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Abstract

Deep neural networks are popular for visual percep-
tion tasks such as image classification and object detec-
tion. Once trained and deployed in a real-time environ-
ment, these models struggle to identify novel inputs not
initially represented in the training distribution. Fur-
ther, they cannot be easily updated on new information
or they will catastrophically forget previously learned
knowledge. While there has been much interest in de-
veloping models capable of overcoming forgetting, most
research has focused on incrementally learning from com-
mon image classification datasets broken up into large
batches. Online streaming learning is a more realistic
paradigm where a model must learn one sample at a time
from temporally correlated data streams. Although there
are a few datasets designed specifically for this protocol,
most have limitations such as few classes or poor image
quality. In this work, we introduce Stream-51, a new
dataset for streaming classification consisting of tempo-
rally correlated images from 51 distinct object categories
and additional evaluation classes outside of the train-
ing distribution to test novelty recognition. We establish
unique evaluation protocols, experimental metrics, and
baselines for our dataset in the streaming paradigm’".

1. Introduction

Agents operating in real-time environments must be
capable of learning from dynamic, open-ended data
streams. Further, agents should be able to recognize
novel, unknown concepts and learn from new informa-
tion, while retaining knowledge of previous tasks. Deep
neural networks (DNN5s) are a dominant approach for
perception tasks, but when trained on changing, non in-
dependent and identically distributed (iid) data distribu-
tions, they suffer from catastrophic forgetting of previous
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Figure 1: Popular training paradigms for incremental
learners. Stream-51 requires agents to learn from real-
time video streams of natural scenes.

knowledge [30]. Moreover, they struggle to identify un-
learned concepts as novel on large-scale datasets [37],
which is an important skill for safety critical applications
such as self-driving cars.

Recently, much research has focused on overcoming
catastrophic forgetting in the incremental batch learning
paradigm [6, 7, 18, 21, 22,26, 36, 41, 42], where DNNs
are updated incrementally with new information, but the
agent is allowed to batch through data and can only be
evaluated after it has finished learning the previous batch.
This scenario is not realistic for embedded agents that
are deployed for long periods of time and must be tested
on new information immediately. Online learning in a
single pass with severe memory and compute constraints,
also called streaming learning [2, 5, 10, 13, 14, 20, 35],
more closely matches how embedded agents must learn
and make inferences in real-time. However, streaming
learners still suffer from catastrophic forgetting when
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Figure 2: The Stream-51 protocol poses unique challenges, requiring agents to learn from temporally correlated data
streams and recognize unlearned concepts as novel. Training data can be ordered either just by instance or by both class
and instance. Evaluation data includes a set of novel examples from classes unseen during training.

trained on non-stationary data distributions, which is a
result of the stability-plasticity dilemma [1].

While streaming learning is more amenable to real-
time learning, part of the limitation in developing models
in this paradigm has been the lack of large-scale, many-
class datasets with temporal correlations. This lack of
diversity makes it difficult to test the generalization ca-
pabilities of learners. Further, there are a lack of explicit
protocols designed to test the novelty detection capabili-
ties of learners. Here, we introduce the Stream-51 dataset
for streaming image classification. Stream-51 consists
of temporally correlated videos, which resemble how
humans, animals, and other embedded agents receive
information in the real-world. Moreover, Stream-51’s
evaluation protocol tests an agent’s ability to learn new
concepts and identify novel samples from classes not
seen during training.

This paper makes the following contributions:

1. We introduce a large-scale streaming dataset with
training instances drawn from 51 unique classes
and an evaluation set containing images from the in
distribution classes, as well as 43 classes outside of
the training distribution for novelty detection.

2. We establish strong classification baselines on our
dataset using two different data ordering scenarios
known to induce catastrophic forgetting in DNNs.

3. We establish new protocols, baselines, and metrics
to test a streaming agent’s ability to identify novel

inputs, making it easy to compare existing methods.

2. Problem Formulation

In incremental batch learning, an agent is required
to learn a dataset D, that is broken up into 7" distinct
batches By, each of size N;. At time ¢, the learner only
has access to By, but it may loop over this batch as many
times as necessary and can only be tested after the batch
has been learned. Conversely, in streaming learning,
an agent is required to learn examples one at a time
(N; = 1) from only a single pass through the labeled
dataset. This paradigm is advantageous in developing
embedded agents since the agent can be evaluated at any
point during training and it cannot infinitely loop over
any portion of the dataset. Here, we focus on comparing
streaming learners that must correctly classify previously
learned classes, while also identifying inputs that are
outside of the agent’s learned distribution, i.e., novelty
detection or open set classification (see Fig. 2).

