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Abstract

Chart question answering (CQA) is a newly proposed
visual question answering (VQA) task where an algorithm
must answer questions about data visualizations, e.g. bar
charts, pie charts, and line graphs. CQA requires capabil-
ities that natural-image VQA algorithms lack: fine-grained
measurements, optical character recognition, and handling
out-of-vocabulary words in both questions and answers.
Without modifications, state-of-the-art VQA algorithms per-
form poorly on this task. Here, we propose a novel CQA
algorithm called parallel recurrent fusion of image and lan-
guage (PReFIL). PReFIL first learns bimodal embeddings
by fusing question and image features and then intelligently
aggregates these learned embeddings to answer the given
question. Despite its simplicity, PReFIL greatly surpasses
state-of-the art systems and human baselines on both the
FigureQA and DVQA datasets. Additionally, we demon-
strate that PReFIL can be used to reconstruct tables by ask-
ing a series of questions about a chart.

1. Introduction

Data visualizations such as bar charts, pie charts, and
line graphs are common ways to present complex data in a
manner that is easily interpretable to people. They are ubig-
uitous in both scientific and business documents. Data vi-
sualizations are designed to be effective at conveying trends
and comparisons in a glance, while also preserving salient
details. Using computer vision to parse these visualizations
can enable extraction of information that cannot be gleaned
by solely studying a document’s text. Despite the high po-
tential payoff and tremendous practical value, this problem
has received little attention until recently. In 2018, two
datasets for answering questions about data visualizations
were introduced along with new algorithms [16, 21]; how-
ever, there is considerable room for improvement. Here, we
propose a novel algorithm that exceeds the state-of-the-art
on both of these datasets by a large margin.

Visual question answering (VQA) requires a system to
answer questions about images [7, 30, 18, 20]. Several
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Figure 1. We propose the PReFIL algorithm for chart question
answering (CQA). PReFIL surpasses the prior state-of-the-art
(SoTA) and human baselines on DVQA and FigureQA datasets.

datasets for VQA has been proposed in recent years, in-
clude natural image understanding [30, 7], counting [2],
reasoning about synthetic scenes [14], medical image anal-
ysis [28], scene text understanding [38], and video compre-
hension [13]. Chart QA (CQA) is a VQA task involving
answering questions about data visualizations. Formally,
given an data visualization image I and a question () about
I, a CQA model must predict the answer A. CQA re-
quires understanding of the relationships among different
‘symbols’ (elements in the chart) in an image. In con-
trast to natural images, even tiny modifications to the im-
age can cause drastic changes in the correct answer, making
CQA an excellent platform for studying reasoning mecha-
nisms [21, 16]. CQA often requires optical character recog-
nition (OCR) and handling words unique to a given visual-
ization.

In this paper, we describe a novel algorithm called paral-
lel recurrent fusion of image and language (PReFIL). PRe-
FIL jointly learns bimodal embeddings by using both low-
and high-level image features, which enable it to answer
complex questions requiring multi-step reasoning and com-
parison without employing specialized relational or atten-
tion modules. Extensive experiments show that our algo-
rithm outperforms current state-of-the-art methods, by a
large margin in two challenging CQA datasets.
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Our key contributions are:

* We critically review existing CQA datasets outlining
their strengths and weaknesses (Sec. 2.1).

* We collect human performance values for the DVQA
dataset using crowd-sourcing (Sec. 4).

* We propose a novel algorithm called parallel recurrent
early fusion of image and language (PReFIL) (Sec. 3).
PReFIL greatly surpasses existing methods on CQA
datasets and also outperforms humans on both DVQA
and FigureQA (Sec. 4). PReFIL’s code and pre-trained
models will be publicly released.

* We pioneer the use of iterative question answering to
reconstruct tables from charts (Sec. 4.4).

* In light of our results, we outline a road map toward
creating more challenging datasets and algorithms for
understanding data visualizations (Sec. 5).

