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Abstract

We propose a cost-effective framework for
preference elicitation and aggregation under
the Plackett-Luce model with features. Given
a budget, our framework iteratively computes
the most cost-effective elicitation questions in
order to help the agents make a better group
decision.

We illustrate the viability of the framework
with experiments on Amazon Mechanical
Turk, which we use to estimate the cost of
answering different types of elicitation ques-
tions. We compare the prediction accuracy of
our framework when adopting various infor-
mation criteria that evaluate the expected infor-
mation gain from a question. Our experiments
show carefully designed information criteria
are much more efficient, i.e., they arrive at the
correct answer using fewer queries, than ran-
domly asking questions given the budget con-
straint.

1 INTRODUCTION

Consider the hiring decision problem [Bhattacharjya and
Kephart, 2014]. With the aid of an intelligent system,
a group of people (the key group) faces a hiring deci-
sion about many candidates who are characterized by at-
tributes, such as experiences, technical skills, commu-
nication skills, etc. The goal is to help the key group
make a group decision without directly eliciting their full
preferences over all candidates, which is often infeasi-
ble given the vast number of candidates. Instead, the in-
telligent system may ask fellow employees (the regular
group) about their preferences in order to learn about the
key group’s preferences. How can the intelligent system
decide which member in the regular group to ask and
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which questions to ask? Note that we discuss the pres-
ence of two groups but our framework is applicable when
there is only one group of decision makers as well.

This example illustrates the preference elicitation prob-
lem, which has been widely studied in the field of recom-
mender systems [Loepp et al., 2014], healthcare [Cha-
jewska et al., 2000, Weernink et al., 2014, Erdem and
Campbell, 2017], marketing [Huang and Luo, 2016], sta-
ble matching [Drummond and Boutilier, 2014, Raste-
gari et al., 2016], combinatorial auctions [Sandholm and
Boutilier, 2006], etc. Most previous works studied a spe-
cial case of the aforementioned scenario, in which the
regular group is the key group. The objective of pref-
erence elicitation is to achieve some goal using as few
samples (data) as possible. A common approach is to
adaptively ask questions that maximize expected infor-
mation gain, measured by some information criteria.

Moreover, most previous work focused on specific types
of elicitation questions, e.g. pairwise comparisons. In
this paper, we consider a more general framework that
asks a variety of elicitation questions and can accom-
modate one or more groups. The diversity of elicita-
tion questions enables us to query cost-effectively. In-
tuitively, an agent’s preference order over 10 alternatives
tells us more about her preference in general than just
her top choice among the 10; however, it may take her
longer to do so. The key question we want to answer in
this paper is:

How can we compute the most cost-effective questions
for preference elicitation under resource constraints?

1.1 OUR CONTRIBUTIONS

We propose a flexible cost-effective preference elici-
tation and aggregation framework to predict a single
agent’s preference or help make a group decision. The
main inputs include a budget W, a set of designs
(i.e. questions to ask) H, a cost function w, a randomized



voting rule and an information criterion. We model non-
deterministic preferences using the Plackett-Luce model
with features.

Cost-effectiveness. We propose a flexible, cost-effective
preference elicitation framework that accommodates all
randomized voting rules, ranking models, and informa-
tion criteria. This iterative framework leverages the op-
timal design technique. In each iteration, we choose the
question that provides the most information per unit cost.
The response is then recorded as a data point, leading to
an update of the posterior distribution of the parameter,
which is treated as the prior for the next iteration. In any
iteration, the posterior estimate of the parameter can be
used to compute a winner distribution using a random-
ized voting rule. This procedure is illustrated in Figure 1.
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Figure 1: Illustration of the proposed framework.

Randomized Voting Rules. We use randomized voting
rules to compute the winning alternatives of a group deci-
sion, which outputs the distribution of winners (see Sec-
tion 4 for details). The probability for each alternative
to be the winner is proportional to its score based on the
voting rule. These probability estimates are more infor-
mative than only recommending a winner as it provides
a distribution over the candidates as well.

We prove that when people have non-deterministic pref-
erences, the probability of an alternative to be the winner
is proportional to the total expected score of this alterna-
tive for all agents (Theorem 1). This means the random-
ized counterpart of any scoring rule can be used in our
framework as long as the expected score of each alterna-
tive for a single agent is easy to compute. Then we prove
that under the Plackett-Luce model, the winner distri-
butions of probabilistic plurality and probabilistic Borda
are easy to compute (Corollary 1 and Theorem 2).

