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Abstract

Chart question answering (CQA) is a newly proposed

visual question answering (VQA) task where an algorithm

must answer questions about data visualizations, e.g. bar

charts, pie charts, and line graphs. CQA requires capabil-

ities that natural-image VQA algorithms lack: fine-grained

measurements, optical character recognition, and handling

out-of-vocabulary words in both questions and answers.

Without modifications, state-of-the-art VQA algorithms per-

form poorly on this task. Here, we propose a novel CQA

algorithm called parallel recurrent fusion of image and lan-

guage (PReFIL). PReFIL first learns bimodal embeddings

by fusing question and image features and then intelligently

aggregates these learned embeddings to answer the given

question. Despite its simplicity, PReFIL greatly surpasses

state-of-the art systems and human baselines on both the

FigureQA and DVQA datasets. Additionally, we demon-

strate that PReFIL can be used to reconstruct tables by ask-

ing a series of questions about a chart.

1. Introduction

Data visualizations such as bar charts, pie charts, and

line graphs are common ways to present complex data in a

manner that is easily interpretable to people. They are ubiq-

uitous in both scientific and business documents. Data vi-

sualizations are designed to be effective at conveying trends

and comparisons in a glance, while also preserving salient

details. Using computer vision to parse these visualizations

can enable extraction of information that cannot be gleaned

by solely studying a document’s text. Despite the high po-

tential payoff and tremendous practical value, this problem

has received little attention until recently. In 2018, two

datasets for answering questions about data visualizations

were introduced along with new algorithms [16, 21]; how-

ever, there is considerable room for improvement. Here, we

propose a novel algorithm that exceeds the state-of-the-art

on both of these datasets by a large margin.

Visual question answering (VQA) requires a system to

answer questions about images [7, 30, 18, 20]. Several
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Figure 1. We propose the PReFIL algorithm for chart question

answering (CQA). PReFIL surpasses the prior state-of-the-art

(SoTA) and human baselines on DVQA and FigureQA datasets.

datasets for VQA has been proposed in recent years, in-

clude natural image understanding [30, 7], counting [2],

reasoning about synthetic scenes [14], medical image anal-

ysis [28], scene text understanding [38], and video compre-

hension [13]. Chart QA (CQA) is a VQA task involving

answering questions about data visualizations. Formally,

given an data visualization image I and a question Q about

I , a CQA model must predict the answer A. CQA re-

quires understanding of the relationships among different

‘symbols’ (elements in the chart) in an image. In con-

trast to natural images, even tiny modifications to the im-

age can cause drastic changes in the correct answer, making

CQA an excellent platform for studying reasoning mecha-

nisms [21, 16]. CQA often requires optical character recog-

nition (OCR) and handling words unique to a given visual-

ization.

In this paper, we describe a novel algorithm called paral-

lel recurrent fusion of image and language (PReFIL). PRe-

FIL jointly learns bimodal embeddings by using both low-

and high-level image features, which enable it to answer

complex questions requiring multi-step reasoning and com-

parison without employing specialized relational or atten-

tion modules. Extensive experiments show that our algo-

rithm outperforms current state-of-the-art methods, by a

large margin in two challenging CQA datasets.
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Our key contributions are:

• We critically review existing CQA datasets outlining

their strengths and weaknesses (Sec. 2.1).

• We collect human performance values for the DVQA

dataset using crowd-sourcing (Sec. 4).

• We propose a novel algorithm called parallel recurrent

early fusion of image and language (PReFIL) (Sec. 3).

PReFIL greatly surpasses existing methods on CQA

datasets and also outperforms humans on both DVQA

and FigureQA (Sec. 4). PReFIL’s code and pre-trained

models will be publicly released.

• We pioneer the use of iterative question answering to

reconstruct tables from charts (Sec. 4.4).

• In light of our results, we outline a road map toward

creating more challenging datasets and algorithms for

understanding data visualizations (Sec. 5).

2. Related Work

CQA is a form of VQA. Multiple natural image VQA

datasets have been publicly released [30, 7, 34, 27, 17].

VQA has been explored in open-ended [7, 18], counting [2],

multiple choice [7, 27], and pointing type setups [43, 1].

