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Abstract

Mixtures of ranking models have been widely used for heterogeneous preferences.
However, learning a mixture model is highly nontrivial, especially when the dataset
consists of partial orders. In such cases, the parameter of the model may not be even
identifiable. In this paper, we focus on three popular structures of partial orders:
ranked top-l;, [o-way, and choice data over a subset of alternatives. We prove that
when the dataset consists of combinations of ranked top-/; and l5-way (or choice
data over up to [, alternatives), mixture of k£ Plackett-Luce models is not identifiable
when l; +12 < 2k—1 (I3 is set to 1 when there are no /5-way orders). We also prove
that under some combinations, including ranked top-3, ranked top-2 plus 2-way,
and choice data over up to 4 alternatives, mixtures of two Plackett-Luce models
are identifiable. Guided by our theoretical results, we propose efficient generalized
method of moments (GMM) algorithms to learn mixtures of two Plackett-Luce
models, which are proven consistent. Our experiments demonstrate the efficacy of
our algorithms. Moreover, we show that when full rankings are available, learning
from different marginal events (partial orders) provides tradeoffs between statistical
efficiency and computational efficiency.

1 Introduction

Suppose a group of four friends want to choose one of the four restaurants {a1, az, a3, a4} for dinner.
The first person ranks all four restaurants as as > ag > a4 > a;, where as > a3 means that “as is
strictly preferred to as”. The second person says “a4 and a3 are my top two choices, among which I
prefer a4 to az”. The third person ranks a3 > a4 > a; but has no idea about as. The fourth person
has no idea about a4, and would choose a3 among {a1, a2, az}. How should they aggregate their
preferences to choose the best restaurant?

Similar rank aggregation problems exist in social choice, crowdsourcing [20, |6]], recommender
systems [3, 3} [14} 24]], information retrieval [1} [17]], etc. Rank aggregation can be cast as the
following statistical parameter estimation problem: given a statistical model for rank data and the
agents’ preferences, the parameter of the model is estimated to make decisions. Among the most
widely-applied statistical models for rank aggregation are the Plackett-Luce model [19| 28] and its
mixtures [8 [9] 17, 23] 30, 23]]. In a Plackett-Luce model over a set of alternatives A, each alternative
is parameterized by a strictly positive number that represents its probability to be ranked higher than
other alternatives. A mixture of k Plackett-Luce models, denoted by k-PL, combines & component
Plackett-Luce models via the mixing coefficients & = (a1, ..., qx) € R’;O with @ - T = 1, such that
for any r < k, with probability o, a data point is generated from the r-th Plackett-Luce component.

One critical limitation of Plackett-Luce model and its mixtures is that their sample space consists of
linear orders over A. In other words, each data point must be a full ranking of all alternatives in A.
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However, this is rarely the case in practice, because agents are often not able to rank all alternatives
due to lack of information [27]], as illustrated in the example in the beginning of Introduction.

In general, each rank datum is a partial order, which can be seen as a collection of pairwise
comparisons among alternatives that satisfy transitivity. However, handling partial orders is more
challenging than it appears. In particular, the pairwise comparisons of the same agent cannot be seen
as independently generated due to transitivity.

Consequently, most previous works focused on structured partial orders, where agents’ preferences
share some common structures. For example, given | € N, in ranked-top-/ preferences [23, [10],
agents submit a linear order over their top [/ choices; in [-way preferences [21}[11} 22], agents submit
a linear order over a set of [ alternatives, which are not necessarily their top / alternatives; in choice-/
preferences (a.k.a. choice sets) [31]], agents only specify their top choice among a set of [ alternatives.
In particular, pairwise comparisons can be seen as 2-way preferences or choice-2 preferences.

However, as far as we know, most previous works assumed that the rank data share the same structure
for their algorithms and theoretical guarantees to apply. It is unclear how rank aggregation can be
done effectively and efficiently from structured partial orders of different kinds, as in the example in
the beginning of Introduction. This is the key question we address in this paper.

How can we effectively and efficiently learn Plackett-Luce and its mixtures from structured partial
orders of different kinds?

