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Abstract— Achieving and maintaining line-of-sight (LOS) is
essential for free-space optical (FSO) communication systems
due to the high directionality of the optical signals. We consider
the problem of achieving LOS in a planar setting, where
each of the two parties (called agents) makes a move only
based on its own light intensity measurement. The problem
is formulated as a discrete time dynamical system, where each
agent seeks to maximize its own reward function that depends
on the states of both agents, who make their moves in parallel.
In particular, the reward function corresponds to the light
intensity measurements made by each agent. While the two
reward functions are non-conflicting (i.e., the optimization of
one reward function helps the optimization of the other), the
constraints of no information exchange between the agents,
no access to states, and parallel (non-sequential) actions pose
significant challenges. A novel iterative optimization algorithm
meeting all of these constraints is proposed. We show that the
proposed algorithm brings the system to a neighborhood of the
LOS in a finite number of steps, when the reward functions are
of the Gaussian form as supported by the experimental data.
The effectiveness of the approach is evaluated in simulation
by comparison with extremum-seeking control, where it shows
an order of magnitude better performance in terms of the
convergence speed.

I. INTRODUCTION

The free-space optical (FSO) communication systems

are promising for high-bandwidth wireless underwater

communication. For the FSO communication systems,

establishing and maintaining near line-of-sight (LOS) links

is essential as the light signals are highly directional.

It is desirable to achieve LOS, without relying on the

communication between the agents (e.g., robots, which are

often moving) as the quality of communication link itself

depends on the LOS. This paper proposes, analyzes and

evaluates one such scheme for two transmitter-receiver pairs

with planar motion to achieve and maintain LOS from

arbitrary allowable initial configurations.

Several approaches have been proposed to address the

LOS requirement in optical communication systems. Mul-

tiple LEDs and/or multiple photo-diodes have been used

to avoid the need of active pointing during optical-

communication [1],[2]. Soysal et al. used quadrant photo-

detector [3] with Kalman filtering to simultaneously estimate

the azimuthal and elevation errors, which were further used

as feedback for beam tracking. Jeon et al. [4] used position

sensitive detector (PSD) and MEMS-based optical scanner
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for active bi-directional optical links. In our previous works,

[5], [6],[7], we demonstrated one-sided tracking using a

single photo-diode on the receiver, where only one agent uses

an active alignment mechanism along with extended Kalman

filtering to achieve the LOS. In all of these aforementioned

works, active alignment is demonstrated in simulation or

experimental setup, but they typically do not provide any

theoretical guarantee on the stability or the convergence rate.

This paper considers the setup of two agents seeking to

establish LOS for bidirectional communication in a planar

setting, and formulate it as a two-agent optimization problem

wherein each agent is assumed to have a local measurement

of its reward function of the form, yi = g(xi)h(x3−i),
i ∈ {1, 2}, where x1 and x2 are the states of the two

agents as relevant to LOS, and the functions g and h are

of Gaussian type, as supported by experimental data. This

makes the reward functions non-conflicting; both have the

same maximizer (x∗
1, x

∗
2), which corresponds to the LOS

configuration. Based on the setup, the agents do not have

access to their own state. In addition to the no communica-

tion constraint between the agents, they are assumed to act

simultaneously at each time step, which eliminates candidate

solutions based on sequential actions of the agents that can

greedily optimize their instantaneous reward functions. The

problem is to design a scheme such that the states of the

agents reach an ǫ-neighborhood of the LOS configuration

within a finite number of steps.

The problem in this paper can be considered as a special

case of a multi-agent optimization problem in which each

agent seeks to optimize their own cost (reward) function that

depends on the state of the other agents. In multi-agent game-

theoretic formulations, gradient play is a popular technique

that converges to a Nash equilibrium for the game under mild

technical assumptions [8], [9]. However, these techniques

require that each agent has access to the gradient of its own

cost function. Passivity-based tools have also been studied

for multi-agent synchronization and extremum-seeking

problems [10], [11]. However, these require information

exchange between the agents or in certain cases, access

to the gradient of the local cost function with respect to

the state. A version of extremum-seeking control algorithm

[12] is applicable to the problem structure, and is thus

used as a benchmark approach for the comparison with the

proposed method in this paper. The algorithm exhibits delay

in convergence due to significant exploration by each agent.