Most algorithms treat VQA as a classification problem in

which the answer is a category [18]. Several studies have

shown that early natural image VQA datasets suffer from

a high amount of bias, potentially making it easier for an

algorithm to guess the answer without actually understand-

ing of visual content [17, 3, 4, 19]. As a remedy, some

subsequent datasets have focused on synthetic scenes and

diagrams where reasoning capacities can be better stud-

ied [6, 14, 24, 25].

CQA requires capabilities not tested by other VQA tasks

due to the innate differences in how information is presented

in data visualizations [16, 21]. For instance, the information

in charts is conveyed by only a small number of visual ele-

ments. Changes to even small image region (e.g., changing

color of a legend entry) can drastically alter the information

content of the whole chart whereas small changes in a nat-

ural image usually affects only a local region. This is one

reason why algorithms designed for natural VQA have con-

siderable difficulty when answering questions about data vi-

sualizations [16, 21].

Another line of related work involves parsing of visual

information in data visualization and other non-natural dia-

grams. There is a sizable body of prior work in this domain,

ranging from extraction of visual elements in a chart [32,

39] to the extraction of underlying data [36, 22, 9]. How-

ever, very limited work has been done in a question answer-

ing framework where multiple underlying abilities can be

represented as a single task.

2.1. Datasets for CQA

Two CQA datasets: DVQA [16] and FigureQA [21], are

publicly available at the time of writing this paper. See

Table 1 for their statistics. Example images are shown in

Fig. 2. We briefly describe and compare both datasets.

DVQA has over 3 million question answer pairs for

300,000 images for bar charts. The question answer pairs

in DVQA are divided into three categories: 1) structure

understanding (e.g. “How many bars are there?”), 2) data

query (e.g., “How many units of item X were sold?”),

and 3) reasoning (e.g. “Is the accuracy of algorithm X

greater than algorithm Y ?”). Since many questions refer

to texts specific to the corresponding charts, systems must

integrate OCR and dynamically expand their vocabulary to

correctly answer questions. DVQA has two test splits: Test-

Familiar and Test-Novel, with Test-Novel containing charts

with texts that were not seen during training.

FigureQA has over 2 million question answer pairs for

180,000 images. It has five kinds of visualizations: 1) ver-

tical bar charts, 2) horizontal bar charts, 3) pie charts, 4)

line graphs and 5) dot-line graphs. Chart element colors

are uniformly distributed in the training and validation sets.

FigureQA has harder versions of the validation and test sets

with color combinations that are unseen in the training set.

Validation 1 and Test 1 have the same colors as the train-

ing set and Validation 2 and Test 2 have a color scheme that

differs from training. Test set annotations are not publicly

available. All questions are binary (yes/no) and demand

multiple abilities, including finding the largest/smallest ele-

ment (e.g. “Is X the largest/smallest?”), comparing values

of two elements (e.g. “Is X greater/smaller than Y ?”), and

other scientific measurements (e.g. “Does X have maxi-

mum area under the curve?”).

2.1.1 DVQA versus FigureQA

DVQA and FigureQA each have their own strengths and

shortcomings. We compare and contrast them below.

Shared strengths: Both datasets are large and provide

enough training samples to train large scale models, e.g.

in DVQA, each unique visual element is repeated at least

1,000 times. Both datasets provide detailed annotations for

all figure elements in addition to the question answer pairs,

making it possible to create auxiliary tasks or use them as

additional training signals. The creators of both datasets

tried to eliminate some sources of bias. DVQA has ran-

domized visual elements and it also has a balanced ques-

tion answer distribution to make guessing difficult. Sim-

ilarly, FigureQA has a randomized distribution of colors

and a balanced distribution of “yes” and “no” answers for

each unique question template. Lastly, both datasets pro-

vide both easy and hard test splits, where the hard test split

measures generalization beyond what is seen during train-
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Q:  I s web gr een l ess t han i ndi go? 

A:  Yes
Q:  I s r ed t he smoot hest ? 

A:  No
Q:  I s t omat o t he l ow medi an? 

