well as the length l(u) = |t1 − t2| can be determined
within error ε using O(log 1

ε ) calls to the membership oracle. We must now map each direction |u〉
to a superposition proportional to

∫ t2
t1
ea
T (x+tu)/2|x+ tu〉 dt =

∫ t2
t1
ea0(x0+tu0)/2|x+ tu〉 dt. Since the

exponential distribution is efficiently integrable, this can be easily effected by making a variable
change starting from the state

∫ 1
0 |z〉 dz. The normalization factor is

A :=

√
a0u0

e−a0x0(e−a0t1 − e−a0t2)
. (5.53)

Consider the variable change f : [0, 1]→ [t1, t2] such that df−1(t)
dt = Aea0(x0+tu0)/2, f(0) = t1, f(1) =

t2. This mapping applied to
∫ 1

0 |z〉 dz produces
∫ t2
t1
Aea0(x0+tu0)/2|t〉 dt, which can be transformed

to
∫ t2
t1
ea0(x0+tu0)/2|x + tu〉 dt with an operation controlled on the input register x. This produces

the appropriate superposition over points corresponding to each direction.

Discrete case The operator U can be implemented in a discrete setting using a similar process
to the continuous case with two main changes:

• Instead of a continuous uniform variable
∫ 1

0 |z〉 dz we use a discrete uniform distribution. We
can create a uniform distribution on a grid with spacing ε as follows. We take n sets of ancilla
registers, each consisting of log (1/ε) registers initialized to the state 0. We apply Hadamard

gates to each of these registers, giving the superposition
⊗n

i=1

√
ε
∑1/ε−1

zi=0 |zi〉. Each |z〉 can
be mapped to |zε〉, producing the required uniform distribution over the grid.

• Applying a bijective mapping to a discrete uniform distribution simply relabels the states, so
the change of variable methods used in the continuous setting cannot be used to construct
the Gaussian and exponential superpositions. We use instead the Grover-Rudolph method
[25] that prepares states with amplitudes corresponding to efficiently integrable probability
distributions. Exponential distributions can be analytically integrated, and an n-dimensional
Gaussian variable is a product of n univariate standard normal distributions, each of which
can be efficiently integrated by Monte Carlo methods.
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Given a point u ∈ Kε and a line l(u, ε) to be approximately uniformly sampled, we determine
the range of points in l(Kε, u, ε

′) using binary search with the membership oracle and prepare an
exponential superposition as described above. We apply a unitary mapping to compute the closest
point v′′ ∈ K√εn1/4 . Finally, corresponding to each point v′′, we generate a uniform distribution

over an ε grid in b√εn1/4 ∩ (Rn)ε by applying the Hadamard transform to log
(
n1/4/

√
ε
)

qubits.
Overall, this implementation of the discretized quantum hit-and-run walk operator gives the

following.

Theorem 5.2. The gate complexity of implementing an operator Ũ such that ‖Ũ − U‖ = O(ε)
where U |x〉|0〉 = |x〉

∑
y∈Kε

√
px→y|y〉 is Õ

(
n log

(
1
ε

))
. The correspondsing quantum walk operator

W can be implemented using a constant number of calls to U .

6 Quantum lower bound for volume estimation

In this section, we prove the following quantum query lower bound on volume estimation.

Theorem 6.1. Suppose 0 < ε <
√

2− 1. Estimating the volume of K with multiplicative precision
ε requires Ω(

√
n) quantum queries to the membership oracle OK defined in (1.3).

Proof. We prove Theorem 6.1 by reduction from search. In the search problem, we are given an
oracle Os : |i, b〉 7→ |i, b⊕ si〉 for an input n-bit string s = (s1, . . . , sn) ∈ {0, 1}n, and the task is to
find an index i such that si = 1. It is well known that the bounded-error quantum query complexity
of this problem is Ω(

√
n) [8].

To establish an Ω(
√
n) lower bound for volume estimation, for an n-bit string s ∈ {0, 1}n with

Hamming weight |s|Ham ≤ 1, we consider the convex body K =×n
i=1[0, 2si ]. The volume of K is

2|s|Ham ∈ {1, 2}, and membership in K is determined by the function

mems(x) :=

{
1 if for each i ∈ [n], 0 ≤ xi ≤ 2si ,

0 otherwise.
(6.1)

The corresponding membership oracle OK (defined in (1.3)) can be simulated by querying Os using
Algorithm 6.

We now prove that for any positive integer k and s ∈ {0, 1}n with |s|Ham ≤ 1, if there is a k-
query algorithm that computes the volume with access to mems, then there is a k-query algorithm
for deciding whether |s|Ham > 0 with access to Os. We first show that Algorithm 6 simulates the
oracle mems. In the for loop of Line 1, we know that yi = 1 if and only if 1 < xi ≤ 2, which is inside
the convex body if si = 1. The case |y|Ham > 1 implies that there exist two distinct coordinates
i, j such that xi, xj > 1, which implies that x lies outside the convex body. Now we are left with
the cases |y|Ham = 1 or 0. In Line 9, yi = 1 implies 1 < xi ≤ 2, which lies in the convex body if
and only if si = Os(i) = 1. Also, |y| = 0 implies that for every coordinate i, 0 ≤ xi ≤ 1, which lies
in the body for all s.

Finally, if there is a k-query algorithm that computes an estimate Ṽol(K) of the volume of K

up to multiplicative precision 0 < ε <
√

2− 1, then s = dlog2 Ṽol(K)c where d·c returns the nearest
integer. This immediately gives a k-query algorithm that decides whether |s|Ham > 0. Since there is
an Ω(

√
n) quantum query lower bound for this task, the Ω(

√
n) lower bound on volume estimation

follows.
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Algorithm 6: Simulating mems with one query to Os.

Input: A vector x = (x1, . . . , xn) ∈ Rn.
Output: mems(x).

1 for i = 1, . . . , n do
2 if xi > 2 or xi < 0 then
3 Return 0;

4 Set yi = 1 if xi > 1 and 0 otherwise;

5 if |y|Ham ≥ 1 then
6 Return 0;
7 else
8 if |y|Ham = 1 then
9 Find i such that yi = 1. Return Os(i);

10 else
11 Return 1;

12 Return Os(i);
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[44] László Lovász and Santosh Vempala, Hit-and-run from a corner, SIAM Journal on Computing
35 (2006), no. 4, 985–1005.
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