The contributions of this paper are as follows. We propose

a novel approach that only requires the information of

the current and the immediately preceding reward function

measurements by each agent. Under the assumption that
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the reward functions are a product of Gaussian functions,

we prove that from any initial values of the states, and as

per the proposed approach, both agents reach a specified

ǫ-neighborhood of the optimal solution (corresponds to the

LOS, and without the loss of generality can be considered

as the origin) in a finite number of steps. The algorithm is

evaluated in simulation, and a comparison with extremum-

seeking control demonstrates an order of magnitude advan-

tage in terms of the speed of convergence.

The rest of the paper is organized as follows. In Section II,

the hardware description of the system is presented, followed

by problem formulation in the state-space domain. In Section

III, the proposed scheme is presented along with the main

result of the paper and its mathematical proof. The simulation

results along with a brief description of the implementation

of the extremum-seeking approach are presented in Section

IV. Finally, concluding remarks are provided in Section V.

II. SYSTEM SETUP AND MODELLING

A. System Setup

Consider two agents (e.g., robots) in a planar environment

as illustrated in Fig. 1. The line joining the robots is the

LOS. The distance between the robots is d. The optical

axis of robot Ri makes angle θi with the LOS line, where

i ∈ {1, 2}, θi ∈
(

−π
2 ,

π
2

)

. In this work, we assume that the

positions of the agents are fixed and they can only change

their angle θi.

d

Robot R1

Robot R2

θ2

θ1

Fig. 1: Two agents seeking to establish LOS in a 2D scenario.

Fig. 2 shows the transceiver hardware setup for LED-

based free-space optical communication, which has been

developed in our prior work [6] and can be mounted on

mobile robots. Each transceiver has two devices: a photo-

diode with a lens and a light-emitting-diode (LED) with a

lens. For the purpose of mathematical modelling, the agents

are considered as points and the optical axes of the devices

are assumed to be aligned for each robot. Moreover, the

transceiver is mounted on a rotating platform, which enables

the adjustment of transceiver orientation.

B. Mathematical Modeling

The light signal strength model adopted here largely

follows [13] with minor adjustments to suit the experimental

prototype considered in this paper. The light signal strength

measured by the photo-diode of agent R1 (in V) and

transmitted by agent R2’s LED is given by,

Vd = Cp

e−cd

d2
h(θ2)g(θ1), (1)

LED with 

a lens

Photodiode 

with a lens

Fig. 2: Illustration of components of the transceiver on each agent.

where Cp is a constant of proportionality, c is the atten-

uation coefficient of the transmission medium, and h(θ2)
corresponds to the angular intensity distribution of R2’s LED

(same as the optical signal radiant intensity [13]). Similarly,

g (θ1) is the angular sensitivity of the photo-diode of R1.

An expression analogous to (1) holds for the light intensity

measured by R2. It is to be noted that h(·) and g(·) are

setup dependent and can be experimentally characterized.

Fig. 3 shows the data collected on our setup for g(·) and the

corresponding Gaussian fitting function. The collected data

for the function h(·) has a similar Gaussian fitting function

but with a smaller width.

-50 0 50
0

0.5

1

g
(

)

Normalised data

fitting function

Fig. 3: Illustration of the Gaussian approximation of the fitting
functions of photo-diode sensitivity curve.