2. Related Work

CQA is a form of VQA. Multiple natural image VQA
datasets have been publicly released [30, 7, 34, 27, 17].
VQA has been explored in open-ended [7, 18], counting [2],
multiple choice [7, 27], and pointing type setups [43, 1].
Most algorithms treat VQA as a classification problem in
which the answer is a category [18]. Several studies have
shown that early natural image VQA datasets suffer from
a high amount of bias, potentially making it easier for an
algorithm to guess the answer without actually understand-
ing of visual content [17, 3, 4, 19]. As a remedy, some
subsequent datasets have focused on synthetic scenes and
diagrams where reasoning capacities can be better stud-
ied [0, 14, 24, 25].

CQA requires capabilities not tested by other VQA tasks
due to the innate differences in how information is presented
in data visualizations [ 16, 21]. For instance, the information
in charts is conveyed by only a small number of visual ele-
ments. Changes to even small image region (e.g., changing
color of a legend entry) can drastically alter the information
content of the whole chart whereas small changes in a nat-
ural image usually affects only a local region. This is one
reason why algorithms designed for natural VQA have con-
siderable difficulty when answering questions about data vi-
sualizations [16, 21].

Another line of related work involves parsing of visual
information in data visualization and other non-natural dia-
grams. There is a sizable body of prior work in this domain,
ranging from extraction of visual elements in a chart [32,

] to the extraction of underlying data [36, 22, 9]. How-
ever, very limited work has been done in a question answer-
ing framework where multiple underlying abilities can be
represented as a single task.

2.1. Datasets for CQA

Two CQA datasets: DVQA [16] and FigureQA [21], are
publicly available at the time of writing this paper. See
Table 1 for their statistics. Example images are shown in
Fig. 2. We briefly describe and compare both datasets.

DVQA has over 3 million question answer pairs for
300,000 images for bar charts. The question answer pairs
in DVQA are divided into three categories: 1) structure
understanding (e.g. “How many bars are there?”), 2) data
query (e.g., “How many units of item X were sold?”),
and 3) reasoning (e.g. “Is the accuracy of algorithm X
greater than algorithm Y ?”). Since many questions refer
to texts specific to the corresponding charts, systems must
integrate OCR and dynamically expand their vocabulary to
correctly answer questions. DVQA has two test splits: Test-
Familiar and Test-Novel, with Test-Novel containing charts
with texts that were not seen during training.

FigureQA has over 2 million question answer pairs for
180,000 images. It has five kinds of visualizations: 1) ver-
tical bar charts, 2) horizontal bar charts, 3) pie charts, 4)
line graphs and 5) dot-line graphs. Chart element colors
are uniformly distributed in the training and validation sets.
FigureQA has harder versions of the validation and test sets
with color combinations that are unseen in the training set.
Validation 1 and Test 1 have the same colors as the train-
ing set and Validation 2 and Test 2 have a color scheme that
differs from training. Test set annotations are not publicly
available. All questions are binary (yes/no) and demand
multiple abilities, including finding the largest/smallest ele-
ment (e.g. “Is X the largest/smallest?”’), comparing values
of two elements (e.g. “Is X greater/smaller than Y ?”), and
other scientific measurements (e.g. “Does X have maxi-
mum area under the curve?”).

2.1.1 DVQA versus FigureQA

DVQA and FigureQA each have their own strengths and
shortcomings. We compare and contrast them below.
Shared strengths: Both datasets are large and provide
enough training samples to train large scale models, e.g.
in DVQA, each unique visual element is repeated at least
1,000 times. Both datasets provide detailed annotations for
all figure elements in addition to the question answer pairs,
making it possible to create auxiliary tasks or use them as
additional training signals. The creators of both datasets
tried to eliminate some sources of bias. DVQA has ran-
domized visual elements and it also has a balanced ques-
tion answer distribution to make guessing difficult. Sim-
ilarly, FigureQA has a randomized distribution of colors
and a balanced distribution of “yes” and “no” answers for
each unique question template. Lastly, both datasets pro-
vide both easy and hard test splits, where the hard test split
measures generalization beyond what is seen during train-
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Q: Is web green less than indigo?
A: Yes

Q: Is tomato the low median? Q: Does orchid have the minimum area
A: Yes (No) under the curve? A: No
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Q. How many units did the worst
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chart? A: 1

Q: What element does the darkorange
color represent?: A: return

Q. What is the sum of accuracies of
the algorithm mode for all the

datasets? A:15 (16)
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Figure 2. Example images and PReFIL outputs for FigureQA (top) and DVQA (bottom). Red denotes incorrect predictions. For incorrect
predictions, correct answer is shown in parentheses. More examples are included in the supplementary materials.