3. Related Work

Several evaluation paradigms have been proposed for
developing agents capable of mitigating catastrophic for-
getting, however, many are not applicable for real-time
agents that learn from temporally correlated data. Ad-
ditionally, there are few existing video datasets that are
ideal for testing streaming learners and none containing
explicit protocols for novelty detection.

3.1. Existing Incremental Learning Evaluations

Two popular evaluation schemes for incremental batch
learning are the Permuted MNIST [22, 23] and Split



Table 1: Streaming dataset statistics including information about the videos and their acquisition (acq).

VIDEOS/ AVG FRAMES/

DATASET CLASSES IMAGES VIDEOS CLASS VIDEO AcCQ
iCub-1 [12] 10 8,000 40 4 200 hand held
iCub-T [33 20 400,000 2,000 100 200 hand held
CORe50 [28] 10 165,000 550 55 300 hand held
ToyBox [40] 12 2,300,000 540 45 4,200 hand held
Stream-51 51 150,736 1,136 11-37 132.69 natural/wild

MNIST [7, 22] experiments. In Permuted MNIST, each
task consists of a different, but fixed, permutation of the
784 image pixels and the agent must learn to classify
the permuted digits given the permutation label. This
approach can only be used to evaluate agents with fully-
connected layers, the task (permutation) label is required
at test time, and this paradigm is equivalent to scram-
bling up the spatial input space of an agent and requir-
ing it to perform classification, which is unrealistic. In
Split MNIST, the MNIST dataset is split into disjoint
groups (tasks) of classes and the agent must learn the
groups incrementally. While Split MNIST is closer to
how animals learn than Permuted MNIST, things that
work well on MNIST usually do not scale up to larger
datasets [22]. Similar to Split MNIST, other popular
evaluation schemes include Split CUB-200 [8, 21, 22],
Split CIFAR-100 [6, 7, 18, 21, 36, 41], and Split Ima-
geNet [0, 18, 36, 41]. While these paradigms contain
more classes and natural imagery than MNIST, they
are still unrealistic for agents operating in real-time be-
cause 1) there is no inherent temporal dependence be-
tween frames, 2) classes are never revisited once they are
learned, and 3) agents are provided large batches of data
for each task, where batches are naturally iid. Examples
of several popular training paradigms are shown in Fig. 1.
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Figure 3: Example images from comparison datasets.

3.2. Existing Streaming Datasets

An ideal streaming classification dataset would con-
sist of temporally correlated videos of objects from a
large variety of classes. Dataset statistics for the most
well-known streaming datatsets are in Table | and exam-
ple images are in Fig. 3. Some of the earliest streaming
datasets were collected from the iCub robot including
iCub World 1.0 (iCub-1) [12] and iCub World Trans-
formations (iCub-T) [33]. However, both datasets con-
tain 20 or fewer classes. More recent datasets include
CORe50 and ToyBox, but they only have 10 and 12 ob-
ject categories, respectively. All of the aforementioned
datasets are limited to 20 or fewer classes and all were
collected by having a person move each object around
with their hand. Additionally, the datasets are too small
and too easy to adequately test an agent’s generalization
capabilities. Similarly, there is not enough standardiza-
tion among the datasets, i.e., researchers use different
evaluation paradigms and metrics across datasets making
it difficult to compare approaches.

Although there are many video datasets from the ob-
ject detection [38] and tracking [11, 19] communities,
they cannot be used naturally for streaming image classi-
fication. Object tracking datasets often contain objects
that take up a small portion of the image frame, making it
hard to identify objects for classification purposes. Simi-
larly, tracking datasets often have many objects within a
frame that are not mutually exclusive, which is necessary
for standard classification tasks. In 2015 the ILSVRC
Object Detection from Video (VID) dataset [38] was
introduced, which contains video sequences of up to 3
unique objects per frame, but it is limited to only 30 total
classes. Moreover, none of the aforementioned stream-
ing, object detection, or tracking datasets have evaluation
samples that are explicitly outside of the training set
classes for testing novelty detection capabilities.

