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ABSTRACT

We study fair allocation of indivisible chores (i.e., items with non-

positive value) among agents with additive valuations. An alloca-

tion is deemed fair if it is (approximately) equitable, which means

that the disutilities of the agents are (approximately) equal. Our

main theoretical contribution is to show that there always exists an

allocation that is simultaneously equitable up to one chore (EQ1) and
Pareto optimal (PO), and to provide a pseudopolynomial-time algo-

rithm for computing such an allocation. In addition, we observe that

the Leximin solution—which is known to satisfy a strong form of

approximate equitability in the goods setting—fails to satisfy even

EQ1 for chores. It does, however, satisfy a novel fairness notion

that we call equitability up to any duplicated chore. Our experiments

on synthetic as well as real-world data obtained from the Spliddit
website reveal that the algorithms considered in our work satisfy

approximate fairness and efficiency properties significantly more

often than the algorithm currently deployed on Spliddit.
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1 INTRODUCTION

Imagine a group of agents who must collectively complete a set

of undesirable or costly tasks, also known as chores. For exam-

ple, household chores such as cooking, cleaning, and maintenance

need to be distributed among the members of the household. As

another example, consider the allocation of global climate change

responsibilities among the member nations in a treaty [44]. These

responsibilities could entail producing more clean energy, reduc-

ing overall emissions, research and development, etc. In both of

these cases, it is important that the allocation of chores is fair and
that it takes advantage of heterogeneity in agents’ preferences. For
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instance, someone might prefer to cook than to clean, while some-

one else might have the opposite preference. Likewise, different

countries might have competitive advantages in different areas.

Problems of this nature can be modeled mathematically as chore
division problems, first introduced by Gardner [30]. Each agent

incurs a non-positive utility, or cost (in terms of money, time, or

general dissatisfaction), from completing each chore that she re-

ports to a central mechanism. In this paper, our focus is on designing

mechanisms to divide the chores among the agents equitably. An
allocation of chores is equitable if all agents get exactly the same

(dis)utility from their allocated chores. Other fairness properties can,

of course, be considered too—for instance, envy-freeness dictates
that no agent should prefer another agent’s assigned chores to her

own. While this is not the main focus of our work, we do consider

(approximate) envy-freeness in conjunction with (approximate)

equitability.

Equitable allocations have been studied extensively in the con-

text of allocating goods (i.e., items with non-negative value). When

the goods are divisible (or, even more generally, in the cake-cutting
setting), perfectly equitable allocations are guaranteed to exist [2,

25]. For indivisible goods, though, perfect equitability might not be

possible, but approximate versions can still be achieved [28, 33].

At first glance, the problem of chore division appears similar to

the goods division problem. However, there are subtle technical

differences between the two settings. In the context of (approximate)

envy-freeness, this contrast has been noted in several works [10, 11,

17, 39]. To take one example, it is known that an allocation of goods

that is both envy-free up to one good and Pareto optimal can be found

by allocating goods so that the product of the agents’ utilities—the
Nash social welfare—is maximized [20]. However, maximizing the

product of utilities is not sensible when valuations are negative,

and no analogous procedure is known for the case of chores.

In this paper, we demonstrate a similar set of differences between

the goods and chores settings in the context of equitability. Our

focus is on equitability up to one/any chore (EQ1/EQX) which re-

quires that pairwise violations of equitability can be eliminated by

removing some/any chore from the bundle of the less happy agent.

For goods division, Freeman et al. [28] showed that equitability

up to any good and Pareto optimality are achieved simultaneously

by the Leximin algorithm.
1
However, we show that in the chores

setting, Leximin does not even guarantee equitability up to one chore

1
The Leximin algorithm maximizes the utility of the least well-off agent, and subject

to that maximizes the utility of the second-least, and so on.



EQ1 EQX DEQ1 DEQX

Without PO

Existence

Always exists Always exists Always exists Always exists

(Proposition 3.2) (Proposition 3.2) (Proposition 3.7) (Proposition 3.7)

Computation

Poly time Poly time Poly time

?

(Proposition 3.2) (Proposition 3.2) (Proposition 3.8)

With PO

Existence

Always exists Might not exist Always exists Always exists

(Theorem 3.4) (Example 3.1) (Proposition 3.7) (Proposition 3.7)

Computation

Pseudopoly time Strongly NP-hard

? ?

(Theorem 3.4) (Theorem 3.3)

Table 1: Summary of our theoretical results. Each cell contains the existence/computation results for various combinations of

fairness and efficiency properties. Open questions are marked with ‘?’.

(EQ1) (Example 3.2). Further, while we are able to give an algorithm
that outputs an EQ1 and PO allocation in pseudopolynomial time
(Theorem 3.4), modifying a similar algorithm of Freeman et al. [28],

we show that an allocation satisfying EQX and PO may not exist, in
contrast to the goods setting (Example 3.1).

The fact that EQX+PO could fail to exist and that the Leximin

allocation may not be EQ1 leads us to consider other relaxations

of perfect equitability. To this end, we define the equitability up to
one/any duplicated chore (DEQ1/DEQX) properties. These proper-
ties require that pairwise equitability can be restored by duplicating

a chore from the less happy agent’s bundle and adding it to the

more happy agent’s bundle, rather than removing a chore from the

less happy agent’s bundle. Interestingly, we find that the “duplicate”

relaxations are satisfied by the Leximin allocation (Proposition 3.7),

restoring a formal justification for that algorithm even in the chores

setting. Table 1 summarizes our results.

