Mediating Power Struggles on a Shared Server

Iyswarya Narayanan, Anand Sivasubramaniam
The Pennsylvania State University
{iun106,anand} @cse.psu.cdu

Abstract—Most of today’s servers, with numerous CPU cores
and other plentiful direct resources, host co-located workloads
using mechanisms to reduce hardware resource contention. How-
ever, power is an equally important indirect resource in a server
that is shared between the co-located applications, for which they
can contend, especially when power budgets are tight. We refer to
this as a “power struggle”. While there is a considerable amount
of prior effort on server power capping, they are largely oblivious
to power as an indirectly shared resource. This indirect resource
exhibits a unique set of properties — spatial non-multiplexing,
non-convex, fluidic, time-shifting and dynamic capacity — which
have not been explicitly tackled so far. We propose policies that
explicitly consider these properties to mediate power struggles,
implement these on real hardware, and provide experimental
results to show the performance benefits of our solution.

I. INTRODUCTION

The power draw of a datacenter that houses thousands of
servers has severe consequences on its cost, scalability and en-
vironmental footprint. Capping the power of a datacenter over
different time scales is very important for its demand response
capabilities [1-3]. Such capping can be used to sustain a higher
compute capacity within a provisioned power infrastructure,
re-shape the demand curve based on power availability, and
help a datacenter participate in grid-scale demand response.
The cap would be set by constraints specified by these goals,
with the possibility of the cap itself changing dynamically.

A datacenter needs to maximize the utilization of every watt
within the cap to extract maximum returns on its substantial
capital investments - server, power and cooling infrastructure.
There have been several efforts to tackle power struggles at
datacenter scale [2-7], many of which [2-6] require recur-
sively translating datacenter level power caps into caps at
lower levels of the power distribution hierarchy - clusters,
racks and individual servers. Equally, there have been pro-
posals and implemented mechanisms to cap the power for
each server, and/or each application. However, a server is
increasingly hosting multiple workloads, with each application
simultaneously exercising its different hardware components.
Even if the applications do not contend for these direct
hardware resources, they contend for the power allocated
to this server, an indirect resource consumed by the direct
resources. Hence, power is an equally, if not more, important
shared resource (as CPU cores, memory, etc.) on a server that
needs (o be carefully managed amongst applications.

In this context, in contrast to (i) works such as [2-6, 8]
which deal with contention for power across servers, this work
addresses the contention within a shared server; (ii) works such
as [2, 9] which only consider aggregate control, this work

treats power as a shared resource and explicitly apportions
power to colocated applications; (iii) works such as [10—
12] which treat power as a direct resource, this work deals
with power as an indirect resource and explicitly partitions an
application’s power budget to each of the direct resources.

Consolidation creates Resource Contention: In this work,
we consider that a datacenter level power constraint is trans-
lated into a cap/budget for a server, P,q,(t) for each instant ¢.
The server itself hosts several co-located workloads, a growing
trend in all kinds of datacenters. With increasing number
of cores in each server, deeper degrees of server consolida-
tion offers attractive cost benefits to the datacenter operator.
However, co-locating workloads on a single server, even with
bountiful cores, can create contention for hardware resources -
caches, memory, interconnects, and storage. This has led to a
considerable amount of work over the years on (i) identifying
applications that can effectively use these resources without
contention [13, 14], (ii) hardware and software mechanisms to
isolate the resource usage of each application to insulate them
from each other [10, 11, 15-19], and (iii) policy frameworks
to allocate resources for each application [20-24]. However,
as power becomes increasingly critical and scarce, it vital to
explicitly manage power across co-located applications.

Power is also a Resource (but different!): The importance of
power requires treating it on par with other critical resources in
overall management. While there has been numerous research
studies on reducing and managing power use, treating power
as an indirectly shared resource for explicit allocation and
isolation amongst coexisting applications in a server has been
little explored. This is the gap that this work intends to fill.
At best, a few prior studies have dealt with this problem
at the server scale. For instance, Heracles [10] mitigates
contention for direct resources, treating power as yet another
direct resource of static capacity (thermal limit) managed using
the frequency knob. However, as a resource, power presents
unique challenges and opportunitics making its management
different from that for other resources:

e Non-multiplexing in Space: Consider two applications re-
quiring very disparate resources, €.g. CPU and memory.
They can co-exist on the same server without much direct
resource interference - which we call multiplexing in space.
On the other hand, two applications can consume completely
disjoint “direct” resources (not contending for them), but
each of these resources in turn consumes power, leading (o a
power struggle depending on the server level power budgets.
Even two CPU intensive applications that are allocated their

respective CPU cores (without direct resource contention) can
contend for power based on the server level power budgets.
Such a struggle for the shared power capacity makes it
even more important to manage it explicitly, and not as a
consequence of managing other resources.

e Indirect Resource and Non-convexity: Unlike other hardware
resources that are directly consumed, power is “indirectly”
consumed by the resources consumed by the application. This
mandates a coordinated control across different direct com-
ponents consuming this common indirect resource. Further,
the relationship between usage of other resources and power
can be non-convex - the incremental usage of the server cores
does not translate linearly to the corresponding incremental
power [12, 25]. As the relative contribution of “non-core”
hardware - DRAM, caches, accelerators, etc. - grows, this
trend is accentuated [26-29].

e Space Shifting/Fluidic: Being an indirect resource can some-
times become a benefit. Direct resources are compartmental-
ized i.e. CPU capacity may not be shifted to increase memory
capacity, even if under-utilized. In contrast, power is fluidic,
allowing its consumption in one component to be seamlessly
shifted to another based on application needs.

e Time Shifting: Energy storage devices (ESDs) are finding
interesting usage in datacenter servers [30-32] for tem-
porarily boosting power when supply is constrained, and
banking energy when there is adequate power slack. With
such devices, power availability/demand can be time-shifted,
which is not possible with most other direct resources.

Contributions: Recognizing these unique opportunities and
challenges, this work demonstrates the importance of explicit
power management in shared servers.

e We show that traditional server power management strate-
gies [9, 10, 12, 33] are not well-equipped to manage power as
a shared resource as they ignore the unique nature of power.

¢ Using examples, we identify requirements for power man-
agement in shared servers: (i) capping not just the aggregate
power draw, but partitioning power across individual applica-
tions, (ii) when partitioning an indirect resource, we also need
to partition it further across direct resources, (iii) coordinating
power draw in space and time across applications, and
(iv) collectively leveraging energy storage when available to
compensate for non-proportionality of power consumption.

e We build a framework to implement these requirements on
an actual Linux platform. Using mixes of representative dat-
acenter applications, we run several experiments on a private
cloud setting with varying server level power budgets. Results
show that (reating power as an indirectly shared resource
provides a 20% improvement in overall server throughput
even for a relatively loose power cap, compared to state-of-
the-art power allocation in today’s servers [33]. When we
move to a more stringent power cap, we get much more
substantial benefits of 70% respectively. A space and time
coordinated use of a Lead-Acid battery on the server gives a
throughput boost of nearly 2x.

e Our cluster scale evaluations show that our approach success-
fully mediates power struggles during peak shaving events. It
improves cluster power efficiency by 4% and 12% compared
to server consolidation and RAPL [2] respectively.