Information Criteria. An information criterion plays a
key role in determining the next elicitation question by
measuring the information in the distribution of a pa-
rameter. We propose the minimum pairwise certainty

(MPC) criterion, extended from the information crite-
rion by Azari Soufiani et al. [2013], which maximizes
the improvement of the least certain pairwise compari-
son. Other commonly-used information criteria include
D-optimality [Wald, 1943, Mood et al., 1946] and E-
optimality [Ehrenfeld, 1955], as well as asking a ques-
tion uniformly at random. All these information crite-
ria are based on the information of the posterior distri-
bution of the model parameter, which is approximated
by its asymptotic distribution, a multivariate Gaussian
computed based on the composite marginal likelihood
method [Pauli et al., 2011].

Empirical Studies & Experiments. We carry out Ama-
zon Mechanical Turk experiments to estimate the cost
of answering various types of questions for a target do-
main of ranking hotels. We compare the performances
of MPC, D-optimality and E-optimality with simulations
and observe that these criteria have similar performance
in terms of prediction accuracy, and we observe that all of
them significantly outperform random elicitation ques-
tions.

1.2 RELATED WORK AND DISCUSSIONS

Our work is related to cost-effective experimental de-
signs, which were investigated by Wright et al. [2010],
Volkov [2014] in the context of aquatic toxicology and
drug development, respectively. Volkov [2014] mod-
eled cost-effectiveness as different types of optimization
problems, e.g., minimize cost under information con-
straints. We take a greedy approach, similar to an algo-
rithm proposed by Wright et al. [2010], and choose the
design (elicitation question) that maximizes the expected
information gain per unit cost. Our cost varies depend-
ing on the type of questions and is estimated empirically,
similar to the idea in Volkov [2014]. To our best knowl-
edge, this paper is the first work to apply cost-effective
experimental design to preference elicitation.

The greedy approach is also called one-step-lookahead
policy, which can be arbitrarily worse than optimal ¢-
step-lookahead (¢-step myopic active search) policies for
t > 2 [Garnett et al., 2012]. Arbitrary ¢-step myopic ac-
tive search is hard to compute, as was shown by Jiang
et al. [2017], which also proved that nonmyopic active
search is computationally hard even to approximate and
proposed an efficient searching algorithm. This algo-
rithm is potentially useful in the preference elicitation
context and is an interesting future direction.

Most previous works in preference elicitation assumed
that people’s preferences are deterministic. For exam-
ple, Bhattacharjya and Kephart [2014] proposed an even
swap algorithm to reveal a single decision maker’s most



preferred alternative; Lu and Boutilier [2011a], Kalech
et al. [2011] elicited preferences from a group of people
in order to make a group decision under a (deterministic)
voting rule. In contrast, we consider non-deterministic
preferences of people, which is often the case in real-
world. Moreover, we use randomized voting rules, which
output the probability of each alternative to be the win-
ner. These probabilities, which can be viewed as normal-
ized scores over all alternatives, provide a quantitative
measure of the quality of each alternative. For example,
an alternative that wins with probability 0.8 can be seen
as being much better than other alternatives.

Non-deterministic preferences were modeled by general
random utility models by Azari Soufiani et al. [2013].
They proposed a preference elicitation framework for
personalized choice and social choice (aggregated pref-
erence). We use the Plackett-Luce model with features,
which is a special case of general random utility mod-
els but has easy-to-compute probabilities. More impor-
tantly, we use randomized voting rules for aggregation,
which is very different from parametric modeling of so-
cial choices employed by [Azari Soufiani et al., 2013].

Pairwise elicitation questions may be the most widely ex-
plored in the literature due to their simplicity [Branke
et al., 2017, Eric et al., 2008, Houlsby et al., 2012, Lu
and Boutilier, 2011a, Pfeiffer et al., 2012]. In contrast,
Azari Soufiani et al. [2013] focused on elicitation of full
rankings, though their proposed framework also allows
for partial orders. Drummond and Boutilier [2014], Lu
and Boutilier [2011b] studied a larger set of queries,
which includes asking a person to rank her top k choices
over all alternatives. In this paper, we consider an even
broader set of queries, asking an agent to rank her top
k choices over a subset of [ alternatives (k < [). This
enables us to elicit preferences in a more cost-effective
manner.