The state variables x1 and x2 are the angles θ1 and θ2,

respectively. Now, since the robot positions are fixed, the

distance d is constant and can be merged into a new propor-

tional constant C, resulting in the measurement functions

yk
△
=

[

y1,k
y2,k

]

=

[

Ch(x2,k)g(x1,k)

Ch(x1,k)g(x2,k)

]

=





Ce−(
x2
1,k

a2 +
x2
2,k

b2
)

Ce−(
x2
1,k

b2
+

x2
2,k

a2 )



 ,

(2)

where a and b represents the width of the Gaussian fitting

functions g(·) and h(·) with b < a. To facilitate the state-

space formulation, we consider the following dynamics for

the states:

xi,k+1 = xi,k + ui,k, (3)

where ui,k represents the control of the i-th agent with

ui,k = U(yi,k, ..., yi,0, ui,k−1, ..., ui,0) : ‖ui,k‖ ≤ δ, (4)

and U : R
2k+1 −→ R. In this case, δ is the size of the

maximum allowable step size, assumed to be the same for

both agent. Eq. (4) captures the constraint of no communica-

tion between agents since the control term of an agent i can
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only depend on its own history of measurements and control

inputs. Next, we state a generalized problem statement for

the aforementioned class of two-agent systems.

Problem Statement: Design a control law of the

form (4) for a system defined in (2) and (3) such

that for any permissible initial state x0, ∃ a finite

K ∈ Z
+ : ‖xK‖1 ≤ ǫ ∈ O(δ). ‖·‖1 denotes the ℓ1-

norm (Manhattan norm) of a vector and the term ǫ defines

the size of the neighborhood around the LOS, and as that

size tends to zero, the agents achieve perfect LOS.

III. ALGORITHMS AND ANALYSIS

In this section, we propose a control law complying with

the requirements in eq. (4), with an analysis to show that

the states of the agents are within an ǫ-neighborhood of the

origin (optimum) in a finite number of steps K.

A. Proposed Control Law and Main Result

Consider the following simple control law:
[

u1,k

u2,k

]

=

[

sgn(y1,k − y1,k−1)u1,k−1

sgn(y2,k − y2,k−1)u2,k−1

]

, (5)

where, sgn(p) =

{

+1, if p ≥ 0,

−1, otherwise,
(6)

which essentially means that an agent takes an action in

the direction of increasing light intensity measurement,

and when it observes a reduction in its measurement, it

switches to an action in the opposite direction. The initial

direction (ui,0) is chosen at random: u0 = (u1,0, u2,0) ∈
{[+δ,+δ]

T
, [+δ,−δ]

T
, [−δ,+δ]

T
, [−δ,−δ]

T }, δ > 0.

Fig. 4 illustrates a sample trajectory under eq. (5) from an

arbitrary initial condition S. Theorem 3.1 summarizes the

guarantees associated with the control law.

Fig. 4: Illustration of a sample trajectory along with level contours
for measurement functions and regions R1, R2 and M defined in
the proof of Theorem 3.1 in subsection III-B.

Theorem 3.1 (Main Result): Under the assumption that

a > b, from any initial condition x0, the control law defined

in eq. (5) satisfies the requirements in the problem statement

for the system defined by eqs. (3) and (2) with

1) ǫ = 3δ
2

(

1 + a2

b2

)

, and (7)

2) K =
√
2‖x0‖1

δ
+ 4(

⌈

ln(
2‖x0‖1

3δ )

ln( a2+b2

a2
−b2

)

⌉

+ 1). (8)

Remark 1: Suppose that the system is already inside

the ǫ-neighborhood and leaves the neighborhood, then the

theorem applies to the new initial condition and the state

returns to the neighborhood in finite steps.

The next subsection is dedicated to the proof of Theorem 3.1.

B. Proof of Theorem 3.1

Consider the transformed measurement z:

zk
△
=

[

z1,k
z2,k

]

=

[

− ln(y1,k)

− ln(y2,k)

]

=

[

x2
1

a2 +
x2
2

b2

x2
1

b2
+

x2
2

a2

]

.

The level contours of z and equivalently, of y1 and y2, are

ellipses as illustrated in Fig. 4. Consequently, the control law

defined in Eq (5) can be rewritten as:
[

u1,k

u2,k

]

=

[

− sgn(z1,k − z1,k−1)u1,k−1

− sgn(z2,k − z2,k−1)u2,k−1

]

. (9)

We begin with the notion of an improving control direction.