II. POWER STRUGGLES

A server typically hosts multiple applications, which share
its physical resources (cores, caches, etc.), with performance
degradation arising from any contention in these resources.
There has been a plethora of work [10, 16, 18, 19] proposing
mechanisms to spatially and/or temporally partition these
physical resources to mitigate the performance degradation.
Despite the alleviation of direct resource contention, the very
critical indirect resource - namely power - is also shared across
co-located applications, which can lead to a “power struggle”
and thereby performance degradation for applications.

A. Definition and Example

We define power struggle as the performance degradation
of an application when run in conjunction with one or more
applications on a server that has sufficient physical resources
for each of them (to potentially reach the performance of
running in isolation), but the overall power allocated to the
server is not sufficient enough.

Regardless, of whether an application is running or not, a
server expends a certain amount of idle power P, 4. constituted
by the leakage current in LLCs, DRAM self-refresh, fans,
spinning disks, etc. For instance, on our Dell PowerEdge
platform, P;4. is around 50 W. In addition to the 50 W
of idle power, turning on a core to run an application also
turns on certain “uncore” components (LLC, on-chip network,
memory controller, QPI, etc.) which we refer to as chip-
maintenance power P,,,, that is around 20 W on our server.
If an application (whether A or B) is run in isolation on this
server, the overall server power shoots up to 90 W which is
Pigie + Fep 4 Paynamie. The remaining (90-50-20 = 20 W) is
the actual dynamic power Pyynamic expended in executing the
application. If we run both A and B simultaneously, with each
getting all the resources it had when it was run in isolation (i.e.
separate cores, caches, etc.) to ensure minimal performance
interference, the overall server power amounts to 50 (P;g.) +
20 (Pcm) +20 (denamic_A) +20 (denamic_B) =110 W.

Now, let us consider a power-constrained datacenter where
we want to cap this server’s power by 10%, i.c., restrict it
to operate under 99 W. To implement this cap, let us say we
fairly apportioned this cap to each of A and B respectively,
i.e., each is capped at 49.5 W. One possible way of attaining
this reduction of 5.5 W (i.e., 110/2 - 49.5) for each of A and B,
is by dropping the DVFS state of each core assigned to each
of these applications (i.e., 2 GHz to 1.5 GHz). Note that, even
in this power capped operation, A and B are not interfering in
the physical resources. However, since each has to operate at
a lower frequency to cooperatively live within the power cap,
they each suffer a performance deterioration of 5% and 20%
respectively. We refer to this as a power struggle.

B. Problem Formulation

In this work, we focus on mitigating power struggles
in a power constrained server which has sufficient direct
resources to simultaneously host more than one applica-
tion. Toward this, we use a server architecture as depicted
in Fig 1. There are two sockets with several cores each,
their private 1.1 and L2 caches, a shared LI.C for each,
one memory controller on each socket which is each con-
nected to DIMMs. The applications spatially multiplex the

direct resources

Pcap > Pserver in a server

[E5D Charg [P Py typical of existing

- ’ 3 (™ systems[10, 34, 35].

esp B0 ’ The server may

Discharge 1

:hi;ﬂnienance : alSO haVe enel‘gy
chip Maintenancedg: ! ’

| e * I storage devices

——0 i for aiding power

management [30, 36]
- lithium-ion or lead-
acid Dbatteries. Apart
from the power going
to the two applications
(dynamic power), the total power draw at any time goes
for P,ge, P,y and charging of ESD. All of this has to be
sustained within P, at all times.

Our goal is to mitigate power struggles between co-located
applications on a server, i.e. make each application’s perfor-
mance close to its uncapped execution. We pose it as a single
maximization objective with all applications weighed evenly:

P@TfX (Pcapa A)
Perfx_nocap

Fig. 1: Applications spatially multiplex the
direct resources in the server. Server power
draw goes towards shared hardware (P;q.,
P.y,), applications (P4, Pg), and the ESD.

Maximize » (1)
where Per fx_nocap is the performance of X on the consol-
idated server in the absence of power caps; Per fx(Peep, A)
is the performance of X when run in combination with other
co-located applications in set A — X under P.,y. i.e. The total
power draw of the server should stay within P, at all times:

Pigie+Pom+ Y Px+ESDeharge—ESDaischarge <= Peap (2)
XEA

where Px is the power draw of each application in A4;
ESD jurge and ESD g genarye are the charge and discharge
power of the ESD respectively.

Solving this problem is non-trivial because the search space
to achieve the above objective (1) is very large:

First, there exists multiple applications on each server (A).
For each application X in .4, there exist several fine-grain
power allocation knobs to manage power draw, such as:

e Per-core frequency scaling - Power can be shifted to/from
individual cores of an application using per-core DVFS. fx
is the frequency setting of the cores of application: fx €
{fmin(1.2 GHZ), ..., fmaz(2 GHZz)} of the hardware, and
can be tuned in steps of 100 M Hz.

e Core consolidation - An application can also modulate power
use within its cores by power gating some of its cores
and their private caches, with the rest of its cores taking

‘Application Performance > Server Performance

94%

neven capping
AR
89% s

: '\
N

Server Perf

N\

even capping N

H
Application Perf S
£~ X

5.5W 11W (5.5W * 2 apps)
. Reduction ir\ Application Eower) Reduction in Server Power
Fig. 2: Applications level differences in power utilities require an unequal

apportioning of power.

on the additional work. This can be tuned depending on
the maximum cores allocated to an application: nx €
{Nmin(1), s Pz (6)}.

¢ Memory power allocation - Power can be allocated indi-
vidually to each of the two DIMMs in our system (each
connected to its own memory controller) using Intel’s DRAM
RAPL interface using an explicit power specification, i.c.
mx € {Mmin(3 W), ..., Mimar (10 W)}, in units of 1 watt.

Second, energy storage device [30, 36] is an additional knob
for control. ESD has to be charged or discharged depending on
its usefulness to the application, and it requires coordination
of its charge power and discharge power (0 slay within the
available power budget (FPqp).

Therefore, we propose to exploit the unique properties of
power to develop heuristics to mediate power struggles.

C. How do we mediate Power Struggles?

Towards addressing power struggles, we use the example in
Section II-A and analyze different scenarios.
Requirement R1 As power is a shared resource, we not only
cap overall server power draw, but also cap power for each
application.