A:  Yes ( No)
Q:  Does or chi d have t he mi ni mum ar ea 

under  t he cur ve? A:  No

Q:   What element does the darkorange 

color represent?: A: return

 Q.  What  i s t he sum of  accur aci es of  
t he al gor i t hm mode f or  al l  t he 

dat aset s? A: 15 ( 16)

Q.  How many uni t s di d t he wor st  
sel l i ng i t em sel l  i n t he whol e 

char t ? A:  1

 Q.  What  i s t he val ue of  c l ai m i n 

pl ent y? A:  6

Figure 2. Example images and PReFIL outputs for FigureQA (top) and DVQA (bottom). Red denotes incorrect predictions. For incorrect

predictions, correct answer is shown in parentheses. More examples are included in the supplementary materials.

Table 1. FigureQA vs. DVQA

6 Num. Images Num. QA Pairs Question Format Chart Types Number of Templates OCR OOV

DVQA 300,000 3,487,194 Open-ended 1 26 (Plus variations) Required Required

FigureQA 180,000 2,38,8698 Yes/No 5 15 (No variations) Not Required Not Required

ing. DVQA’s “Test Novel” split measures generalization to

unseen words and FigureQA provides an “alternated col-

ors” split where visual elements in the chart have different

colors than the ones seen during training.

DVQA’s advantages: In DVQA, questions about bars

are asked by referring to their text labels, e.g. “What is the

value of algorithm X?” where X is an actual label in the

chart and it will be different for each chart even if they have

the same appearance, e.g. identical red bars may have label

X in one image and Y in another. This requires integrat-

ing OCR into the system. In contrast, FigureQA refers to

chart elements by their color, e.g. “red bars” will always be

referred to as “red” making it easier for systems to identify

a chart’s elements. Since DVQA uses chart labels, algo-

rithms must take into account that some of the words may

be out-of-vocabulary (OOV) and unseen during training for

both questions and answer. To handle this, systems need to

have a vocabulary that can be dynamically adjusted during

testing. FigureQA has no OOV answers. DVQA also tests

for more tasks than FigureQA. For bar charts, DVQA con-

tain most of the tasks in FigureQA (e.g. identifying colors,

comparing values, etc.) and several that are not required

for FigureQA (e.g. data measurement and inferring struc-

ture of the chart). Finally, while DVQA contains only bar

charts, its bar charts have increased visual complexity com-

pared to those in FigureQA. FigureQA is limited to single-

variable vertical and horizontal bar charts, whereas DVQA

also has grouped bar charts and stacked bar charts with leg-

ends. DVQA’s bars can be hatched, monochrome, and have

negative values, all of which are absent in FigureQA.

FigureQA’s advantages: While DVQA has only bar

charts, FigureQA has three kinds of data visualizations: bar

charts, pie charts, and line graphs. This allows FigureQA to

have unique question-types that are not encountered for bar

chart alone. E.g., for line graphs, FigureQA requires deter-

mining the area under the curve, and whether one line inter-

sects another. These are not tested in DVQA. FigureQA also

tests compositional reasoning by asking questions about un-

known color combinations in chart elements, whereas col-

ors are randomly distributed in DVQA.

Shared limitations: As synthetically generated datasets,

both DVQA and FigureQA omit much of the variability

found in real-world data visualizations. All of DVQA’s

charts were made with Matplotlib and all of FigureQA’s

were made with Bokeh. The variation introduced is limited

to the capabilities of these packages. FigureQA uses only

generic titles and other chart elements. DVQA has some va-

riety but ultimately is limited to a few templates. Likewise,

both datasets have formulaic, templated questions. While

questions can be complex, they lack the diversity of human

generated queries. In the discussion we elaborate further on

how future datasets could overcome these limitations.
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2.2. Existing CQA Algorithms

For DVQA, in [16] SANDY (SAN with DYnamic en-

coding) model was proposed. SANDY used a modified

version of the stacked attention network (SAN) [40, 23],

which has been widely used for VQA [23, 5]. SAN uses

the question to apply attention to the convolutional feature

maps. It cannot handle DVQA’s OOV words in its test set or

the chart specific words found in its questions and answers.

To address this, SANDY uses an off-the-shelf OCR method

to recognize such words and introduced dynamic encoding

to represent OOV and chart-specific words. SANDY’s dy-

namic encoding scheme for OCR can be incorporated into

any classification-based VQA algorithm.

FigureQA’s creators used a relation network (RN) [35]

on their dataset. RN encodes pairwise interactions between

every pair of “objects” in an image, enabling it to answer

questions involving relationships. Each “object” is a cell of

a convolutional feature map. RN has been shown to be espe-

cially effective at compositional reasoning in CLEVR [35],

and it exceeded baselines on FigureQA.