Finally, we complement our theoretical results with extensive

simulations on both simulated data and data gathered from the

popular fair division website Spliddit [32].2 We find that on a large

fraction of instances (> 80%), Leximin satisfies all of the approxi-

mate properties that we consider, in addition to Pareto optimality.

We therefore consider it to be the best choice for use in practice,

matching the observation of Freeman et al. [28] in the case of goods.

When the runtime of the Leximin algorithm is prohibitive (com-

puting the Leximin allocation is NP-hard), our simulations reveal

that our pseudopolynomial algorithm for achieving EQ1 and PO is

a reasonable choice for achieving these as well as other properties

on a large fraction of instances.

1.1 Related Work

Fair division of indivisible chores has received considerable interest

in recent years. Aziz et al. [8], Huang and Lu [34], Aziz et al. [5],

and Aziz et al. [6] study approximation algorithms for max-min

fair share (MMS) allocation of chores. Brânzei and Sandomirskiy

[17] show that an allocation that is envy-free up to the removal of

two chores (EF
1

1
) and Pareto optimal (PO) always exists and can be

computed in polynomial time if the number of agents is fixed. Segal-

Halevi [43] has studied competitive equilibria in the allocation of

indivisible chores with unequal budgets.

Several papers study a model withmixed items, wherein an item

can be a good for one agent and a chore for another. Bogomolnaia

2http://www.spliddit.org/apps/tasks

et al. [10] examine this model for divisible items and show that

unlike the goods-only case, the set of competitive utility profiles [26,

45] can bemultivalued; for the chores-only problem, themultiplicity

can be exponential in the number of agents/items [11]. Segal-Halevi

[42] and Meunier and Zerbib [37] study envy-free cake-cutting

with connected pieces under mixed utilities. Aziz et al. [4] study

indivisiblemixed items and provide a polynomial-time algorithm for

computing EF1 allocations even for non-additive valuations. For the

same model, Aziz et al. [7] provide a polynomial-time algorithm for

computing allocations that are Pareto optimal (PO) and proportional

up to one item (Prop1). Sandomirskiy and Segal-Halevi [41] consider

envy-free/proportional and Pareto optimal divisions that minimize

the number of fractionally assigned items. Notably, none of this

work examines equitability for indivisible items.

Equitability for indivisible chores has been studied by Bouveret

et al. [12] in a model where the items constitute the vertices of a

graph, and each agent is assigned a connected subgraph. This work

does not consider Pareto optimality, and the space of permissible

allocations in this model is different from ours, making the two

sets of results incomparable. Caragiannis et al. [19] study the worst-

case welfare loss due to equitability (i.e., ‘price of equitability’) for

indivisible chores, but do not consider approximate fairness.

For goods, equitability as a fairness notion has been studied

extensively, mostly in the context of cake-cutting [3, 14–16, 21, 22,

24, 25, 40]. Our work bears most similarity to the work of Gourvès

et al. [33] and Freeman et al. [28], who define the notions of EQX

and EQ1, respectively.

2 PRELIMINARIES

Problem instance. An instance ⟨[n], [m],V⟩ of the fair division

problem is defined by a set of n ∈ N agents [n] = {1, 2, . . . ,n}, a
set of m ∈ N chores [m] = {1, 2, . . . ,m}, and a valuation profile
V = {v1,v2, . . . ,vn } that specifies the preferences of every agent

i ∈ [n] over each subset of the chores in [m] via a valuation function
vi : 2

[m] → Z≤0. Note that we assume that the valuations are non-

positive integers; most of our results hold without this assumption

but Theorem 3.4 requires it.

We will also assume that the valuation functions are additive,
i.e., for any agent i ∈ [n] and any set of chores S ⊆ [m], vi (S) BÍ
j ∈S vi ({j}), where vi (∅) = 0. For a singleton chore j ∈ [m], we

will writevi , j instead ofvi ({j}). The valuation functions are said to

be normalized if for all agents i, j ∈ [n], we have vi ([m]) = vj ([m]).

http://www.spliddit.org/apps/tasks


We will assume throughout, without loss of generality, that for

each chore j ∈ [m], there exists some agent i ∈ [n] with a non-zero

valuation for it (i.e., vi , j < 0), and for each agent i ∈ [n], there
exists a chore j ∈ [m] that it has non-zero value for.

Allocation. An allocation A B (A1, . . . ,An ) is an n-partition of

the set of chores [m], where Ai ⊆ [m] is the bundle allocated to

the agent i (note that Ai can be empty). Given an allocation A, the
utility of agent i ∈ [n] for the bundle Ai is vi (Ai ) =

Í
j ∈Ai vi , j .

Equitability. An allocation A is said to be (a) equitable (EQ) if
for every pair of agents i,k ∈ [n], we have vi (Ai ) = vk (Ak ); (b)
equitable up to one chore (EQ1) if for every pair of agents i,k ∈ [n]
such thatAi , ∅, there exists a chore j ∈ Ai such thatvi (Ai \{j}) ≥
vk (Ak ), and (c) equitable up to any chore (EQX) if for every pair

of agents i,k ∈ [n] such that Ai , ∅ and for every chore j ∈ Ai
such that vi , j < 0, we have vi (Ai \ {j}) ≥ vk (Ak ). These notions
have been previously studied for goods by Gourvès et al. [33] and

Freeman et al. [28]. Our presentation of the notions of (approximate)

equitability for chores—in particular, the idea of removing a chore

from the less-happy agent’s bundle—follows the formulation used

by Aziz et al. [4] and Aleksandrov [1] in defining the analogous

relaxations of envy-freeness (see below).