Fig. 2 plots the loss in performance (y-axis) for both A and
B normalized to the performance of uncapped operation, as a
function of the cap on the x-axis. Note that the slopes/shapes of
the two curves are different, with the additional complication
of the slope itself varying for different power reductions. Let
us impose a server cap of 10%, i.e., 99 waltts, with the cap for
cach of A and B being 49.5 watts (for fairness). This results
in a reduction of 5.5 watts from A and B. Note that this
results in a much more serious performance penalty for A,
compared to that for B (20% for A vs. 1% for B.) showing
that even though we have been fair in power allocation, the
consequence is unfair in terms of performance. However, the
same overall 10% power cap (of 99 W) could have been
achieved by reducing 3.5 watts from A, and 7.5 watts from
B, where the consequent performance degradation for A and
B would have been 90% and 98% respectively, which would
have been a better choice from the system’s perspective.

This implies that just because a server’s power is capped at
a certain limit, it should not necessarily translate into an even
apportioning of this cap across different applications. Instead,
we should take the relative utility of each watt at each power
budget for each application (Fig. 2) in apportioning the cap.

Requirement R2 Power is an indirect resource. Therefore,
we need to spatially shift power across direct resources of an
application based on the needs of the application.

Consider Fig. 3

10 1
— BECore OFrequency [Memory where the utlhty
3% 8 — per watt for each
§ ge 6 i direct resource
3 gs 4 - adding a core,

d 68 2 i
g % 3, @: 55 [DVES of a core,
29 DRAM - (rather

A B

. than as a whole) for
Fig. 3: Resource level differences in power util- each application.

ities imply that partitioning an indirect resource

requires partitioning it across the direct resources. A is more memory

intensive than B,
and consequently benefits substantially more in having
additional watts devoted to memory. In fact this is even more
beneficial than adding an extra core or techniques such as
turbo-boosting. Even after deciding the watts to allocate for
each application as per Requirement 1, we still have to decide
how best to apportion these watts of that application amongst
the different physical resources. This requirement is unique
to power, due to its nature of being indirectly consumed by
several physical resources.

Requirement R3 Power cannot be multiplexed spatially.
Therefore, we need to coordinate power draw across appli-
cations and their direct resources.

Let us consider co-located execution of A and B which
consumes 50 (Fige) + 20 (Pop) + 20 (Paynamic_a) + 20
(Paynamic_p) = 110 W. If the power capacity is dropped to
90 W, we only have flexibility with controlling the magnitude
of Pgynamic and when it is expended for each application,
since we cannot play with P,y and P,,,.

We could frequency scale both of them at the same time,
so that each consumes 10 W of dynamic power to result in an
overall server consumption of 50 + 20 + 10 + 10 =90 W at
any time as in Fig. 4a. We call this as coordination in space.
Or, as in Fig. 4b, where with alternate duty cycling (i.e. one
coming on when another is off and vice-versa), we can ensure
that at any time only 50 + 20 + 20 = 90 W is consumed
to stay within the cap. We call this as coordination in time.
Note that there may be different performance consequences
for these two choices. If the power cap becomes even more
stringent, say 80 W, and let us say that even with the slowest
DVES state we can at best get (o a minimum of 10 W of
dynamic power for an application, the alternate duty cycling
mechanism is the only alternative for adhering to this cap. This
implies that we need to be aware of co-located applications
in temporally multiplexing the power consumption in physical
resources across different application in order to adhere to its
allocation (in one case, it is always at 10 W and in the other
case it alternates between O W and 20 W). This is despite
adequate available of direct resources for the applications.
Requirement R4 Power draw is non-convex due to Py,
1o address this non-convexity, applications can collectively
leverage energy storage when available to time shift their
power use to achieve better performance.

Peerver (W) Pa=90W Prerser (W) Peap=90W
99 A A BlA B|A
7 B 7
] P,,=20W] P™20W|
Time Time

(a) Coordination in space. (b) Coordination in time.
Fig. 4: Coordinating power use between applications.

11 Pserver (W) 11 PSEIVEI’ (W) B
9 ESD
? Disch Esﬁ - Discharge
Ischarge| A B P =70W A
7 P p=70W 70-_cap
ESD Charging P=20W ESD Charging P 20W
® o D, @ 13.55s @ 6.550

(a) Alternate duty cycling. (b) Consolidated duty cycling.
Fig. 5: Addressing non-convexity of P, using ESD.

Realizing the importance of energy storage as an important
power management knob, large datacenter operators are de-
ploying ESDs locally within each server [30, 36]. Prior works
[37-39] have shown the benefits of energy storage to cap
and/or temporally shift the power needs. However, all of them
have used this knob either for a single application, or for the
server as a whole oblivious to individual applications. We note
that co-located applications require an additional consideration
when using ESD for power capping. Say the overall server
power budget is very stringent at 70 watts. As observed in
R3, this budget is insufficient to run even 1 application at a
time (i.e., a minimum of 80 watts would be needed to do the
alternate duty cycling). However, with energy storage, we can
do the following as illustrated in Fig. 5. From TO to T1, we do
not run any application and keep the server idle. This gives us
a Py (710 W) - Pyg. (50 W) headroom, which we can use to
charge the energy storage device to a capacity of 200 Joules.

Once we have a reasonable capacity in the storage device,
we can decide to do one of the following: (a) As in Fig. Sa,
we can run just one of A and B, alternating with each other,
both at its full dynamic power needs of 20 watts each. Note
that, even though the cap is still at 70 watts, the additional
20 watts is supplied by the charged energy storage device
for an overall period of T3 - T1 = 10 s, such that individual
applications run for 5 seconds each (where A runs from T1
to T2 and B runs from T2 to T3). (b) However, there is an
even better alternative as shown in Fig. 5b, where rather than
alternating between A and B, it is better to simultancously
run both since the overall useful work that can be sustained
by the charged energy storage is even higher. Since P,
is incurred only once, even when multiple applications are
concurrently running, its energy gets amortized between the
two applications when they run concurrently as opposed to
alternating. As a result, the (b) alternative illustrated in Fig. 5b
would allow the charged storage device to sustain 6.5 seconds
of execution of both A and B while (a) illustrated in Fig. Sa
would allow only 5 seconds of execution of both, ic. a

30% increase in effectiveness because of consolidation-aware
exploitation of energy storage.

In summary, to mediate power struggles on a shared server,
we need to jointly addressing the above four requirements’.

111. IMPLEMENTING THE REQUIREMENTS

There are several challenges associated with implementing
the requirements. First, the system has to apportion the avail-
able power budget across applications and the direct resources
available to the application (R1 and R2), despite lack of a-
priori knowledge of power utilities. Second, the system has to
explore several design choices (R3a, R3b and R4) in order to
coordinate application power draws to stay within the server’s
power budget. Third, the server and the applications are prone
to dynamic changes, and the system has to adapt to these
dynamic variations. We next discuss our approach to these
problems.

A. What to allocate?

Recall our discussions in R1 (Sec. II-C), where we pointed
out that the power utilities (the slopes in Fig. 2) are different
for different applications, and are also different at different
power levels. Hence, in order to achieve our objective, we
need to systematically explore the power consumed by the ap-
plication (Px) and the corresponding performance (Per fx),
for different setting of the power allocation knobs f, n and
m. However, the knowledge of Px and Perfx may not be
available a-priori, and it may not be possible to exhaustively
measure all the settings of (f, n,m) for every application. So,
we use an online sparse sampling strategy that measures power
utilities only for minimal settings of (f,n,m), and estimate
the rest by collaboratively learning from other applications.