4. Stream-51

Stream-51 is a large-scale image classification dataset
with training images drawn from videos to mimic the
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way real-time agents would experience new objects. It is
significantly larger than existing streaming classification
datasets with 51 classes drawn from familiar animal and
vehicle object classes. The temporal correlation between
subsequent frames is difficult for DNNs, which tradi-
tionally assume that data are sampled iid during training.
Additionally, the Stream-51 test set contains samples
from classes not included in the training distribution to
test a model’s novelty detection capabilities.

4.1. Curation Process

4.1.1 Downloading Object Detection and Tracking
Datasets

Stream-51 was curated from a variety of existing, video-
based object detection and tracking datasets including:
the Generic Object Tracking (GOT-10K) dataset [19], the
VID dataset [38], and the Large Single Object Tracking
(LaSOT) dataset [ 1]. The goal in combining snippets
from each of these datasets was to maximize the number
of independent categories with a sufficient number of
unique videos and overall frames per class. The GOT-
10K dataset served as the main source of images (46.1%
of overall frames). While it has 563 unique classes,
many of these classes did not have enough total video
sequences per class to curate a robust dataset. For these
reasons, we also used the major-class labels which as-
sign each image to one of 115 super classes. Overall,
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Figure 4: Example images from each of the 51 classes in Stream-51.
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GOT-10K provided data for 34 of the 51 classes. The
VID dataset served as the second major source of video
frames (27.3% of the total) and provided us with 13 ad-
ditional unique classes. Finally, we used videos from
the LaSOT dataset (26.6% of the total), which supplied
4 unique classes. There were many instances of class
overlap among the source datasets, which allowed us to
increase the total number of videos for those classes. All
videos for overlapping classes were verified to be unique.

4.1.2 Filtering Training Videos

At this point in curation, the raw frames from the source
datasets are not useful for training an image classification
model. One problem is that many of the full frames con-
tain multiple objects often from multiple classes, which
creates too much label noise. A second problem is the res-
olution of the classes of interest in the full frame videos
varies too widely, often with the object of interest contain-
ing very few pixels in the full frame. To overcome these
limitations, we filtered the images using bounding box
information included in the source dataset annotations.
Since typical convolutional neural networks (CNNs)
require moderately sized images (e.g., 224 x224 for the
ResNet architectures [16]), we limited the resolution of
the bounding boxes to cover at least an area of 1024
pixels (~32x32 image). Frames which didn’t meet this
threshold were removed and the videos were divided into



shorter, temporally coherent clips. This bounding box
threshold was found to be a good trade off to ensure
adequate resolution of the object, but not too limiting to
exclude large portions of the underlying videos.

When generating Stream-51 from the underlying ob-
ject tracking datasets, we also limited the length of indi-
vidual snippets to no more than 300 frames per video clip
and no fewer than 50 frames (sampled at approximately
10 fps). When videos from the underlying datasets were
longer than these limits, we broke the longer video up
into smaller sub-clips within the limits. If video clips
were shorter than the minimum length, we discarded
the clips. We first filled every class with the highest
resolution unique videos and then supplemented with
non-unique clips as needed. We limited each class to
have no more than ~3,000 total frames per class with all
clips ranging from 50 to 300 frames.

Determining the final class list for Stream-51 involved
first building a larger list of possible independent classes
from the datasets above. The list of classes was then se-
lected by reducing semantic overlap using the Wu-Palmer
Similarity metric [29], which computes the relatedness of
two words using WordNet. Stream-51 statistics are pro-
vided in Table 1. Overall, the average clip length in the
training dataset is 133 frames and the average resolution
is 0.3 megapixels (~550x550).

4.1.3 Curating the Test Set

Streaming learning requires agents to learn categories
from temporally correlated data, however, we also desire
to evaluate the generalization capabilities of these agents.
For this reason, we curated a distinct set of static images
for each class to use for evaluation. This allowed us to
maximize the total number of videos available for the
training set and to make a larger, more diverse, test set.
To curate the test set, we used well-known static image
datasets that contained at least 50 unique images for each
category in our training set. We used 21 classes from the
ImageNet object detection dataset [38], 18 classes from
the ImageNet classification dataset [38], and 12 classes
from Openlmages V5 [24]. We then added ~60 unique
images from 43 additional categories not represented
in the training set to serve as a source for evaluating
novelty detection. 23 of these novel classes were from
the ImageNet object detection dataset, 11 were from the
ImageNet classification dataset, and 9 were from the
Openlmages V5 dataset. In total there are 5,100 total
images in the evaluation set (50 samples per training
class and 2,550 novel samples).
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Figure 5: Per class video statistics for Stream-51. Colors
denote counts of the number of clips with various lengths
in seconds. Best viewed in color.