Table 1. FigureQA vs. DVQA

6 Num. Images  Num. QA Pairs  Question Format ~ Chart Types ~ Number of Templates OCR ooV
DVQA 300,000 3,487,194 Open-ended 1 26 (Plus variations) Required Required
FigureQA 180,000 2,38,8698 Yes/No 5 15 (No variations) Not Required ~ Not Required

ing. DVQA’s “Test Novel” split measures generalization to
unseen words and FigureQA provides an “alternated col-
ors” split where visual elements in the chart have different
colors than the ones seen during training.

DVQA'’s advantages: In DVQA, questions about bars
are asked by referring to their text labels, e.g. “What is the
value of algorithm X7 where X is an actual label in the
chart and it will be different for each chart even if they have
the same appearance, e.g. identical red bars may have label
X in one image and Y in another. This requires integrat-
ing OCR into the system. In contrast, FigureQA refers to
chart elements by their color, e.g. “red bars” will always be
referred to as “red” making it easier for systems to identify
a chart’s elements. Since DVQA uses chart labels, algo-
rithms must take into account that some of the words may
be out-of-vocabulary (OOV) and unseen during training for
both questions and answer. To handle this, systems need to
have a vocabulary that can be dynamically adjusted during
testing. FigureQA has no OOV answers. DVQA also tests
for more tasks than FigureQA. For bar charts, DVQA con-
tain most of the tasks in FigureQA (e.g. identifying colors,
comparing values, etc.) and several that are not required
for FigureQA (e.g. data measurement and inferring struc-
ture of the chart). Finally, while DVQA contains only bar
charts, its bar charts have increased visual complexity com-
pared to those in FigureQA. FigureQA is limited to single-
variable vertical and horizontal bar charts, whereas DVQA

also has grouped bar charts and stacked bar charts with leg-
ends. DVQA'’s bars can be hatched, monochrome, and have
negative values, all of which are absent in FigureQA.

FigureQA’s advantages: While DVQA has only bar
charts, FigureQA has three kinds of data visualizations: bar
charts, pie charts, and line graphs. This allows FigureQA to
have unique question-types that are not encountered for bar
chart alone. E.g., for line graphs, FigureQA requires deter-
mining the area under the curve, and whether one line inter-
sects another. These are not tested in DVQA. FigureQA also
tests compositional reasoning by asking questions about un-
known color combinations in chart elements, whereas col-
ors are randomly distributed in DVQA.

Shared limitations: As synthetically generated datasets,
both DVQA and FigureQA omit much of the variability
found in real-world data visualizations. All of DVQA’s
charts were made with Matplotlib and all of FigureQA’s
were made with Bokeh. The variation introduced is limited
to the capabilities of these packages. FigureQA uses only
generic titles and other chart elements. DVQA has some va-
riety but ultimately is limited to a few templates. Likewise,
both datasets have formulaic, templated questions. While
questions can be complex, they lack the diversity of human
generated queries. In the discussion we elaborate further on
how future datasets could overcome these limitations.
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2.2. Existing CQA Algorithms

For DVQA, in [16] SANDY (SAN with DYnamic en-
coding) model was proposed. SANDY used a modified
version of the stacked attention network (SAN) [40, 23],
which has been widely used for VQA [23, 5]. SAN uses
the question to apply attention to the convolutional feature
maps. It cannot handle DVQA’s OOV words in its test set or
the chart specific words found in its questions and answers.
To address this, SANDY uses an off-the-shelf OCR method
to recognize such words and introduced dynamic encoding
to represent OOV and chart-specific words. SANDY’s dy-
namic encoding scheme for OCR can be incorporated into
any classification-based VQA algorithm.

FigureQA'’s creators used a relation network (RN) [35]
on their dataset. RN encodes pairwise interactions between
every pair of “objects” in an image, enabling it to answer
questions involving relationships. Each “object” is a cell of
a convolutional feature map. RN has been shown to be espe-
cially effective at compositional reasoning in CLEVR [35],
and it exceeded baselines on FigureQA.

