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A Bidirectional Alignment Control Approach for Planar LED-based
Free-Space Optical Communication Systems
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Abstract— Achieving and maintaining line-of-sight (LOS) is
essential for free-space optical (FSO) communication systems
due to the high directionality of the optical signals. We consider
the problem of achieving LOS in a planar setting, where
each of the two parties (called agents) makes a move only
based on its own light intensity measurement. The problem
is formulated as a discrete time dynamical system, where each
agent seeks to maximize its own reward function that depends
on the states of both agents, who make their moves in parallel.
In particular, the reward function corresponds to the light
intensity measurements made by each agent. While the two
reward functions are non-conflicting (i.e., the optimization of
one reward function helps the optimization of the other), the
constraints of no information exchange between the agents,
no access to states, and parallel (non-sequential) actions pose
significant challenges. A novel iterative optimization algorithm
meeting all of these constraints is proposed. We show that the
proposed algorithm brings the system to a neighborhood of the
LOS in a finite number of steps, when the reward functions are
of the Gaussian form as supported by the experimental data.
The effectiveness of the approach is evaluated in simulation
by comparison with extremum-seeking control, where it shows
an order of magnitude better performance in terms of the
convergence speed.

I. INTRODUCTION

The free-space optical (FSO) communication systems
are promising for high-bandwidth wireless underwater
communication. For the FSO communication systems,
establishing and maintaining near line-of-sight (LOS) links
is essential as the light signals are highly directional.
It is desirable to achieve LOS, without relying on the
communication between the agents (e.g., robots, which are
often moving) as the quality of communication link itself
depends on the LOS. This paper proposes, analyzes and
evaluates one such scheme for two transmitter-receiver pairs
with planar motion to achieve and maintain LOS from
arbitrary allowable initial configurations.

Several approaches have been proposed to address the
LOS requirement in optical communication systems. Mul-
tiple LEDs and/or multiple photo-diodes have been used
to avoid the need of active pointing during optical-
communication [1],[2]. Soysal et al. used quadrant photo-
detector [3] with Kalman filtering to simultaneously estimate
the azimuthal and elevation errors, which were further used
as feedback for beam tracking. Jeon et al. [4] used position
sensitive detector (PSD) and MEMS-based optical scanner
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for active bi-directional optical links. In our previous works,
[5], [6].[7], we demonstrated one-sided tracking using a
single photo-diode on the receiver, where only one agent uses
an active alignment mechanism along with extended Kalman
filtering to achieve the LOS. In all of these aforementioned
works, active alignment is demonstrated in simulation or
experimental setup, but they typically do not provide any
theoretical guarantee on the stability or the convergence rate.

This paper considers the setup of two agents seeking to
establish LOS for bidirectional communication in a planar
setting, and formulate it as a two-agent optimization problem
wherein each agent is assumed to have a local measurement
of its reward function of the form, y; = g(x;)h(zs—;),
i € {1,2}, where x; and z, are the states of the two
agents as relevant to LOS, and the functions g and h are
of Gaussian type, as supported by experimental data. This
makes the reward functions non-conflicting; both have the
same maximizer (x7,x3), which corresponds to the LOS
configuration. Based on the setup, the agents do not have
access to their own state. In addition to the no communica-
tion constraint between the agents, they are assumed to act
simultaneously at each time step, which eliminates candidate
solutions based on sequential actions of the agents that can
greedily optimize their instantaneous reward functions. The
problem is to design a scheme such that the states of the
agents reach an e-neighborhood of the LOS configuration
within a finite number of steps.

The problem in this paper can be considered as a special
case of a multi-agent optimization problem in which each
agent seeks to optimize their own cost (reward) function that
depends on the state of the other agents. In multi-agent game-
theoretic formulations, gradient play is a popular technique
that converges to a Nash equilibrium for the game under mild
technical assumptions [8], [9]. However, these techniques
require that each agent has access to the gradient of its own
cost function. Passivity-based tools have also been studied
for multi-agent synchronization and extremum-seeking
problems [10], [11]. However, these require information
exchange between the agents or in certain cases, access
to the gradient of the local cost function with respect to
the state. A version of extremum-seeking control algorithm
[12] is applicable to the problem structure, and is thus
used as a benchmark approach for the comparison with the
proposed method in this paper. The algorithm exhibits delay
in convergence due to significant exploration by each agent.

