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Abstract

We investigate robust data aggregation in a multi-agent online learning setting. In reality,
multiple online learning agents are often deployed to perform similar tasks and receive
similar feedback. We study how agents can improve their collective performance by sharing
information among each other. In this paper, we formulate the ε-multi-player multi-armed
bandit problem, in which a set of M players that have similar reward distributions for
each arm play concurrently. We develop an upper confidence bound-based algorithm that
adaptively aggregates rewards collected by different players. To our best knowledge, we are
the first to develop such a scheme in a multi-player bandit learning setting. We show that
under the assumption that pairwise distances between the means of the player-dependent
distributions for each arm are small, we improve the (collective) regret bound by nearly a
factor of M , in comparison with a baseline algorithm in which the players learn individually
using the UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits a fallback
guarantee, namely, if our task similarity assumption fails to hold, our algorithm still has
a performance guarantee that cannot be worse than the baseline by a constant factor.
Empirically, we validate our algorithm on synthetic data.

Keywords: Stochastic multi-player bandit learning, heterogeneous data aggregation

1. Introduction

Online learning has many important real-world applications (see Villar et al., 2015; Shen
et al., 2015; Li et al., 2010, for a few examples). In practice, a group of online learning
agents are often deployed for similar tasks, and they learn to perform these tasks in similar
yet nonidentical environments. One natural question arises: Can the agents collaborate
to achieve a better collective reward? In this paper, we study robust aggregation of data
collected by multiple online learning agents that perform similar tasks.

Consider the following application scenario: a group of assistive robots are deployed to
provide personalized cognitive training to people with dementia (PwD), e.g., by teaching
metacognitive skills, supporting healthy lifestyle choices, and playing stimulating games
(Kubota et al., 2020). In order to ensure the health intervention is useful, adopted, and
adhered to, it is critical that it is tailored to the individual, and able to adapt to the person
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as they change over time (a key characteristic of PwD) (Riek, 2017; Woodworth et al.,
2018). The goal of each robot is to learn the preferences of its paired individual in an
online setting—each robot seeks to discover and recommend activities that a PwD favors
and enjoys based on how the PwD reacts to and is engaged with the task (as captured by
sensors on the robots) (Kubota et al., 2020). As PwD may have similar preferences and
may therefore exhibit similar reactions, the robots as a multi-agent system can potentially
learn to perform their respective tasks faster by sharing information with each other.

In this paper, we generalize the the multi-armed bandit problem (Auer et al., 2002)
and formulate the ε-multi-player multi-armed bandit (ε-MPMAB) problem, which models
heterogeneous multi-task learning in a multi-agent bandit learning setting. In an ε-MPMAB
problem instance, a set of M players are deployed to perform similar tasks—simultaneously
they interact with a set of actions/arms, and they receive feedback from different reward dis-
tributions for taking the same action/pulling the same arm. In the above assistive robotics
example, each player corresponds to a robot; each arm corresponds to one of the cognitive
activities to choose from; for each player and each arm, there is a separate reward distri-
bution which reflects a PwD’s personal preferences. ε ≥ 0 is a discrepancy parameter that
upper bounds the pairwise distances between different reward distributions for different
players on the same arm. The players can communicate and share information among each
other, with a goal of minimizing their collective regret.

While multi-player bandit learning has been studied extensively in the literature (e.g.,
(Landgren et al., 2016; Cesa-Bianchi et al., 2013; Gentile et al., 2014)), and warm-starting
bandit learning using a different feedback source has also been investigated recently (Zhang
et al., 2019), to our best knowledge, there is no prior work that studies bandit learning for
similar tasks in a multi-player setting with a focus on robust data aggregation based upon
the (dis)similarities between the sources of data. We believe this problem is an important
addition to the literature on collaborative online learning and multi-task bandit learning.

It is worth noting that naively utilizing the data collected by other players may sub-
stantially hurt a player’s regret (Zhang et al., 2019), if there are large disparities between
the sources of feedback. This is also known as negative transfer in the transfer learning
literature (Rosenstein et al., 2005; Brunskill and Li, 2013).

In this paper, we propose an upper confidence bound (UCB)-based algorithm that adap-
tively aggregates rewards collected by different players and is robust against negative trans-
fer. To our best knowledge, this is the first such algorithm for multi-player bandit learning.
We provide performance guarantees for our algorithm. We show that when the discrep-
ancy parameter ε is small, we improve the collective regret bound by nearly a factor of M ,
in comparison with a baseline algorithm in which the players learn individually using the
UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits robustness—we show a
fallback guarantee: when ε is large and it is unsafe for the players to aggregate data aggres-
sively, our algorithm still has a performance guarantee no worse than that of the baseline
algorithm by a constant factor. We validate our algorithm empirically on synthetic data.

2. Problem Specification

We formulate the ε-MPMAB problem, building on the standard model of stochastic multi-
armed bandits (Lai and Robbins, 1985; Auer et al., 2002).
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We consider an ε-MPMAB problem instance with a set ofM players, labeled as 1, 2, . . . ,M .
Concurrently, the players interact with a set of K arms, labeled as 1, 2, . . . ,K. For each
player p ∈ [M ], each arm i ∈ [K] is associated with an unknown reward distribution Dp

i with
support [0, 1] and mean µp

i . The reward distributions of the same arm are not necessarily
identical for different players, but we assume them to be similar.

Assumption 1 For every pair of players p, q ∈ [M ], maxi∈[K] |µp
i −µq

i | ≤ ε, where ε ∈ [0, 1].

In each round t = 1, 2, . . . , T , each player p ∈ [M ] pulls an arm ipt , and observes an
independent and identically distributed reward rpit,t ∼ Dp

it
.1 Once all the players finish

pulling an arm in round t, each decision, ipt , together with the corresponding reward received,
rpit,t, is instantaneously shared with every other player in [M ].