Envy-freeness. An allocation A is said to be (a) envy-free (EF) if
for every pair of agents i,k ∈ [n], we have vi (Ai ) ≥ vi (Ak ); (b)
envy-free up to one chore (EF1) if for every pair of agents i,k ∈ [n]
such thatAi , ∅, there exists a chore j ∈ Ai such thatvi (Ai \{j}) ≥
vi (Ak ), and (c) envy-free up to any chore (EFX) if for every pair of

agents i,k ∈ [n] such that Ai , ∅ and for every chore j ∈ Ai such
that vi , j < 0, we have vi (Ai \ {j}) ≥ vi (Ak ). The notions of EF,
EF1, and EFX were proposed in the context of goods allocation by

Foley [27], Budish [18], and Caragiannis et al. [20], respectively.
3

It is easy to see that envy-freeness and equitability (and their

corresponding relaxations) become equivalent when the valuations

are identical, i.e., for every j ∈ [m], vi , j = vk , j for all i,k ∈ [n].

Proposition 2.1. When agents have identical valuations, an allo-
cation satisfies EF/EFX/EF1 if and only if it satisfies EQ/EQX/EQ1.

Pareto optimality. An allocation A is Pareto dominated by alloca-

tion B if vk (Bk ) ≥ vk (Ak ) for every agent k ∈ [n] with at least one

of the inequalities being strict. A Pareto optimal (PO) allocation is

one that is not Pareto dominated by any other allocation.

Leximin-optimal allocation. A Leximin-optimal (or Leximin) al-

location is one that maximizes the minimum utility that any agent

achieves, subject to which the secondminimumutility is maximized,

and so on. The utilities induced by a Leximin allocation are unique,

although there may exist more than one such allocation [25].

3 THEORETICAL RESULTS

This section presents our theoretical contributions. We will first

consider equitability and its relaxations (Section 3.1), followed by

combining these notions with Pareto optimality (Section 3.2), and

subsequently also considering envy-freeness (Section 3.3). Finally,

we will discuss a novel approximation of equitability called equi-
tability up to a duplicated chore (Section 3.4).

3
An earlier work by Lipton et al. [35] studied a weaker approximation of envy-freeness

for goods, but their algorithm is known to compute an EF1 allocation.

3.1 Equitability and its Relaxations

As discussed previously, an equitable (EQ) allocation is not guar-

anteed to exist when allocating indivisible chores. In addition, the

computational problem of determining whether a given instance

has an equitable allocation turns out to be NP-complete even for

identical valuations (Proposition 3.1). The proof uses a standard

reduction from 3-Partition and is therefore omitted.

Proposition 3.1. Determining whether a given fair division in-
stance admits an equitable (EQ) allocation is strongly NP-complete

even for identical valuations.

The negative results regarding the existence and computation

of exact equitability are in complete contrast with those of its re-

laxations. Indeed, when allocating indivisible chores, there always

exists an allocation that is equitable up to any chore (EQX). Fur-

thermore, such an allocation can be computed in polynomial time

via a simple greedy procedure (Proposition 3.2). This algorithm is a

straightforward adaptation of the algorithm of Gourvès et al. [33]

for computing EQX allocations of goods.

Proposition 3.2. An EQX allocation of chores always exists and
can be computed in polynomial time.

Proof. (Sketch) Our algorithm iteratively assigns the chores to

the agents according to the following assignment rule: At each step,

the happiest agent (i.e., one whose utility is closest to zero) is asked

to select a chore from the set of available chores that it dislikes the
most (i.e., the chore that gives it the most negative utility).

It is easy to see that the chore assigned most recently to any

agent is also its favorite (or least disliked) chore in its bundle. Thus,

if an allocation is EQX before assigning a chore, then it continues

to be EQX after it. The claim now follows by induction, since an

empty allocation is EQX to begin with. □

The positive result in Proposition 3.2 offers an interesting com-

parison between envy-freeness and equitability: It is not known

whether an EFX allocation is even guaranteed to exist for chores,

but an EQX allocation can always be computed in polynomial time.

3.2 Equitability and Pareto Optimality

We will now consider equitability together with Pareto optimality.

From Proposition 3.1, it is easy to see that checking the existence

of an equitable and Pareto optimal (EQ+PO) allocation is strongly

NP-hard (since every allocation is Pareto optimal under identical

valuations). Therefore, wewill strive for achieving Pareto optimality

alongside approximate equitability, specifically EQ1 and EQX.

We will start by considering equitability up to any chore (EQX)

and Pareto optimality. For goods allocation, Freeman et al. [28] have

shown that equitability up to any good and Pareto optimality can be

simultaneously achieved using the Leximin allocation.
4
By contrast,

as we show in Example 3.1, there might not exist an allocation that

is equitable up to any chore and Pareto optimal, even when there

are only two agents.

Example 3.1 (Non-existence of EQX+PO). Consider an instance
with three chores c1, c2, c3 and two agents a1,a2 with strictly negative
(and normalized) valuations as shown below:
4
This result requires the valuations to be strictly positive.



c1 c2 c3
a1 −2 −50 −50

a2 −97 −4 −1

Of the eight possible allocations in the above instance, the two
allocations that assign all chores to a single agent, namely A1 B
({c1, c2, c3}, {∅}) and A2 B ({∅}, {c1, c2, c3}) violate EQX and can
be immediately ruled out. Any other allocation must assign exactly
one chore to one agent and two to the other.