Collaborative filtering is typically used in recommender
systems to predict the preference of a user by learning from
the preferences for many other users. Here, we would like to
estimate the power utility of an application by using the utili-
ties from previously seen applications. Colloborative filtering
uses a matrix to capture power and performance of previously
seen applications for different settings of the power allocation
knobs. In this matrix, each row corresponds to an application,
and each column corresponds to the power allocation knob
setting, each value represents power and performance. To
estimate power and performance of a new application, the
system measures power and performance online for a few
samples of (f,n,m) and estimates the rest by minimizing the
estimation errors for the measured values using the matrix.
We use the measured and inferred estimates to maximize the
objective function 1. The output of this optimization provides
power allocated to each application (Px) and the knob setting
to allocate power within the direct resources(fx, nx, mx).
Implementation: App Utilitics in Figure 6 shows our im-
plementation. We populate the power matrix by measuring

I'We consider private cloud infrastructure in this work. Nevertheless, all
requirements are still applicable for public clouds. All requirements are ap-
plicable for latency-critical applications including R4 which requires cluster-
level coordination such as using Blink [39].

App Utilities Apps

Power Allocation
Knob Setting,

) D
M o™ N
™ e G\Qe”‘

Server Power
Agent

1
.| Perf.

; Power ‘_’ Allocator

a

2 | Preference

3 - . Q

< matrix o-Ordmator m‘

Inter Appidutycycle

e
New App 1~
Y

Intra App

h 4
Y lestimates |

Fig. 6: System architecture: Applications’ power utilities are learnt dynami-
cally and is used to allocate available server power budget across applications.
Coordinator spatially shifts power within each application and temporally
coordinates across applications and ESD.

socket and DRAM power draw of an application using Intel
RAPL interface [33, 40]. We populate the performance matrix
by measuring the application performance using the open-
source heartbeats [41] interface. This enables us to sample
the application performance under different dynamic settings
for the power allocation knobs. The collaborative learning
framework (implemented in R) uses the sparse samples and the
preference matrix, and estimates the power and performance
for unknown settings. These serve as an input to the the
PowerAllocator which partitions available power budget
across each application and its direct resources.

B. How to coordinate?

After deciding how much power for each application (Px)
and how much power for each of its resources (fx,nx,mx),
we need to coordinate between these applications (R3 and R4).
Towards that, we employ the following heuristics.

e Coordinate in space to reduce power draw simultaneously
(R3a) as shown in Fig. 4a: This is our first option, since
states of applications are preserved in their respective private
caches (LL1/1.2).

e Coordinate in time to alternate/duty-cycle (R3b): If the
power cap is too stringent, disallowing R3a, we resort to
multiplexing in time across applications as in Fig. 4b. Here,
each of P4, Pp, .., etc. will become O watts during its
idle periods. However, the drawback is that some of the
application’s state in private caches would get flushed during
those idle periods. This is the only other option if R3a cannot
be employed, and energy storage is not available.

o Coordination in space and time by leveraging energy storage
(R4): The energy storage knob can address the deficiency of
R3b, and would be preferable whenever available. Further, it
can also address the power non-proportionality of the P,
as was discussed in the previous section. To utilize energy
storage, power is coordinated in both time and space. During
the charging period, power draw of the server becomes:

Pidl@ + Pcm + denamic + ESDcharge < Pcap (3)

with P, + Paynamse = 0 as the applications coordinate to
put the server to deep sleep state (PC6 state in Intel proces-

sors). During discharge period, the applications coordinate in
space to keep the aggregate power draw of the server within
the P, by utilizing the discharge power from ESD such:

Bdl@ + Pcm + denamic - ESDdischarg@ < Pcap (4)

Implementation: Coordinator refines the output from the
PowerAllocator. It coordinates power use in space when
all applications receive non-zero power budget. Otherwise, in
the absence of ESD, only those with non-zero power can be
run at that time. The rest of the applications sleep until it is
their turn. We use alternate duty-cycling for faimess. However,
when server has an energy storage device and the power budget
disallows R3a, the coordinator computes the duty cycle period
for the system (off: é; to J9) and (on: J5 to d3) as:

(62_61) (Pidle+Pcm+ZPX_Pcap)

(63 - 62) - U(Pcap - idle) (5)

where, Px is the power draw of the applications, and 7 is the
ESD efficiency. The applications collectively charge the ESD
during 61 to 62 and uses the stored energy to exceed P,y
during 42 to 43 respectively.

We enforce allocations using the following knobs in Linux-
3.10. We use taskset to consolidate application cores
(n) [42], and cpupower to set their frequencies (f), DRAM
RAPL to set memory power (m), and task suspend/continue
commands to coordinate the applications in time.

C. When to re-allocate/re-calibrate?

Until now, we have considered a steady-state condition for
the server and the applications. But, the system is prone to
dynamic changes. In order to adapt to these changes, the
system reallocates power, and also re-calibrates of the power
utility models (if necessary), upon the following events.

El. Change in server power budget: Server F,,;, can change
dynamically depending on the datacenter level power budget.
This triggers power re-allocation.

E2. Arrival of an application: When a new application is
scheduled to run on the server, it triggers calibration of utility
curves for this new application, as well as reallocation of
power budget for all applications.

E3. Departure of an application: As an application finish
execution and exits the server, it triggers power reallocation
to apportion available power across remaining applications.

E4. Dynamic changes within application: The power needs
of the application can change dynamically due to load vari-
ations or phase changes within an application. This leads to
re-calibration of power utility curves for this application, and
reallocation of power across applications.

Implementation;: We use a Accountant for this purpose.
It keeps track of the server power cap, scheduled applications,
and the status of each application. We implement events E1
and E2 as explicit message to the Accountant specifying
the change in P, or the arrival of a new application. The
accountant periodically (in the order of microseconds) polls
the status of the application and the server power draw. It
triggers E3, if an application has finished execution. It triggers

EA4, if the power draw of an application changes significantly
from its allocated power budget.
IV. EVALUATION

Hardware platform: Our experimental setup consists of
a dual socket Intel Xeon-2620 server shown in Table I

It allows independent control of fre-

Processor [Xeon-2620
quency and sleep states at the core level, Cores 12
. Freq. 1.2-2GHz
and coordinated control of socket sleep |preq. steps 0
states. It exposes Intel RAPL interface MLLC se}asggm
for socket and DRAM power allocation. | Nima | 5 sodes
These knobs help us to spatially shift |Piate, Pom |50W, 20W
. : : dynamic 60W
power. The server is equipped with Lead- A BT T T <orver
Acid UPS for energy storage allowing Configurations.

temporal power shifting.