Let µp
∗ = maxi∈[K] µ

p
i for every player p ∈ [M ]. Denote np

i (t) as the number of pulls of
arm i by player p after t rounds, and ∆p

i = µp
∗ − µp

i ≥ 0 as the gap between the means of
the reward distributions associated with the optimal arm ip∗ and arm i for player p. For
simplicity, we assume that for each player, there exists one unique optimal arm. Then,
the expected regret of player p can be stated as E[Rp(T )] =

∑K
i=1∆

p
i · E[n

p
i (T )]. In an ε-

MPMAB problem, the goal is to to minimize the players’ expected collective regret, defined
as E[R(T )] =

∑M
p=1 E[Rp(T )].

3. Related Work and Comparisons

In this section, we compare existing multi-agent bandit learning problems with the ε-
MPMAB problem. We provide a more detailed review of the literature in Appendix A.

A large portion of prior studies (Kar et al., 2011; Szörényi et al., 2013; Landgren et al.,
2016; Kolla et al., 2018; Sankararaman et al., 2019; Wang et al., 2019) focuses on the setting
where a network of players collaboratively work on one bandit learning problem instance,
i.e., the reward distributions of an arm are identical across all players. In contrast, we study
multi-agent bandit learning where the reward distributions across players can be different.

Multi-agent bandit learning with player-dependent rewards has also been covered by
previous studies. In (Shahrampour et al., 2017), a group of players seek to find the arm
with the largest average reward over all the players; however, in each round, the players have
to reach a consensus and choose the same arm. (Cesa-Bianchi et al., 2013) studies a network
of linear contextual bandit players with player-dependent rewards—the players propagate
information based on their affinity which is specified by a graph. In (Gentile et al., 2014),
players are clustered on the fly and share feedback information with other players in the
same cluster. However, neither of these papers focuses on robust aggregation of data shared
by other players. In this paper, we study how data can be safely and adaptively aggregated
based on a pre-defined discrepancy parameter.

Similarities in reward distributions are explored in (Zhang et al., 2019), which studies
a warm-start scenario, in which data are provided as history (Shivaswamy and Joachims,
2012) for an learning agent to explore faster. In this paper, however, we study the multi-
player setting, where all players learn continually and concurrently.

In the interest of space, we defer the rest of our comparisons to Appendix A.
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Algorithm 1: Robust Learning in ε-MPMAB

Input: Distribution discrepancy parameter ε ∈ [0, 1];
1 Initialization: Set np

i = 0 for all p ∈ [M ] and all i ∈ [K].
2 for t = 1, 2 . . . , T do
3 for p ∈ [M ] do
4 for i ∈ [K] do
5 Let mp

i =
∑

q∈[M ]:q 6=p n
q
i ;

6 Let np
i = max(1, np

i ) and mp
i = max(1,mp

i );

7 Let F (np
i ,m

p
i , λ, ε) = 8

√

6 lnT [λ
2

n
p

i

+ (1−λ)2

m
p

i

] + (1− λ)ε;

8 Compute λ∗ = argminλ∈[0,1] F (np
i ,m

p
i , λ, ε);

9 Let

ζpi (t) =
1

np
i

∑

s<t
i
p
s=i

rpis,s, η
p
i (t) =

1

mp
i

∑

q∈[M ]
q 6=p

∑

s<t
i
q
s=i

rqis,s, and κpi (t, λ) = λζpi (t)+(1−λ)ηpi (t);

10 Compute the upper confidence bound of the reward of arm i for player p:
11

UCBp
i (t) = κpi (t, λ

∗) + F (np
i ,m

p
i , λ

∗, ε).

12 Let ipt = argmaxi∈[K]UCB
p
i (t);

13 Player p pulls arm ipt and observes reward rpit,t;

14 for p ∈ [M ] do
15 Let i = ipt and set np

i = np
i + 1.

4. Algorithm

In this section, we provide an algorithm, namely Algorithm 1, that robustly aggregates
samples collected by different players in the ε-MPMAB problem. We first provide some
intuition of the algorithm. In any round, a player may decide to take advantage of data
from other players, depending on the sample size of their own collected rewards, the sample
sizes of other players’ rewards, as well as the discrepancy between the players’ reward
distributions. These factors are extensively discussed in (Ben-David et al., 2010). Our
algorithm is built upon this insight of trading off (i) a smaller deviation of the empirical
mean from the true mean due to an increased number of samples against (ii) the inaccuracy
of our estimate due to the discrepancy in the distributions.

We consider an adaptive aggregation and weighting of samples collected by the players,
which can lead to tighter confidence bounds on mean rewards. As is shown in (Auer,
2002), confidence bounds is instrumental for designing stochastic bandit algorithms. More
specifically, our algorithm is based on the UCB-1 algorithm (Auer et al., 2002) and maintains
a confidence interval for each mean µp

i such that “with high probability,” the empirical
estimate of the mean (a weighted combination) always lies in the confidence interval. We
use the number of samples collected by each player, the discrepancy parameter ε, and a
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weighting factor λ to minimize the width of confidence intervals (similar to (Ben-David
et al., 2010)).2 This data aggregation procedure can potentially allow us to have tighter
confidence intervals for the players’ reward estimates, compared to confidence intervals
constructed solely on the player’s own data, and therefore achieve better regret guarantees.

This idea of assigning weights to samples have also been studied in (Zhang et al., 2019)
for warm starting contextual bandits from misaligned distributions, and in (Russac et al.,
2019) for online learning in non-stationary environments. To our best knowledge, we are
the first to investigate adaptive aggregation of data in a multiplayer bandit learning setting.

5. Performance Guarantees

In this section, we provide regret analyses for Algorithm 1. We first provide an upper
bound on the collective regret of Algorithm 1 under a further assumption. Due to space
constraints, the proofs are deferred to Appendices B, C and D.