Successfully addressing this question faces two challenges. First, to address the effectiveness concern,
we need a statistical model that combines various structured partial orders to prove desirable statistical
properties, and we are unaware of an existing one. Second, to address the efficiency concern, we need
to design new algorithms as either previous algorithms cannot be directly applied, or it is unclear
whether the theoretical guarantee such as consistency will be retained.

1.1 Our Contributions

Our contributions in addressing the key question are three-fold.

Modeling Contributions. We propose a class of statistical models to model the co-existence of the
following three types of structured partial orders mentioned in the Introduction: ranked-top-I, [-way,
and choice-/, by leveraging mixtures of Plackett-Luce models. Our models can be easily generalized
to include other types of structured partial orders.

Theoretical Contributions. Our main theoretical results characterize the identifiability of the pro-
posed models. Identifiability is fundamental in parameter estimation, which states that different
parameters of the model should give different distributions over data. Clearly, if a model is non-
identifiable, then no parameter estimation algorithm can be consistent.

We prove that when only ranked top-/; and l;-way (I2 is set to 1 if there are no [5-way orders)
orders are available, the mixture of k Plackett-Luce models is not identifiable if k > (I +lo +1)/2
(Theorem ). We also prove that the mixtures of two Plackett-Luce models is identifiable under the
following combinations of structures: ranked top-3 (Theorem 2] (a) extended from [33])), ranked top-2
plus 2 way (Theorem[Z] (b)), choice-2, 3,4 (Theorem@] (c)), and 4-way (Theorem[Z] (d)). For the case
of mixtures of k Plackett-Luce models over m alternatives, we prove that if there exist m’ < m s.t.
the mixture of k Plackett-Luce models over m’ alternatives is identifiable, we can learn the parameter
using ranked top-l; and lo-way orders where [; + I3 > m' (Theorem . This theorem, combined
with Theorem 3 in [33]], which provides a condition for mixtures of k£ Plackett-Luce models to be
generically identifiable, can guide the algorithm design for mixtures of arbitrary k£ Plackett-Luce
models.

Algorithmic Contributions. We propose efficient generalized-method-of-moments (GMM) algo-
rithms for parameter estimation of the proposed model based on 2-PL. Our algorithm runs much
faster while providing better statistical efficiency than the EM-algorithm proposed by Liu et al. [[16]
on datasets with large numbers of structured partial orders, see Section [6] for more details. Our
algorithms are compared with the GMM algorithm by Zhao et al. [33]] under two different settings.
When full rankings are available, our algorithms outperform the GMM algorithm by Zhao et al. [33]]
in terms of MSE. When only structured partial orders are available, the GMM algorithm by Zhao
et al. [33] is the best. We believe this difference is caused by the intrinsic information in the data.



1.2 Related Work and Discussions

Modeling. We are not aware of a previous model targeting rank data that consists of different types
of structured partial orders. We believe that modeling the coexistence of different types of structured
partial orders is highly important and practical, as it is more convenient, efficient, and accurate for an
agent to report her preferences as a structured partial order of her choice. For example, some voting
websites allow users to use different Uls to submit structured partial orders [4].

There are two major lines of research in rank aggregation from partial orders: learning from struc-
tured partial orders and EM algorithms for general partial orders. Popular structured partial orders
investigated in the literature are pairwise comparisons [[13} [12], top-{ [23,[10], [-way [21} 11} 22]], and
choice-! [31]]. Khetan and Oh [15] focused on partial orders with “separators”, which is a broader
class of partial orders than top-k. But still, [15] assumes the same structure for everyone. Our model
is more general as it allows the coexistence of different types of structured partial orders in the dataset.
EM algorithms have been designed for learning mixtures of Mallows’ model [18] and mixtures of
random utility models including the Plackett-Luce model [16], from general partial orders. Our model
is less general, but as EM algorithms are often slow and it is unclear whether they are consistent, our
model allows for theoretically and practically more efficient algorithms. We believe that our approach
provides a principled balance between the flexibility of modeling and the efficiency of algorithms.