FigureNet [33] is a multi-step algorithm for FigureQA

composed of different modules. The first module is called

the spectral segregator, which identifies the elements and

colors of the chart. It is followed by the extraction module,

which quantifies the values represented by each element.

This is then used with a feed-forward network to predict

the answer. FigureNet uses the detailed annotations of Fig-

ureQA’s chart elements to pre-train each of the modules.

Because FigureNet relies on having access to the measure-

ments of each chart element, they could only apply it to

FigureNet’s bar and pie charts.

To assess bias in their datasets, the creators of FigureQA

and DVQA both studied question-blind and image-blind

models. They found that these models performed abysmally

indicating that vision and language must be jointly used

to correctly answer the questions. The creators of both

datasets also tested simple question+image fusion schemes.

These worked better than the blind baselines, but this did

not suffice for handling the complexity found in CQA. This

is in contrast to VQA with natural images, where these al-

gorithms fare comparatively well.

Compared to existing work, our model does not employ

complex attention or relational modules, and unlike Fig-

ureNet, it does not require additional supervised annotations

for training on FigureQA.

3. The PReFIL Model

We propose the PReFIL algorithm for CQA. As shown in

Fig. 3, PReFIL has two parallel Q+I fusion branches. Each

branch takes in question features (from an LSTM) and im-

age features from two locations of a 40-layer DenseNet, i.e.

low-level features (from layer 14) and high-level features

(from layer 40). Each Q+I fusion block concatenates the

question features to each element of the convolutional fea-

ture map, and then it has a series of 1 × 1 convolutions to

create question-specific bimodal embeddings. These em-

beddings are recurrently aggregated and then fed to a clas-

sifier that predicts the answer. Despite being composed of

relatively simple elements, PReFIL outperforms more com-

plex methods that use RNs and attention mechanisms. The

three main stages of PReFIL are described in the next sub-

sections. For DVQA, an additional fourth OCR-integration

component is required (Sec. 3.4). In Sec. 4.3, we conduct

studies to understand the value of each stage.

3.1. Multi­stage Image Encoder

For all model variants, image encoder is a DenseNet [12]

trained from scratch. DenseNet is an efficient architecture

for training deep convolutional neural networks (CNNs).

It is comprised of several “dense blocks” and “transition

blocks” between the dense blocks. Each dense block has

several convolutional layers, where each layer uses outputs

of all preceding layers as its input. The transition block

sits between two dense blocks and serves to change feature-

map sizes via convolution and pooling. This architecture

encourages feature reuse, improves training, and mitigates

vanishing-gradients, making it easy to train very deep net-

works. Feature reuse allows DenseNet to learn complex vi-

sual features with fewer parameters compared to other ar-

chitectures [11].

In deep CNNs, complex features are learned as a hier-

archy of visual features with earlier layers learning simple

features and later layers learning higher-level features that

are combinations of simpler features [41]. In data visualiza-

tions, simpler features such as color patches, lines, textures,

etc. convey important information that is often abstracted

away by deeper layers of a CNN. Hence, we use both low-

and high-level convolutional features in our model, both of

which are fed to parallel fusion module alongside question

embeddings learned using an LSTM. We study the impor-

tance of both low and high level features in Sec. 4.3.

3.2. Parallel Fusion of Image and Language

Jointly modulating visual features using vision and lan-

guage features can allow models to learn richer features for

downstream tasks [29, 31, 37]. Our Q+I fusion block does

this by first concatenating all of the input convolutional fea-

ture map’s spatial locations with the question features, and

then bimodal fusion occurs using a series of layers that use

1 × 1 convolutions [29, 37]. This allows the question to

modulate visual feature processing and yields bimodal em-

beddings that capture information from both the image and

the question. This approach resembles early VQA mod-

els that concatenated CNN embeddings to question embed-

dings, with the critical difference being that this happens
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Figure 3. Components of our PReFIL model. Magnified views show the details of each dense block and Q+I fusion block.

before spatial pooling across the entire scene. We do this

for both low-level and high-level convolutional features in

parallel. In Sec. 4.3, we study the importance of learning

bimodal embeddings jointly.