Definition 3.1 (Improving control direction): Consider

the following conditional function

Fimp(xk,uk) =

{

1, if ∇z1,k · uk < 0 & ∇z2,k · uk < 0

0, otherwise
,

with ∇z1,k =
[

2x1/a
22x2/b

2
]

, ∇z2,k =
[

2x1/b
22x2/a

2
]

.

For any point xk, a control term uk is improving if

Fimp(xk,uk) = 1. �

For the set of points x such that ‖x‖1 > ǫ, the allowable

orientation space is divided into the following regions, based

on the notion of improving control direction:

• R1 :
∣

∣

x1

a2

∣

∣− ǫ
3a2 >

∣

∣

x2

b2

∣

∣ , u = [− sgn(x1)δ,±δ]
T

(10)

• T1 :
∣

∣

x1

a2

∣

∣− ǫ
3a2 ≤

∣

∣

x2

b2

∣

∣ ≤
∣

∣

x1

a2

∣

∣+ ǫ
3a2 . (11)

• M :
∣

∣

x1

a2

∣

∣+ ǫ
3a2 <

∣

∣

x2

b2

∣

∣ ,
∣

∣

x2

a2

∣

∣+ ǫ
3a2 <

∣

∣

x1

b2

∣

∣,

u = [− sgn(x1)δ,− sgn(x2)δ]
T

(12)

• T2 :
∣

∣

x2

a2

∣

∣− ǫ
3a2 ≤

∣

∣

x1

b2

∣

∣ ≤
∣

∣

x2

a2

∣

∣+ ǫ
3a2 . (13)

• R2 :
∣

∣

x2

a2

∣

∣− ǫ
3a2 >

∣

∣

x1

b2

∣

∣ , u = [±δ,− sgn(x2)δ]
T

(14)

The regions T1 and T2 are transition regions, where an

improvement direction becomes tangent to one of the level

contours. Moreover, if a point is outside the ǫ neighborhood

(‖x‖1 > ǫ), then

⇒ ‖x‖1
a2

>
ǫ

a2
⇒

∣

∣

∣

x1

a2

∣

∣

∣
+

∣

∣

∣

x2

b2

∣

∣

∣
>

ǫ

a2
as a > b, (15)

similarly, ‖x‖1 > ǫ ⇒
∣

∣

∣

x1

b2

∣

∣

∣
+
∣

∣

∣

x2

a2

∣

∣

∣
>

ǫ

a2
. (16)

Fig. 5 illustrates the defined regions along with the above

inequality bounds.

Lemma 1 (Signum and absolute value properties): For

p ∈ R and q ∈ R, the following properties hold true.

1) sgn(pq) = sgn(p) sgn(q) (17)

2) |p| > |q| ⇒ sgn(p+ q) = sgn(p) (18)

3) |p| − |q| ≤ |p− q| ≤ |p|+ |q| (19)
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Fig. 5: Illustration of regions defined based on the notion of the
improving direction.

4) p = sgn(p)|p|, |p| = sgn(p)p (20)

5) q > 0 ⇒ sgn(qp) = sgn(p) (21)

These properties can be easily verified and will be repeat-

edly used in the subsequent analysis.

Lemma 2 (Initialization): At any given initial point x0
with ‖x0‖1 > ǫ, and an initial control term u0 with the

control law defined in eq. (9),

Fimp(x0,ukimp
) = 1 (22)

for some kimp ∈ {1, 2, 3, 4}. �

The lemma essentially says that in the beginning, from any

arbitrary point outside the ǫ neighborhood around origin,

with any arbitrary initial direction, the system takes up to

4 steps to get into an improving control direction. The proof

the lemma is provided in appendix A.

Lemma 3 (Subsequent steps): If xk ∈ R, xk+1 ∈
R, R ∈ {R1, M, R2} and Fimp(xk,uk) = 1, then,

1) uk+1 = uk and

2) Fimp(xk+1,uk+1) = 1. �

This result implies that once the control is in improving

direction, it would continue to be so until the system state

changes its region. The proof of the lemma can be derived

using the properties of the regions.