FigureNet [33] is a multi-step algorithm for FigureQA
composed of different modules. The first module is called
the spectral segregator, which identifies the elements and
colors of the chart. It is followed by the extraction module,
which quantifies the values represented by each element.
This is then used with a feed-forward network to predict
the answer. FigureNet uses the detailed annotations of Fig-
ureQA’s chart elements to pre-train each of the modules.
Because FigureNet relies on having access to the measure-
ments of each chart element, they could only apply it to
FigureNet’s bar and pie charts.

To assess bias in their datasets, the creators of FigureQA
and DVQA both studied question-blind and image-blind
models. They found that these models performed abysmally
indicating that vision and language must be jointly used
to correctly answer the questions. The creators of both
datasets also tested simple question+image fusion schemes.
These worked better than the blind baselines, but this did
not suffice for handling the complexity found in CQA. This
is in contrast to VQA with natural images, where these al-
gorithms fare comparatively well.

Compared to existing work, our model does not employ
complex attention or relational modules, and unlike Fig-
ureNet, it does not require additional supervised annotations
for training on FigureQA.

3. The PReFIL Model

We propose the PReFIL algorithm for CQA. As shown in
Fig. 3, PReFIL has two parallel Q+I fusion branches. Each
branch takes in question features (from an LSTM) and im-
age features from two locations of a 40-layer DenseNet, i.e.
low-level features (from layer 14) and high-level features

(from layer 40). Each Q+I fusion block concatenates the
question features to each element of the convolutional fea-
ture map, and then it has a series of 1 x 1 convolutions to
create question-specific bimodal embeddings. These em-
beddings are recurrently aggregated and then fed to a clas-
sifier that predicts the answer. Despite being composed of
relatively simple elements, PReFIL outperforms more com-
plex methods that use RNs and attention mechanisms. The
three main stages of PReFIL are described in the next sub-
sections. For DVQA, an additional fourth OCR-integration
component is required (Sec. 3.4). In Sec. 4.3, we conduct
studies to understand the value of each stage.

3.1. Multi-stage Image Encoder

For all model variants, image encoder is a DenseNet [ 2]
trained from scratch. DenseNet is an efficient architecture
for training deep convolutional neural networks (CNNs).
It is comprised of several “dense blocks” and “transition
blocks” between the dense blocks. Each dense block has
several convolutional layers, where each layer uses outputs
of all preceding layers as its input. The transition block
sits between two dense blocks and serves to change feature-
map sizes via convolution and pooling. This architecture
encourages feature reuse, improves training, and mitigates
vanishing-gradients, making it easy to train very deep net-
works. Feature reuse allows DenseNet to learn complex vi-
sual features with fewer parameters compared to other ar-
chitectures [11].

In deep CNNs, complex features are learned as a hier-
archy of visual features with earlier layers learning simple
features and later layers learning higher-level features that
are combinations of simpler features [41]. In data visualiza-
tions, simpler features such as color patches, lines, textures,
etc. convey important information that is often abstracted
away by deeper layers of a CNN. Hence, we use both low-
and high-level convolutional features in our model, both of
which are fed to parallel fusion module alongside question
embeddings learned using an LSTM. We study the impor-
tance of both low and high level features in Sec. 4.3.

3.2. Parallel Fusion of Image and Language

Jointly modulating visual features using vision and lan-
guage features can allow models to learn richer features for
downstream tasks [29, 31, 37]. Our Q+I fusion block does
this by first concatenating all of the input convolutional fea-
ture map’s spatial locations with the question features, and
then bimodal fusion occurs using a series of layers that use
1 x 1 convolutions [29, 37]. This allows the question to
modulate visual feature processing and yields bimodal em-
beddings that capture information from both the image and
the question. This approach resembles early VQA mod-
els that concatenated CNN embeddings to question embed-
dings, with the critical difference being that this happens
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Figure 3. Components of our PReFIL model. Magnified views show the details of each dense block and Q+I fusion block.

before spatial pooling across the entire scene. We do this
for both low-level and high-level convolutional features in
parallel. In Sec. 4.3, we study the importance of learning
bimodal embeddings jointly.