3.3. Recurrent Aggregation of bi­modal features

In CNNs, the most common approach to aggregating in-

formation from a feature map F ∈ R
M×N×D is to col-

lapse across the spatial dimensions to produce a D dimen-

sional vector by mean pooling or max pooling. An alter-

native is to “flatten” F to turn it into a DMN -dimensional

vector. Recent attentive approaches have explored using a

weighted sum, where the relative importance of each region

is based on the question. These methods may fail to capture

interactions among features, especially for high-level tasks

such as question answering. To address this, we aggregate

information using a bidirectional gated recurrent unit (bi-

GRU), which sequentially takes in the D-dimensional fea-

tures from each of the MN locations in F . The aggregated

features are sent to a classifier to predict the answer. As ab-

lation, we also try sum-pooling for aggregation in Sec. 4.3.

3.4. OCR Integration for DVQA dataset

Unlike FigureQA and most VQA tasks, DVQA requires

OCR to answer its reasoning and data questions. A fixed vo-

cabulary consisting of all the words seen during training is

not enough since the model will encounter OOV words dur-

ing testing. To integrate OCR into PReFIL, we use the same

dynamic encoding scheme used by the SANDY model [16].

Dynamic encoding creates an image specific dictionary that

associates the spatial positions of scene elements with en-

tries in the dictionary. Before running the net, all words

are detected using OCR and then they are associated with

the appropriate element in the dynamic encoding dictionary

based on each word’s spatial position. Subsequently, if a

question word is encountered that is in the dynamic dictio-

nary then the appropriate element is set to 1. For answers,

a portion of the classification layer is reserved for the dy-

namic encoding outputs. See [16] for additional details.

To assess impact of OCR, we test three OCR versions as

well as a version of algorithm trained without the dynamic

encoding, i.e., only using a fixed-vocabulary constructed

from the train split. The first two OCR systems are iden-

tical to those used by [16]: an oracle (perfect) OCR model

and a real OCR system using Tesseract. Because Tesseract

has been found to be sub-optimal when used directly on di-

agrams [24], we also study using a two-stage OCR pipeline

where we first detect text and then run OCR on the detected

regions to recognize the text. Specifically, we use the EAST

text detector [42] to detect text-regions for images rotated

at 0, 45 and 90 degrees. We then perform non-maximum

suppression on overlapping detections and crop them. Each

cropped region is resized by 200% and sent to the Tesseract

OCR to obtain the text within each region. The rest of the

dynamic encoding scheme remains unchanged.

3.5. Model and Training Hyperparameters

Question Encoding: Question words are represented

by 32 dimensional learned word embedding and passed

through an LSTM which provides a 256-dimensional em-

bedding representing the whole question.

DenseNet: We use a 40 layer DenseNet composed of

3 dense blocks with 12 layers each. The number of initial

filters is 64 and the growth rate is set to 32.

Preprocessing: DVQA images are resized to a size of

256×256. FigureQA images are all differently sized but we

resize them to 320×224 which maintains an average width-

height aspect ratio. For data augmentation during training,

both DVQA and FigureQA images are padded with 8 pixels

on all sides, followed by random crops and random rota-

tions of up to 3 degrees.

Q+I Fusion: Inputs to Q+I block are batchnormed. Each

Q+I fusion block is composed of four 1 × 1 convolutions

with 256 channels and ReLU.

Recurrent Fusion: The bimodal features are aggregated

using a 256 dimensional bi-directional GRU. The forward

and backward direction outputs are concatenated to form a

512 dimensional vector which is fed to the classifier.

Classifier: The aggregated bimodal features are pro-

jected to a 1024 fully connected ReLU layer, which was

regularized using dropout of 0.5 during training. The classi-

fication layer is binary for FigureQA. For DVQA, the clas-
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sification layer has 107 units, with 77 units for predicting

‘common’ answers such as ‘yes’, ‘no’, ‘three groups’, etc,

and 30 special tokens for predicting answers that require

OCR, which allows PReFIL to produce OOV answer tokens

that are unseen during training (see Sec. 3.4 for details).