4.2. What’s in Stream-51?

Stream-51 has a wide variety of object categories with
41 animal classes and 10 vehicle classes under various
environmental conditions, e.g., indoor scenes and outdoor
scenes like desert, water, and sky. Example images from
each class in the training set are shown in Fig. 4. Fig. 5
shows the number of unique videos per class in Stream-51
and each video’s respective length in seconds.

5. Baseline Experimental Protocol

We train models to predict the category §; classification:

:’Qt,classiﬁcation = arginaXF(G(Xta k)) y (1)

where k£ € K is the class label from K possible labels,
X is the input at time ¢, G (-) consists of the first L
layers of the neural network with parameters ¢, and
F (-) consists of the last fully-connected layer of the
network with parameters 8. We distinguish between
two types of streaming learning algorithms: 1) those
that only train the top of the network F (-), which can
be thought of as a decoder, and 2) those that train the
entire network F' (G (-)), where the function G (-) can be
thought of as an encoder consisting of the lower layers
of the network. Given an input tensor X, at time ¢, the
output of the encoder is given by z; = G (X;), where
z; € R? represents the d-dimensional embedding of
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the input tensor. The class decoder F'(z;) outputs a K-
dimensional vector used to predict §¢ classification -

In addition to being able to correctly classify inputs, a
critical skill for an agent is to recognize when a test input
is outside of its learned categories. Traditional closed-set
models do not have this capability and instead assign
a label of one of the learned categories to novel inputs.
The ability of an agent to recognize inputs outside of
its training distribution could facilitate automatic class
discovery [39, 44] or open world learning [3].

Formally, an agent must learn a classifier H(X;) =
F(G(X4)) such that it can be used to distinguish learned
inputs from novel inputs, i.e.,

(1 fSHX)) 26
Yt novel = { 0 lfS(H(Xt)) <4 ) (2)

where S (-) is an acceptance score function that uses
a threshold ¢ to determine if an input belongs to the
training distribution. We use the confidence threshold-
ing algorithm [17] for computing .S (-), which is a simple
approach to detecting novel inputs. It determines a thresh-
old for the softmax probabilities output by a model based
on correctly classified training inputs. This approach as-
sumes that samples from the known classes seen during
training will have much larger maximum class probability
than novel inputs. Our protocol is shown in Fig. 2.

5.1. Baseline Models Evaluated

Our effort is on comparing streaming methods, and
not CNN architectures, so all methods use the same CNN
architecture (ResNet-18 [16]). However, any architecture
can be used with Stream-51. We evaluate the following:

* Fine-Tuning (No Buffer) — This model trains the
CNN one example at a time with a single epoch.
Since the model does not have a buffer for replay, it
suffers from catastrophic forgetting.

e SLDA - Streaming Linear Discriminant Analaysis
is a popular model in the data mining community
and it was recently shown to work well on deep
CNN features [15]. SLDA updates a running mean
vector per class and a shared running covariance
matrix. To make predictions, it assigns to an input
the label of the closest Gaussian computed using the
means and covariance matrix. SLDA is one way to
update the output layer of the CNN (0).

e ExStream — The Exemplar Streaming algorithm
was proposed for updating the fully-connected lay-
ers of a neural network and achieved state-of-the-art
performance on the iCub-1 and CORe50 streaming
datasets [14]. ExStream uses a form of partial re-
hearsal to mitigate forgetting by storing a buffer of

features for exemplars to replay during later training
sessions. The method stores the incoming features
and merges the two closest exemplars in its buffer.
It then replays all examples stored for a single itera-
tion and uses stochastic gradient descent to update
the weights in fully-connected layers (6 ).

* Full Rehearsal — Full rehearsal is a baseline that
uses replay mechanisms to mitigate forgetting and
was shown to work well in [14]. Full rehearsal
stores all input examples in a memory buffer and
fine-tunes the CNN on all previous examples, which
is expensive in terms of memory and compute.

e Offline — The offline model serves as an upper
bound. Offline uses the traditional procedure for
updating a CNN by training on all previous data
with multiple epochs through the dataset. It is not
trained incrementally and is initialized from scratch.