As a key role in preference elicitation, information cri-
teria have been widely investigated for different ap-
plications.  Standard information criteria include D-
optimality (used in [Houlsby et al., 2011, 2012, Pfeiffer
et al., 2012]) and E-optimality. Drummond and Boutilier
[2014] and Lu and Boutilier [2011a] use minimax-regret-
based criterion for stable matching and aggregation re-
spectively. Azari Soufiani et al. [2013] proposed yet an-
other criterion, defined on the certainty of the least cer-
tain pairwise comparison over the intrinsic utilities (part
of the parameter of their general random utility models)
of all alternatives. Our MPC criterion extends the crite-
rion by Azari Soufiani et al. [2013]. To predict a single
agent’s top k preference, we search over a subset of all
pairwise comparisons (see Section 3.3). To help make a
group decision, we search over all pairwise comparisons

of all agents in the key group to find the least certain
pairwise comparison (Equation (3)).

2 PRELIMINARIES

Let A = {a1, as,...,a,} denote a set of m alternatives
and {1,...,n1,n1 + 1,...,n1 + na} denote ny + ngy
agents, where the first n; agents belong to the key group,
who will be making a group decision. The remaining ny
agents belong to the regular group. Forall: = 1,...,m,
a; is characterized by a real-valued column vector of K
attributes z;. Forall j = 1,...,n1 + no, agent j is char-
acterized by a real-valued column vector of L attributes
Z;. A full ranking R is often denoted by a;, > a;, >

. > a4, , where “>" means “is preferred over”. We
denote the budget by W, where the money is used to pay
the agents for answering elicitation questions.

For n; = 1, we want to predict the single key agent’s
full or top k ranking with as much certainty as possible
given a budget W. For ny > 2, the goal is to predict the
winning alternative of the key group by eliciting prefer-
ences from the regular group in the most cost-effective
way. More concretely, given W, we want to output a
distribution of winning alternatives, w.r.t. a randomized
voting rule, which will be defined in Section 4.

2.1 THE PLACKETT-LUCE MODEL WITH
FEATURES

Let the parameter B = [b,,]kx, be a matrix of real-
valued coefficients, transforming features to utilities.
Each value b,;, corresponds to the x-th attribute from an
alternative and ¢-th attribute from an agent. The param-
eter space O is a set of all real-valued K x L matrices.
Then the utility of an alternative a; to an agent j is

uj; = & B (1)

For any agent j and any full ranking R; = a;, > a;, >~
... > a,,, the probability of I2; is

exp(uj;,) exp(uj;,)
P exp(ugi,)  3oalo exp(uji,)
exp(Ujiy, . )
exp(wji,,_, ) +exp(uji,, )

Pr(R;) =

Given the Plackett-Luce model with features, the prob-

ability of alternative a;, to be ranked at the top among
) exp(ujiq ) .
{ai,,.. T, exp(ugy)” Specifically,
for any two alternatives a; and a9, the probability of
exp(u;1)
exp(uj1)+exp(ujz)”

.,a; } by agent j is

aj > ag by agent j is



2.2 ONE-STEP BAYESIAN EXPERIMENTAL
DESIGN

Given any probabilistic model parameterized by B € ©
and any prior distribution 7(B), a one-step Bayesian ex-
perimental design consists of two parts: (i) a set of de-
signs H, where each h € H is composed of an agent
and a question; (ii) an information measure G(-), which
maps any distribution of B over O to a real-valued scalar:
a measure of information in this distribution.

For any design h € H, the distribution of responses
can be computed using the ground truth parameter B*.
We use D to denote the set of all possible responses.
Given a ground truth parameter B*, the probability of
any data d € D can be computed as Pr(d|h). Fur-
ther, we can compute the posterior distribution of pa-
rameter 7(B|d, h) over the parameter space © and the
corresponding information criterion G(7(B|d, h)). The
expected information is

E[G(n(B|h)] = > G(x(B|d, h)) Pr(d|h),

deD
where the expectation is taken over all possible re-
sponses. The goal is to find the design h that maximize
the expected information gain, which is E[G(w(B|h)] —
G(7(B)), per unit cost. Let w(h) denote the cost func-
tion, which maps the 2-tuple (agent, question) to a posi-
tive cost. Given the cost function w(h), we can compute
the optimal design h* that maximizes the expected infor-
mation gain per unit cost by