Assumption 2 For any player p ∈ [M ] and any nonoptimal arm i 6= ip∗ ∈ [K], ∆p
i =

µp
∗ − µp

i > 2ε.

Fact 1 Under Assumption 2, the optimal arms for each player p ∈ [M ] have the same
index, henceforth denoted as i∗ ∈ [K].

Theorem 1 Let Algorithm 1 run on an ε-MPMAB problem instance. Define ∆min
i =

minp∆
p
i > 2ε, and similarly, ∆max

i = maxp∆
p
i . Then, under Assumption 2, the expected

collective regret in a horizon of T rounds satisfies

E[R(T )] ≤ O











∑

i∈[K]
i 6=i∗

lnT
(

∆min
i − 2ε

)2 ·∆max
i +KM











.

Consider an algorithm that runs the UCB-1 algorithm (Auer et al., 2002) individually
for each player—hereinafter, we refer to this algorithm as the baseline algorithm.

Remark 2 By (Auer et al., 2002, Theorem 1 thereof), the expected collective regret of the

baseline algorithm satisfies E[R(T )] ≤ O

(

∑

p∈[M ]

∑

i∈[K]
µ
p

i
<µ

p
∗

lnT
∆p

i

+KM

)

.

It is easy to observe that, compared to the baseline algorithm, we improve the regret
bound by nearly a factor ofM—if we set aside theO(KM) term, then the expected collective
regret in Theorem 1 does not have a dependence on M .

The following lemma shows that the regret guarantee of Algorithm 1 is never worse than
that of the baseline algorithm by a constant factor, even when Assumption 2 does not hold.

Lemma 3 (Fallback Gaurantee) The expected collective regret of Algorithm 1 satisfies

E[R(T )] ≤ O

(

∑

p∈[M ]

∑

i∈[K]
µ
p

i
<µ

p
∗

lnT
∆p

i

)

.

2. See Appendix F for an analytical solution to the optimal weighting factor λ∗.
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Appendix A. Related Work and Comparisons

In this section, we review the literature on online learning problems that involve multiple
interacting players (see also (Landgren, 2019) Section 1.3.2 thereof for a survey). We then
comment on how existing problem formulations compare with the problems studied in this
paper.

Identical Reward Distributions. A large portion of prior studies focuses on the setting
where a network of players collaboratively work on one bandit learning problem instance,
i.e., the arms and their corresponding reward distributions are identical for all the play-
ers. For example, (Landgren et al., 2016) applies running consensus algorithms to study
distributed cooperative MABs in which agents communicate with their neighbors in a pre-
defined graph. (Kolla et al., 2018) studies collaborative stochastic bandits over different
structures of social networks, through which players are connected. Peer-to-peer networks
are explored in (Szörényi et al., 2013), in which limited communications are allowed with
a few random other players. (Kar et al., 2011) studies a networked bandit problem, in
which only one major agent observes rewards, whereas the other agents only have access
to the sampling pattern of the major agent. Multi-agent bandit learning with limited com-
munication is investigated in (Sankararaman et al., 2019). (Wang et al., 2019) studies the
communication complexity in multi-agent multi-armed bandits.

Player-Dependent Reward Distributions. Previous studies have also covered cases
where players have different reward distributions. In (Shahrampour et al., 2017), a group
of players seek to find the arm with the largest average reward over all the players. This
setting differs from our problem formulation in two ways. On one hand, in each round, the
players have to reach a consensus and choose the same arm; on the other hand, the goal
is to identify the best arm averaging out all the players instead of finding the optimal arm
for each player. (Cesa-Bianchi et al., 2013) studies a network of linear contextual bandit
players with player-dependent rewards—the players propagate information based on their
affinity which is specified by a graph. In (Gentile et al., 2014), players are clustered on the
fly and share feedback information with other players in the same cluster. Unfortunately,
neither of these papers focuses on the robust aggregation of data shared by other players.
In this paper, we study how data can be safely and adaptively aggregated based on a
pre-defined discrepancy parameter. Similarities in reward distributions are explored in
(Zhang et al., 2019), which studies a warm-start scenario, in which data are provided as
history (Shivaswamy and Joachims, 2012) for an learning agent to explore faster. In this
paper, however, we study the multi-player setting, where all players learn continually and
concurrently.

Social Influence in Reward Generation. Social influence has been incorporated in
reward generation for bandit learning problems. In (Wu et al., 2016), a player’s reward is a
compound of one’s own preferences as well as the preferences of other players; the affinity
relationship is modeled using a graph network. Such a mixture of rewards from neighboring
players is also explored in (Wang et al., 2017a). (Wang et al., 2017b) adaptively learns
the weights of players’ degree of trust for each other, which determines the each player’s
reward. In this paper, our problem formulation differs from those in this line of research,
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as we focus on robust aggregation of data from similar reward functions rather than how
rewards are generated based on a social network.

Clustering of Players or Arms. Several studies addresses multi-player collaboration
by clustering players and/or arms such that players and/or arms in one cluster share similar
features. For instance, (Li et al., 2019) introduces schemes that employ adaptive clustering
of players, and each player in a cluster shares the same parameters for rewards. Similarly,
(Zhu et al., 2020) dynamically clusters players to group and then utilizes a Thompson
Sampling-based approach for dynamic environments. Neither of these papers explicitly
discuss the closeness in reward distributions for different players within a cluster. In this
paper, however, we study how to aggregate data given the closeness between similar yet
nonidentical distributions. In (Song et al., 2014), arm-cluster trees are constructed, and
online decisions are made in a hierarchical fashion such that a cluster is chosen first and
then an arm is chosen within the cluster. (Wang et al., 2018) also models dependencies of
different arms in a bandit learning problem as clusters.