Of the three allocations in which a1 is assigned exactly one chore,
namely A3 B ({c1}, {c2, c3}), A4 B ({c2}, {c1, c3}), and A5 B
({c3}, {c1, c2}), none satisfies EQX. Therefore, these allocations can
be ruled out as well.

This leaves us with the three allocations in which a2 is assigned ex-
actly one chore, namely A6 B ({c1, c2}, {c3}), A7 B ({c2, c3}, {c1}),
and A8 B ({c1, c3}, {c2}). Among these, only A7 satisfies EQX. How-
ever, A7 is Pareto dominated by the allocation A3; indeed, v1(A7) =

−100 < v1(A
3) = −2 and v2(A7) = −97 < v2(A

3) = −5. Therefore,
the above instance does not admit an EQX + PO allocation. □

To make matters worse, determining whether a given instance

admits an EQX and PO allocation turns out to be strongly NP-hard.

Theorem 3.3 (Strong NP-hardness of EQX+PO). Deter-
mining whether a given fair division instance admits an allocation
that is simultaneously equitable up to any chore (EQX) and Pareto
optimal (PO) is strongly NP-hard, even for strictly negative and
normalized valuations.

Proof. We will show a reduction from 3-Partition, which is

known to be strongly NP-hard [31, Theorem 4.4]. An instance of 3-

Partition consists of a setX = {b1, . . . ,b3r } of 3r positive integers
where r ∈ N, and the goal is to find a partition of X into r subsets
X 1, . . . ,X r

such that the sum of numbers in each subset is equal to

B B 1

r
Í
bi ∈X bi .

5
We will assume, without loss of generality, that

for every i ∈ [3r ], bi is even and bi ≥ 2. As a result, we can also

assume, without loss of generality, that B is even.

We will construct a fair division instance with r + 1 agents and
4r + 2 chores (see Table 2). The set of agents consists of r main
agents a1, . . . ,ar and a dummy agentd . The set of chores consists of
3r main chores C1, . . . ,C3r , r signature chores S1, . . . , Sr , and two

dummy chores D1,D2. The valuations of the agents are specified

as follows: For every i ∈ [r ] and j ∈ [3r ], agent ai values the main

choreCj at −bj , the signature chore Si at −1, and all other chores at
a large negative number−L, where−L < −rB−1. The dummy agent

d values the dummy chores D1 and D2 at −1 and −B, respectively,
and all other chores at a large negative number −L′. In the interest

of having normalized valuations, we can set L′ B (r−1)B+(r+1)L
4r . It

is easy to show using standard calculus that −L′ < −B for all r ≥ 3.

Since the condition r ≥ 3 holds without loss of generality, we will

assume throughout that −L′ < −B.
We will now argue the equivalence of solutions.

(⇒) Let X 1, . . . ,X r
be a solution of 3-Partition. Then, the

desired allocationA can be constructed as follows: For every i ∈ [r ],
the main agent ai gets the signature chore Si as well as the chores
corresponding to the numbers in X i

. The dummy agent gets the

5
Note that we do not require the sets X 1, . . . , X r

to be of cardinality three each;

3-Partition remains strongly NP-hard even without this constraint.

C1 . . . C3r S1 S2 . . . Sr D1 D2

a1 −b1 . . . −b3r −1 −L . . . −L −L −L
a2 −b1 . . . −b3r −L −1 . . . −L −L −L
...

...
...

...

ar −b1 . . . −b3r −L −L . . . −1 −L −L
d −L′ . . . −L′ −L′ −L′ . . . −L′ −1 −B

Table 2: Chores instance used in the proof of Theorem 3.3.

two dummy chores. The allocationA is Pareto optimal because each

chore is assigned to an agent that has the highest valuation for it

(thus, Amaximizes social welfare). Also, each agent’s valuation in

A is −B − 1, implying that A is equitable, and hence also EQX.

(⇐) Now suppose that there exists an EQX and Pareto optimal

allocation A. Below, we will make a series of observations about A
that will help us infer a solution of 3-Partition using A.

Claim 1. No agent gets an empty bundle in A.

Proof. (of Claim 1) If an agent gets an empty bundle, then some

other agent will get four or more chores (as more than 4r chores
will need to be allocated among r other agents). Since all valuations
are strictly negative, this results in a violation of EQX. □

Claim 2. Each main agent ai gets its signature chore Si in A.

Proof. (of Claim 2) From Claim 1, we know that ai owns at
least one chore in A. Fix any chore j ∈ Ai . Suppose Si is assigned
to an agent k in A. Notice that the valuation of agent k for Si is
either −L or −L′ (depending of whether k is a main or a dummy

agent). This is also the smallest valuation that agent k has for any
chore (recall that −L < −rB − 1 and −L′ < −B). Furthermore, since

−bi ≤ −2 for every i ∈ [3r ], Si is the unique favorite chore of agent
ai . Therefore, after exchanging the chores j and Si , the valuation
of agent k cannot decrease (due to additivity), and the valuation of

agent ai necessarily increases. Thus, the new allocation is a Pareto

improvement over A, which is a contradiction. □

Claim 3. The chore D1 is assigned to the dummy agent d in A.

Proof. (of Claim 3) By an argument similar to that in the proof

of Claim 2, we can show that ifD1 is not assigned to d , then a Pareto
improving swap between d and the owner of D1 is possible. □

Claim 4. The chore D2 is assigned to the dummy agent d in A.

Proof. (of Claim 4) Suppose, for contradiction, that D2 is as-

signed to main agent ai inA. From Claim 2, we know that ai is also
assigned its signature chore Si . Since Si is the favorite chore of ai ,
the EQX condition requires that for every other main agent ak ,

vk (Ak ) ≤ vi (Ai \ {Si }) ≤ vi ({D2}) = −L.