The contributions of this paper are as follows. We propose
a novel approach that only requires the information of
the current and the immediately preceding reward function
measurements by each agent. Under the assumption that
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the reward functions are a product of Gaussian functions,
we prove that from any initial values of the states, and as
per the proposed approach, both agents reach a specified
e-neighborhood of the optimal solution (corresponds to the
LOS, and without the loss of generality can be considered
as the origin) in a finite number of steps. The algorithm is
evaluated in simulation, and a comparison with extremum-
seeking control demonstrates an order of magnitude advan-
tage in terms of the speed of convergence.

The rest of the paper is organized as follows. In Section II,
the hardware description of the system is presented, followed
by problem formulation in the state-space domain. In Section
III, the proposed scheme is presented along with the main
result of the paper and its mathematical proof. The simulation
results along with a brief description of the implementation
of the extremum-seeking approach are presented in Section
IV. Finally, concluding remarks are provided in Section V.

II. SYSTEM SETUP AND MODELLING
A. System Setup

Consider two agents (e.g., robots) in a planar environment
as illustrated in Fig. 1. The line joining the robots is the
LOS. The distance between the robots is d. The optical
axis of robot R; makes angle #; with the LOS line, where
i €{1,2},6; € (—%,%). In this work, we assume that the
positions of the agents are fixed and they can only change
their angle 6;.

Robot R1

> N\ 61

Fig. 1: Two agents seeking to establish LOS in a 2D scenario.

Fig. 2 shows the transceiver hardware setup for LED-
based free-space optical communication, which has been
developed in our prior work [6] and can be mounted on
mobile robots. Each transceiver has two devices: a photo-
diode with a lens and a light-emitting-diode (LED) with a
lens. For the purpose of mathematical modelling, the agents
are considered as points and the optical axes of the devices
are assumed to be aligned for each robot. Moreover, the
transceiver is mounted on a rotating platform, which enables
the adjustment of transceiver orientation.

B. Mathematical Modeling

The light signal strength model adopted here largely
follows [13] with minor adjustments to suit the experimental
prototype considered in this paper. The light signal strength
measured by the photo-diode of agent R; (in V) and
transmitted by agent Ry’s LED is given by,

—cd
Va = Gy h(62)g(61), M

Photodiode
with a lens

Fig. 2: Illustration of components of the transceiver on each agent.

where C), is a constant of proportionality, ¢ is the atten-
uation coefficient of the transmission medium, and h(6s)
corresponds to the angular intensity distribution of Ro’s LED
(same as the optical signal radiant intensity [13]). Similarly,
g (01) is the angular sensitivity of the photo-diode of R.
An expression analogous to (1) holds for the light intensity
measured by Rp. It is to be noted that h(-) and g(-) are
setup dependent and can be experimentally characterized.
Fig. 3 shows the data collected on our setup for g(-) and the
corresponding Gaussian fitting function. The collected data
for the function h(-) has a similar Gaussian fitting function
but with a smaller width.

T
L, [—e—Normalised data
v |—fitting function

Fig. 3: Illustration of the Gaussian approximation of the fitting
functions of photo-diode sensitivity curve.

The state variables x; and x5 are the angles 6, and 65,
respectively. Now, since the robot positions are fixed, the
distance d is constant and can be merged into a new propor-
tional constant C, resulting in the measurement functions

_(z%,k+w§,k)
L |y Ch(zak)g(@re)| _ |Ce ez T2
- = - z2 z2 ’
Yo,k Ch(x1,k)9(z2,1) Co— (B +72)

2
where a and b represents the width of the Gaussian fitting
functions ¢(-) and h(-) with b < a. To facilitate the state-
space formulation, we consider the following dynamics for
the states:

ikl = Tk + Ui ks 3)
where u; j, represents the control of the i-th agent with

Wik = U(Yiky s Yis0s Wisk—15 - Ui0) * [luikll <9, (4)
and U : R%*1 — R. In this case, § is the size of the
maximum allowable step size, assumed to be the same for
both agent. Eq. (4) captures the constraint of no communica-
tion between agents since the control term of an agent ¢ can
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only depend on its own history of measurements and control
inputs. Next, we state a generalized problem statement for
the aforementioned class of two-agent systems.