We evaluate two versions of fine-tuning, full rehearsal,
and offline: 1) update only the output layer (fr) and
2) update the entire network (f7 and 6). This setup
mirrors how neural networks, especially CNNs, are used
in practice for many machine learning applications. For it
to work successfully, the parameters of G (-) must already
have established representations that will enable F (-)
to perform well. For image classification, a common
approach is for G (-) to be pre-trained on a large image
classification dataset (e.g., ImageNet), and then either
F (-) is updated alone or both the encoder and decoder are
jointly updated. Another approach is to use self-taught
learning to train G (-) on another dataset [34].

5.2. Dataset Orderings

Since the temporal structure of the training stream
affects a learner’s performance, we assess all models on
the two most realistic data ordering scenarios given in
[14]: instance where videos are temporally ordered by
object instances and class instance where videos are orga-
nized by class, but organized by temporal video instances
within each class. Both orderings are similar to how
humans perceive data streams and are known to induce
catastrophic forgetting in DNNSs.

5.3. Performance Evaluation

We use two metrics: one to capture an agent’s overall
classification performance and one to capture its ability
to detect novel inputs, while still correctly classifying
in-distribution samples. Embedded agents operating for
long periods of time must have low memory and compute
costs, so we also report memory and time requirements.

For overall classification performance, we use the



Q(lassit. metric from [14] which is computed as:

. 1 Qi
Qctassit. =min [ 1, =" ———1] | (3)
T =1 Qoffline,t

where T is the total number of testing events, oy is the
accuracy of the streaming learner at time ¢, and Qofine,
is the accuracy of an optimized offline model at time .
This metric normalizes a streaming learner’s performance
to an optimized offline learner and measures how well an
agent is able to classify inputs. Normalizing the stream-
ing learner’s performance to an offline learner makes the
metric easier to interpret across various orderings.

For novelty detection, we propose an incremental vari-
ant of the open set classification curve (OSC) metric [9],
which has been used for offline open set recognition.
The OSC metric computes the correct classification rate
among known classes as a function of the false positive
rate for distinguishing between seen and novel categories.
The resulting correct classification rate is the difference
in model accuracy and the false negative rate for novelty
detection. The OSC metric is more informative than a
traditional ROC curve for detecting novel classes since
it accounts for the correct classification of true positive
samples. That is, OSC rewards methods that reject incor-
rectly classified positive samples more than methods that
reject correctly classified samples. Formally, we propose
an incremental variant of the area under the OSC curve
(AUOSC) which normalizes an incremental learner’s per-
formance to an optimized offline baseline, i.e.,

T

N C)

. Yt
Qavosc=min | 1, = » ———
T =1 Yoffline,t

where T is the total number of testing events, ~; is the
AUOSC score of the incremental learner at time ¢, and
Yofftine,t 1S the AUOSC score of the optimized offline
learner at time ¢. The explicit equation for « can be
found in [9] and computes performance based on novelty
detection capabilities, as well as correct classification of
in-distribution samples. The Qayogsc metric tests two
capabilities: 1) the agent’s ability to identify inputs that
are outside of its training distribution and 2) its ability
to correctly classify inputs identified as belonging to its
training distribution. 2ayogc of 1 indicates that the in-
cremental learner performed as well as the offline learner.

5.4. Experimental Setup

In many applications, it has become common practice
to initialize the parameters of a CNN on the large-scale
ImageNet classification dataset before training on another

dataset. However, many of the categories in the Stream-
51 training set and classes in the novelty detection test
set overlap with ImageNet, so for our baselines, we ini-
tialize G(-) using pre-trained weights on the Places-365
dataset [43]. Places-365 consists of 1.8 million training
images of 365 different scene-based categories. We sug-
gest using an initialization dataset without overlap since
a classifier pre-trained on any of the Stream-51 classes
would already have rich features for those classes and
then the true learning and novelty detection capabilities
of the streaming learner would not be tested thoroughly.

After initialization, ordered examples from Stream-51
are input into the model one at a time. For the instance
ordering, classification performance is computed on all
classes in the training set after every 30,000 examples
have been learned. For the class instance ordering, clas-
sification performance is computed on only the classes
trained after every 10 classes have been learned. We
report ciassif. With top-1 accuracy.