E[G(x(B|h))] - G(n(B))
w(h) '

h* = arg max
h

2

3 COST-EFFECTIVE PREFERENCE
ELICITATION

In our proposed framework, we iteratively adapt the one-
step experimental design by querying the most cost-
effective question in each iteration. At any iteration ¢,
the prior distribution of B is the posterior distribution
given data D', i.e. w(B'|D?'). Given this posterior, we
find the most cost-effective design h?, which consists of
one agent and one question, and query h’. The response
is combined with D? to form D'*!. Then the budget
W and the set of designs H are updated before going to
the next iteration. Finally, when n; = 1, we compute
the predicted preference of this agent; when ny > 2, we
compute the distribution of winners based on a random-
ized voting rule. This framework is formally illustrated
in Algorithm 1.

For the rest of this section, we will explain how to ap-
proximate the posterior distribution 7(B*|D*) and how
G(m(B)) is computed.

Algorithm 1 Cost-Effective Preference Elicitation
Input: Budget W, randomize voting rule r, cost function
w(h), information criterion G(7(B)), the set of designs
H where forany h € H, w(h) < W.

Output: A predicted preference when n; = 1 or a dis-
tribution of winning alternatives for group decision when
nq > 2.

Initialization: Randomly initialize data D'.

while H is not empty do
Compute/approximate 7(B*|D?);
Compute h' € H using (2);
Implement k! (query an agent a question). Let R’
denote her answer. Then D'+ « D'U{R!}, H +
H—ht, W+ W —wh;
Remove all h'’s from H where w(h') > W.
end while
Compute the predicted preference when n; = 1 or
a distribution of winning alternatives according to the
voting rule » when n; > 2.

3.1 APPROXIMATION OF POSTERIOR
DISTRIBUTION

For any prior 7(B) and data D, the posterior distribu-

tion is given by w(B|D) = %
ing to Bayes’ rule. This posterior is often hard to com-
pute. A commonly-used approach is to approximate it by
its asymptotic distribution, which is a multivariate Gaus-
sian distribution characterized by the composite marginal

likelihood (CML) method [Pauli et al., 2011].

accord-

For convenience we vectorize B as a column vector, de-
noted by 5 = vec(B). The composite marginal like-
lihood method [Lindsay, 1988, Zhao and Xia, 2018]
computes the estimate of the ground truth parameter
from marginal events, e.g., pairwise comparisons. Let
{&1,...,&;} denote ¢ selected marginal events. Then
the composite marginal likelihood method computes the
estimate ECML by

q
Bomr. = arg max CLL(f) = arg rpaxz In Pr(&,|6),
BEO BE® Y

where CLL(S) denotes the composite log-likelihood
function. Under our Plackett-Luce model with features,
CLL(5) is twice differentiable forall 3 € ©, i.e. J(f) =
—V%CLL(E) exists. From Pauli et al. [2011], asymp-

totically, 7 ( B|D) is a multivariate Gaussian distribution,
whose mean is BCML and covariance matrix is J ().

Computing J(8 ) requires computation of second order
partial derivatives of In Pr(&)|3) for all \. We will show
the close-form second order partial derivative formula for



any response from an agent.

3.2 THE SET OF DESIGNS

Each design i € H is a combination of an agent and a
question about her preferences. The agent can be anyone
from {1,...,n1 4+ n2}. In this paper, for simplicity, we
consider the case where only the agents from the regular
group {n1 + 1,...,n1 + na} are queried. For any inte-
gers k < | < m, we may ask an agent to rank her top
k alternatives over a subset of [ alternatives. When k =
1,1 = 2, the question is a pairwise comparison; when
k = 1,1 > 2, the question is to query an agent’s top al-
ternative among a subset of alternatives; when k = [ — 1,
we are asking a full ranking over a subset of alternatives.
The advantage of this type of questions is that the prob-
abilities of responses of these questions are easy to com-
pute, as well as their partial derivatives. W.l.o.g. let R; =

aj > ag > ... > aj > others be the answer from agent

. ) o k exp(ujp)

Jj- Then we have Pr(R;|B) =[], T, ()’ and
l

InPr(R;|B) = Zp (ujp —Ind 55 exp(uyi)).