Side Information. Models in which learning agents observe side information have also
been studied in prior works—one can consider data collected by other players in multiplayer
bandit learning as side observations (Landgren, 2019). (a) In some models, a player observes
side information for a subset of arms that are not chosen in the current round. These
models differ from ours, as the additional data are for other arms in the same bandit
learning problem instance, whereas we focus on learning by aggregating biased data from
others players. Stochastic bandits with side information are studied in (Caron et al., 2012;
Buccapatnam et al., 2014; Wu et al., 2015; Deshmukh et al., 2017), and in (Mannor and
Shamir, 2011; Alon et al., 2017) for adversarial bandits. (b) In (Xu et al., 2017), closeness
in reward distributions are presented as side information; however, similar to the above
models, such closeness is between different arms in one bandit learning problem rather than
between different players solving different problems. (c) Upper and lower bounds on the
means of reward distributions are used as side information in (Sharma et al., 2020). Further,
side information can also refer to “context” in contextual bandits (Slivkins, 2014); however,
herein we focus on data aggregation in a multi-armed setting.

Collisions in Multi-Player Bandit Learning. Another set of models (see (Bubeck and
Budzinski, 2020; Liu and Zhao, 2010) for two examples) popularly studied in the community
focuses on collision avoidance. In such models, if two players choose the same arm in
one round, i.e., they collide, they receive no rewards. Such models have a wide range of
applications in, for example, multi-channel radio networks. However, in our paper, we focus
primarily on minimizing rewards through information sharing among each player.

Other Multi-Player Online Learning Topics. Many other topics that are related to
multi-player bandit learning have also been explored. (Christakopoulou and Banerjee, 2018)
learns latent features collaboratively across players and arms to address top-K recommen-
dations; Nonstochastic bandit learning of communicating agents is studied in (Bar-On and
Mansour, 2019; Cesa-Bianchi et al., 2019); Privacy protection in decentralized exploration
is investigated in (Feraud et al., 2019); (Awerbuch and Kleinberg, 2005) studies competitive
collaborative learning, in which a set of players are uncandid. The goals of these papers do
not align closely with ours in this paper.

12
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Appendix B. Proof of Fact 1

Proof Suppose there exist two players p, q ∈ [M ] such that their optimal arms do not have
the same index. Let i ∈ [K] be the index of the optimal arm for p, and j ∈ [K] for q. It
follows that µp

i ≥ µp
j . Since µq

i ≥ µp
i − ε by Assumption 1, we have µq

j > µq
i + 2ε ≥ µp

i + ε,
where the first inequality follows from Assumption 2. Then, by Assumption 1, we have
µp
j ≥ µq

j − ε. It follows that µp
j ≥ µq

j − ε > µp
i + ε− ε = µp

i , which leads to a contradiction.

Appendix C. Proof of Theorem 1

C.1 Proof Overview.

In Appendix C.2 and Appendix C.3, we focus on showing that in a “clean” event E (de-

fined in C.3), the upper confidence bound UCBp
i (t) = κpi (t, λ) + F (np

i ,m
p
i , λ, ε) (line 11 of

Algorithm 1)4 holds for every t ∈ [T ], i ∈ [K], p ∈ [M ] and λ ∈ [0, 1]; and the “clean” event
E occurs with 1− 2/T probability.

Then, in Appendix C.4, we provide a proof for Theorem 1.

C.2 Event Qi(t)

Let z = max{z, 1}. Recall that np
i (t − 1) is the number of pulls of arm i by player p after

the first (t− 1) rounds. Let mp
i (t− 1) =

∑

q∈[M ]:q 6=p n
q
i (t− 1).

We now define the following event.

Definition 4 Let

Qi(t) =







∀p,
∣

∣ζpi (t)− µp
i

∣

∣ ≤ 6

√

5 lnT

np
i (t− 1)

,

∣

∣

∣

∣

∣

∣

ηpi (t)−
∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

∣

≤ 8

√

3 lnT

mp
i (t− 1)







,

where

ζpi (t) =

∑t−1
s=1 1(i

p
t = i)rpi,t

np
i (t− 1)

,

and

ηpi (t) =

∑t−1
s=1

∑M
q=1 1(q 6= p, iqt = i)rqi,t

mp
i (t− 1)

.

Lemma 5

Pr(Qi(t)) ≥ 1− 2T−3.

Proof For any fixed player p, we discuss the two inequalities separately. Lemma 5 then
follows by a union bound over the two inequalities and over all p ∈ [M ].

4. Recall that z = max{z, 1}.
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We first discuss the concentration of ζpi (t). We define a filtration {Bt}Tt=1, where

Bt = σ(
{

ip
′

s , r
p′

is,s
: s ∈ [t], p′ ∈ [M ], i ∈ [K]

}

∪
{

ip
′

t+1 : p
′ ∈ [M ]

}

)

is the σ-algebra, generated by the historical observations up to time step t and the arm
selection of all players at time step t+ 1.

Let random variable Xt = 1(ipt = i)
(

rpit,t − µp
i

)

. We have E
[

Xt | Bt−1

]

= 0; in addition,

E
[

X2
t | Bt−1

]

≤ 1(ipt = i) and |Xt| ≤ 1.
Applying Freedman’s inequality (Bartlett et al., 2008, Lemma 2), we have that with

probability at least 1− T−4,

∣

∣

∣

∣

∣

∣

t−1
∑

s=1

Xs

∣

∣

∣

∣

∣

∣

≤ 4

√

√

√

√

t−1
∑

s=1

1(ipt = i) · ln(T 4 log2 T ) + 2 ln(T 4 log2 T ). (1)

We consider two cases:

1. If np
i (t− 1) =

∑t−1
s=1 1(i

p
t = i) = 0, we have np

i (t− 1) = 1 and ζpi (t) = 0. In this case,
we trivially have

∣

∣ζpi (t)− µp
i

∣

∣ ≤ 1 ≤ 6

√

5 lnT

np
i (t− 1)

.