Problem Statement: Design a control law of the
form (4) for a system defined in (2) and (3) such
that for any permissible initial state xo, 3 a finite
K e 7+ IIxx|l; < € € O(9). ||||; denotes the ¢;-
norm (Manhattan norm) of a vector and the term e defines
the size of the neighborhood around the LOS, and as that
size tends to zero, the agents achieve perfect LOS.

IIT. ALGORITHMS AND ANALYSIS

In this section, we propose a control law complying with
the requirements in eq. (4), with an analysis to show that
the states of the agents are within an e-neighborhood of the
origin (optimum) in a finite number of steps K.

A. Proposed Control Law and Main Result

Consider the following simple control law:

U1,k _ Sgn(ym - yl,k—l)ul,k—l (5)
U2 k Sgn(yz,k - yQ,k—l)UQ,k—l
1, ifp>0
where, sgn(p) = L e 29, (6)

—1, otherwise,

which essentially means that an agent takes an action in
the direction of increasing light intensity measurement,
and when it observes a reduction in its measurement, it
switches to an action in the opposite direction. The initial
direction (u; ) is chosen at random: uy = (uj g, u2,0) €
{[+0,+0)", [+6,—6)" ,[=6,40]", [-6,—8]" }, 6 > 0.
Fig. 4 illustrates a sample trajectory under eq. (5) from an
arbitrary initial condition S. Theorem 3.1 summarizes the
guarantees associated with the control law.

0y (degree)

-30 -20 -10 0 10 20 30
01 (degree)

Fig. 4: Illustration of a sample trajectory along with level contours
for measurement functions and regions R;, R2 and M defined in
the proof of Theorem 3.1 in subsection III-B.

Theorem 3.1 (Main Result): Under the assumption that
a > b, from any initial condition X, the control law defined
in eq. (5) satisfies the requirements in the problem statement
for the system defined by eqs. (3) and (2) with

De=%(1+%) and (7)
2ol

2) K = el ([ ). (8)
a“—b

Remark 1: Suppose that the system is already inside
the e-neighborhood and leaves the neighborhood, then the
theorem applies to the new initial condition and the state
returns to the neighborhood in finite steps.

The next subsection is dedicated to the proof of Theorem 3.1.

B. Proof of Theorem 3.1
Consider the transformed measurement z:
2 2
alzik|  |=n(yw)| | S+ F
Zp = = = |2 2|
22,k —In(yz.1) B3
The level contours of z and equivalently, of y; and y-, are

ellipses as illustrated in Fig. 4. Consequently, the control law
defined in Eq (5) can be rewritten as:

[Ul,k] _ [— Sgn(zl,k —Zl,k—1)u1,k—1] . )

U2,k - SgH(Zz,k - ZQ,k—1)u2,k—1
We begin with the notion of an improving control direction.
Definition 3.1 (Improving control direction): Consider
the following conditional function

1, if Vzip-u, <0 & Vag-u, <0
0, otherwise

)

Fimp(xkvuk) = {

with Vz; , = [23:1/(122962/62] , Vg = [2$1/b22x2/a2].
For any point x;, a control term wy is improving if
Fimp(xk,uk) =1. ([l
For the set of points x such that ||x||; > ¢, the allowable
orientation space is divided into the following regions, based
on the notion of improving control direction:

o By |8 - 55 > %], u=[—sen(z1)d,£5]"  (10)
o« Tt | B =55 < |3 < | B[+ 55 (11)
o M8+ 53 <[3] 2] +52 <3

u = [—sgn(z1)6, — sgn(z2)d])" (12)
« oo || -5 < B < [B]+ 5= (13)
o Ro:|%] - 55 > 8], u=[+6, —sen(z2)d]  (14)

The regions 77 and 75 are transition regions, where an
improvement direction becomes tangent to one of the level
contours. Moreover, if a point is outside the ¢ neighborhood
(||x[|; > €), then

x4 € Z1 T2 €
=Tt a = Al > m s (15
.. T T2 €
similarly, ||x||; > €= ‘b—Q‘ + ‘? > 5 (16)

Fig. 5 illustrates the defined regions along with the above
inequality bounds.