S

A
0

A
1

S
1

A
2

A
3

O

Fig. 6: Geometry of the evolved path.

Outline of the proof of Theorem 3.1. Now consider the path

of sample trajectory of the system illustrated in Fig. 6, where

the system starts at a general point S in M (we shall see that

the initial point can be any other point in any other region).

According to Lemma 2, it takes up to kimp ≤ 4 number

of steps to come to an improving direction. Subsequently,

by Lemma 3, the system continues to move in the same

improving direction until it reaches T2 at the point A0. It is to

be noted that the location of the point after initial correction

dictates which region the trajectory aims to, namely:

• T1: If
∣

∣x1,kimp

∣

∣ >
∣

∣x2,kimp

∣

∣.

• T2: If
∣

∣x1,kimp

∣

∣ <
∣

∣x2,kimp

∣

∣.

• If
∣

∣x1,kimp

∣

∣ =
∣

∣x2,kimp

∣

∣, then the trajectory points toward

the origin.

In the current example,
∣

∣x1,kimp

∣

∣ <
∣

∣x2,kimp

∣

∣, hence the

trajectory aims toward T2. Now, when the system crosses

the point A0, the system is already in improving direction

and therefore it continues in the same direction inside T2.

Thereafter, it reaches R2 with an already improved direction.

Then inside R2 the system continues in the same improving

direction (Lemma 3). On the path inside R2, it transits from

the fourth quadrant to the third quadrant. So the control

direction becomes [sgn(x1),− sgn(x2)]
T

which is also a

valid improving control direction in R2. Hence there is no

change in direction of evolution. Then it continues till it

reaches T2 at point A1. Here, it takes kimp = 4 steps to

correct itself to the new improving direction. From Fig. 6,

this correction can be considered as reflection. Henceforth,

the system follows the same pattern to reach A2, A3, . . .
and so on till it reaches the ǫ neighborhood of the origin.

Since all inequalities hold for ‖x‖1 > ǫ, we now proceed to

bound the number of steps.

Calculation of path length and number of steps: First,

we will calculate the length of the path from S to the ǫ-
neighborhood of the origin, say ltotal, which satisfies

ltotal = len(SA1) +

nref
∑

j=1

len(AjAj+1),

where len(·) represents the length and nref is the number

of reflections before the system reaches the ǫ-neighborhood,

len
(

Anref
O
)

> ǫ > len
(

Anref+1O
)

. (23)

From Fig. 6, it follows that

nref
∑

j=1

len(AjAj+1) < len(A1S1) + len(S1O).

So the total path length can be bounded as

ltotal ≤ len(SS1) + len(S1O).

From Fig. 6, the path length of SS1 and S1O are the

distances of the point S from the lines x1 = x2 and

x1 = −x2 respectively. This results in

ltotal ≤
|x1,0 + x2,0|√

2
+

|x1,0 − x2,0|√
2

≤
√
2‖x0‖1. (24)

It is to be noted that in the beginning and at each reflection

there are up to 4 steps for correction. Hence the total number
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of steps would be

ntotal ≤
ltotal
δ

+ 4 (nref + 1) .

Using similar triangle geometry and eq. (24) it can be shown

that

ntotal ≤
√
2‖x0‖1
δ

+ 4(
⌈ ln(

2‖x0‖1

3δ )

ln(a
2+b2

a2−b2
)

⌉

+ 1) = K. (25)

Hence, we have shown the existence of a finite upper bound

depending on the initial state x0 and problem parameters.�

IV. SIMULATION RESULTS

In this section, we report the results of a simulation study

of the proposed approach, along with a comparison with

the benchmark approach: extremum-seeking (ES) control

algorithm [12]. We first discuss a two-variable discrete-time

version of ES algorithm that is implemented for comparison.

The block diagram in Fig. 7 illustrates the details of the

implementation. Starting from step 1, the perturbation

signals A sin(ωpk) and A cos(ωpk) are added to each of

the current mean (state without perturbation) of the states:

x̂1,k and x̂2,k. The mean is initialized with the given initial

condition [x1,0, x2,0]
T . This mean corresponds to the present

configuration of the agents which is not known to them.