2. Otherwise, np
i (t − 1) ≥ 1. In this case, we have np

i (t − 1) = np
i (t − 1). Divide both

sides of Equation (1) by np
i (t− 1), and use the fact that log T ≤ T , we have

∣

∣

∣

∣

∣

∣

∑t−1
s=1 1(i

p
t = i)rpi,t

np
i (t− 1)

− µp
i

∣

∣

∣

∣

∣

∣

≤ 4

√

5 lnT

np
i (t− 1)

+
10 lnT

np
i (t− 1)

.

If 10 lnT
n
p

i
(t−1)

≥ 1,

∣

∣

∣

∣

∑t−1

s=1
1(ipt=i)rp

i,t

n
p

i
(t−1)

− µp
i

∣

∣

∣

∣

≤ 6
√

5 lnT
n
p

i
(t−1)

is trivially true. Otherwise, 10 lnT
n
p

i
(t−1)

≤
√

10 lnT
n
p

i
(t−1)

, which implies that

∣

∣

∣

∣

∑t−1

s=1
1(ipt=i)rp

i,t

n
p

i
(t−1)

− µp
i

∣

∣

∣

∣

≤ (4
√
5+

√
10)
√

lnT
n
p

i
(t−1)

≤ 6
√

5 lnT
n
p

i
(t−1)

.

In summary, in both cases, with probability at least 1− T−4, we have

∣

∣ζpi (t− 1)− µp
i

∣

∣ ≤ 6

√

5 lnT

np
i (t− 1)

.

A similar application of Freedman’s inequality also shows the concentration of ηpi (t).
Similarly, we define a filtration {Gt,q}t∈[T ],q∈[M ], where

Gt,q = σ(
{

ip
′

s , r
p′

is,s
: s ∈ [t], p′ ∈ [M ], i ∈ [K]

}

∪
{

ip
′

t+1 : p
′ ∈ [M ], p′ ≤ q

}

)

is the σ-algebra, generated by the historical observations up to time step t and the arm
selection of players 1, 2, . . . , q at time step t+ 1. We have

G1,1 ⊂ G1,2 ⊂ . . . ⊂ G1,M ⊂ G2,1 ⊂ . . . ⊂ G2,M ⊂ . . . ⊂ GT,M .
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Let random variable Yt,q = 1(q 6= p, iqt = i)
(

rqit,t − µq
i

)

. We have E
[

Yt,q | Gt−1,q

]

= 0; in

addition, E
[

Y 2
t,q | Gt−1,q

]

≤ 1(q 6= p, iqt = i) and
∣

∣Yt,q
∣

∣ ≤ 1.

Similarly, applying Freedman’s inequality (Bartlett et al., 2008, Lemma 2), we have that
with probability at least 1− T−4,

∣

∣

∣

∣

∣

∣

t−1
∑

s=1

M
∑

q=1

Ys,q

∣

∣

∣

∣

∣

∣

≤ 4

√

√

√

√

t−1
∑

s=1

M
∑

q=1

1(q 6= p, iqt = i) · ln(T 4 log2(TM)) + 2 ln(T 4 log2(TM)). (2)

Again, we consider two cases. If mp
i (t− 1) = 0, then we have ηpi (t− 1) = 0 and

∣

∣

∣

∣

∣

ηpi (t− 1)−
∑

q 6=p n
q
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

≤ 1 ≤ 8

√

3 lnT

mp
i (t− 1)

.
Otherwise, we havemp

i (t−1) = mp
i (t−1). Divide both sides of Equation (2) bymp

i (t−1),
and use the fact that log2(TM) ≤ T 2, we have

∣

∣

∣

∣

∣

∣

∑t−1
s=1

∑M
q=1 1(q 6= p, iqt = i)rqi,t
mp

i (t− 1)
−
∑

q 6=p n
q
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

∣

≤ 4

√

6 lnT

mp
i (t− 1)

+
12 lnT

mp
i (t− 1)

.

If 12 lnT
m

p

i
(t−1)

≥ 1,

∣

∣

∣

∣

∑t−1

s=1
1(ipt=i)rp

i,t

m
p

i
(t−1)

− µp
i

∣

∣

∣

∣

≤ 6
√

5 lnT
m

p

i
(t−1)

is trivially true. Otherwise, 12 lnT
m

p

i
(t−1)

≤

2
√

3 lnT
m

p

i
(t−1)

, which implies that

∣

∣

∣

∣

∣

∣

∑t−1
s=1

∑M
q=1 1(q 6= p, iqt = i)rqi,t
mp

i (t− 1)
−
∑

q 6=p n
q
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

∣

≤ (4
√
6 + 2

√
3)

√

lnT

mp
i (t− 1)

≤ 8

√

3 lnT

mp
i (t− 1)

.

In summary, in both cases, with probability at least 1− T−4, we have
∣

∣

∣

∣

∣

ηpi (t− 1)−
∑

q 6=p n
q
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

≤ 8

√

3 lnT

mp
i (t− 1)

.

The lemma follows by taking a union bound over these two inequalities for each fixed
p, and over all p ∈ [M ], given M ≤ T .

C.3 Event E
Let E = ∩T

t=1 ∩K
i=1 Qi(t). We present the following corollary and lemma regarding event E .

Corollary 6 It follows from Lemma 5 that Pr[E ] ≥ 1− 2/T .
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Lemma 7 If E occurs, we have that for every t ∈ [T ], i ∈ [K], p ∈ [M ], for all λ ∈ [0, 1],

∣

∣κpi (t, λ)− µp
i

∣

∣ ≤ 8

√

√

√

√6 lnT

(

λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

)

+ (1− λ)ε,

where κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t).