3.3. Recurrent Aggregation of bi-modal features

In CNNSs, the most common approach to aggregating in-
formation from a feature map F' € RM*NxD j5 to col-
lapse across the spatial dimensions to produce a D dimen-
sional vector by mean pooling or max pooling. An alter-
native is to “flatten” F' to turn it into a D M N-dimensional
vector. Recent attentive approaches have explored using a
weighted sum, where the relative importance of each region
is based on the question. These methods may fail to capture
interactions among features, especially for high-level tasks
such as question answering. To address this, we aggregate
information using a bidirectional gated recurrent unit (bi-
GRU), which sequentially takes in the D-dimensional fea-
tures from each of the M N locations in F'. The aggregated
features are sent to a classifier to predict the answer. As ab-
lation, we also try sum-pooling for aggregation in Sec. 4.3.

3.4. OCR Integration for DVQA dataset

Unlike FigureQA and most VQA tasks, DVQA requires
OCR to answer its reasoning and data questions. A fixed vo-
cabulary consisting of all the words seen during training is
not enough since the model will encounter OOV words dur-
ing testing. To integrate OCR into PReFIL, we use the same
dynamic encoding scheme used by the SANDY model [16].
Dynamic encoding creates an image specific dictionary that
associates the spatial positions of scene elements with en-
tries in the dictionary. Before running the net, all words
are detected using OCR and then they are associated with
the appropriate element in the dynamic encoding dictionary
based on each word’s spatial position. Subsequently, if a
question word is encountered that is in the dynamic dictio-
nary then the appropriate element is set to 1. For answers,
a portion of the classification layer is reserved for the dy-
namic encoding outputs. See [16] for additional details.

To assess impact of OCR, we test three OCR versions as
well as a version of algorithm trained without the dynamic

encoding, i.e., only using a fixed-vocabulary constructed
from the train split. The first two OCR systems are iden-
tical to those used by [16]: an oracle (perfect) OCR model
and a real OCR system using Tesseract. Because Tesseract
has been found to be sub-optimal when used directly on di-
agrams [24], we also study using a two-stage OCR pipeline
where we first detect text and then run OCR on the detected
regions to recognize the text. Specifically, we use the EAST
text detector [42] to detect text-regions for images rotated
at 0, 45 and 90 degrees. We then perform non-maximum
suppression on overlapping detections and crop them. Each
cropped region is resized by 200% and sent to the Tesseract
OCR to obtain the text within each region. The rest of the
dynamic encoding scheme remains unchanged.

3.5. Model and Training Hyperparameters

Question Encoding: Question words are represented
by 32 dimensional learned word embedding and passed
through an LSTM which provides a 256-dimensional em-
bedding representing the whole question.

DenseNet: We use a 40 layer DenseNet composed of
3 dense blocks with 12 layers each. The number of initial
filters is 64 and the growth rate is set to 32.

Preprocessing: DVQA images are resized to a size of
256 x 256. FigureQA images are all differently sized but we
resize them to 320 x 224 which maintains an average width-
height aspect ratio. For data augmentation during training,
both DVQA and FigureQA images are padded with 8 pixels
on all sides, followed by random crops and random rota-
tions of up to 3 degrees.

Q+I Fusion: Inputs to Q+I block are batchnormed. Each
Q+I fusion block is composed of four 1 x 1 convolutions
with 256 channels and ReLU.

Recurrent Fusion: The bimodal features are aggregated
using a 256 dimensional bi-directional GRU. The forward
and backward direction outputs are concatenated to form a
512 dimensional vector which is fed to the classifier.

Classifier: The aggregated bimodal features are pro-
jected to a 1024 fully connected ReLU layer, which was
regularized using dropout of 0.5 during training. The classi-
fication layer is binary for FigureQA. For DVQA, the clas-
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sification layer has 107 units, with 77 units for predicting
‘common’ answers such as ‘yes’, ‘no’, ‘three groups’, etc,
and 30 special tokens for predicting answers that require
OCR, which allows PReFIL to produce OOV answer tokens
that are unseen during training (see Sec. 3.4 for details).

Losses and Optimizers: For DVQA, PReFIL is trained
using multinomial cross-entropy loss. For FigureQA, PRe-
FIL is trained using binary cross entropy loss. Follow-
ing [26], we use Adamax optimizer with a gradual learning
rate warm-up, with a base learning rate of 7 x 10~%. The
first 4 epochs use a learning rate of (0.5 x epoch X base)
and the rate starts decaying by a factor of 0.7 from epochs
15 to 25. For DVQA, all models are trained for a fixed 25
epochs. For FigureQA, we train them until they converge
on the validation set and submit predictions to its creators
for assessment on the non-public test set.