Theoretical results. Several previous works provided theoretical guarantees such as identifiability
and sample complexity of mixtures of Plackett-Luce models and their extensions to structured partial
orders. For linear orders, Zhao et al. [33] proved that the mixture of k& Plackett-Luce models over
m alternatives is not identifiable when £ < 2m — 1 and this bound is tight for £k = 2. We extend
their results to the case of structured partial orders of various types. Ammar et al. [2, Theorem 1]
proved that when m = 2k, where k = 2! is a nonnegative integer power of 2, there exist two different
mixtures of k Plackett-Luce models parameters that have the same distribution over (21 + 1)-way
orders. Our Theorem [I] significantly extends this result in the following aspects: (i) our results
includes all possible values of k rather than powers of 2; (ii) we show that the model is not identifiable
even under (2!*1 — 1)-way (in contrast to (2/ 4 1)-way) orders; (iii) we allow for combinations
of ranked top-l; and l5-way structures. Oh and Shah [26] showed that mixtures of Plackett-Luce
models are in general not identifiable given partial orders, but under some conditions on the data,
the parameter can be learned using pairwise comparisons. We consider many more structures than
pairwise comparisons.

Recently, Chierichetti et al. [[7] proved that at least O(m?) random marginal probabilities of partial
orders are required to identify the parameter of uniform mixture of two Plackett-Luce models. We
show that a carefully chosen set of O(m) marginal probabilities can be sufficient to identify the
parameter of nonuniform mixtures of Plackett-Luce models, which is a significant improvement.
Further, our proposed algorithm can be easily modified to handle the case of uniform mixtures.
Zhao et al. [35] characterized the conditions when mixtures of random utility models are generically
identifiable. We focus on strict identifiability, which is stronger.

Algorithms. Several learning algorithms for mixtures of Plackett-Luce models have been proposed,
including tensor decomposition based algorithm [26], a polynomial system solving algorithm [7], a
GMM algorithm [33]], and EM-based algorithms [8} 130, [23[16]. In particular, Liu et al. [16] proposed
an EM-based algorithm to learn from general partial orders. However, it is unclear whether their
algorithm is consistent (as for most EM algorithms), and their algorithm is significantly slower than
ours. Our algorithms for linear orders are similar to the one proposed by Zhao et al. [33]], but we
consider different sets of marginal probabilities and our algorithms significantly outperforms the one
by Zhao et al. [33] w.r.t. MSE while taking similar running time.

2 Preliminaries

Let A = {a1,as,...,a,} denote a set of m alternatives and £(.A) denote the set of all linear orders
(full rankings) over A, which are antisymmetric, transitive and total binary relations. A linear order
R € L(A) is denoted as a;, > a;, > ... > a;,, where a;, is the most preferred alternative and a;,
is the least preferred alternative. A partial order O is an antisymmetric and transitive binary relation.
In this paper, we consider three types of strict partial orders: ranked-top-I (top-I for short), I-way,
and choice-I, where | < m. A top-l order is denoted by 0P = [a;, = ... = a;, = others]; an



l-way order is denoted by O""® = [a;, = ... = a;,], which means that the agent does not have

preferences over unranked alternatives; and a ch01ce [ order is denoted by OChOlce = (A, a), where
A" C A, |A| =1,and a € A’, which means that the agent chooses a from A’. We note that the
three types of partial orders are not mutually exclusive. For example, a pairwise comparison is a
2-way order as well as a choice-2 order. Let P(.A) denote the set of all partial orders of the three
structures: ranked top-I, [-way, and choice-/ (I < m) over A. It is worth noting that £(A) C P(A).
Let P = (O1,0,...,0,) € P(A)™ denote the data, also called a preference profile. Let O%,
denote a partial order over a subset A’ whose structure is s. When s is top-/, A’ is set to be A. Let
[d] denote the set {1,2,...,d}.