Proof If E occurs, for every t ∈ [T ] and i ∈ [K], by the definition of event Qi(t), we have

∣

∣ζpi (t)− µp
i

∣

∣ < 6

√

5 lnT

np
i (t− 1)

, and

∣

∣

∣

∣

∣

∣

ηpi (t)−
∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

µq
i

∣

∣

∣

∣

∣

∣

≤ 8

√

3 lnT

mp
i (t− 1)

.

As κpi (t, λ) = λζpi (t) + (1− λ)ηpi (t), we have:

∣

∣

∣

∣

∣

∣

κpi (t, λ)−
[

λµp
i + (1− λ)

∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

µq
i

]

∣

∣

∣

∣

∣

∣

≤6λ

√

5 lnT

np
i (t− 1)

+ 8(1− λ)

√

3 lnT

mp
i (t− 1)

≤8

√

√

√

√6 lnT

(

λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

)

, (3)

where the second inequality uses the elementary facts that
√
A +

√
B ≤

√

2(A+B) and
6
√
5 < 8

√
3.

Furthermore, from Assumption 1, we have

∣

∣

∣

∣

∣

∣

∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

µq
i − µp

i

∣

∣

∣

∣

∣

∣

≤
∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

∣

∣µq
i − µp

i

∣

∣ ≤ ε.

This shows that

∣

∣

∣

∣

∣

∣

µp
i − (λµp

i + (1− λ)
∑

q 6=p

nq
i (t− 1)

mp
i (t− 1)

µq
i )

∣

∣

∣

∣

∣

∣

≤ (1− λ)ε.

Combining the above inequality with Equation (3), we get

∣

∣κpi (t, λ)− µp
i

∣

∣ ≤ 8

√

√

√

√6 lnT

(

λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

)

+ (1− λ)ε.

This completes the proof.
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C.4 Proof of Theorem 1

We now provide a proof for Theorem 1. We have

E[R(T )] ≤ E[R(T )|E ] + E[R(T )|E ] Pr[E ]
≤ E[R(T )|E ] + 2M, (4)

where the second inequality uses the fact that E[R(T )|E ] ≤ TM , as the instantaneous regret
for each player in each round is bounded by 1.

We now focus on the expected collective regret when the event E occurs.

Denote by ni(t) =
∑M

p=1 n
p
i (t) for every t and i. Following the strategy in (Auer et al.,

2002) and (Landgren et al., 2016), we seek to bound the expected total number of pulls of
each nonoptimal arm i by all the players in T rounds, which we denote as ni(T ), conditional
on the event E . Note that it follows from Fact 1 that if an arm i is nonoptimal for a player
p, then it is also nonoptimal for any other player q.

We have

ni(T ) =

T
∑

t=1

M
∑

p=1

1
{

ipt = i
}

≤ M + τ +
T
∑

t=1

M
∑

p=1

1
{

ipt = i, ni(t− 1) > τ
}

. (5)

Here, τ ≥ 1 is an arbitrary integer. The term M is due to communication delay in the
ε-MPMAB problem: Let s be the first round such that after round s, the total number of
pulls ni(s) > τ . This implies that ni(s − 1) ≤ τ . Then in round s, there can be up to M
pulls of arm i by all the players, which means that in round (s+ 1) when the third term in
Eq. 5 can first start counting, there could have been up to τ +M pulls of the arm i.

It then follows that

ni(T ) ≤ M + τ +

T
∑

t=1

M
∑

p=1

1
{

UCBp
i∗
(t) ≤ UCBp

i (t), ni(t− 1) > τ
}

. (6)

Let ∆min
i = minp∆

p
i . With foresight, we choose τ = d 1536 lnT

(∆min

i
−2ε)2

e. Conditional on E ,
we show that the event

{

UCBp
i∗
(t) ≤ UCBp

i (t), ni(t− 1) > τ
}

never happens. It suffices to
show that if ni(t− 1) > τ ,

UCBp
i∗
(t) ≥ µp

∗, (7)

and

UCBp
i (t) < µp

∗ (8)

happen simultaneously.
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Equation (7) follows straightforwardly from the definition of E along with Lemma 7.
For Equation (8), we have the following upper bound on UCBp

i (t):

UCBp
i (t) = κpi (t, λ

∗) + F (np
i ,m

p
i , λ

∗, ε)

≤ µp
i + 2F (np

i ,m
p
i , λ

∗, ε)

= µp
i + 2

[

min
λ∈[0,1]

8

√

6 lnT [
λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

] + (1− λ)ε
]

≤ µp
i + 2

[

8

√

6 lnT

np
i (t− 1) +mp

i (t− 1)
+ ε
]

≤ µp
i + 2

[

8

√

6 lnT

ni(t− 1)
+ ε
]

< µp
i + 2

[

8

√

6 lnT (∆p
i − 2ε)2

1536 lnT
+ ε
]

= µp
i +∆p

i = µp
∗,

where the first inequality is from the definition of E and Lemma 7; the second inequality

is from choosing λ =
n
p

i
(t−1)

n
p

i
(t−1)+m

p

i
(t−1)

; the third inequality is from the simple facts that

np
i (t− 1) ≤ np

i (t− 1), mp
i (t− 1) ≤ mp

i (t− 1), and ni(t− 1) = np
i (t− 1) +mp

i (t− 1); the last
inequality is from the premise that np

i (t− 1) > τ ≥ 1536 lnT
(∆min

i
−2ε)2

≥ 1536 lnT
(∆p

i
−2ε)2

.

Continuing Equation (6), it then follows that

E[ni(T )|E ] ≤ d 1536 lnT

(∆min
i − 2ε)2

e+M ≤ 1536 lnT

(∆min
i − 2ε)2

+ (M + 1).

Since the instantaneous regret for arm i and any player p is upper bounded by ∆max
i =

maxp∆
p
i ≤ 1, we have

E[R(T )|E ] ≤
∑

i∈[K]
i 6=i∗

E[ni(T )|E ] ·∆max
i

≤
∑

i∈[K]
i 6=i∗

1536 lnT

(∆min
i − 2ε)2

·∆max
i +K(M + 1).