4. Experiments and Results
4.1. FigureQA

FigureQA has two validation sets and two non-publicly
available test sets. Validation 1 and Test 1 have the same
colors as the training set and Validation 2 and Test 2 have
a color scheme that differs from training. Test sets are not
publicly available and the results were obtained by sending
the predictions to the authors. Existing works do not report
accuracy for the full test set, but we report results for both
validation and test sets in Table 3.5 for completeness.

Our PReFIL algorithm exceeds FigureNet by a large
margin despite FigureNet having access to additional an-
notations. FigureNet is incapable of answering questions
about line and dot-line graphs, so it is only evaluated on
vBar, hBar and Pie. For these chart types, average accuracy
for FigureNet is 83.9%, compared to 97.33% for ours.

FigureQA also provides human performance for a subset
of Test 2, which is not available for the other sets. We report
PReFIL’s performance compared to other baselines and hu-
man performance on the exact same subset in Table 3. PRe-
FIL outperforms the human baseline for four out of five cat-
egories and also surpasses overall human accuracy. When
analyzed for different question templates, PReFIL outper-
forms humans for 12 out of 15 question templates. PReFIL
shows the most improvements for questions requiring mea-
surements, e.g. for the question template “Is X the high/low
median?” PReFIL outperforms human accuracy by over
7% (absolute). Detailed results for all 15 templates are pre-
sented in the supplementary materials.

4.2. DVQA

DVQA is split into Test-Familiar, which contains bar
charts with words that are also encountered in its Train set,
and Test-Novel, which contains bar charts with novel words
in them. Results for both DVQA splits are given in Table 4.

PReFIL surpasses SANDY by over 40% in accuracy when
both the baseline SANDY and our PReFIL method have ac-
cess to a perfect Oracle OCR, which is emulated by provid-
ing the correct text-annotations for all the elements in the
images. When using Tesseract OCR, we obtain about a 24%
improvement overall on both test sets. To demonstrate that
PReFIL’s performance scales with access to better OCR, we
also test a version that uses an improved OCR pipeline (see
Sec. 3). This further improves PReFIL’s performance by
about 11% bringing it closer to the results of the oracle OCR
version. When OCR is removed entirely, PReFIL still per-
forms about 11% better than SANDY without OCR, but this
ablation renders many data and reasoning questions impos-
sible to answer. This re-affirms the assertion by DVQA’s
creators that OCR integration is essential for answering the
data and reasoning questions in the dataset [16].

Across all OCR variants, PReFIL outperforms SANDY.
Moreover, PReFIL’s performance scales much better when
better OCR is available: 11% gain for SANDY vs. 26%
gain for PReFIL when moving from the imperfect Tesser-
act OCR setup to the perfect Oracle OCR setup. Our re-
sults show that PReFIL is as effective for novel words (Test-
Novel) as it is for familiar words (Test-Familiar). This is en-
abled by the dynamic OCR integration, which is designed to
be agnostic to whether a word has been encountered before.

Because no human accuracy estimate for DVQA existed,
we had people answer 5000 randomly selected questions for
5000 images from the DVQA Test-Novel split. The annota-
tors were shown example QA pairs from each of three ques-
tion types. We perform post processing on the provided an-
swers to rectify minor answer entry errors. First, we found
some annotators used decimal points or spelled out numer-
als (“5.0” or “five” instead of “5”) despite our instructions
to only use integers when answers are numbers. Because
DVQA contains only integers, we convert all such occur-
rences to the nearest integer. For word answers, we allow
one character typographic error to be discounted. Results
for humans and models are given in Table 4. With perfect
OCR, PReFIL surpasses the DVQA human accuracy result
across question types. Its performance on reasoning ques-
tions is almost 10% greater (absolute), and it exceeds them
by almost 8% (absolute) for DVQA'’s data questions, which
require measurement. However, without perfect OCR hu-
mans exceed PReFIL, although the better OCR used for
PReFIL does lead to significantly better results than PRe-
FIL with improved OCR. This suggests that the underlying
core algorithm and reasoning mechanisms in PReFIL work
well for DVQA, and the main limiting factor is OCR.