Forany 1 < x < Kand 1 < < L, let b, be the (k, ¢)
entry of B. We have

l Ouj;
_ Zy peXP(uﬂ)aZJ

d1nPr(R;|B) z’“: O
Dttt Sl A (

l
by, p=1 br Zizp exp(u;p)
Oujp 8u]1
where o and are constants (products of an

agent’s attribute and ‘an alternative’s attribute) by defi-
nition. Therefore, for diagonal entries, the second order
partial derivatives are given by

9*InPr;(R|B)
ob2, N

i, o) G
pzzjl(( >, exp(uji) 2
T exp(uj»(’;';—;f)?)

l
Zp:l eXp(Ujp)

and for non-diagonal entries, we have

0?InPr;(R|B)
(')bNl " 8b,€2b2

Ouj; l Ouj;
_Z 1 peXp(uJZ)a :JLl)(Zz pexp(uﬂf)ab?;2)
(i, €4t)?
l Ouj; Ou;i
Zz peXpuﬂ(abuj )( . )

> iy exp(us) )

3.3 INFORMATION CRITERIA

An information criterion maps the distribution of a pa-
rameter to a real-valued quality. Standard information

criteria are mostly directly computed from the covari-
ance matrix .J~*(f) or its inverse .J(f). For example,
D-optimality [Wald, 1943, Mood et al., 1946] computes
the determinant of J( 5 ); E-optimality [Ehrenfeld, 1955]
computes the minimum eigenvalue of J (B) We pro-
pose the following minimum pairwise certainty (MPC)
criterion by extending the criterion from [Azari Soufiani
et al., 2013] to our domain.

MPC for Case n; = 1. We consider two types of pur-
poses: predicting the agent’s (unordered) top k alterna-
tives and predicting the agent’s ranked top k alternatives.
We note that the criterion by Azari Soufiani et al. [2013]
only applies to full rankings, which is a special case of
our ranked top k. The intuition of this criterion is to max-
imize the certainty of the least certain pairwise compari-
son among a subset of pairwise comparisons. Formally,
let A;, denote the set of predicted top k alternatives for
this key agent.

e Unordered top-k where 1 < k < m:

7 - |mean (uys, — v, )|
G(m = in .
(=(8)) i1€An,iag A std(ugs, — u14,)
e Ranked top-k where 1 < k < m:
Grn(F) = , |mean (w1, — uis,)|
11 €EAL,I2701 Std(U1i1 - Ulig)

In the above equations, mean(u;;,
— uj;,) is computed using the
L(3) as follows.

— uj;,) is computed
using Semr, and std(wj;,
approximated covariance matrix J—

Because wuj;, — wuji, is linear with 3 (see Equa-
tion (1) and recall that § is the vectorization of B),
we write it as uj; — Uji, ZmLCMbM, where
ck,’s are constants computed from attributes of a;,, a;,

and agent j. Then we have std(uj;, — wuj,) =

\/Z(m,bl),(@,bz)Cmucmtzcov(bm,mbnwz)- When
K1 = Ko = kK and ¢v1 = 13 = ¢, Cov(bk, ,,,bx, ., ) Te-
duces to Var(b,). Both Cov(by, ,,,bx,,.,) and Var(by,)
are entries of J~1(3).

MPC for Case n; > 2. Our MPC for this case is differ-
ent from the criterion by Azari Soufiani et al. [2013] in
that we find the least certain pairwise comparison across
all agents in the key group. Formally, our MPC for
ni > 21is

= |mean(uji — Uj; )l
G(m = LI (3)
(m(5) je{ly i bioin  Std(wjs, — Wjs,)
where the computation of mean(uj;, — u;;,) and

std(uj;, — uj;,) are similar to the n; = 1 case.



4 RANDOMIZED VOTING RULES

We use randomized voting rules to aggregate the key
group’s preferences. A randomized voting rule com-
putes the distribution of winners given the preferences of
the agents from the key group. Under non-deterministic
preferences, this distribution can be computed from the
parameter of the model. This section shows that under
the Plackett-Luce model with features, probabilistic plu-
rality and probabilistic Borda are easy to compute.