Applications: We target datacenters requiring flexibility
in modulating power draw based on supply dynamics
(e.g. renewable power variations) and applications that
are amenable to such modulations. So, we study appli-
cations from the following workloads, together with their
dynamic arrivals and departures: data analytics (kmeans,
APR [43]), graph analytics (BFS, triangle counting, con-
nected components, shortest path [44]), search indexing
(page rank [44]), memory streaming [45], media processing
(X264, facesim, and ferret [46]). These benchmarks represent

both compute and R ARpTTYPe App2 (Typ9)
data intensive class Non-latency-critical co-locations

. . . 1 STREAM (memory) kmeans (analytics)
O.f apphcatlons., with 2 Connected (graph) kmeans (analytics)
diverse requirements 3 STREAM (memory) BFS (graph)

. 4 facesim (media) BFS (graph)
on the .dll‘eCt resourges 5 ferret (media) Betweenness (graph)
and their corresponding 6 ferret (media) PageRank (search)

7 facesim (media) Betweenness (graph)
powgr Qraw. All - these 8 X264 (media) Triangle Count (graph)
applications can be 9 APR (analyticsy Connected(graph)

_ 10 PageRank (search) kmeans (analytics)
co located on the SCIVET |11 ferret (media) SSSP (graph)
without exceedlng 12 facesim (media) X264 (media)

. 13 APR (analylics) kmeans (analylics)
its rated power. We |} “vo0)inaia SSSP (graph)
randomly choose 15 |15 APR (analytics) X264 (media)

pa1r§ f.rom the ab().ve TABLE II: Application mixes.
applications as shown in Table II.

Utility curves: We use the online collaborative filtering
to dynamically build the utility curves. To find out how
well this onling approach works, in Fig. 7, we plot the

120 100 consequence of doing this on-
% ‘ @ line at a specified sampling
5110 9 é fraction (x-axis) by measur-
% 100 90 § ing the consequent power and
8 o0 . ';,_C, performance (y-axis) with re-
g < spect to that of an optimal
5 80 80 ﬁ strategy which exhaustively
= 0 25 50 75 100 g samples all settings. We use

Fraction Sampled% g 5-fold cross validation (80%

Fig. 7: Calibration of online sampling Of the applications are used to
fraction. estimate the metrics for 20%)
to estimate the fraction of configurations to sample. This
has been averaged across all the application mixes used in
our evaluations. At low sampling rates, the error in power

estimation results in power over-shoot at the server, not
adhering to the imposed cap. However, increasing the sampled
fraction reduces error in power estimation, and consequently
the server power draw stays within limit. We see similar trend
in performance as well. Based on this, we fix the online
sampling rate at 10% for subsequent evaluations. All the
results include these sampling and re-allocation overheads.

Experiments: We next study the impact of power struggles
under the following dynamic settings: (i) a server level power
budget of 100 W which allows the applications to run simulta-
neously but requires spatial coordination, (ii) a dynamic drop
in the power cap to 80 W which necessitates applications
to coordinate in time even when they use different physical
resources, (iii) dynamic application arrivals and departures,
(iv) cluster scale impact of server power management. We
will compare the benefits of each of the steps of our approach
(given in Section II-C) with an utility unaware power capping.

A. Requiring Spatial Coordination

Schemes: Under a F,,, = 100 W, the two applications can
run simultaneously on their respective hardware, but their
power draw need to be coordinated spatially to live within
the cap. For this case, we study the following options:

¢ Util-Unaware (baseline-1) is a fair power allocation policy.
It is unaware of the power utilities and equally allocates the
available power budget to all co-existing applications. We use
RAPL [33] hardware knob to allocate power.

¢ Server+Res-Aware (baseline-2) is aware of power utilities
of direct resources in a server, but is unaware of application-
level differences. It uses the resource-level power utilitics
averaged across all applications.

e App-Aware is awarc of the application level difference in
power utility. It uses overall application power utilities to
make its allocation, and does not tune it any further based
on the direct resource utilities of individual applications.

¢ App+Res-Aware is aware of the resource level power utility
for an application, as well as the benefits of apportioning
the given power budget to its individual resources. So, it
partitions power allocated to each application and recursively
down to each of its physical resources.

Results: Fig. 8a presents the results for the workload mixes
in terms of their throughput normalized with respect to un-
capped execution for all policies. We also present the power
allocated to the two individual applications and their respective
speedups, for the App+Res-Aware in Figs. 8b and 8c.

From these results, we observe the following: (i) the last
two bars, in all cases, improve the overall server throughput by
recognizing individual application needs. Even the App-Aware
case, on an average, boosts the overall server throughput
by 10% compared to both Util-Unaware and Server+Res-
Aware. As opposed to a 50-50 split, the differences in power
utilities across applications, warrants a 46%-54% split, on the
average, across these applications. This clearly points out the
deficiencies of much of the current state-of-the-art, which sim-
ply monitor and cap server level power consumption without

5 B Util-Unaware N Server+Res-Aware 7 App-Aware M App+Res-Aware
o
£ a

%" 8
£ 205
L]

(.

[

2% o0
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Awg

Mix ID
(a) Server performance for various application mixes.

c

S 07 CAppl tApp2

8 cos -

58 s

= =

s oU

5 S04

@ = 0.

3 o3

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

Mix ID
(b) Fraction of power allocated to Appl and App2.

z o 18

S5 izg OAppl M +App2 —

§§ 12 T :

55 o f il

£3 06 Sl

¥5 o4 e

8y 02 i £ mlimi « L
£ = 0

23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

Mix ID

(c) Performance of Appl and App2.
Fig. 8: Power management at P.qp = 100W

looking into the details of co-located workloads. (ii)) When
we go from App-Aware to App+Res-Aware, the average server
throughput increases by another 10%. This has very important
consequences, i.e. it does not suffice to partition power based
on utility (as done for many of the direct resources [10, 16]). It
is even more important to apportion power amongst different
direct resources. These results can be better understood by
examining the performance of specific workload mixes:

e Mix-10 runs compute bound PageRank and kmeans. In
this case, re-apportioning an application’s power across the
different hardware resources, does not make much sense - it
is better allocated for CPU cores. However, these applications
differ in their marginal benefits per watt, as is shown in
Fig 9a. As a result, App-Aware shows better performance
than the application unaware strategies, since it allocates
16.5 watts of the 100 watt cap (reduced by Pigie + Pop) 10
PageRank and only 13 watts going to kmeans (see 55%-
45% split for mix-10 in Fig 8b). Such a 55%-45% allocation
of power between the two (compared to a 50%-50% split)
results in a corresponding server throughput increase of 10%
compared to the best baseline. This illustrates the need to
carefully apportion the power between individual applications
rather than just cap the overall server power draw.

e Mix-1 runs memory intensive STREAM and compute inten-
sive kmeans applications. Fig. 9b shows the inter-app power
utility for this mix. These applications do not differ much in
their utilitics when their power budgets are 15 watts each,
making App-Aware not very different from the Util-Unaware
baseline. Note that in Fig. 8b, the power allocations for the
two applications in mix-1 are not very different. However, the
Fig. 9d shows that they differ substantially in their resource
level power utility. As a result, App+Res-Aware gives close
to 5% and 15% performance gains respectively for STREAM
and kmeans. It illustrates that while partitioning an indirect

-o-Kmeans PageRank -»-STREAM Kmeans

° 1
g g —
] ©
£os Eo0.5 /
£ el
£, | £,
10 15 20 25 10 15 20 25
Power (W) Power (W)
(2) Mix-10. (b) Mix-1.