In step 2 the resulting system outputs, generated by mea-

surement model applied on the perturbed states, are passed

through high-pass filters (HPF). In step 3 each of the filtered

output is multiplied by the corresponding perturbation signals

to generate the biases ξ1,k and ξ2,k, which are then used

to get control terms u1,k and u1,k to move the mean of the

states, completing a feedback loop of the system.

Measurement

function

H.P.F.

H.P.F.

×

×

u1,k = Γξ1,k
x̂1,k+1 = x̂1,k + u1,k

u2,k = Γξ2,k
x̂2,k+1 = x̂2,k + u2,k

+

+

A sin
(

2π
fp
fs
k
)

A cos
(

2π
fp
fs
k
)

y2,k

y1,k

step 2

step 2

step 3step 1

ξ1,kx̂1,k

x1,k

step 3step 1

ξ2,kx̂2,k

x2,k

Fig. 7: Block diagram for extremum seeking control.

In our simulations, we considered relative motion between

the agents R1 and R2. This relative motion emulates the

unwanted disturbances or the movement of robots due to

higher level tasks. Here, instead of the origin, the LOS

orientation is at x∗ = [x∗
1, x

∗
2]

T such that

[θ1, θ2]
T = x− x∗,

where the new state x is defined in absolute sense (i.e.,

pointing angles of each agent with respect to the global x
axis) and the LOS orientation circles the origin with a radius

of r and fM cycles per second, leading to
[

x∗
1,k

x∗
2,k

]

=

[

r cos(2πfMk/fs)

r cos(2πfMk/fs)

]

.

Table I lists the parameters used in the simulation. For a

fair comparison between the proposed algorithm and the

extremum-seeking (ES) algorithm, we choose the same sam-

pling frequency fs for each of them and the value of the

step-size δ of the proposed approach is chosen to be same

as the value of perturbation amplitude A in the ES algorithm.

TABLE I: Parameters used in simulation.

Parameter Value Description

a 30◦ Gaussian width for function g

b 20◦ Gaussian width for function h

fs 100 Hz Sampling frequency

fp 25 Hz
Perturbation frequency

(= ωpfs) for ES

A 1◦ Perturbation amplitude

Γ 500 Controller gain for ES

r 5◦
Amplitude of circular motion

for time varying optimum case

δ 1 ◦ Step size for the algorithm

Fig. 8 shows the path of the trajectories of the states

for a simulation run. The states start from the same ini-

tial condition and track the moving LOS direction. Fig. 9

illustrates the evolution of the states and the output for

each of the robot corresponding to the simulation run. From

Fig. 9, it can be observed that the states corresponding to

the proposed approach converge to the trajectory of the

optimum significantly faster than the states of ES approach.

Furthermore, there is a small lag in the tracking for the

ES approach. This delay in tracking for ES algorithm is

attributed to the large amount of time spent in the collection

of samples. The outputs of each agent using both approaches

eventually converge close to the maximum value, which is

1 V. It is important to note that both of the aforementioned

algorithms have steady state-oscillations, which are essential

to track a moving optimum point.

Additionally, to test the repeatability and characterize the

performance and limitations of the algorithms, we simulate

the algorithms over a range of speeds of motion on a

logarithmic scale; fM ∈ [0.001, 10] Hz. To illustrate the

average tracking performance, we consider a metric called

mean steady-state error em, which is defined as

em =
1

100

nf
∑

k=nf−99

‖xk − x∗
k‖2, (26)

where nf is the total number of iterations in one simulation

run of an algorithm and ‖·‖2 denotes the Euclidean norm

of a vector. The number 100 is considered to effectively

capture the average of steady-state points. Next, for each
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Fig. 8: Illustration of path of states tracking the moving LOS
orientation that is circling the origin with frequency fM = 0.05 Hz.
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Fig. 9: Illustration of evolution of states and corresponding output
for the simulation run corresponding to Fig. 8. One can observe
that the ES approach trajectory has a small lag in tracking the
optimum point.

of the considered frequency of motion, we generate 1000
initial points from the set (x0 ∈ (−30o, 30o)× (−30o, 30o))
using the Latin Hypercube Sampling (LHS) technique in

Matlab, and perform a simulation run for each of these

initial conditions. The average (say rave) and the standard

deviation of em from all of these runs yield the cumulative

tracking performance at the particular frequency of motion.