Losses and Optimizers: For DVQA, PReFIL is trained

using multinomial cross-entropy loss. For FigureQA, PRe-

FIL is trained using binary cross entropy loss. Follow-

ing [26], we use Adamax optimizer with a gradual learning

rate warm-up, with a base learning rate of 7 × 10−4. The

first 4 epochs use a learning rate of (0.5 × epoch × base)
and the rate starts decaying by a factor of 0.7 from epochs

15 to 25. For DVQA, all models are trained for a fixed 25

epochs. For FigureQA, we train them until they converge

on the validation set and submit predictions to its creators

for assessment on the non-public test set.

4. Experiments and Results

4.1. FigureQA

FigureQA has two validation sets and two non-publicly

available test sets. Validation 1 and Test 1 have the same

colors as the training set and Validation 2 and Test 2 have

a color scheme that differs from training. Test sets are not

publicly available and the results were obtained by sending

the predictions to the authors. Existing works do not report

accuracy for the full test set, but we report results for both

validation and test sets in Table 3.5 for completeness.

Our PReFIL algorithm exceeds FigureNet by a large

margin despite FigureNet having access to additional an-

notations. FigureNet is incapable of answering questions

about line and dot-line graphs, so it is only evaluated on

vBar, hBar and Pie. For these chart types, average accuracy

for FigureNet is 83.9%, compared to 97.33% for ours.

FigureQA also provides human performance for a subset

of Test 2, which is not available for the other sets. We report

PReFIL’s performance compared to other baselines and hu-

man performance on the exact same subset in Table 3. PRe-

FIL outperforms the human baseline for four out of five cat-

egories and also surpasses overall human accuracy. When

analyzed for different question templates, PReFIL outper-

forms humans for 12 out of 15 question templates. PReFIL

shows the most improvements for questions requiring mea-

surements, e.g. for the question template “Is X the high/low

median?” PReFIL outperforms human accuracy by over

7% (absolute). Detailed results for all 15 templates are pre-

sented in the supplementary materials.

4.2. DVQA

DVQA is split into Test-Familiar, which contains bar

charts with words that are also encountered in its Train set,

and Test-Novel, which contains bar charts with novel words

in them. Results for both DVQA splits are given in Table 4.

PReFIL surpasses SANDY by over 40% in accuracy when

both the baseline SANDY and our PReFIL method have ac-

cess to a perfect Oracle OCR, which is emulated by provid-

ing the correct text-annotations for all the elements in the

images. When using Tesseract OCR, we obtain about a 24%

improvement overall on both test sets. To demonstrate that

PReFIL’s performance scales with access to better OCR, we

also test a version that uses an improved OCR pipeline (see

Sec. 3). This further improves PReFIL’s performance by

about 11% bringing it closer to the results of the oracle OCR

version. When OCR is removed entirely, PReFIL still per-

forms about 11% better than SANDY without OCR, but this

ablation renders many data and reasoning questions impos-

sible to answer. This re-affirms the assertion by DVQA’s

creators that OCR integration is essential for answering the

data and reasoning questions in the dataset [16].

Across all OCR variants, PReFIL outperforms SANDY.

Moreover, PReFIL’s performance scales much better when

better OCR is available: 11% gain for SANDY vs. 26%

gain for PReFIL when moving from the imperfect Tesser-

act OCR setup to the perfect Oracle OCR setup. Our re-

sults show that PReFIL is as effective for novel words (Test-

Novel) as it is for familiar words (Test-Familiar). This is en-

abled by the dynamic OCR integration, which is designed to

be agnostic to whether a word has been encountered before.

Because no human accuracy estimate for DVQA existed,

we had people answer 5000 randomly selected questions for

5000 images from the DVQA Test-Novel split. The annota-

tors were shown example QA pairs from each of three ques-

tion types. We perform post processing on the provided an-

swers to rectify minor answer entry errors. First, we found

some annotators used decimal points or spelled out numer-

als (“5.0” or “five” instead of “5”) despite our instructions

to only use integers when answers are numbers. Because

DVQA contains only integers, we convert all such occur-

rences to the nearest integer. For word answers, we allow

one character typographic error to be discounted. Results

for humans and models are given in Table 4. With perfect

OCR, PReFIL surpasses the DVQA human accuracy result

across question types. Its performance on reasoning ques-

tions is almost 10% greater (absolute), and it exceeds them

by almost 8% (absolute) for DVQA’s data questions, which

require measurement. However, without perfect OCR hu-

mans exceed PReFIL, although the better OCR used for

PReFIL does lead to significantly better results than PRe-

FIL with improved OCR. This suggests that the underlying

core algorithm and reasoning mechanisms in PReFIL work

well for DVQA, and the main limiting factor is OCR.