It then follows from Eq. 4 that

E[R(T )] ≤ O











∑

i∈[K]
i 6=i∗

lnT

(∆min
i − 2ε)2

·∆max
i +KM











.

This completes the proof of Theorem 1.
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Appendix D. Proof of Lemma 3

Proof We use arguments similar to the ones presented in Appendix C for Theorem 1.
Again, we consider the expected collective regret conditional on event E .

For any player p ∈ [M ], we seek to bound the number of pulls of any nonoptimal arm
i by p in T rounds, where µp

i < µp
∗. Since the optimal arm may be different for different

players, we treat each player separately.

Recall that np
i (t − 1) is the number of pulls of arm i by player p after (t − 1) rounds.

We have

np
i (T ) =

T
∑

t=1

1
{

ipt = i
}

≤ τ +
T
∑

t=τ+1

1
{

ipt = i, np
i (t− 1) > τ

}

, (9)

where τ ≥ 1 is an arbitrary integer. It then follows that

np
i (T ) ≤ τ +

T
∑

t=τ+1

1
{

UCBp

i
p
∗

(t) ≤ UCBp
i (t), n

p
i (t− 1) > τ

}

.

With foresight, let τ = d1536 lnT
(∆p

i
)2

e. Conditional on E , we show that the event
{

UCBp

i
p
∗

(t) ≤
UCBp

i (t), n
p
i (t− 1) > τ

}

never happens. It suffices to show that if np
i (t− 1) > τ ,

UCBp

i
p
∗

(t) ≥ µp
∗, (10)

and

UCBp
i (t) < µp

∗ (11)

happen simultaneously.

Equation (10) follows straightforwardly from the definition of E along with Lemma 7.
For Equation (11), we have the following upper bound on UCBp

i (t):

UCBp
i (t) = κpi (t, λ

∗) + F (np
i ,m

p
i , λ

∗, ε)

≤ µp
i + 2F (np

i ,m
p
i , λ

∗, ε)

= µp
i + 2

[

min
λ∈[0,1]

8

√

6 lnT [
λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

] + (1− λ)ε
]

≤ µp
i + 2

[

8

√

6 lnT

np
i (t− 1)

]

≤ µp
i + 2

[

8

√

6 lnT

np
i (t− 1)

]

< µp
i + 2

[

8

√

6 lnT (∆p
i )

2

1536 lnT

]

= µp
i +∆p

i = µp
∗,
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where the first inequality is from the definition of event E and Lemma 7; the second inequal-
ity is from choosing λ = 1; the third inequality uses the basic fact that np

i (t−1) ≤ np
i (t−1);

the fourth inequality is by our premise that np
i (t− 1) > τ ≥ 1536 lnT

(∆p

i
)2

.

It follows that conditional on E , the second term in Eq. 9 is always zero, i.e., player p
would not pull arm i again. Therefore, we have

E[np
i (T )|E ] ≤ d1536 lnT

(∆p
i )

2
e ≤ 1536 lnT

(∆p
i )

2
+ 1.

It then follows that

E[Rp(T )| E ] ≤
∑

i∈[K]
i 6=i

p
∗

E[ni(T )|E ] ·∆p
i

≤
∑

i∈[K]
i 6=i

p
∗

1536 lnT

∆p
i

+ 1.

Summing over all the players, we have

E[R(T )| E ] ≤
∑

p∈[M ]

∑

i∈[K]
i 6=i

p
∗

1536 lnT

∆p
i

+ 1.

It then follows from Eq. 4 that

E[R(T )] ≤
∑

p∈[M ]

∑

i∈[K]
i 6=i

p
∗

1536 lnT

∆p
i

+ 3M.

= O











∑

p∈[M ]

∑

i∈[K]
i 6=i

p
∗

lnT

∆p
i











This completes the proof of Lemma 3.
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Appendix E. Experimental Details

In Appendix E.1, we present a psuedocode for the algorithm used in the experiments. Then,
in Appendix E.2, we describe the experimental setup in detail.

E.1 Adapted version of Algorithm 1

Algorithm 2: An adapted version of Algorithm 1

Input: A parameter ε ∈ [0, 1];
1 Initialization: Set np

i = 0 for all p ∈ [M ] and all i ∈ [K].
2 for t = 1, 2, . . .K do
3 for p ∈ [M ] do
4 Player p pulls arm ipt = t and observes reward rpit ;

5 Set np
i = np

i + 1.

6 for t = K + 1,K + 2 . . . , T do
7 for p ∈ [M ] do
8 for i ∈ [K] do
9 Let mp

i =
∑

q∈[M ]:q 6=p n
q
i ;

10 Let F (np
i ,m

p
i , λ, ε) =

√

2 lnT [λ
2

n
p

i

+ (1−λ)2

m
p

i

] + (1− λ)ε;

11 Compute λ∗ = argminλ∈[0,1] F (np
i ,m

p
i , λ, ε);

12 Let

ζpi (t) =
1

np
i

∑

s<t
i
p
s=i

rpis,s, η
p
i (t) =

1

mp
i

∑

q∈[M ]
q 6=p

∑

s<t
i
q
s=i

rqis,s, and κpi (t, λ) = λζpi (t)+(1−λ)ηpi (t);

13 Compute the upper confidence bound of the reward of arm i for player p:
14

UCBp
i (t) = κpi (t, λ

∗) + F (np
i ,m

p
i , λ

∗, ε).

15 Let ipt = argmaxi∈[K]UCB
p
i (t);

16 Player p pulls arm ipt and observes reward rpit,t;

17 for p ∈ [M ] do
18 Let i = ipt and set np

i = np
i + 1.

Algorithm 2 provides a pseudocode for the more practical algorithm used in the exper-
iments. This algorithm is adapted from Algorithm 1 with few modifications. We added an
initialization phase, and used a more aggressive upper confidence bound.