For novelty detection, we evaluate the ability of an
agent to identify classes on which it has not yet been
trained, as well as samples entirely outside of its training
distribution. Recognizing unseen classes as novel has
been common practice, often under the label of open set
recognition [4, 31, 32], which is a difficult task [27]. Life-
long novelty detection is a critical step towards automatic
class discovery [39, 44] and open world learning [3].

We perform novelty detection experiments using the
class instance ordering of Stream-51. Similar to the
classification experiments, we initialize G(-) with pre-
trained Places-365 weights. We then stream examples
into the network one at a time and evaluate the model
after every 10 classes. For the novelty detection experi-
ments, the agent is required to determine if a sample is
in-distribution or out-of-distribution from the training set,
and if the sample is in-distribution, then the agent must
correctly classify it. For the in-distribution test set, we
select all images from previously learned classes in the
test set. For the out-of-distribution test set, we select all
test images of unseen classes and combine them with the
2,550 test images explicitly outside of the training set.

6. Baseline Results

Qclassit. and Qayosc are normalized to an offline
learner that achieves 76.9% final accuracy and 0.710 fi-
nal AUOSC respectively on the class instance ordering of
Stream-51. For all models except SLDA, we use stochas-
tic gradient descent with momentum of 0.9, learning rate
of 0.01, weight decay of le-4, and batch size of 256.
SLDA uses shrinkage of 1e-4. ExStream stores 50 clus-
ters per class. Offline and full rehearsal are trained for



Table 2: Qciassit. and 2ayosc results on Stream-51. We report the amount of memory required beyond the CNN for
each model in MB and the run time in seconds as the average over all runs. We denote the plastic (plas.) portion of the
network for each model. Results are the average of three runs with different permutations of the Stream-51 orderings.

INST CLS INST
METHOD PLAS.  QClassit. QClassie. Q2avosc  MEMORY  TIME
Fine-Tune Or 0.422 0.066 0.051 0.00 498
Fine-Tune 0r, Oc 0.030 0.050 0.022 0.00 2242
SLDA [15] Or 0.856 0.865 0.661 1.05 485
ExStream [14] Or 0.829 0.825 0.721 5.22 2039
Full Rehearsal Or 0.818 0.846 0.777 77.77 9855
Full Rehearsal 0Op, 05 0.952 0.953 0.941 22865 11970
Offline Or 0.806 0.835 0.771 77.77 12363
Offline 0r, 0c 1.000 1.000 1.000 22865 11652

10 epochs on data batches. For all models, we use the
bounding box crops and resize the images to 224 x224.

6.1. Streaming Classification

Our main results for all orderings of Stream-51 from
Places-365 pre-trained weights are summarized in Ta-
ble 2. It is not surprising that the full rehearsal models
perform well since they store all previous data for replay,
however, these models are memory and computationally
expensive to train. The more lightweight SLDA model
is a top performer for both orderings since its indepen-
dent class means allow it to remain robust to forgetting.
ExStream also performed relatively well for both order-
ings. In general, the models that were fine-tuned without
a buffer performed poorly since they did not have any
mechanisms to mitigate forgetting.

6.2. Streaming Novelty Detection

A learning curve for AUOSC performance as a func-
tion of number of classes trained is in Fig. 6. The full
rehearsal model was the top performer for the novelty
detection experiment, but it is slow to train and memory
intensive. ExStream was a top performer for the novelty
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Figure 6: AUOSC Learning Curve.

experiment, while being more efficient than full rehearsal.
Although SLDA was a top performer for streaming clas-
sification, it did not perform as well as other methods for
detecting novel samples. In general, methods which rely
on fixed representations and train only the classification
layer of a model performed closest to the offline model,
however, even offline performance for detecting novel
samples is poor due to the simplistic baseline method
used. More sophisticated techniques for detecting novel
inputs have been developed in recent years [4, 25, 27],
however, adapting these techniques to streaming models
remains an area for future research.

7. Conclusion

We introduced the Stream-51 dataset for learning from
temporally ordered videos collected from natural environ-
ments that mimic how humans perceive data. Stream-51
contains more classes and unique videos than existing
datasets, making it ideal for developing streaming agents.
We also provided baselines and experimental metrics for
standard classification and novelty detection tasks. Both
of these tasks are needed by agents learning in real-time.
The SLDA and ExStream baselines provide a good start-
ing point for Stream-51 demonstrating a compromise
between classification performance, novelty detection,
memory, and computational requirements.
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