A randomized voting rule assigns a probability for each
alternative to be the winner according to the data, usu-
ally based on a scoring function. For example, the prob-
abilistic plurality rule, which is equivalent to random
dictatorship [Gibbard, 1977], samples a winner from a
distribution where the probability of each alternative be-
ing the winner is proportional to the plurality score of
this alternative. Other randomized voting rules can be
defined similarly, including probabilistic Borda [Heckel-
man, 2003]. The voting rule must have scores associated
with it, but this is a very mild restriction because many
commonly-studied voting rules including all positional
scoring rules, Copeland, range voting, and approval vot-
ing, have randomized counterparts.

Recall that n; agents are making a group decision among
m alternatives. Let P denote the preference profile that
consists of n; full rankings over m alternatives from the
key group. Let s, (a;, P) denote the score of alterna-
tive a; under voting rule  and Pr,.(a;|P) be the prob-
ability for a; to win under the randomized analogy of r
given P. Then Pr,(a;|P) is computed by Pr,(a;|P) =
sp(a;,P
Z:’;l(sr(ai),P) ’

Example 1 Suppose the set of alternatives is
{a1,a2,a3} and the votes are {a1 > ay = az,a; >
as > ag,az = ay > as}. The plurality and Borda
scores are shown in Table 1. Under probabilistic plural-
ity rule, a1 wins with probability 2/3 and ay wins with
probability 1/3. Under probabilistic Borda, ai,as,as
win with probabilities 5/9,3/9, 1/9 respectively.

aq as as
plurality | 2 1
Borda 5 3 1

Table 1: Scores under plurality and Borda

We consider non-deterministic preferences from agents,
where the preferences from the key agents are indepen-
dent of each other. Because each agent has m/! possible
rankings, there are (m!)™* possible preference profiles.

Then we have Pr,(a;) = S2\™)"" Pr(P,) Pr, (a;| Py),

where P, denotes the g-th possible preference profile.

Given a voting rule 7, let X;; be the score of a; for agent
j. Xj; is a random variable due to the uncertainty of
agent j’s preference. The following theorem shows that
the probability of a; being the winner is proportional to
the sum of expected score of a; for each agent.

Theorem 1 Forany 1 <i <m, Pr,(a;) x Z?l EX;;.

Proof: It suffices to prove Pr,.(a1) o< 37" EX 1.

By definition, Pr,(a1) = ™" Pr(P,) Pr,(a1|P,).
Let S denote the score of a; under rule ». Then S is
a random variable defined over the (m!)™ cases. Let s,
denote the value that S takes for case ¢. In any case g, we
have Pr,(a;|P,;) o< s4 by the definition of randomized
voting rules. We re-write it as Pr,(a1|P;) = 3%, where
M is the normalization factor. Observe that across all
the (m!)™ cases, M does not change because the voting
rule r and the set of agents does not change. So we have

()™ prp s
e oy = S Pl

(mh)™

x Y Pr(P,)s, = ES. 4)
q=1

Since S = Z;’;l X1, due to linearity of expectation,
we have ES = E[377, Xj1] = 37" EXj1. By 4),
we have Pr,(a1) o< 327" EXj. [ |

For probabilistic plurality, the expected score of a; for
agent j is exactly the probability of a; being ranked at
the top by agent j. So we have the following corollary:

Corollary 1 Let pj be the probability of a; being
ranked at the top by agent j. For any 1 < ¢ < m,
Prouratiny(@i) = i Z:“ P

Theorem 2 Let p?i>_a'i' denote the probability for agent
j to prefer alternative a; over a;. Then for any 1 <1 <

m, PrBorda(ai) X Z;ll Zil;ﬁl p?i>al,'

Proof: Foranyi € {1,...,m}, we have Prpoa(a;) x
Z?l EX;; by Theorem 1, where X ;; here denotes the
score of a; for agent 5 under Borda. We only need to
prove EXji = 3., p?'i>ai'. This is a known result,
but we were not able to find a formal proof in literature,
except a proof for three alternatives by Chen and Heck-
elman [2005], which is easy to be extended for arbitrary
number of alternatives. For completeness we provide a
short proof.