4.3. Ablation Studies

We studied the contribution of PReFIL’s components by

analyzing a series of ablation models. We trained each

model variation and the original PReFIL (Oracle OCR) for
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Table 2. Results for the FigureQA dataset for our PReFIL algorithm compared to baseline and existing algorithms.

Validation 1 - Same Colors Validation 2 - Alternated Colors

vBar hBar Pie Line Dot-line Overall vBar hBar Pie Line Dot-line Overall

QUES [21] - - - - - - - - - - - 50.01

IMG+QUES [21] 61.98 62.44 59.63 57.07 57.35 59.41 58.60 58.05 55.97 56.37 56.97 57.14

RN [21] 85.71 80.60 82.56 69.53 68.51 76.39 77.35 77.00 74.16 67.90 69.04 72.54

FigureNet [33] 87.36 81.57 83.13 - - - - - - - - -

PReFIL (Ours) 98.80 98.09 95.11 91.82 92.19 94.84 98.46 97.94 93.57 88.50 90.30 93.26

Test 1 - Same Colors Test 2 - Alternated Colors

PReFIL (Ours) 98.79 98.14 95.35 91.98 92.05 94.88 98.41 97.93 93.58 88.26 90.07 93.16

Table 3. Results on FigureQA’s Test 2 split with alternated color

schemes. All results are from the 16,876 questions answered by

human annotators.

Type PReFIL(Ours) Q+I [21] RN [21] Human [21]

vBar 98.25 59.63 77.13 95.90

hBar 97.98 57.69 77.02 96.03

Pie 92.84 55.32 73.26 88.26

Line 87.79 54.46 66.69 90.55

Dot-line 89.57 54.19 69.22 87.20

Overall 92.79 56.04 72.18 91.21

25 epochs on a subset of DVQA that has only 500,000 ran-

domly selected training samples. The ablation models are:

• No bimodal embeddings: Instead of learning bimodal

embeddings, the question is concatenated after the re-

current aggregation and fed to the classifier.

• No low-level features: Only the high-level (layer 40

output) DenseNet features are used.

• No high-level features: Only the low-level (layer 14

output) DenseNet features are used. This is equivalent

to using a shallower DenseNet.

• No recurrent aggregation: Instead of recurrent ag-

gregation, output is aggregated via summation.

As shown in Table 5, all of PReFIL’s components impact

its performance. Removing bimodal embeddings causes the

largest accuracy drop (over 12% absolute). The next largest

is caused by removing low and high-level visual features

(1.3% and 6% absolute).

4.4. Table Reconstruction by Asking Questions

We introduce table reconstruction for DVQA as an appli-

cation of PReFIL. DVQA’s question templates provide the

questions needed to completely reconstruct its bar charts

by iteratively asking questions about each chart. Our ap-

proach is given in Algorithm 1. An example reconstruction

is shown in Fig. 4, and results using PReFIL (Oracle OCR)

are given in Table 6. Shape prediction can be done with near

perfect accuracy, but there is a drop in performance for both

label and value prediction. To study the accuracy of differ-

ent components in chart reconstruction, we also report ac-

curacy on three main components of the iterative question-

Algorithm 1: Iterative QA for Data Reconstruction

if bar type is single then

n = ans(”How many bars are there?”);

for i← 1 to n do

data[i] = ans(“What is the value of the ith

bar?”);

label[i] = ans(“What is the label of the ith

bar?”);

else

m = ans(“How many groups are there?”);

n = ans(“How many bars are there per group?”);

for j ← 1 to n do
legend label[j] = ans(“What is the label of the

jth bar in each group?”);

for i← 1 to m do

bar label[i] = ans(“What is the label of the ith

group?”);

for j ← 1 to n do
data[i,j] = ans(“What is the value of the

jth bar in ith group?”);

paper goal

vein 2 6

dinner 8 6

ladder 5 4

noise 5 7

 Algorithm 1

Figure 4. An example output of the chart to table algorithm. Red

denotes incorrect predictions.

answering: 1) Shape prediction: Questions about number of

bars and legends in the picture; 2) Label prediction: Predict-

ing the label of given bar or legend; and 3) Value Prediction:

Predicting the value of a given bar.
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Table 4. Results for the DVQA dataset for PReFIL compared to baselines and existing algorithms.