Even if ak is assigned all the remaining chores whose assignment

has not been finalized yet (this includes the 3r main chores), its val-

uation will still only be −rB − 1 > −L. This would imply a violation

of EQX condition between ai and ak , which is a contradiction. □

From Claims 3 and 4, we know that D1,D2 ∈ Ad . Therefore, by
EQX condition, the following must hold for every main agent ai :

vi (Ai ) ≤ vd (Ad \ {D1}) ≤ vd ({D2}) = −B.



From Claim 2, we know that ai gets its signature chore Si . Thus,
the valuation of ai for the remaining items in its bundle must be

vi (Ai \ {Si }) ≤ −B + 1. (1)

Since the assignment of all signature and dummy chores has

been fixed, the setAi \ {Si } can only have main chores. By assump-

tion, main agents have even-valued valuations for main chores. By

additivity of valuations, the quantity vi (Ai \ {Si }) must also be

even. Also, −B is even, so −B + 1 must be odd, and therefore the

inequality in Equation (1) must be strict. Thus, vi (Ai \ {Si }) ≤ −B.
We can now infer a solution of 3-Partition as follows: For every

i ∈ [r ], the set X i
contains those numbers whose corresponding

chores are included inAi \ {Si }. Sincevi (Ai \ {Si }) ≤ −B, it follows
that all main choresmust be assigned among themain agents, imply-

ing that X 1, . . . ,X r
constitute a valid partition of X . Furthermore,

the sum of numbers in the set X i
cannot exceed B, or otherwise

the sum of numbers in some other set Xk
will be strictly less than

B, which would violate the above inequality. Hence, X 1, . . . ,X r
is

a valid solution of 3-Partition, as desired. □

The negative results concerning the existence and computation

of EQX+PO lead us to consider a weaker relaxation of equitability,

namely equitability up to one chore (EQ1). A natural starting point

in studying the existence of EQ1+PO allocations is the Leximin

solution, as it yields strong positive results for the goods setting [28].

Unfortunately, as Example 3.2 shows, Leximin sometimes fails to

satisfy EQ1 (as well as EF1) for chores.

Example 3.2 (Leximin fails EQ1 and EF1). Consider the follow-
ing instance with four chores and three agents with normalized and
strictly negative valuations:

c1 c2 c3 c4
a1 −1 −5 −5 −5

a2 −1 −2 −2 −11

a3 −6 −5 −3 −2

We will show that the allocation A given by A1 = {c1}, A2 =

{c2, c3}, and A3 = {c4} is Leximin-optimal. Suppose, for contradic-
tion, that another allocation B is a Leximin improvement over A. The
utility profile induced by A is (−1,−4,−2), and therefore, for any
chore j and agent i such that j ∈ Bi , we must have that vi , j ≥ −4.

The chore c4 is valued at less than −4 by both a1 and a2, so we must
have c4 ∈ B3. Similarly, we can fix c2 ∈ B2. This, in turn, forces us to
fix c3 ∈ B2, since otherwise if c3 ∈ B3, then the utility of a3 will be
−5 < −4, which would violate the Leximin improvement assumption.
By a similar argument, we have c1 ∈ B1. This, however, implies that
A and B are identical, which is a contradiction. Therefore, A must be
Leximin. Notice thatA violates EQ1 and EF1 for the pair (a1,a2). □

Another natural approach to show the existence of EQ1+PO allo-

cations could be to use the relax-and-round framework. Specifically,

one could start from an egalitarian-equivalent solution [38] (i.e., a

fractional allocation that is perfectly equitable and minimizes the

agents’ disutilities), and use a rounding algorithm to achieve EQ1.

However, there is a simple example where this approach fails.
6

6
Consider an instance with three chores and three agents. Agents 1 and 2 value the first

chore at −4 and the other two chores at −∞ (or a suitably large negative value). Agent

3 values the first chore at −∞ and the other two chores at −1 each. An egalitarian-

equivalent solution divides the first chore equally between agents 1 and 2, and assigns

The failure of Leximin and the relax-and-round framework in

achieving EQ1 prompts us to consider a different approach for

studying approximately fair and Pareto optimal allocations. This

approach, which is based on Fisher markets [13], has been success-

fully used in the goods model to provide an algorithmic framework

for computing EF1+PO [9] and EQ1+PO [28] allocations.
7
Note

that the existence of such allocations was established by means of

computationally intractable methods, namely the Maximum Nash

Welfare and Leximin solutions [20, 28].

Briefly, the idea is to start with an allocation that is an equi-

librium of some Fisher market. By the first welfare theorem [36],

such an allocation is guaranteed to be Pareto optimal. By using

a combination of local search and price change steps, our algo-

rithm converges to an approximately equitable equilibrium, which

gives an approximately equitable and Pareto optimal allocation.

It is worth noting that while the existing Fisher market based ap-

proaches use price-rise [9, 28], our algorithm instead uses price-drop
as the natural option for negative valuations.

Our main result in this section (Theorem 3.4) establishes the

existence of EQ1 and PO allocations using the markets framework.

Theorem 3.4 (Algorithm for EQ1+PO). Given any chores
instance with additive and integral valuations, an allocation that is
equitable up to one chore (EQ1) and Pareto optimal (PO) always exists
and can be computed in O(poly(m,n, |vmin |)) time, where vmin =

mini , j vi , j .