4.3. Ablation Studies

We studied the contribution of PReFIL’s components by
analyzing a series of ablation models. We trained each
model variation and the original PReFIL (Oracle OCR) for
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Table 2. Results for the FigureQA dataset for our PReFIL algorithm compared to baseline and existing algorithms.

Validation 1 - Same Colors

Validation 2 - Alternated Colors

vBar hBar Pie Line Dot-line  Overall vBar hBar Pie Line Dot-line  Overall
QUES [21] - - - - - - - - - - - 50.01
IMG+QUES [21] 6198 6244 59.63 57.07 57.35 59.41 58.60 58.05 5597 56.37 56.97 57.14
RN [21] 85.71 80.60 82.56 69.53 68.51 76.39 7735 77.00 74.16 67.90 69.04 72.54
FigureNet [33] 87.36  81.57 83.13 - - - - - - - - -
PReFIL (Ours) 98.80 98.09 9511 91.82 92.19 94.84 98.46 97.94 93,57 88.50 90.30 93.26

Test 1 - Same Colors Test 2 - Alternated Colors

PReFIL (Ours) 98.79 98.14 9535 91.98 92.05 94.88 98.41 9793 9358 88.26 90.07 93.16

Table 3. Results on FigureQA’s Test 2 split with alternated color
schemes. All results are from the 16,876 questions answered by
human annotators.

Type PReFIL(Ours) Q+I[21] RN[2I] Human [2]]
vBar 98.25 59.63 77.13 95.90
hBar 97.98 57.69 77.02 96.03
Pie 92.84 55.32 73.26 88.26
Line 87.79 54.46 66.69 90.55
Dot-line 89.57 54.19 69.22 87.20
Overall 92.79 56.04 72.18 91.21

25 epochs on a subset of DVQA that has only 500,000 ran-
domly selected training samples. The ablation models are:

* No bimodal embeddings: Instead of learning bimodal
embeddings, the question is concatenated after the re-
current aggregation and fed to the classifier.

* No low-level features: Only the high-level (layer 40
output) DenseNet features are used.

* No high-level features: Only the low-level (layer 14
output) DenseNet features are used. This is equivalent
to using a shallower DenseNet.

¢ No recurrent aggregation: Instead of recurrent ag-
gregation, output is aggregated via summation.

As shown in Table 5, all of PReFIL’s components impact
its performance. Removing bimodal embeddings causes the
largest accuracy drop (over 12% absolute). The next largest
is caused by removing low and high-level visual features
(1.3% and 6% absolute).

4.4. Table Reconstruction by Asking Questions

We introduce table reconstruction for DVQA as an appli-
cation of PReFIL. DVQA'’s question templates provide the
questions needed to completely reconstruct its bar charts
by iteratively asking questions about each chart. Our ap-
proach is given in Algorithm 1. An example reconstruction
is shown in Fig. 4, and results using PReFIL (Oracle OCR)
are given in Table 6. Shape prediction can be done with near
perfect accuracy, but there is a drop in performance for both
label and value prediction. To study the accuracy of differ-
ent components in chart reconstruction, we also report ac-
curacy on three main components of the iterative question-

Algorithm 1: Iterative QA for Data Reconstruction

if bar_type is single then
n = ans("How many bars are there?”);
fori <+ 1tondo
data[i] = ans(“What is the value of the ‘"
bar?”);
label[i] = ans(“What is the label of the i*"
bar?”);

else
m = ans(“How many groups are there?”);
n = ans(“How many bars are there per group?”);

for j < 1tondo
legend_label[j] = ans(“What is the label of the

4" bar in each group?”);

for : < 1tomdo

bar_label[i] = ans(“What is the label of the i*"
group?”);

for j < 1tondo

L data[i,j] = ans(“What is the value of the

4" bar in i*" group?”);

Title

“ paper goal
12 .

o vein 2 6

¢ ladder 5 4

2

O ein dinner  ladder noise noise 5 7

w— paper i goal

Figure 4. An example output of the chart to table algorithm. Red
denotes incorrect predictions.

answering: 1) Shape prediction: Questions about number of
bars and legends in the picture; 2) Label prediction: Predict-
ing the label of given bar or legend; and 3) Value Prediction:
Predicting the value of a given bar.
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Table 4. Results for the DVQA dataset for PReFIL compared to baselines and existing algorithms.