Lemma 1 (Signum and absolute value properties): For
p € R and ¢ € R, the following properties hold true.

1) sgn(pq) = sgn(p) sgn(q) (17)
2) |p| > |g| = sgn(p + q) = sgn(p) (18)
3) Ipl —lal < lp—ql < |pl + 4] (19)
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Fig. 5: Illustration of regions defined based on the notion of the
improving direction.

4) p = sgu(p)lpl, |pl = sgn(p)p (20)

5) ¢ > 0= sgn(gp) = sgn(p) (21)

These properties can be easily verified and will be repeat-
edly used in the subsequent analysis.

Lemma 2 (Initialization): At any given initial point Xg
with ||Xo|[; > €, and an initial control term u, with the
control law defined in eq. (9),

Fimp(Xo, ukimp) =1 (22)

for some kinp € {1,2,3,4}. O
The lemma essentially says that in the beginning, from any
arbitrary point outside the e neighborhood around origin,
with any arbitrary initial direction, the system takes up to
4 steps to get into an improving control direction. The proof
the lemma is provided in appendix A.

Lemma 3 (Subsequent steps): If x;, € R, Xpy1 €
R, Re{R1, M, Ry} and Fj,,(Xs,u;) = 1, then,

1) w41 =uy and

2) Fimp(Xpy1,0p41) = L. O
This result implies that once the control is in improving
direction, it would continue to be so until the system state
changes its region. The proof of the lemma can be derived
using the properties of the regions.

Fig. 6: Geometry of the evolved path.

Outline of the proof of Theorem 3.1. Now consider the path

of sample trajectory of the system illustrated in Fig. 6, where
the system starts at a general point S in M (we shall see that
the initial point can be any other point in any other region).
According to Lemma 2, it takes up to Kjp, < 4 number
of steps to come to an improving direction. Subsequently,
by Lemma 3, the system continues to move in the same
improving direction until it reaches 75 at the point Ag. It is to
be noted that the location of the point after initial correction
dictates which region the trajectory aims to, namely:

o T IE |20 g, | > |22k, |-

. TQI If |1‘17kim’p < |I27kim,p .
o If |f'31,kimp = |2, kimp ‘ then the trajectory points toward
the origin.

In the current example, $1,kimp} < |$2,kimp , hence the
trajectory aims toward 75. Now, when the system crosses
the point Ag, the system is already in improving direction
and therefore it continues in the same direction inside 75.
Thereafter, it reaches [R5 with an already improved direction.
Then inside Ro the system continues in the same improving
direction (Lemma 3). On the path inside R, it transits from
the fourth quadrant to the third quadrant. So the control
direction becomes [sgn(z1), — sgn(z2)]” which is also a
valid improving control direction in 5. Hence there is no
change in direction of evolution. Then it continues till it
reaches 15 at point A;. Here, it takes k;,, = 4 steps to
correct itself to the new improving direction. From Fig. 6,
this correction can be considered as reflection. Henceforth,
the system follows the same pattern to reach A,, As,
and so on till it reaches the e neighborhood of the origin.
Since all inequalities hold for ||x||; > €, we now proceed to
bound the number of steps.

Calculation of path length and number of steps: First,
we will calculate the length of the path from S to the e-
neighborhood of the origin, say lttq;, Which satisfies

Nref

ltotal - len(SAl) + Z 16n(AjAj+1)7

j=1
where len(-) represents the length and n,.s is the number
of reflections before the system reaches the e-neighborhood,

len(A,,,,0) > e >len(4,,, ,+10). (23)

From Fig. 6, it follows that

Nref

Z len(A;A;41) < len(A;S;) + len(S;0).

j=1
So the total path length can be bounded as

liotar < len(SS7) + len(S10).