In particular, when the valuations are polynomially bounded

(i.e., for every i ∈ [n] and j ∈ [m], vi , j ≤ poly(m,n)), our algorithm
computes an EQ1 and PO allocation in polynomial time. Whether

an EQ1+PO allocation can be computed in polynomial time without

this assumption is an interesting avenue for future research.
8

The proof of Theorem 3.4 is deferred to the full version of the

paper [29]. Here, we will provide an informal overview of the algo-

rithm by demonstrating its execution on the instance in Example 3.2

where Leximin fails to satisfy EQ1.

Example 3.3. Consider once again the instance in Example 3.2.
Our algorithm in Theorem 3.4 works in three phases. In Phase 1, the
algorithm creates an equilibrium allocation by assigning each chore
to an agent that has the highest valuation for it and setting its price
to be (the absolute value of) the owner’s valuation; see Figure 1a. This
ensures that the allocation satisfies the maximum bang-per-buck or
MBB property (i.e., each agent’s bundle consists only of items with the
highest valuation-to-price ratio for that agent). The MBB property
guarantees that the allocation at hand is an equilibrium of some
Fisher market, and therefore Pareto optimal.

The allocation constructed in Phase 1 is not EQ1 as a2 gets three
negatively valued chores and a1 gets none. So, the algorithm switches
to Phase 2, where it uses local search to address the equitability vio-
lations. Specifically, if there is an EQ1 violation, then there must be
one involving the ‘happiest’ agent, i.e., agent with the highest util-
ity (shaded in green in Figure 1a). The algorithm now proceeds to

the remaining two chores to agent 3. Any rounding of this fractional allocation violates

EQ1 with respect to agent 3 and whoever of agents 1 or 2 gets an empty bundle.

7
Similar techniques have also been used in developing approximation algorithms for

Nash social welfare objective for budget-additive and multi-item concave utilities [23].

8
Interestingly, similar questions concerning the computation of EF1+PO or EQ1+PO

allocations are also open in the goods setting [9, 28].
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Figure 1: Executing the EQ1+PO algorithm from Theorem 3.4 on the instance in Example 3.2. The solid (respectively, dashed)

edges denote items that are allocated to (respectively, in the MBB set of) an agent. The edge labels denote the valuations, and

the numbers next to the agent and chore nodes denote the utilities and the prices, respectively.

transferring the chores, one at a time, from unhappy agents to the
happiest agent while ensuring that all exchanges take place in an
MBB-consistent manner. In our example, the chore c1, which is already
in theMBB set of agent a1, is transferred from a2 to a1 (see Figure 1b).

Despite the aforementioned exchange, the allocation is still not
EQ1 as {a1,a2} once again constitute a violating pair. Furthermore,
the happiest agent is already assigned its unique MBB chore, so no
additional MBB-consistent transfers are possible. Thus, the algorithm
switches to Phase 3.

In Phase 3, the algorithm creates new MBB edges in the agent-item
graph by changing the prices. Specifically, the price of chore c1 is
lowered until one or more of the remaining chores enter the MBB set
of agent a1. Indeed, once the price of c1 is lowered from $1 to $0.4,
all other chores become MBB for agent a1 (see Figure 1c). As soon
as the opportunity for MBB-consistent exchange becomes available,
the algorithm switches back to Phase 2 to perform an exchange. This
time, chore c2 is transferred from a2 to a1 (see Figure 1d). The new
allocation is EQ1, so the algorithm terminates and returns the current
allocation as output. □

Remark 3.1. We already know from Example 3.1 that EQX+PO is

a strictly more demanding property combination than EQ1+PO in

terms of existence. That is, an EQX+PO allocation might fail to exist

even though an EQ1+PO allocation is guaranteed to exist (Theo-

rem 3.4). Our results in Theorems 3.3 and 3.4 show a similar sepa-

ration between the two notions in terms of computation: Although
an EQ1+PO allocation can be computed in pseudopolynomial-time

(Theorem 3.4), there cannot be a pseudopolynomial-time algorithm

for checking the existence of EQX+PO allocations unless P=NP.

3.3 Equitability, Pareto Optimality, and

Envy-Freeness

We will now consider all three notions—equitability, envy-freeness,

and Pareto optimality—together. It turns out that the existence re-

sult for EQ1+PO allocations does not hold up when we also require

EF1 (Proposition 3.5).

Proposition 3.5 (Non-existence of EQ1+EF1+PO). There
exists an instance with normalized and strictly negative valuations
in which no allocation is simultaneously equitable up to one chore
(EQ1), envy-free up to one chore (EF1), and Pareto optimal (PO).

Proof. Consider the following instance with eight chores and

four agents with normalized and strictly negative valuations:

c1 c2 c3 c4 c5 c6 c7 c8
a1 −10 −10 −10 −10 −10 −10 −10 −10

a2 −10 −10 −10 −10 −10 −10 −10 −10

a3 −73 −1 −1 −1 −1 −1 −1 −1

a4 −73 −1 −1 −1 −1 −1 −1 −1

Suppose, for contradiction, that there exists an allocation A that

is EQ1, EF1, and PO. Then, we claim that a1 gets exactly one chore

in A. Indeed, a1 cannot get three or more chores in A, since that
would result in some other agent getting at most one chore, creating

an EF1 violation with respect to a1. If a1 gets exactly two chores,

then either a3 or a4 will create an EQ1 violation with respect to

a1. This is because one of a3 and a4 will necessarily miss out on

c1 and therefore have a utility of at least −7 from the remaining

chores. Finally, if a1 does not get any chore, then one of the other

agents will get at least three chores. Because of strictly negative

valuations, this will create an EQ1 violation with a1. Therefore, a1
gets exactly one chore in A. By a similar argument, so does a2.