E.2 Experimental Setup

We now describe our experimental setup. For both experiments, we set the number of arms
K = 10 and the time horizon T = 50000 rounds.
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E.2.1 Experiment 1

Data Generation. We generated synthetic data that satisfy both Assumption 1 and
Assumption 2 using the following procedure:

Let δ = 0.3 and ε = 0.1. We first sampled the means of the reward distributions for
player 1. Without loss of generality, let arm 1 be the optimal arm for player 1. For every

nonoptimal arm i ∈ [2,K], we sampled µ1
i

i.i.d.∼ U [0, 1 − δ], where U [a, b] is the uniform
distribution with support [a, b]. Let j = argmax2≤i≤Kµ1

j . We set µ1
1 = µ1

j + δ. It follows

that ∀i 6= 1,∆1
i ≥ δ.

We then sampled the means of the reward distributions for every other player p 6= 1.

For every i ∈ [K] and every p ∈ [2,M ], we sampled µp
i

i.i.d.∼ U
(

max(0, µ1
i − ε

2),min(µ1
i +

ε
2 , 1)

]

.

It can be easily shown from the above procedure, Assumption 1 is satisfied. We now
show that Assumption 2 is also satisfied. It follows that ∀p ∈ [2,M ], ∀i ∈ [2,K],

µp
i ≤ µ1

j +
ε

2
,

and

µp
1 > µ1

1 −
ε

2
.

Since µ1
1 ≥ µ1

j + δ, we have ∀p ∈ [2,M ], ∀i ∈ [2,K],

µp
1 > µ1

1 −
ε

2
≥ µ1

j + δ − ε

2
≥ µp

i + δ − ε = µp
i + 0.2 = µp

i + 2ε.

It then follows that, for every player p and for every nonoptimal arm i 6= ip∗ = 1, ∆p
i > 2ε.

Setup and Result We study the dependence of collective regret on the number of players.
For M = 5, 10, 15, and 20 players, we each generated C = 30 ε-MPMAB instances. We
then ran adapted Algorithm 1 and the baseline algorithm on each of the problem instances.
Figure 1a shows the averaged collective regret after T = 50000 rounds for each choice of M ,
where the average is taken over C = 30 instances. The results show that the collective regret
of adapted Algorithm 1 is insensitive to the number of players M , whereas the collective
regret of the baseline algorithm grows “linearly” as M increases.

E.2.2 Experiment 2

Data Generation. We generated synthetic data that satisfy Assumption 1 using the
following procedure. We note that Assumption 2 may or may not be satisfied.

Let ε = 0.2. We first sampled the means of the reward distributions for player 1. For

every arm i ∈ [K], we sampled µ1
i

i.i.d.∼ U [0, 1]. We then sampled the means of the reward
distributions for every other player. For every i ∈ [K] and every p ∈ [2,M ], we sampled

µp
i

i.i.d.∼ U
[

max(0, µ1
i − ε

2),min(µ1
i +

ε
2 , 1)

]

.

Setup and Result We study the robustness of Algorithm 1. With M = 10 players, we
generated C = 20 ε-MPMAB problem instances. On each problem instance, we ran
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• adapted Algorithm 1 given ε = 0.2;

• adapted Algorithm 1 given ε = 0 (naive data aggregation); and

• the baseline algorithm.

We note that the naive data aggregation algorithm simply assumes that the data shared
by other players are from the same distributions. Figure 1b shows the the collective regret
of each algorithm over a time horizon of T = 50000 rounds, where the average is taken
over C = 20 instances. From this figure, we can see the importance of robustness in data
aggregation. This figure also demonstrates that adapted Algorithm 1 can still perform
better than the baseline algorithm even when Assumption 2 may not hold.
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Appendix F. Analytical Solution to λ
∗

We present an analytical solution to λ∗ (line 8 of Algorithm 1). A similar analysis is
presented in Section 6 of (Ben-David et al., 2010) for classification using data from different
domains.

We minimize

f(λ) = 8

√

6(lnT )[
λ2

np
i (t− 1)

+
(1− λ)2

mp
i (t− 1)

] + (1− λ)ε (12)

= 8

√

6(lnT )(
1

np
i (t− 1)

+
1

mp
i (t− 1)

)λ2 − 12 ln t

mp
i (t− 1)

λ+
6 ln t

mp
i (t− 1)

− ελ+ ε (13)

Let A = 384(lnT )( 1

n
p

i
(t−1)

+ 1

m
p

i
(t−1)

) > 0, B = − 768 lnT

m
p

i
(t−1)

, C = 384 lnT

m
p

i
(t−1)

, D = −ε ≤ 0,

and E = ε.
Then, we have

f(λ) = [Aλ2 +Bλ+ C]
1

2 +Dλ+ E.

By substituting λ with ξ =
√
A · λ+ B

2
√
A
, we can write f(λ) as

f(ξ) = [ξ2 +H]
1

2 + Jξ + L,

where H = C − B2

4A , J = D√
A
≤ 0, and L = E − BD

2A . It follows that

f ′(ξ) =
ξ

√

ξ2 +H
+ J.

We solve for f ′(ξ) = 0, which implies that ξ√
ξ2+H

= −J . Since
√

ξ2 +H ≥ 0, ξ and J have

different signs. It then follows that

ξ =

√

J2H

1− J2
.

Substituting back λ = ξ√
A
− B

2A , we obtain

λ =

√

4ACD2 −B2D2

4A3 − 4A2D2
− B

2A
. (14)

Then, we have

λ∗ = min

(

clip

{

√

4ACD2 −B2D2

4A3 − 4A2D2
− B

2A
, 0, 1

}

, 0, 1

)

, (15)

where clip(x,min,max) =















x, if x ∈ [min,max]

min, if x < min

max if x > max

.
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