X264 SSSP o oDCore Freq 7 Memory
o 1 Sl B E
g 8 s0% ()
g 2 60%
E a
£os £ oot
L
o .g 20%
a. 0 " 0%
o & > L g
10 15 20 25 & «Q&v" & &S
Power (W) S &
(c) Mix-14. (d) Intra-app Resource.

Fig. 9: Power utility differences across applications and their hardware resources.

shared resource, it is important to partition it further across
the direct resources of an applications to maximize its utility.

¢ Mix-14 is a co-location of X264 and SSSP. Fig. 9¢ shows
the inter-application power utility and Fig. 9d gives the intra-
application resource level power utility. It shows that the
applications differ in both application level and resource level
utilities. App-Aware, which only cares about the former, per-
forms a 55%-45% power split between the two applications
(compared to the 50-50 split) to provide 10% performance
gains at the server level. Further, apportioning power spatially
to each hardware component based on its utility to each app
using App+Res-Aware gives an even bigger boost.

B. Requiring Temporal Coordination

We now show the effectiveness of our approach with a
more stringent server power cap of 8OW. The power avail-
able for Paynamic reduces to 10W (=80W (Pe,p)-50W(F;q1e)-
20W(F,,,)). This power budget cannot simultancously sustain
both applications, since ¢ach needs a minimum of 10 W to
run. To remain within the power cap the system has to control
power allocation in time, i.e. duty cycle the applications. We
consider the following schemes: (i) Util-Unaware: It is a fair
power allocation policy which duty-cycles amongst the co-
located applications in a fair manner (i.e. all get the same
ON-OFF periods). (ii) Server+Res-Aware: It uses server level
resource utility to allocate power, and duty-cycles in a fair
manner. (iii) App+Res-Aware: Here we allocate power budgets
to each application as in the previous subsection. To enforce
these allocations, we appropriately set the ON-OFF periods
for each application and allocate budgets for ecach hardware
resource during the ON-periods. (iv) App+Res+ESD-Aware:
The other schemes take turns on who should run at any time,
ensuring that someone is always running. Here, cither all
applications run at the same time (amortizing F,,,), or none
of them do (incurring no F,,,) - they all have simultancous
OFF-ON periods. However, since their peak draw during the
ON-period would exceed the cap, this scheme uses the ESD to
supplement the draw during the ON-period, which is banked
during the previous OFF-period. These are tuned based on the
storage characteristics (powet/energy capacity, efficiency, etc.).
We use Lead-Acid battery which gives us a 60-40 OFF-ON
duty cycle to remain within the 80 W cap.

Results: Fig. 10 shows the overall server performance normal-
ized to uncapped execution for all policies. Based on these
results, we observe the following: (i) in all cases, the last

Server+Res-Aware

&= Util-Unaware

0.25

N

10 11 12 13 14 15 Awg

o

1 2 3 4 5 6 7 g8 9
Mix ID

Server Throughput
w.r.t no cap

Fig. 10: Power management at Peqp = 80W.

two bars which represent the consolidation aware strategics
improve the overall server throughput. (ii) compared to Fig. 8a,
the relative performance boosts are much higher under this
stringent power cap. In other words, the more stringent the
cap, the more important it is to do co-location aware power
management. (iii) The new and important observation to note
is that there is substantial rewards to be had by completely
not scheduling any application during some periods compared
to the other three where applications take turns running. Note
that the server itself is NOT switched off, and it is only the
sockets which are put into deep sleep state so that the wake
up times are in 100s of microseconds [47].

C. Adapting to Dynamic Arrivals/Departures

Next, we also study the effectiveness of our mechanisms
with dynamic application arrivals and departures.
On an application’s arrival: The applications can run without
any power cap as long as the server power draw is within
Peop. We consider a setup where the server’s P,,;, remains the
same and the arrival of a new application pushes the server
above its power cap. We illustrate this using Mix-14: SSSP
and X264 for a P, = 100W in Fig 11a. Here, SSSP is
the only application running for the first 20 seconds. At that
point X264 arrives, triggering power reallocation as shown
in Fig. 11a. SSSP’s power is reduced from 25 W to 12 W,
and X264 is allocated 18 W. This reallocation also (riggers
resource level power apportioning for these applications (not
shown in this figure). This results in SSSP retaining its current
frequency (2 GHz). However, it consolidates its power use in
cores (from 6 to 3). On the other hand, X264 shifts its power
use in frequency (2 GHz to 1.4 GHz) to other direct resources
to achieve this power allocation. All of this is achieved within
a span of 800 ms on our server.
On an application’s departure: We next illustrate power
reallocation as an application departs the system using Mix-10
which runs kmeans and PageRank. We consider the case
when the applications are running under a power budget of

110

—+—SSSP —X264
2110 /\L 3100
[A ——] o
g 9% /\/_H_kﬁ_‘\k E 90
o
Loty o
T 80 ——Kmeans —PageRank
70 70

0 10 20 30 40 50 &0
Time (seconds) Time (seconds)

(a) Arrival (b) Departure
Fig. 11: Impact of application arrival/departure.

0 10 20 30 40 50 60

Poop=100 W. Here, as explained earlier, power is allocated in
the ratio of 45% and 55% to kmeans and PageRank respec-
tively (see Fig. 11b). However, PageRank finishes execution
and departs the system. Once the Accountant detects this,
it triggers power reallocation. The PowerAllocator identi-
fies that there is enough headroom for kmeans to increase its
power draw, and it removes the cap on kmeans. This triggers
resource level power reallocation enabling kmeans to activate
more cores, and scale up all their frequencies.

D. Cluster Power Management

We next discuss cluster scale benefits of our approach.
We consider the scenario when the cluster performs peak
shaving [48]. Figure 12a shows the dynamic power caps of
a cluster to shave 15%, 30% and 45% of peak power draw
from a publicly available cluster power trace [49]. We replay
these power caps on our prototype using 10 servers, and study
the following cluster power management strategies:

¢ Equal(RAPL): The cluster manager equally apportions
available power across all servers. Each server uses RAPL
to stay within its power cap. This is the state-of-the-art in
today’s datacenters [2].

¢ Equal(Ours): The cluster manager evenly apportions avail-
able power across all servers. The servers use our proposed
App+ Res+ESD-Aware power policy to manage power in
each server. Note that the servers use the ESD only during
periods of very stringent power cap.