From Fig. 6, the path length of SS; and S10 are the

distances of the point S from the lines ;1 = =z and
r1 = —x9 respectively. This results in

|10 + 22,0 |21,0 — 22,0]

liotal < <V2xo0ll,. (24
total \/§ \/§ ||0||1 (24)

It is to be noted that in the beginning and at each reflection
there are up to 4 steps for correction. Hence the total number

+
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of steps would be

ltotal

+4(ngep+1).

Using similar triangle geometry and eq. (24) it can be shown
that

Ntotal <

2| Xo I,
YEL +Mln('g;;' )
0 (%)
Hence, we have shown the existence of a finite upper bound

depending on the initial state xo and problem parameters.ll

] Y1) =K. (25

Niotal S

IV. SIMULATION RESULTS

In this section, we report the results of a simulation study
of the proposed approach, along with a comparison with
the benchmark approach: extremum-seeking (ES) control
algorithm [12]. We first discuss a two-variable discrete-time
version of ES algorithm that is implemented for comparison.
The block diagram in Fig. 7 illustrates the details of the
implementation. Starting from step 1, the perturbation
signals Asin(w,k) and Acos(wyk) are added to each of
the current mean (state without perturbation) of the states:
21,5 and 2o ;. The mean is initialized with the given initial
condition [z1 g, xg,o]T. This mean corresponds to the present
configuration of the agents which is not known to them.
In step 2 the resulting system outputs, generated by mea-
surement model applied on the perturbed states, are passed
through high-pass filters (HPF). In step 3 each of the filtered
output is multiplied by the corresponding perturbation signals
to generate the biases & j and &, which are then used
to get control terms u 5 and up 5 to move the mean of the
states, completing a feedback loop of the system.

T2k Y2,k
Measurement
function UIL,
L1,k
step 2
1k g =T& g [SW)
+ e . L 9 X H.PF.
() T1k41 = T1k + ULk
step 1 step 3
Asin (2#%]{))
Tok usp = I Eok
G) . e =k x HPE
Tok+1 = T2k + U2,k step 2
step 1 step 3

Acos (271'%/&)

Fig. 7: Block diagram for extremum seeking control.

In our simulations, we considered relative motion between
the agents 2y and R,. This relative motion emulates the
unwanted disturbances or the movement of robots due to
higher level tasks. Here, instead of the origin, the LOS
orientation is at x* = [z}, 23] such that

[91,92}T = X—X*,

where the new state x is defined in absolute sense (i.e.,
pointing angles of each agent with respect to the global z
axis) and the LOS orientation circles the origin with a radius

of r and fjs cycles per second, leading to

k| rcos(2m fark/ fs)

T3}, ~|rcos@rfak/fo) |
Table I lists the parameters used in the simulation. For a
fair comparison between the proposed algorithm and the
extremum-seeking (ES) algorithm, we choose the same sam-
pling frequency f; for each of them and the value of the
step-size ¢ of the proposed approach is chosen to be same
as the value of perturbation amplitude A in the ES algorithm.

TABLE I: Parameters used in simulation.

Parameter Value Description

a 30° Gaussian width for function g

b 20° Gaussian width for function h

fs 100 Hz ~ Sampling frequency

5 95 Hyz firilzlzt)iofrér - frequency

A 1° Perturbation amplitude

r 500 Controller gain for ES

, 50 Amplitude Of circu?ar motion
for time varying optimum case

4 1° Step size for the algorithm

Fig. 8 shows the path of the trajectories of the states
for a simulation run. The states start from the same ini-
tial condition and track the moving LOS direction. Fig. 9
illustrates the evolution of the states and the output for
each of the robot corresponding to the simulation run. From
Fig. 9, it can be observed that the states corresponding to
the proposed approach converge to the trajectory of the
optimum significantly faster than the states of ES approach.
Furthermore, there is a small lag in the tracking for the
ES approach. This delay in tracking for ES algorithm is
attributed to the large amount of time spent in the collection
of samples. The outputs of each agent using both approaches
eventually converge close to the maximum value, which is
1 V. It is important to note that both of the aforementioned
algorithms have steady state-oscillations, which are essential
to track a moving optimum point.