Definition 1. (Plackett-Luce model). The parameter space is © = {0 = {0;|]1 <i<m,0< 0; <

—

1,5 0; = 1}}. The sample space is L(A)"™. Given a parameter 0 € ©, the probability of any
linear order R=a; > aj, > ...=a;,]is

m—1
0;
Prp(RIO) = ] g
p=1 q=p “"'a

Under Plackett-Luce model, a partial order O can be viewed as a marginal event which consists of all
linear orders that extend O, that is, for any extension R, a >=¢ b implies a > b. The probabilities of
the aforementioned three types of partial orders are as follows [32].

e Top-/. For any top-I order O*P"! = [a;, = ... = a;, = others], we have

PI‘pL OtOP ! |t9 H
Zq P

e l-way. For any [-way order 0" = [a;, = ... > a;,], where A’ = {a;,,...,a;}, we

have
-1

way | = 0,
Pro (05™10) = [ =2

p=1 Zq:p 9’4
e Choice-/. For any choice order O = (A’, a;), we have
Prp (0]6) = %
Zaj cA’ 9.7

In this paper, we assume that data points are i.i.d. generated from the model.

Definition 2 (Mixtures of k£ Plackett-Luce models for linear orders (k-PL)). Given m > 2 and
k € N, the sample space of k-PL is L(A)™. The parameter space is © = {6 = (a@,00), ... 6*)},
where & = (o, - . ., i) is the mixing coefficients. For all r < k, o, > 0 and Zle o, = 1. For

all1 <r <k, 0 is the parameter of the rth Plackett-Luce component. The probability of a linear
order R is:

k
PI'k_pL Z PTPL R|9( ))

We now recall the definition of identifiability of statistical models.

Definition 3 (Identifiability). Let M = {Pr(-|f) : § € ©} be a statistical model, where © is the
parameter space and Pr(+|0) is the distribution over the sample space associated with 6 € ©. M is
identifiable if for all 0, € O, we have

—

Pr((0) = Pr(-|) = 0= 7

A mixture model is generally not identifiable due to the label switching problem [29], which means
that labeling the components differently leads to the same distribution over data. In this paper, we
consider identifiability of mixture models modulo label switching. That is, in Definition 3] we further

require that g and ~ cannot be obtained from each other by label switching.
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Figure 1: The mixture model for structured partial preferences.

3 Mixtures of Plackett-Luce Models for Partial Orders

We propose the class of mixtures of Plackett-Luce models for the aforementioned structures of
partial orders. To this end, each such model should be described by the collection of allowable
types of structured partial orders, denoted by ®. More precisely, ® is a set of u structures ¢ =
{(s1, A1), .-, (Su,Ay)}, where for any ¢ € [u], (s¢,.A:) means structure s; over A;. For the case of
top-1, A; is set to be .A. Since the three structured considered in this paper are not mutually exclusive,
we require that ® does not include any pair of overlapping structures simultaneously for the
model to be identifiable. There are two types of pairs of overlapping structures: (1) (top-(m — 1), .4)
and (m-way, .A); and (2) for any subset of two alternatives .4’, (2-way, .A’) and (choice-2, A’). Each
structure corresponds to a number ¢% > 0 and we require y_,"; ¢ = 1. A partial order is
generated in two stages as illustrated in Figure|I} (i) a linear order R is generated by k-PL given
a, 5(1), e ,5 (k) (ii) with probability ¢%,» R is projected to the randomly-generated partial order
structure (s, A;) to obtain a partial order O. Formally, the model is defined as follows.

Definition 4 (Mixtures of k£ Plackett-Luce models for partial orders by ® (k-PL-®)). Given m > 2,
k € N, and the set of structures ® = {(s1, A1),. .., (Su, Au)}, the sample space is all structured
partial orders defined by ®. Givenly € [m — 1],1a,13 € [m), the parameter space is © = {f =
(¢_>', &, 0m, ... g(k))}. The first part is a vector ¢ = (%45 -+ 9k ), whose entries are all positive
and Y7, ¢% = 1. The second partis & = (au,...,ax) where for all v < k, o, > 0 and
Zle oy = 1. The remaining part is (0, ..., 6%, where §(7) is the parameter of the rth Plackett-

Luce component. Then the probability of any partial order O, whose structure is defined by (s, A’),
is

k
Prk'-PLCID = f4 Z PI‘pL O.A’|9 T))

For any partial order O whose structure is (s,.A"), we can also write

PrypL-0(0]0) = ¢4 PripL(0|6) (1)

where Prk_pL(O|§) is the marginal probability of O under k-PL. This is a class of models because
the sample space is different when & is different.