By definition of Borda, we have EX;; = 321! (m

k) ZR:ai at kth position of R Prj (R)’ where R is any full



ranking over the m alternatives and Pr;(R) is the proba-
bility of R by agent j. Imagine m — 1 bins, each of which
is labeled with a; > a, for all the remaining m — 1 a;/’s.
Observe that there are m — k copies of Pr;(R) for all
R where a; beats exactly m — k other alternatives. We
can distribute the m — k copies to the m — k bins (one in
each) for all a;’s that are ranked after a;. We do this for
all possible rankings and in the end, each bin labeled by
a; > a; gets the probabilities of all rankings compatible
with a; > a; . This finishes the proof. |

We note that for the Plackett-Luce model, p;“s and

4i7%"g are easy to compute (see Section 2.1).

p]
S EXPERIMENTS

We first introduce an example of empirically estimating
the cost of asking different types of questions on MTurk.
Then, we show the result of a simulation of cost-effective
preference elicitation using synthetic data.

Rank the options, then ¢

| 3.80f5.0| $116 | 25 min | 54 min

2 | 3.90f5.0] $125 | 7 min | 32 min |
3 | 4.40f5.0|$179| 5 min | 35 min |
‘ |

| 3.90f5.0] $101 | 50 min | 4 min

5
| 3.90f5.0|$112 |42 min| 16 min

6 | 4.40f 50| $249 | 8 min | 41 min
7 | 4.30f5.0|$102 | 9 min | 28 min
8 | 4.10f5.0| $143 | 6 min | 40 min
9

| 3.20f 5.0| $100 | 46 min | 10 min

10 | 470f5.0|$164 | 4 min | 32 min

Figure 3: The user interface for a Turker to submit her
ranked top 4 over 10 alternatives. The attributes are av-
erage ratings, prices per night, time to Times Square, and
time to the nearest airport.

5.1 ESTIMATING w(h)

We recall that a question is defined by a pair of parame-
ters (k, 1), where [ is the number of alternatives that are
presented to an agent and k is the number of alternatives
that the agent is asked to rank at the top k positions.

In order to map the question types to the time to an-
swer them, we run 2 experiments with multiple tasks
on MTurk. Each task required MTurk workers to report
their preferences over a set of hotels. We recorded the
time they spent on each task, in order to learn such map-
ping in the following two cases:

e k,1 €12,10], k = [ — 1: full rankings;

e i €[1,10],1 = 10: ranked top k alternatives over 10.

Experiment Setting. For the first case, we looked for
information on the first 54 Hotels in New York City in
alphabetical order. We split the 54 randomly into 9 sets,
each containing 2, 3, ..., 10 hotels. We then showed the
9 sets to MTurk workers, randomizing the order of the
9 sets as well as the initial display order of alternatives
within each set, and asked them to rearrange by drag-
and-dropping the alternatives according to their prefer-
ences. The alternatives were anonymous and represented
by 4 attributes: average guest rating on a popular travel
website, price per night, time to Times Square and time
to the nearest airport.

For the second case, a separate experiment is run with
another 10 sets of NYC hotels, drawn randomly again
from the first 100 hotels in NYC in alphabetical order.
In each task, we placed a horizontal green bar under-
neath the alternative above which are the k alternatives
of interest. We instructed the MTurk workers before the
experiment started that only the alternatives above the
green bar would count, i.e. only needed to rank-order
top-k. All of these were done with goal of minimizing
the overhead time for workers to understand the instruc-
tion so that the recorded time accurately reflect the time
of decision-making. An example of the UI is show in
Figure 3, where we asked Turkers to rank-order her top-
4 favorite hotels over a set of 10.

The following analysis is made possible by responses
from 408 MTurk workers (202 for the first case and 206
for the second).

Experiment Results. Although Volkov [2014] consid-
ered both linear and quadratic cost function and argued
for the superiority of the latter, for simplicity, we per-
form a linear regression on the dataset to obtain a linear
cost function. We regress the time to rearrange the al-
ternatives and submit a full ranking on the number of
alternatives in the set. We find that, on average, the time
a Turker spent on rank-ordering a full ranking over [ al-
ternatives is tg—; = 5.33[ (Figure 2 left), and that on
rank-ordering her top-k alternatives over 10 alternatives
is top-t, = 1.38k + 32.25 (Figure 2 right). In addition,
the 408 workers spent an average of 341.5 seconds on the
tasks and were each paid $0.3. Therefore, the monetary
cost of elicitation on average is w = 0.00088¢, which
correspond to an hourly wage of $3.16.
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Figure 2: The left subfigure shows the average time a user spent to submit a full ranking over 2, . . ., 10 alternatives; the
right subfigure shows the average time a user spent to give her ranked top 1, ..., 10 alternatives when 10 alternatives

were proposed.