Fig. 10 shows the average tracking performance with the

error bars over a range of speeds of motion. Fig. 10 also

shows that the proposed algorithm is more effective in

tracking higher-frequency moving optimum, maintaining

a small error of atmost ǫ in magnitude up to 1 Hz. In

comparison, the ES algorithm is only able to achieve the

small tracking error for up to a frequency of 0.02 Hz. This

indicates that the proposed approach converges more than

an order of magnitude faster than the ES algorithm.
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Fig. 10: Average mean steady-state errors in tracking a moving op-
timum over a range of fM by each of the two algorithms. The error
bars represent ±standard deviation in the mean steady state error.

V. CONCLUSION AND FUTURE WORK

In this work, we formulated a bidirectional optical

alignment control problem as an optimization problem for

a discrete-time dynamical system, where the origin is the

optimal point for the reward function for each of the agents.

For the case when the reward functions are a product of

Gaussians, we proposed an output feedback control law

following the constraint that the control command of an

agent can depend only on the information accessible to that

agent. Through rigorous analysis, we showed that for any

initial condition, the proposed control law drives the system

to an ǫ-neighborhood of the LOS in a finite number of steps.

The efficacy of the proposed algorithm was further verified

in simulation in a moving optimum scenario where the

algorithm shows an order of magnitude faster convergence

in comparison to the extremum-seeking control approach.

For future work, we plan to analyze a more general

scenario wherein the measurement functions are not

necessarily product of Gaussians. Moreover, we plan to

verify the algorithm on an experimental setup involving two

robots. Moving forward, we will extend the approach to a 3D

scenario with moving robots, where each robot controls its

own azimuthal and elevation angles to achieve the LOS [6].

APPENDIX

A. Proof of Lemma 2

Consider, at any iteration k,

sgn(z1,k+1 − z1,k)
(3,21)
= sgn

(

∇z1,k · uk + δ
ǫ

3a2

)

(27)

When
∣

∣

∣

∣

x1

a2

∣

∣−
∣

∣

x2

b2

∣

∣

∣

∣ > ǫ
3a2 , then from the properties of

absolute values,
∣

∣

∣

∣

∣

∣

x1u1

a2

∣

∣

∣
−
∣

∣

∣

x2u2

b2

∣

∣

∣

∣

∣

∣
>

δǫ

3a2
⇒

∣

∣

∣

∣

∣

∣

x1u1

a2
+

x2u2

b2

∣

∣

∣

∣

∣

∣
>

δǫ

3a2

⇒ sgn

(

∇z1,k · uk +
δǫ

3a2

)

(18)
= sgn(∇z1,k · uk) (28)

1954



Similarly, when
∣

∣

∣

∣

x2

a2

∣

∣−
∣

∣

x1

b2

∣

∣

∣

∣ > ǫ
3a2 , we get

sgn(z2,k+1 − z2,k)
(18)
= sgn(∇z2,k · uk). (29)

For Region R1:

u1,1 = u1,0 sgn(z1,1 − z1,0),
(21,3)
= −δ sgn(x1,0)

using (10) it implies that u1 is improving direction. Follow-

ing similar steps for Region R2, u2,1 = sgn(u1,0, u2,0, x1,0),
and using (14) u1 is improving direction, and hence kimp =
1 for both of the regions. For Region M , using eqs. (9),

(28), (27), we get

u1 =

[

−δ sgn (∇z1,0 · u0u1,0)

−δ sgn (∇z2,0 · u0u2,0)

]

=

[

−δ sgn(x2,0u1,0u2,0)

−δ sgn(x1,0u1,0u2,0)

]

,

u2 =

[

− sgn(z1,2 − z1,1)u1,1

− sgn(z2,2 − z2,1)u2,1

]

(3,28,15,16)
=

[

−δ sgn(x1,0)

−δ sgn(x2,0)

]

,

which essentially means that u2 is improving direction and

kimp = 2 for M . It is to be noted that the above expression

of u2 is also an improving control direction for any point in

any of the regions of interest.