Example 1. Let the set of alternatives be {a1,a2,as,as}. Consider the 2-PL-® M where ® =
{(top-3, A), (top-2, A), (3-way, {a1,as,as}), (choice-3,{ay, az,az})}. ¢ mpB =0.2, (Z)m”Q = 0.1,
¢§’gj“7{137a4} =03, ¢flied L =04,d = [a,a2] = [0.2,08], g = [0.1,0.2,0.3,0.4], 62 =
[0.2,0.2,0.3,0.3]. Now we compute the probabilities of the following partial orders given the model:
01 =ag = ag = ag = ay (top-3), O3 = a4 > a3 > {a1, a2} (top-2), O3 = a3 > a4 > a1 (3-way),
and O4 = ({a1,as, a3}, as) (choice-3 over {ay, as,az}). We first compute Prp (0;]0™M) for all
combinations of j and r, shown in Table

r= r=2
0.2 0.3 0.2 0.3
O, 01+02+03+o4o1+03+0401+04—006 o2+02+o3+0302+03+0302+03 = 0.045
o 01+02+03+04o1+02+03*02 02+02+o3+0302 02+03*013
@) 04— (.3 U3 —(.225
3 01+03+o401+04 02+03+0302+03
O4 01+02+03_05 02+02+03_043

Table 1: Pr(Rj\G(’”)) forallj =1,2,3,4andr = 1,2.



Let Prp(Oj) denote the probability of O; under model M, we have

Pra(0) = loﬁgZaTPr (01]61)) = 0.2 x (0.2 x 0.06 + 0.8 x 0.045) = 0.0096
r=1

Pr(Os) = "’I’QZaTPr (02]6)) = 0.1 x (0.2 X 0.2+ 0.8 x 0.13) = 0.014
r=1

Pry(03) = ¢>" ZaTPr (03]61)) = 0.3 x (0.2 X 0.3 + 0.8 x 0.225) = 0.072

{a?’ as}
r=1

2
Pra((O4) = ¢{3 0> " a, Pr(04]01) = 0.4 x (0.2 x 0.5+ 0.8 x 0.43) = 0.18

{a1,a2,a3}
r=1

4 (Non-)identifiability of 4-PL-®
Let @ = {(l-way, A;)|A; € A, |A;| = I} and el = {(choice-l, 4;)|A; € A, |A| = 1}

The following theorem shows that under some conditions on @, k, and m, k-PL-® is not identifiable.
Theorem 1. Given a set of m alternatives A and any 0 < I3 < m—1,1 < Iy < m. Let
®* = {(top-1, A),.. ., (top-l;, A)} U &' U ... U &=V Given any ® C ®*, and for any
k> (li + 12+ 1)/2, k-PL-® is not identifiable.

We prove that the theorem holds when ® = ®*. See full proof in the appendix. Considering that any
l-way order implies a choice-/ order, we have the following corollary.

Corollary 1. Given a set of m alternatives A and any 0 < i <m-—11<1I3 < m. Let
®* = {(top-1, A), ..., (top-ly, A)} U dchoice-L y U pchoicels - Given any & C ®*, and for any
k> (1 + 13+ 1)/2, k-PL-® is not identifiable.

Given any k, these results show what structures of data we cannot use if we want to interpret the
learned parameter. Next, we will characterize conditions for 2-PL-®’s to be identifiable.

Theorem 2. Let ®* be one of the four combinations of structures below. For any ® O ®*, 2-PL-®
over m > 4 alternatives is identifiable.

(@) ®* = {(10p-3, A)}, (b) &* = {(10p-2, A)} U D>, (c) &* = UL, &, or (d) B* = &,

We first show that for any gi_fl # (52, the distribution over sample space must be different. Then given

q_i we prove that for any (&, 67(1), R 5(’“)), there does not exist another parameter leading to the
same distribution over the sample space. See the full proof in the appendix.

Identifiability for £ > 3 is still an open question and Zhao et al. [33] proved that when k& <
LWT_QJ 1, generic identifiability holds for k-PL, which means the Lebesgue measure of non-identifiable
parameter is zero. We have the following theorem that can guide algorithm design for k-PL-®. Full
proof of Theorem 3] can be found in the appendix.