Test-Familiar Test-Novel

Structure Data Reasoning Overall Structure Data Reasoning Overall

QUES [16] 44.03 9.82 25.87 21.06 43.90 9.80 25.76 21.00

IMG+QUES [16] 90.38 15.74 31.95 32.01 90.06 15.85 31.84 32.01

SANDY (No OCR) [16] 94.71 18.78 37.29 36.02 94.82 18.92 37.25 36.14

PReFIL (No OCR) 99.77 23.39 49.05 47.70 99.77 23.43 49.21 47.86

SANDY (Tesseract OCR) [16] 96.47 37.82 41.50 45.77 96.42 37.78 41.49 45.81

PReFIL (Ours, Tesseract OCR) 99.75 49.00 74.61 69.63 99.73 48.91 74.07 69.53

PReFIL (Ours, Improved OCR) 99.73 68.55 83.44 80.88 99.57 67.13 80.73 80.04

SANDY (Oracle OCR) [16] 96.47 65.40 44.03 56.48 96.42 65.55 44.09 56.62

PReFIL (Ours, Oracle OCR) 99.77 95.80 95.86 96.37 99.78 96.07 95.99 96.53

Human - - - - 96.19 88.70 85.83 88.18

Table 5. PReFIL ablation studies on a 500K DVQA train subset.

Ablation Model Test Familiar Test Novel

PReFIL (full model) 91.18 91.32

No bimodal embedding 78.00 78.36

No high-level features 85.68 85.86

No low-level features 89.87 90.05

No recurrent aggregation 90.88 91.14

Table 6. Bar chart reconstruction accuracy (%) using Algorithm 1

with PreFIL (Oracle OCR).

Test Familiar Test Novel

Shape Prediction 99.97 99.97

Label Prediction 97.78 97.78

Value Prediction 84.21 84.75

Overall 90.79 91.10

5. Discussion

PReFIL surpassed prior state-of-the-art methods for both

DVQA and FigureQA. While PReFIL exceeded the human

baseline for FigureQA, results are more nuanced for DVQA

due to OCR model variations. All OCR versions exceeded

the human baseline for structure questions, but only PRe-

FIL using oracle OCR exceeded humans across all question

types. We found that better OCR methods led to better re-

sults for DVQA. Future developments in OCR technology

would likely improve PReFIL further.

The strong results in this paper suggest that the commu-

nity is ready for more difficult CQA datasets. We have the

following recommendations:

• Charts in the wild: The charts in FigureQA and

DVQA were methodologically generated, but human-

generated charts in real-world business and scientific

documents can contain variations that these datasets

omit. Additional text in the chart or human annotations

would likely cause the dynamic encoding method used

by PReFIL to fail. Next generation datasets should

contain charts extracted from real-world documents.

• Human generated questions: The questions in both

FigureQA and DVQA were created with templates,

which do not capture all the nuances of natural lan-

guage. Deploying a chart question answering sys-

tem will require it to handle human-generated queries.

Studies on the synthetically generated CLEVR dataset

have demonstrated that algorithms experience a large

drop in performance when natural language questions

are asked to a model trained only on CLEVR [15].

Future CQA datasets should include human-generated

question-answer pairs.

• Document-level CQA: FigureQA and DVQA have

well-defined image regions and all information needed

to answer a question is contained in that image. To un-

derstand charts in documents, information in the rest

of the document may be necessary to answer questions

about the chart. Beyond typical CQA algorithm abil-

ities, this requires document question answering [8],

page segmentation [10], and more. Creation of such a

dataset would greatly increase the challenge for future

algorithms and better match real-world usage.

6. Conclusion

We proposed PReFIL, a new CQA system that improves

the state-of-the-art and surpasses human accuracy on two

datasets. Like other VQA tasks [19], our results suggest

harder datasets are needed. For CQA, better OCR is also

important for advancing the field. Our work has the poten-

tial to improve retrieval of information from charts, which

has numerous applications, including automatic informa-

tion retrieval, table reconstruction, and enabling better un-

derstanding of charts by people with visual impairments.
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