Test-Familiar Test-Novel

Structure ~ Data  Reasoning  Overall  Structure  Data  Reasoning  Overall
QUES [16] 44.03 9.82 25.87 21.06 43.90 9.80 25.76 21.00
IMG+QUES [16] 90.38 15.74 31.95 32.01 90.06 15.85 31.84 32.01
SANDY (No OCR) [16] 94.71 18.78 37.29 36.02 94.82 18.92 37.25 36.14
PReFIL (No OCR) 99.77 23.39 49.05 47.70 99.77 23.43 49.21 47.86
SANDY (Tesseract OCR) [16] 96.47 37.82 41.50 45.77 96.42 37.78 41.49 45.81
PReFIL (Ours, Tesseract OCR) 99.75 49.00 74.61 69.63 99.73 4891 74.07 69.53
PReFIL (Ours, Improved OCR) 99.73 68.55 83.44 80.88 99.57 67.13 80.73 80.04
SANDY (Oracle OCR) [16] 96.47 65.40 44.03 56.48 96.42 65.55 44.09 56.62
PReFIL (Ours, Oracle OCR) 99.77 95.80 95.86 96.37 99.78 96.07 95.99 96.53
Human - - - - 96.19 88.70 85.83 88.18

Table 5. PReFIL ablation studies on a 500K DVQA train subset.

Ablation Model Test Familiar ~ Test Novel
PReFIL (full model) 91.18 91.32
No bimodal embedding 78.00 78.36
No high-level features 85.68 85.86
No low-level features 89.87 90.05
No recurrent aggregation 90.88 91.14

Table 6. Bar chart reconstruction accuracy (%) using Algorithm 1
with PreFIL (Oracle OCR).

Test Familiar ~ Test Novel

Shape Prediction 99.97 99.97
Label Prediction 97.78 97.78
Value Prediction 84.21 84.75
Overall 90.79 91.10

5. Discussion

PReFIL surpassed prior state-of-the-art methods for both
DVQA and FigureQA. While PReFIL exceeded the human
baseline for FigureQA, results are more nuanced for DVQA
due to OCR model variations. All OCR versions exceeded
the human baseline for structure questions, but only PRe-
FIL using oracle OCR exceeded humans across all question
types. We found that better OCR methods led to better re-
sults for DVQA. Future developments in OCR technology
would likely improve PReFIL further.

The strong results in this paper suggest that the commu-
nity is ready for more difficult CQA datasets. We have the
following recommendations:

e Charts in the wild: The charts in FigureQA and
DVQA were methodologically generated, but human-
generated charts in real-world business and scientific
documents can contain variations that these datasets
omit. Additional text in the chart or human annotations
would likely cause the dynamic encoding method used
by PReFIL to fail. Next generation datasets should

contain charts extracted from real-world documents.
Human generated questions: The questions in both
FigureQA and DVQA were created with templates,
which do not capture all the nuances of natural lan-
guage. Deploying a chart question answering sys-
tem will require it to handle human-generated queries.
Studies on the synthetically generated CLEVR dataset
have demonstrated that algorithms experience a large
drop in performance when natural language questions
are asked to a model trained only on CLEVR [I5].
Future CQA datasets should include human-generated
question-answer pairs.

Document-level CQA: FigureQA and DVQA have
well-defined image regions and all information needed
to answer a question is contained in that image. To un-
derstand charts in documents, information in the rest
of the document may be necessary to answer questions
about the chart. Beyond typical CQA algorithm abil-
ities, this requires document question answering [&],
page segmentation [10], and more. Creation of such a
dataset would greatly increase the challenge for future
algorithms and better match real-world usage.

6. Conclusion

We proposed PReFIL, a new CQA system that improves
the state-of-the-art and surpasses human accuracy on two
datasets. Like other VQA tasks [19], our results suggest
harder datasets are needed. For CQA, better OCR is also
important for advancing the field. Our work has the poten-
tial to improve retrieval of information from charts, which
has numerous applications, including automatic informa-
tion retrieval, table reconstruction, and enabling better un-
derstanding of charts by people with visual impairments.
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