Theorem 3. Let l; € [m — 1], Iy € [m], and ®* = {(top-11, A), (la-way, A')|A" € A, |A'| = I2}.
Given any ® D ®*, if k-PL over m' alternatives is (generically) identifiable, k-PL-® over m > m/
alternatives is (generically) identifiable when 1, + Iy > m/.

5 Consistent Algorithms for Learning 2-PL-®

We propose a two-stage estimation algorithm. In the first stage, we make one pass of the dataset to
determine ® and estimate ¢. In the second stage, we estimate the parameter 6. We note that these
two stages only require one pass of the data.

In the first stage we check the existence of each structure in the dataset and estimate ¢'3"", ! qSl oY,

¢°h°‘ce ! for any I, A’ and A" by dividing the occurrences of each structure by the size of the dataset.
Formally, for any structure (s, As),
& __ # of orders with structure (s, A;)
W=
n

2



In the second stage, we estimate ] using the generalized-method-of-moments (GMM) algorithm.
In a GMM algorithm, a set of ¢ marginal events (partial orders in the case of rank data), denoted

by E = {&1,..., &}, are selected. Then g moment conditions (O, 0) € RY, which are functions
of a data point O and the parameter g, are desi gned. The expectation of any moment condition is
zero at the ground truth parameter 6*, i.e., E[g(O, 8*)] = 0. For a dataset P with n rankings, we let
G(P,0) = L3 5 p g(0,0). Then the estimate is 6 = arg min [|g(P, 0)||3.

Now we define moment conditions g(O, 5) For any ¢ < g, the ¢-th moment condition g¢;(O, 5)
corresponds to the event &;. Let (s¢,.A;) denote the structure of &;. If O = &,;, we define ¢, (O, 0) =
ﬁ(Prk_pL@ (&:|0) — 1); otherwise g, (O, 6) = % Pripr-o(€:|6). Under this definition, we have

0’ = arg mmZ Prk = @ &‘a) i;ﬁt& )? 3)
Ay

We consider two ways of selecting E/ for 2-PL-<I> gu1ded by our Theorem [2](b) and (c) respectively.

Ranked top-2 and 2-way (¢ = {(top-2, A), (2-way, A')| A’ € A, |A’| = 2}). The selected partial
orders are: ranked top-2 for each pair (m(m — 1) — 1 moment conditions) and all combinations
of 2-way orders (m(m — 1)/2 moment conditions). We remove one of the ranked top-2 orders
because this corresponding moment condition is linearly dependent of the other ranked top-2 moment
conditions. For the same reason, we only choose one for each 2-way comparison, resulting in
m(m — 1)/2 moment conditions. For example. in the case of A = {a1, az, as, a4}, we can choose
E = {a; > as > others,a; > ag > others,a; > a4 > others,as > a; > others,as > ag >
others,as > a4 > others,as > ay > others,asz > ay > others,az > a4 > others,ay > a; >
others, ay > ag = others,a; = as,a1 = ag,a; > a4,a2 > a3z, > G4,03 > a4}.

Choice-4. We first group A into subsets of four alternatives so that a; is included in all
subsets. And a small number of groups is desirable for computational considerations. One
possible way is Gi1 = {ai,a2,as,a4}, G2 = {ai,as,a6,ar}, etc. The last group can be
{a1,am—2,am—1,a,,}. More than one overlapping alternatives across groups is fine. In this
way we have [ 1} groups. We will define ®¢ and E¢ for any group G = {a;,, a;,, @iy, a4, }-

1
Then @ = Uth W<I>C;t and £ = Ur_1 ]EG For any G = {ai,a4,,0is,04,}, o =

{(choice-4, G), (choice-3, G'), (choice-2, G")|G’, G e G,|G'| = 3,|G"| = 2}. E includes all 17
choice-2,3,4 orders. £ = {(G ai, ), (G, alz) (G, a;,), ({azl , alz,ala} ai,)s ({aiy, @iy, Gig }y @iy )y
({ail ) Qg ai4}7 ail)? ({a‘il )y Qg ai4}a ai2)7 ({a’il y Qigs ai4}7 ail)a ({ail y Qigs a’i4}a ais)v ({aizv QAigs ai4}7
ai2)> ({aiz y Qigs ai4}a aia)v ({a'i1 ’ aiz}a iy )’ ({ah ) ai3}7 iy )’ ({ah ) ai4}> iy )’ ({aiz ) aiB}) aiz)’