Combining these two functions with the hourly wage, we
propose the following cost functions, which estimates
the cost (in USD) of elicitation about hotel preferences
given 4 alternative attributes: wg—; = 0.0047] and
Wiop—r = 0.0012% + 0.028. We observe that the time
a user spent is not very sensitive to k. This is sensible, as
when a MTurk worker ranks her top &k choices, she may
follow the following procedure: 1. read the descriptions
of all hotels, 2. form their preferences, and 3 choose top
k. Step 1 and 2 do not depend on k and dominates the
time for step 3, as illustrated in the right figure of Fig-
ure 2. This suggests that when a fixed number of alter-
natives is proposed to an agent, it’s likely that the most
cost-effective question to ask is a full ranking, as we will
see in the next subsection.

5.2 COST-EFFECTIVE PREFERENCE
ELICITATION

We demonstrate the viability of our cost-effective frame-
work and compare performances of different information
criteria on synthetic data.

Synthetic Data. We randomly generated 10 alterna-
tives, each of which has 3 attributes, independently nor-
mally distributed N (0, 1). We then randomly generated
5 agents that forms the key group and 20 the regular
group. Each agent also has 3 attributes, independently
normally distributed N(0,1). B was generated from
Dirichlet distribution Dir(f). The result is averaged over
400 trials.

To echo the motivating example from the beginning of
this paper, we simulated the process of eliciting key
group’s preference by asking agents in the regular group
questions. For simplicity, we consider 3 types of ques-

tions, represented in (k,1): (1,2), (1,10) and (9, 10).
We run Algorithm 1 using 3 different information crite-
ria: D-Optimality, E-Optimality, and the proposed MPC.
The three elicitation processes utilized the cost function
estimated in Section 5.1. They were initialized with the
same set of 50 randomly generated pairwise comparisons
and was given a $0.9 budget. Agents’ answers to the elic-
itation questions are generated from the Plackett-Luce
model.

Metrics. We use total variation distance to measure the
difference between the winner distributions computed
from the ground truth parameter and the estimates, de-
noted by ¥* and i respectively. The total variance dis-
tance is defined as 6 (¢*, ) = 1 "7 |[0* (a;) —(as)).
To plot the results, at each cost w, we used the data point
that is below w but closest to w in each trial. These points
were averaged over all trials.

Observations. We observe that for both probabilistic
plurality and probabilistic Borda, the performances of
MPC, D-optimality, and E-optimality are similar, all of
which significantly outperforms random elicitation ques-
tions (see Figures 4). For example, for probabilistic plu-
rality and probabilistic Borda, at the budget of 0.85 dol-
lars, MPC achieves 15% less total variation distance than
that of random elicitation questions. As another exam-
ple, to achieve the total variation distance of 0.064 under
randomized plurality (respectively, randomized Borda),
MPC uses 20% (23.5%) less money than that of random
elicitation questions.

We also observe that D-optimality almost always choose
a full ranking as the most cost-effective question, while
MPC tends to choose more full rankings than pairwise
comparisons at early stages (see Figure 5). Due to the
budget limit, many trials finish after 19 iterations because
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they only query full rankings. Others finish at different
iterations. The distribution of types of questions for E-
optimality is similar to MPC. Under all criteria except
random, [ = 10, k = 1 questions were rarely asked.

Discussions. The meaning of cost-effectiveness in this
paper is twofold: (1) in the preference elicitation pro-
cedure, we ask elicitation questions that is expected to
provide more information per unit cost; and (2) the pres-
ence of regular group gives us a belief on the key group’s
preferences inexpensively. As we have seen in our ex-
periments, a budget of $0.9 gives us a reasonably good
estimate of the key group’s preferences by querying the
regular group.

6 CONCLUSIONS AND FUTURE
WORK

We proposed a flexible and cost-effective framework for
preference elicitation that can be adapted for any ranking

model, any information criterion, and any set of ques-
tions. We used randomized voting rules to help make
group decisions and proposed MPC for both prediction
of one agent’s preference and aggregation of a group
of agents’ preferences. Experiments show that MPC
and other commonly-used information criteria work bet-
ter than asking random elicitation questions. For fu-
ture work we will explore better information criteria for
group decisions. We also plan to extend this framework
to multiple types of resource constraints.
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