Additionally, to test the repeatability and characterize the
performance and limitations of the algorithms, we simulate
the algorithms over a range of speeds of motion on a
logarithmic scale; fp; € [0.001,10] Hz. To illustrate the
average tracking performance, we consider a metric called
mean steady-state error e,,, which is defined as

1 nyg
em = 700 Z %k — %kl
k=n;—99
where n is the total number of iterations in one simulation
run of an algorithm and ||-||, denotes the Euclidean norm
of a vector. The number 100 is considered to effectively
capture the average of steady-state points. Next, for each

(26)
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Fig. 8: Illustration of path of states tracking the moving LOS
orientation that is circling the origin with frequency fys = 0.05 Hz.

----- Proposed Algorithm
T - - -Extremum Seeking
— 1(; —Optimum point
g0
-5
~ 0
& -10 |
-20
1 /f
—05F |
=
0 : : '
1= ' : :
- = Proposed Algorithm
P 0.5 | - - -Extremum Seeking |
0 ‘ ‘ '
0 10 20 30 40

t(s)

Fig. 9: Illustration of evolution of states and corresponding output
for the simulation run corresponding to Fig. 8. One can observe
that the ES approach trajectory has a small lag in tracking the
optimum point.

of the considered frequency of motion, we generate 1000
initial points from the set (xo € (—30°,30°) x (—30°,30°))
using the Latin Hypercube Sampling (LHS) technique in
Matlab, and perform a simulation run for each of these
initial conditions. The average (say 74y.) and the standard
deviation of e,, from all of these runs yield the cumulative
tracking performance at the particular frequency of motion.
Fig. 10 shows the average tracking performance with the
error bars over a range of speeds of motion. Fig. 10 also
shows that the proposed algorithm is more effective in
tracking higher-frequency moving optimum, maintaining
a small error of atmost € in magnitude up to 1 Hz. In
comparison, the ES algorithm is only able to achieve the

small tracking error for up to a frequency of 0.02 Hz. This
indicates that the proposed approach converges more than
an order of magnitude faster than the ES algorithm.

—J-Proposed Algorithm
6 | Extremum Seeking

0 . . .
10°° 102 10" 10° 10!

fu (Hz)

Fig. 10: Average mean steady-state errors in tracking a moving op-
timum over a range of fas by each of the two algorithms. The error
bars represent +standard deviation in the mean steady state error.

V. CONCLUSION AND FUTURE WORK

In this work, we formulated a bidirectional optical
alignment control problem as an optimization problem for
a discrete-time dynamical system, where the origin is the
optimal point for the reward function for each of the agents.
For the case when the reward functions are a product of
Gaussians, we proposed an output feedback control law
following the constraint that the control command of an
agent can depend only on the information accessible to that
agent. Through rigorous analysis, we showed that for any
initial condition, the proposed control law drives the system
to an e-neighborhood of the LOS in a finite number of steps.
The efficacy of the proposed algorithm was further verified
in simulation in a moving optimum scenario where the
algorithm shows an order of magnitude faster convergence
in comparison to the extremum-seeking control approach.

For future work, we plan to analyze a more general
scenario wherein the measurement functions are not
necessarily product of Gaussians. Moreover, we plan to
verify the algorithm on an experimental setup involving two
robots. Moving forward, we will extend the approach to a 3D
scenario with moving robots, where each robot controls its
own azimuthal and elevation angles to achieve the LOS [6].