¢ Consolidation+Migration(no cap): The cluster manager
powers only as many servers as possible as allowed by
the cluster level power budget. Hence, a power cap is not
imposed on any active server. The cluster manager migrates
applications to these servers considering direct resource in-
terference. It is more efficient as it incurs less Pigie + Pom.
However, it may be not be feasible in the presence of large
application states or network bottlenecks [1, 10].

Results: Figure 12b presents the aggregate performance of
the cluster (y-axis) under different power management policies
at different levels of cluster level power caps (x-axis). As can
be seen, under all scenarios, enforcing cluster level power
budget using RAPL results in only 47%-89% of the uncapped
cluster performance. Instead, mediating power struggles using
our proposed strategy provides 63%-99% performance. Note
that this performance is equivalent or even better than the
performance of server consolidation (by 3-5%) which powers
only as many servers as allowed by the power budget without
power capping any of them. Our proposal results in better en-
ergy proportionality, as it is able to extract higher performance

—Pcap=45% —Pcap=30% -=Pcap=25% 15 B Equal{RAPL)
0.5 - m@ Equal(Ours)

[Consolidation
S0l A g\i\j ; ; :j
8
a 0 = .

0 10 20
Tme (hours)

[

e
n

w.r.t. no cap

o

Cluster Performance

15% 30% 45%

Cluster power cap w.r.t.
ower
(=]
N

Peak shaving threshold

(a) Dynamic power caps. (b) Aggregate performance.
Fig. 12: Cluster level peak shaving

per available watt by mediating server level power struggles.
It further eases the complexity of cluster manager to adapt
to dynamic power variations by capping individual servers as
opposed to migrating jobs across servers. Note that under our
proposed policy, the ESD is used only under very stringent
power budget. It has negligible impact on the battery lifetime
as this operating region is primarily impacted by the shelf-life
of the Lead-Acid battery more than its cycle life [31].
V. RELATED WORK

Many prior works have studied the challenges of resource
management at various levels in the datacenter hierarchy.
Datacenter level: Prior works on datacenter resource manage-
ment [50-57] have focused on server provisioning, application
admittance, scheduling, etc. t0 manage variations in applica-
tion demand and resource requirements. Orthogonal to direct
resources, power capacity of datacenter may be limited due to
under-provisioned infrastructure [58] or due to participation
in power markets [59-61], on-site power generation [7, 48],
or even due to power outages. While these works focus at
the datacenter scale, their benefits depend closely on the
effectiveness of server level power management.

Server level: Prior works have emphasized the importance of
resource allocation and isolation in shared servers, and have
developed mechanisms and policies [10, 15, 16, 18, 19, 62] to
achieve this for direct resources. While there are some efforts
on power allocation [5, 10, 12, 63], these ignore application
and resource level differences in power utilities. Moreover,
power is isolated primarily by limiting CPU time or frequency,
while more recent hardware advances support finer grain of
control (e.g. deep sleep of cores/sockets, per-core frequency
scaling, DRAM power allocation, local energy storage). This
enables us (0 aclively manage power as an indirect shared
resource using spatial and temporal shifting knobs.

VI. CONCLUDING REMARKS

This paper has studied the issue of power struggles in
shared servers, and developed power management heuristics
on shared servers. We show that the importance of rationing
out power to individual applications, and to each of its physical
resources, grows with the stringency of the power cap, and
the difference in marginal utilitics between applications, with
energy storage playing a very important role in the effective
management. This paper has opened doors to further research
into this topic of indirect resource contention: (i) integration
with cluster/datacenter level scheduling and job allocation
mechanisms to individual servers; (ii) hardware mechanisms
for fine-grained power isolation in these shared servers.

VII. ACKNOWLEDGEMENTS

This research was supported by National Science Foun-
dation grants NSF-1714389, 1909004, 1629915, 1629129,
1526750, 1763681, 1912495 and a DARPA/SRC JTUMP award.

(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES
A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan,
and S. Sankar, “The need for speed and stability in data
center power capping,” Sustainable Computing: Infor-
matics and Systems, vol. 3, no. 3, pp. 183-193, 2013.
Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar,
B. Li, J. Meza, and Y. J. Song, “Dynamo: facebook’s
data center-wide power management system,” in ISCA,
pp. 469480, 2016.
R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang,
and X. Zhu, “No power struggles: Coordinated multi-
level power management for the data center,” in ISCA,
pp- 48-59, 2008.
S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and
I. Underwood, “Power routing: dynamic power provi-
sioning in the data center,” in ASPLOS, pp. 231242,
2010.
H. Lim, A. Kansal, and J. Liu, “Power budgeting for
virtualized data centers,” in USENIX ATC, 2011.
D. Wang, C. Ren, and A. Sivasubramaniam, “Virtualizing
power distribution in datacenters,” in ISCA, pp. 595-606,
2013.
I Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bian-
chini, “Parasol and greenswitch: managing datacenters
powered by renewable energy,” in ASPLOS, pp. 51-64,
2013.
M. A. Islam, X. Ren, S. Ren, A. Wierman, and X. Wang,
“A market approach for handling power emergencies in
multi-tenant data center,” in HPCA, pp. 432-443, 2016.
H. Zhang and H. Hoffmann, “Maximizing performance
under a power cap: A comparison of hardware, software,
and hybrid techniques,” in ASPLOS, 2016.
D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: improving resource efficiency
at scale,” in ISCA, 2015.
H. Zhu and M. Erez, “Dirigent: Enforcing QoS for
Latency-Critical Tasks on Shared Multicore Systems,” in
ASPLOS, pp. 33-417, 2016.
K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and
Z. Chen, “Power containers: An os facility for fine-
grained power and energy management on multicore
servers,” in ASPLOS, 2013.
J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations,” in MICRO,
pp. 248-259, 2011.
C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware
scheduling for heterogeneous datacenters,” in ASPLOS,
pp- 77-88, 2013.
Intel®), “Improving Real-Time Performance by Utilizing
Cache Allocation Technology.” http://www.intel.com/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

content/www/us/en/communications/cache-allocation-
technology-white-paper.html, 2015.

M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, run-
time mechanism to partition shared caches,” in MICRO,
pp. 423-432, 2006.

X. Zhang, S. Dwarkadas, and K. Shen, “Towards prac-
tical page coloring-based multicore cache management,”
in EuroSys, pp. 89-102, 2009.

S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kan-
demir, and T. Moscibroda, “Reducing memory interfer-
ence in multicore systems via application-aware memory
channel partitioning,” in MICRO, pp. 374-385, 2011.
L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and
O. Mutlu, “The application slowdown model: Quan-
tifying and controlling the impact of inter-application
interference at shared caches and main memory,” in
MICRO, pp. 62-75, 2015.

F. Chang, J. Ren, and R. Viswanathan, “Optimal resource
allocation in clouds,” in IEEE CLOUD, pp. 418-425,
2010.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and 1. Stoica, “Dominant resource fairness:
Fair allocation of multiple resource types,” in NSDI,
2011.

S. M. Zahedi and B. C. Lee, “REF: Resource elasticity
fairness with sharing incentives for multiprocessors,” in
ASPLOS, pp. 145-160, 2014.