Therefore, a total of six chores are assigned between a3 and

a4. Assume, without loss of generality, that a3 gets at least three
chores. Then, whoever of a1 or a2 misses out on c1 will create an EF1
violation with respect to a3, giving us the desired contradiction. □

Turning to the computational question, we notice that the alloca-

tion constructed in the proof of Theorem 3.3 is envy-free. Therefore,

checking the existence of an EQX+PO+EF/EFX/EF1 allocation is

also strongly NP-hard. We note that the analogous problem in the

goods setting is also known to be computationally hard [28].

Corollary 3.6 (Hardness of EQX+PO+EF/EFX/EF1). De-
termining whether a given fair division instance admits an allocation
that is simultaneously X + Y + PO, where X refers to equitable up to
any chore (EQX), and Y refers to either envy-free (EF), envy-free up
to any chore (EFX), or envy-free up to one chore (EF1), is strongly
NP-hard, even for normalized valuations.

3.4 Equitability up to a Duplicated Chore

In this section, we will explore a slightly different version of ap-

proximate equitability for chores wherein instead of removing a



chore from the less-happy agent’s bundle, we imagine adding a

chore to the happier agent’s bundle. In particular, we will ask that

pairwise jealousy should be removed by duplicating a single chore

from the less happy agent’s bundle and adding it to the happier

agent’s bundle.

Formally, an allocation A is equitable up to one duplicated chore
(DEQ1) if for every pair of agents i,k ∈ [n] such that Ai , ∅, there

exists a chore j ∈ Ai such thatvi (Ai ) ≥ vk (Ak ∪{j}). An allocation

A is equitable up to any duplicated chore (DEQX) if for every pair of

agents i,k ∈ [n] such that Ai , ∅ and for every chore j ∈ Ai such
that vi , j < 0, we have vi (Ai ) ≥ vk (Ak ∪ {j}).

Proposition 3.7 (Existence of DEQX+PO). Given any fair
division instance with additive valuations, an allocation that is eq-
uitable up to any duplicated chore (DEQX) and Pareto optimal (PO)
always exists.

Proof. (Sketch) We will show that any Leximin-optimal allo-

cation, say A, satisfies DEQX (Pareto optimality is easy to ver-

ify). Suppose, for contradiction, that there exist agents i,k ∈ [n]
with Ai , ∅ and some chore j ∈ Ai such that vi , j < 0 and

vi (Ai ) < vk (Ak ∪ {j}). Let B be an allocation derived from A
by transferring the chore j from agent i to agent k . That is, Bi B
Ai \ {j}, Bk B Ak ∪ {j} and Bh B Ah for all h ∈ [n] \ {i,k}.
Since DEQX is violated with respect to chore j, we have that

vi , j < 0, and therefore vi (Bi ) = vi (Ai ) − vi , j > vi (Ai ). Further-
more, vk (Bk ) = vk (Ak ∪ {j}) > vi (Ai ) by the DEQX violation

condition. The utility of any other agent is unchanged. Therefore,

B is a ‘Leximin improvement’ over A, which is a contradiction. □

Thus, Proposition 3.7 shows that the duplicate version of approx-

imate equitability (DEQX) compares favorably against the standard

version (EQX) in the sense that a DEQX+PO allocation is guaran-

teed to exist whereas an EQX+PO allocation might not exist even

with two agents and strictly negative valuations (Example 3.1).

On the computational side, we find that a DEQ1 allocation of

chores can be computed in polynomial time via a greedy algorithm.

The proof of this result is deferred to the full version [29].

Proposition 3.8. A DEQ1 allocation of chores always exists and
can be computed in polynomial time.

Unfortunately, the greedy algorithm in Proposition 3.8 does not

guarantee a DEQX allocation. This stands in contrast to the sit-

uation for EQX, which is easily achieved by a greedy procedure.

Settling the complexity of computing DEQX allocations is an inter-

esting question for future work.

The complexity of computing an allocation that satisfies ei-

ther DEQ1+PO or the stronger DEQX+PO also remains open. For

DEQ1+PO, a natural approach would be to apply the market tech-

niques used in Theorem 3.4, but that would require care as DEQ1

lacks the following “monotonicity” property that EQ1 has: If an

allocation is not EQ1, then without loss of generality, there exists a

violation with respect to the happiest agent. The same is not true

for violations of DEQ1, which makes the analysis less obvious.

In the full version of the paper [29], we explore a variant of

DEQX, denoted as DEQX
0
, in which the vi , j < 0 condition is not

imposed on the duplicated chore j . With this modification, we show

that computing an allocation satisfying DEQX
0
+PO is NP-hard, as

well as an equivalent result for the analogous notion of EQX
0
.

Remark 3.2 (A tractable special case: binary valuations). An

instance is said to have binary valuations if for every agent i ∈ [n]
and every chore j ∈ [m], we have vi , j ∈ {−1, 0}. For this restricted

setting, there is a simple polynomial-time algorithm that gives an

EQX+DEQX+EFX+PO allocation, as follows: If a chore is valued at

0 by one or more agents, then it is arbitrarily assigned to an agent

that values it at 0. The remaining chores, which are valued at −1

by every agent, are assigned in a round-robin fashion.

4 EXPERIMENTS

In this section, we will compare various algorithms in terms of

how frequently they satisfy different combinations of fairness and

efficiency properties on synthetic as well as real-world datasets.