({aiz y Qiy }v ai2)7 ({azs y Qiy }’ am)}

Formally our algorithms are collectively represented as Algorithm|[I] We note that only one pass of
data is required for estimating ¢ and computing the frequencies of each partial order. The following
theorem shows that Algorithm [I}is consistent when E is chosen for “ranked top-2 and 2-way" and
“choice-4".

Algorithm 1 Algorithms for 2-PL-®.

Input: Preference profile P with n partial orders. A set of preselected partial orders E.
Output: Estimated parameter g'.

Estimate ¢ using ().

For each £ € E, compute the frequency of £.

Compute the output using (3).

Theorem 4. Given m > 4. If there exists € > 0 s.t. forallr =1,2andi =1,...,m, 91(7') € [e, 1],
and E is selected following either of “ranked top-2 and 2-way" and “choice-4", then Algorithm([l]is
consistent.

Proof. We first prove that the estimate of q? is consistent. Let X; denote a random variable, where
X; = 1 if a structure (s¢,.4;) is observed and 0 otherwise. The dataset of n partial orders is

considered as n trials. Let the j-th observation of X be ;. Then we have F [#] = ¢34, which

means as n — 00, # converges to (;Si{'t with probability approaching one.



Now we prove that the estimation of &, 5(1), 62 is also consistent.

—

We write the moment conditions G(P, ) as g, (f) and define

—

g() (9) [gn( )}

Let 6* denote the ground truth parameter. By definition, we have

Lo Pripo(El07)  #of & 1 = # of & -
—E - = (PrisL ~ B2 =6,
o) = p(PEt B EOE oot - B 0

Let Qn(9) = ||g(P, 9)||2, which is minimized at # (the estimate) and define Qo (f) = E[Q,(6)],
which is minimized at 6*. We first prove the following lemma:

Lemma 1. supj_q |Qn(6) — Qo(6)] £ 0

Proof. Recall that any moment condition g(O;, 5) (corresponding to partial order £ where 1 <
t < g) has the from Prk_pL_¢(5t|§) X i where X ; = 1if & is observed from O; and X, ; = 0
otherwise. And also from 7, (9) = G(P,0) = Ly i=1900;, 6), for any moment condition, we have

Therefore, we obtain supg, 170 () — Go(8)]| 25 0.
Then we have (omitting the independent variable 67)
|Qn — Qol =1y G — Go Gol < (G — G0) " (G — o)l + 210 (G — G0

Since all moment conditions fall in [—1, 1] for any § € ©, we have

—

sup |Qn (6) — Qo(8)] & 0.

fco
O

Now we are ready to prove consistency. By our Theorem 2} the model is identifiable, which means
go(0) is uniquely minimized at 8*. Since Qo(0) is continuous and © is compact (HET) € [e, 1] for all
r=0,landi=1,...,m), by Lemma[l]and Theorem 2.1 by Newey and McFadden [25], we have
g L 6+, O

6 Experiments

Setup. We conducted experiments on synthetic data to demonstrate the effectiveness of our algorithms.
The data are generated as follows: (i) generate v, /1), and (2) uniformly at random and normalize
top-1

s.t. Ez 1 l(r) = 1 for r = 1,2; (ii) generate linear orders using k-PL-linear; (iii) choose ¢ 1,

qSl o, and ¢°h°‘°e ! and sample partial orders from the generated linear orders. The partial orders are
generated from the following two models:

top-2 ¢2 way _

e ranked top-2 and 2-way: ¢~ = 3, = m(m 1y for all A" C Aand |A'| = 2;

e choice-2, 3, 4: first group the alternatives as described in the previous section. Let C' =
(mT’l] be the number of groups. We first sample a group uniformly at random. Let AW be
the sampled group (of four alternatives). Then %’;ﬁe 4 = L2 for each subset A®) C A®W
of three alternatives (four such subsets within A% ¢°h"‘°e 3 = 528, for each subset

A®) c A® of two alternatives (six subsets within A 4)) ngCh‘”CC 2 =



Besides, we tested our algorithms on linear orders. In this case, all partial orders are marginal events

of linear orders and there is no qg estimation. Our algorithms reduce to the standard generalized-
method-of-moments algorithms.