G. Wei, A. V. Vagsilakos, Y. Zheng, and N. Xiong, “A
game-theoretic method of fair resource allocation for
cloud computing services,” The journal of supercomput-
ing, vol. 54, no. 2, pp. 252-269, 2010.

H. Wang and P. Varman, “Balancing faimess and effi-
ciency in tiered storage systems with bottleneck-aware
allocation,” in FAST, pp. 229-242, 2014.

M. Zhu and K. Shen, “Energy discounted computing on
multicore smartphones,” in USENIX ATC, 2016.

Q. Deng, D. Meisner, L.. Ramos, T. F. Wenisch, and
R. Bianchini, “Memscale: active low-power modes for
main memory,” in ASPLOS, pp. 225-238, ACM, 2011.
H.-Y. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, and
M. J. Irwin, “Core vs. uncore: The heart of darkness,” in
DAC, pp. 1-6, 2015.

M. Arora, S. Manne, 1. Paul, N. Jayasena, and D. M.
Tullsen, “Understanding idle behavior and power gating
mechanisms in the context of modern benchmarks on
CPU-GPU Integrated systems,” in HPCA, pp. 366-377,
2015.

J. Zhan, J. Ouyang, F. Ge, I. Zhao, and Y. Xie, “Hybrid
drowsy SRAM and STT-RAM buffer designs for dark-
silicon-aware NoC,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2016.

Microsoft Server and Cloud Platform Team
“Microsoft reinvents datacenter power backup
with new Open Compute Project specification.”

https://blogs.technet.microsoft.com/hybridcloud/2015/

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

03/10/microsoft-reinvents-datacenter-power-backup-
with-new-open-compute-project-specification/, 2015.

D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar,
and H. Fathy, “Energy storage in datacenters: what,
where, and how much?,” in SIGMETRICS, 2012.

I. Narayanan, D. Wang, A.-A. Mamun, A. Sivasubrama-
niam, and H. K. Fathy, “Should we dual-purpose energy
storage in datacenters for power backup and demand
response?,” in HotPower, 2014,

Intel, “Intel® 64 and IA-32 Architectures Software
Developers Manual Volume 3B: System Programming
Guide, Part 2. http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-vol-3b-part-2-manual.pdf, 2016.
“Xen 4.3 NUMA Aware Scheduling.” https://wiki.xen.
org/wiki/Xen_4.3_NUMA_Aware_Scheduling, 2015.
"VMware”, “The cpu scheduler in vmware vsphere 5.1.”
https://www.vmware.com/content/dam/digitalmarketing/
vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-
performance-white-paper.pdf, 2013.

CNET, “Google uncloaks once-secret server.”
https://www.cnet.com/news/google-uncloaks-once-
secret-server-10209580/, 2009.

S. Govindan, A. Sivasubramaniam, and B. Urgaonkar,
“Benefits and limitations of tapping into stored energy
for datacenters,” in ISCA, pp. 341-351, 2011.

V. Kontorinis, L.. E. Zhang, B. Aksanli, J. Sampson,
H. Homayoun, E. Pettis, D. M. Tullsen, and T. S. Rosing,
“Managing distributed UPS energy for cffective power
capping in data centers,” in ISCA, pp. 488499, 2012.
N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink:
Managing server clusters on intermittent power,” in AS-
PLOS, 2011.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le, “RAPL: memory power estimation and capping,”
in ISLPED, pp. 189-194, 2010.

H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal, “Application heartbeats for soft-
ware performance and health,” ACM Sigplan Notices,
vol. 45, no. 5, pp. 347-348, 2010.

R. M. Love, “taskset.” https://linux.dic.net/man/1/taskset,
2004.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary, “Minebench: A benchmark suite for
data mining workloads,” in /ISWC, pp. 182-188, 2006.
S. Beamer, K. Asanovié¢, and D. Patterson, “The GAP
benchmark suite,” arXiv preprint arXiv:1508.03619,
2015.

J. D. McCalpin, “Memory bandwidth and machine bal-
ance in current high performance computers,” IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19-25, Dec. 1995.
C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PAR-
SEC benchmark suite: Characterization and architectural
implications,” in PACT, pp. 72-81, ACM, 2008.

R. Schone, D. Molka, and M. Werner, “Wake-up latencics

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

for processor idle states on current x86 processors,”
Computer Science-Research and Development, vol. 30,
no. 2, pp. 219-227, 2015.

A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad,
“Opportunitiecs and challenges for data center demand
response,” in IGCC, pp. 1-10, IEEE, 2014.

G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao, “Energy-aware server provisioning and load
dispatching for connection-intensive internet services,” in
NSDI, 2008.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle, “Managing energy and server resources
in hosting centers,” in SOSP, pp. 103-116, 2001.

L. A. Barroso, J. Clidaras, and U. Holzle, The data-
center as a computer: An Introduction to the design of
warehouse-scale machines, vol. 8. Morgan & Claypool
Publishers, 2013.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at Google with Borg,” in EuroSys, p. 18, 2015.

P. Delgado, F. Dinu, A.-M. Kermarrec, and
W. Zwaenepoel, “Hawk: Hybrid datacenter scheduling,”
in USENIX ATC, pp. 499-510, 2015.

A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi,
S. Shenker, and 1. Stoica, “Hierarchical scheduling for
diverse datacenter workloads,” in SOCC, p. 4, 2013.

A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubra-
maniam, “The fast and the frugal: Tail latency aware
provisioning for coping with load variations,” in WWW,
2020.

I. Narayanan, A. Kansal, A. Sivasubramaniam, B. Ur-
gaonkar, and S. Govindan, “Towards a leaner gco-
distributed cloud infrastructure,” in HotCloud, 2014.

I. Narayanan, A. Kansal, and A. Sivasubramaniam,
“Right-sizing geo-distributed data centers for availability
and latency,” in ICDCS, pp. 230-240, IEEE, 2017.

S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubrama-
niam, and A. Baldini, “Statistical profiling-based tech-
niques for effective power provisioning in data centers,”
in EuroSys, pp. 317-330, 2009.

H. Chen, M. C. Caramanis, and A. K. Coskun, “The data
center as a grid load stabilizer,” in ASP-DAC, pp. 105-
112, 2014.

H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad,
“Exploring smart grid and data center interactions for
electric power load balancing,” Performance Evaluation
Review, vol. 41, no. 3, pp. 89-94, 2014,

I. Narayanan, D. Wang, A. Sivasubramaniam, H. K.
Fathy, and S. James, “Evaluating energy storage for a
multitude of uses in the datacenter,” in IISWC, 2017.
G. Banga, P. Druschel, and J. C. Mogul, “Resource
containers: A new facility for resource management in
server systems,” in OSDI, pp. 45-58, 1999.

R. Nathuji and K. Schwan, “Virtualpower: coordinated
power management in virtualized enterprise systems,” in
SOSP, pp. 265-278, 2007.