For synthetic data, we follow the setup of Freeman et al. [28] for

goods by fixing n = 5 agents,m = 20 chores, and generating 1000

instances with (the negation of) the valuations drawn fromDirichlet

distribution. Additional pre-processing is required to ensure that the

valuations are integral and normalized; the details are deferred to

the full version of the paper [29]. Recall that integral valuations are

required for Theorem 3.4. None of our results require normalization,

but it is a natural condition to impose in practice.

The real-world dataset consists of 2613 instances obtained from

the Spliddit website [32], with the number of agents ranging from

2 to 15, and the number of distinct chores ranging from 3 to 1100.

Unlike the goods case, the “task division” segment of Spliddit allows

distinct items to have multiple copies.9 Furthermore, instead of

directly eliciting additive valuations (as is the case for goods), the

website asks the users to specify their preferences in the form of

multipliers; that is, given two chores c1 and c2, how many times

would a user be willing to complete c1 instead of completing c2
once.

10
As a result, the elicited valuations might not be integral.

These design features force us to make a number of pre-processing

decisions; in particular, in order to ensure integrality of valuations

and remain as faithful as possible to the Spliddit instances, we have

to give up on normalization.

We consider the following four algorithms: (1) The greedy algo-

rithm from Proposition 3.2, (2) the Leximin solution, (3) the market-

based algorithm Alg-eq1+po from Theorem 3.4, and (4) an algo-

rithm currently deployed on the Spliddit website for dividing chores.
The latter is a randomized algorithm that computes an ex ante eq-

uitable lottery over integral allocations; see the full version of the

paper for details [29].

Figure 2 presents our experimental results. For each property

combination (X-axis), the plots show the % of instances (Y-axis) for

which each algorithm achieves those properties. The rightmost set

of bars present a comparison of the running times. For the Spliddit

algorithm, we plot the average values obtained from 100 runs, and

the error bars show one standard deviation around the mean.

Starting with exact equitability, we observe that a very small

fraction of instances (< 20% in Spliddit and none in Synthetic) admit

EQ and EQ+PO allocations, as one might expect.
11

For the approx-

imate notions, the greedy algorithm finds EQX allocations on all

9
http://www.spliddit.org/apps/tasks

10
E.g., doing laundry 2.5 times could be equivalent to washing dishes once.

11
An equitable (EQ) and Pareto optimal allocation (PO), whenever it exists, is provably

achieved by the Leximin algorithm.

http://www.spliddit.org/apps/tasks


Figure 2: Experimental results for Synthetic (top) and Spliddit (bottom) datasets.

instances as advertised (Proposition 3.2), but its performance drops

off sharply when PO is also required; in particular, for Synthetic

data, the greedy outcome is always Pareto dominated.

Leximin performs remarkably well across the board. In addition

to satisfying DEQX+PO on all instances (Proposition 3.7), it also

satisfies EQX and EFX on more than 80% of the instances in both

datasets. Unfortunately, it is also the slowest of all algorithms, with

an average runtime of ∼140 seconds on Synthetic dataset, compared

to <1 second runtime of the fastest (greedy) algorithm.

The market-based algorithm Alg-eq1+po computes EQ1+PO

allocations as expected (Theorem 3.4), and somewhat surprisingly,

also satisfies DEQ1 (and EF1). However, its performance drops off

when stronger approximations of EQX/DEQX are required.

The Spliddit algorithm is consistently (and often, significantly)

outperformed by Leximin and Alg-eq1+po, even on the Spliddit

dataset. The reason is that the Spliddit algorithm is perfectly equi-

table ex ante but not necessarily EQ1 ex post. As a result, it is better
suited for ensuring fairness over time, say, when the same set of

chores are repeatedly divided among the same agents, as noted on

the Spliddit website.

In summary, Leximin emerges as the algorithm of choice in

terms of simultaneously achieving approximate fairness and eco-

nomic efficiency. We find it intriguing that the same algorithm

was also a clear winner in the experimental analysis of Freeman

et al. [28] for goods, even though it is no longer provably EQX (or

even EQ1). Equally intriguing is the fact that a currently deployed

algorithm is outperformed by well-known (Leximin) and proposed

(Alg-eq1+po) algorithms, thereby justifying the usefulness of ana-

lyzing (approximate) fairness for chore division.

5 DISCUSSION

We studied equitable allocations of indivisible chores in conjunc-

tion with other well-known notions of fairness (envy-freeness) and

economic efficiency (Pareto optimality), and provided a number of

existential and computational results. Our results reveal some inter-

esting points of difference between the goods and chores settings.

While a modification of the market approach used by Freeman et al.

[28] to achieve EQ1+PO in the goods setting works for chores, it

may be the case that no allocation satisfying EQX+PO exists in

the chores setting. In response to this possible nonexistence, we

have defined two new notions of relaxed equitability, DEQ1 and

DEQX, that address equitability violations by adding chores to

bundles rather than removing them. A number of open questions

remain regarding the computation of allocations that satisfy these

notions (with or without Pareto optimality). It may also be an in-

teresting topic for future work to consider similar relaxations of

envy-freeness in the chores setting.

In our experimental analysis, we have considered four different

algorithms for chore division on both a real-world dataset gathered

from the Spliddit website as well as a synthetic dataset. Our experi-

ments present a compelling case that, in practice, Leximin is the

best known algorithm for one-shot allocation of indivisible chores.

This is true not only with respect to (relaxed) equitability, but also

(relaxed) envy-freeness and Pareto optimality.
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