Now consider the transition region T1 where,
∣

∣

∣

∣

∣

∣

x1,0

a2

∣

∣

∣
−
∣

∣

∣

x2,0

b2

∣

∣

∣

∣

∣

∣
<

ǫ

3a2
and

∣

∣

∣

∣

∣

∣

x2,0

a2

∣

∣

∣
−
∣

∣

∣

x1,0

b2

∣

∣

∣

∣

∣

∣
>

ǫ

3a2
(30)

From eq. (27), (29)
[

u1,1

u2,1

]

= −
[

sgn
(x1,0u1,0

a2 +
x2,0u2,0

b2
+ δ ǫ

3a2

)

sgn
(x1,0u1,0

b2
+

x2,0u2,0

a2 + δ ǫ
3a2

)

]

. (31)

Here in this region, the evolution of next few states is

captured in two separate cases depending on the initial

condition. The two cases are as follows:

• Case-I: sgn (x1,0u1,0) = sgn (x2,0u2,0).
Here eqs. (15), (16), (31) result in u1 =
[−δ sgn(x1,0), −δ sgn(x2,0)]

T ⇒ kimp = 1.

• Case-II: sgn (x1,0u1,0) = − sgn (x2,0u2,0),
Here, eq. (30) and eq. (31) result in

u1 = − [u1,0, δ sgn(x2,0)]
T
. (32)

Now consider u1,2 given by,

u1,2 =− sgn
(x1,1u1,1

a2
+

x2,1u2,1

b2
+

ǫ

3a2

)

u1,1. (33)

There arise two further sub-cases:

– Case-II(a): sgn(x1,0) = sgn(u1,0), using eqs. (30), (33)

we get u1,2 − δ sgn(x1,0). (34)

– Case-II(b): sgn (x1,0) = − sgn (u1,0), using

eqs. (15), (33) we get u1,2 − δ sgn(x1,0). (35)

Hence, u1,2 = −δ sgn (x1,0) in both cases (a) and (b).

Now considering the component u2,2,

u2,2 =− sgn

(

x1,1u1,1

b2
+

x2,1u2,1

a2
+

δǫ

3a2

)

u2,1 (36)

Similar to the cases II(a) and (b), two sub-cases arise for

the second component of u2:

– Case II(c): sgn (x2,0) = sgn (u2,0), using eqs. (16)

and (36), we get u2,2 = −δ sgn(x2,0). Here, combining

eqs. (34) and (35), u2 is an improving direction.

– Case II(d): sgn(x2,0) = − sgn(u2,0), using eqs. (30)

and (36), we get u2,2 = δ sgn (x2,0) In this case u2

is not an improving direction. However, if we consider

x2, with u2,0 : δ sgn(u2,0) = −δ sgn(x2,0) along with

eq. (32), we obtain

x2 = [x1,0 + u1,0 + u1,1, x2,0 + u2,0 + u2,1]
T
= x0

Hence the system comes back to its initial state x0 with

control direction:

u2 = [−δ sgn(x1,0), δ sgn(x2,0)]
T

where it can be verified that sgn(x1,2u1,2) =
sgn(x2,2u2,2) and sgn(u2,2) = sgn(x2,2). These are

the exact conditions for case II (c). Consequently,

by our previous arguments, u4 becomes improving

direction with respect to x0 (kimp = 4).

Thus, in all cases of initial control term u0 for a point

x0 ∈ T1 , eq. (22) holds true with kimp ≤ 4. By symmetry,

transition region T2 can be analyzed using arguments

similar to those for T1. Hence, we have shown that from any

initial point x0 in the defined regions, the control direction

becomes improving with respect to the initial point after a

finite number of steps kimp ≤ 4.
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