APPENDIX
A. Proof of Lemma 2
Consider, at any iteration k,

3,21 €
sgn(z1 k41 — 21.k) @2v sgn (Vzl,k ‘uy + 5&7) (27)

When H% —
absolute values,

%H > 3%, then from the properties of

Hmlul ‘ ‘$2U2 H - de Hxlul ToUs H de
a? b2 3a? a? b2 3a?
(56 (18)
= sgn (VZL]C Su; + 3(12> = Sgn(Vsz . llk) (28)
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Similarly, when || 22| — ||| > we get

30.2 ’

sgn(22 k41 — Z2.k) @ sgn(Vza - ug). (29)
For Region R;:

Ui,1 = U1,0 Sgn(zm - Zl,O); L —6 Sgn(ﬂh,o)
using (10) it implies that u; is improving direction. Follow-
ing similar steps for Region Ry, us1 = sgn(u1,0, U2,0,%1,0)s
and using (14) u, is improving direction, and hence k;;,, =
1 for both of the regions. For Region M, using egs. (9),
(28), (27), we get

) sgn (VZLO . llouLo) ) Sgn(xg,ouLoug,o)

u; = =
—0 sgn (VZQ,O . lloU270) =l sgn(xl,oul,ouzo)
| sgn(21,2 — 21,1)U1,1| @esasae | —08gn(T1,0)
, = =
—sgn(za,2 — 22,1)U2,1 —dsgn(wz,0)

which essentially means that uy is improving direction and
kimp = 2 for M. It is to be noted that the above expression
of uy is also an improving control direction for any point in
any of the regions of interest.

Now consider the transition region 7 where,

1,0 33‘2 0 x2,0 $1 0
H 3a2 and H 3a2 (30)
From eq. (27), 29)
wia| _[sen(TEe 4 T 4050 31
u2}1 sgn(ml (;)31 ,0 + Z2,0U2,0 ouz 0 + 65(12) :

Here in this region, the evolutlon of next few states is
captured in two separate cases depending on the initial
condition. The two cases are as follows:
o Case-I: sgn (z1,0u1,0) = sgn (x2,0u2,0).
Here eqs. (15), (16), (31) result in
T
[—dsgn(z1,0), —0sgn(z2,0)]” = kimp = 1.
o Case-II: sgn (x1 0u1,0) = —sgn (22,0u20),
Here, eq. (30) and eq. (31) result in

up =

— [u1,0, 5sgn(1270)]T (32)

Now consider u; 2 given by,

u; =

T1,1U1,1 T2, 1U2 1
+ - Ju1,1- (33)

There arise two further sub-cases.
— Case-II(a): sgn(z1,0) = sgn(u1,0), using egs. (30), (33)

we get uj o — dsgn(z1,0). (34)
- Case-II(b): sgn(x10) =  —sgn(uip), using
egs. (15), (33) we get u3 2 — dsgn(x ). (35)

Hence, u12 = —dsgn(x1,0) in both cases (a) and (b).
Now considering the component us 2,
T1,1U1,1 T2,1U2,1 de
Ug 9 = — SgN = — |u 36
2.2 g< [ — +32) 2,1 (36)
Similar to the cases II(a) and (b), two sub-cases arise for
the second component of us:

— Case II(c): sgn(x20) = sgn(ug,0), using egs. (16)

and (36), we get us o = —J sgn(xz o). Here, combining
egs. (34) and (35), us is an improving direction.
- Case II(d): sgn(z2,0) = —sgn(uzp), using egs. (30)

and (36), we get ug o = dsgn(z20) In this case uy

is not an improving direction. However, if we consider
Xa, With ug g : dsgn(ug,o) = —dsgn(zs,0) along with
eq. (32), we obtain

T
Xo = [Z1,0+ U0+ U1, T2+ Uz + U]
Hence the system comes back to its initial state Xy with
control direction:

uy = [—dsgn(z1,), Jsgn(a:Q,o)]T
where it can be verified that sgn(zjsuig) =
sgn(xe ous o) and sgn(usz2) = sgn(zso). These are
the exact conditions for case II (c). Consequently,
by our previous arguments, uy becomes improving
direction with respect to Xg (Kimp = 4).

Thus, in all cases of initial control term uy for a point
Xo € T , eq. (22) holds true with k;,,, < 4. By symmetry,
transition region 7, can be analyzed using arguments
similar to those for 7}. Hence, we have shown that from any
initial point X( in the defined regions, the control direction
becomes improving with respect to the initial point after a
finite number of steps ki, < 4. [ |
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