The baseline algorithms are the GMM algorithm by [33] and ELSR-Gibbs algorithm by [16]]. The
GMM algorithm by [33] is for linear order, but it utilizes only ranked top-3 orders. So it can be viewed
as both a linear order algorithm and a partial order algorithm. We apply ELSR-Gibbs algorithm
by [[16] on “choice-2,3,4" datasets because the algorithm is expected to run faster than “ranked top-2
and 2-way" dataset.

All algorithms were implemented with MATLABE] on an Ubuntu Linux server with Intel Xeon
E5 v3 CPUs each clocked at 3.50 GHz. We use Mean Squared Error (MSE), which is defined as
E[||6" — 6*||2], and runtime to compare the performance of the algorithms. For fair comparisons with
previous works, we ignore the q/_)' parameter when computing MSE.

0.30

I ¢ Top-3 (Zhao et al., 2016) ¢ Top-3 (Zhao et al., 2016) L
i 1 Top-2 and 2-way, linear 6 1 Top-2 and 2-way, linear &
0.25 ¥ Top-2 and 2-way, partial ¥ Top-2 and 2-way, partial
1 { # Choice, linear 5 # Choice, linear L]
§ Choice, partial § Choice, partial
0.20 ¥ bt I # ELSR-Gibbs (Liu et al., 2019) _ & ELSR-Gibbs (Liu et al., 2019)
. . w4
¥ - H et L
w [ F ] W L] [] =
Lo1s ' ? ¥ ! } ~ E .
i ¥ i | b £3
 { 3 i =4 .
0.10 2 -
3 .
.
] . i o= ¥
oos{ * . ¥ T & s & 5 & il o » W w « o ®
i N = . . x . ® H . . i i - . * - 2
o 3 L s L : i B i ] H L H . .
)
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
n (rankings) n (rankings)

Figure 2: MSE and runtime with 95% confidence intervals for 2-PL over 10 alternatives when n
varies. “Choice" denotes the setting of “choice-2, 3,4". For ELSR-Gibbs [[16], we used the partial
orders generated by “choice-2, 3, 4". One linear extension was generated from each partial order and
three EM iterations were run. All values were averaged over 2000 trials.

Results and Discussions. The algorithms are compared when the number of rankings varies (Fig-
ure[2). We have the following observations.

e When learning from partial orders only: “ELSR-gibbs [[16]" is much slower than other
algorithms for large datasets. MSEs of all other algorithms converge towards zero as n
increases. We can see “top-2 and 2-way, partial” and “choice, partial" converge slower than
“top-3". Ranked top-/ orders are generally more informative for parameter estimation than
other partial orders. However, as was reported in [34], it is much more time consuming for
human to pick their ranked top alternative(s) from a large set of alternatives than fully rank a
small set of alternatives, which means ranked top-/ data are harder or more costly to collect.

e When learning from linear orders: our “ranked top-2 and 2-way, linear" and “choice-2, 3, 4,
linear" outperform “top-3 [33]" in terms of MSE (left of Figure [2), but only slightly slower
than “top-3 [33]" (Figure 2] right).

7 Conclusions and Future Work

We extend the mixtures of Plackett-Luce models to the class of models that sample structured partial
orders and theoretically characterize the (non-)identifiability of this class of models. We propose
consistent and efficient algorithms to learn mixtures of two Plackett-Luce models from linear orders
or structured partial orders. For future work, we will explore more statistically and computationally
efficient algorithms for mixtures of an arbitrary number of Plackett-Luce models, or the more general
random utility models.

'Code available at https://github. com/zhaozb08/MixPL-SPQ


https://github.com/zhaozb08/MixPL-SPO
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