6} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Midgress-aware traffic provisioning for
content delivery

Aditya Sundarrajan, University of Massachusetts Amherst; Mangesh Kasbekar,
Akamai Technologies; Ramesh K. Sitaraman, University of Massachusetts Amherst
& Akamai Technologies; Samta Shukla, CVS Health

https://www.usenix.org/conference/atc20/presentation/sundarrajan

This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.
July 15-17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference
is sponsored by USENIX.

Midgress-aware traffic provisioning for content delivery

Aditya Sundarrajan
UMass Amherst

Mangesh Kasbekar
Akamai Technologies

Abstract

Content delivery networks (CDNSs) cache and deliver hun-
dreds of trillions of user requests each day from hundreds
of thousands of servers around the world. The traffic served
by CDNs can be partitioned into hundreds of traffic classes,
each with different user access patterns, popularity distribu-
tions, object sizes, and performance requirements. Midgress
is the cache miss traffic between the CDN’s servers and the
content provider origins. A major goal of a CDN is to mini-
mize its midgress, since higher midgress translates to higher
bandwidth costs and increased user-perceived latency.

We propose algorithms that provision traffic classes to
servers such that midgress is minimized. Using extensive
traces from Akamai’s CDN, we show that our midgress-aware
traffic provisioning schemes can reduce midgress by nearly
20% in comparison with the midgress-unaware schemes cur-
rently in use. We also propose an efficient heuristic for traffic
provisioning that achieves near-optimal midgress and is suit-
able for use in production settings. Further, we show how
our algorithms can be extended to other settings that require
minimum caching performance per traffic class and minimum
content duplication for fault tolerance. Finally, our paper pro-
vides a strong case for implementing midgress-aware traffic
provisioning in production CDNs.

1 Introduction

Content delivery networks (CDNs) carry more than 50% of all
Internet traffic today [35] and that fraction is projected to in-
crease over the coming years. Modern CDNs host a wide vari-
ety of content such as videos, software downloads, web pages,
etc. that belong to hundreds of content providers. CDNs de-
ploy hundreds of thousands of servers in clusters at the edge
of the Internet to serve the hosted content to billions of end-
users around the world. If the requested content is available
in the edge server, a cache hit occurs and the end-user expe-
riences a quicker response with lower latency. Otherwise, a
cache miss occurs, and the edge server must fetch the content

Samta Shukla
CVS Health

Ramesh K. Sitaraman
UMass Amherst
& Akamai Technologies

from the content provider’s origin. A cache miss increases
the user-perceived latency for a response and also increases
the “midgress” traffic, which is the cache miss traffic between
the CDN’s edge servers and the content provider origins.

A CDN has many performance and cost objectives that
must be optimized. Three important metrics are origin of-
fload that is the amount of traffic offloaded from the origin
servers, end-user latency that is the time between request and
response for content as perceived by the end-user, and the
midgress bandwidth cost' that is the cost of internal traffic
in the CDN caused mainly due to cache misses at the edge
servers. A metric that ties the three objectives together is
the cache miss rate” which is the fraction of content bytes
that were not present in the edge caches and needed to be
fetched from origin. Smaller miss rate implies lesser cache
miss traffic. Reduced cache miss traffic in turn implies in-
creased origin offload, reduced end-user latency and reduced
midgress bandwidth cost. Hence, minimizing the midgress, is
a key performance objective from multiple perspectives.

Traffic classes. When users request content that is hosted
on a CDN, the requests are classified into traffic classes. A
traffic class is a collection of domains that host a specific type
of content belonging to one or more content providers with
similar requirements. For example, CNN videos and Apple
i0S software downloads are each examples of a traffic class.
Large CDNSs host content that belong to hundreds of traffic
classes. Recent work [66] has shown that traffic classes hosted
on CDNs exhibit wide variations in popularity distributions,
object size distributions and caching characteristics.

How CDN:s serve content to users. Two interacting sys-
tems determine how content is served to users.

1) The traffic provisioning system decides which servers
serve what fraction of each traffic class. Traffic provisioning

I'The CDN also incurs a bandwidth cost for the “egress” traffic of content
sent from the edge servers to the end-users. However, content providers
pay the CDN for their egress traffic, while the midgress traffic is purely an
overhead for the CDN operator that must be minimized.

2The miss rate metric that we use in this paper is sometimes called byte
miss rate. An alternate definition is the (unweighted) fraction of requests that
are cache misses and is less relevant for our work.

USENIX Association

2020 USENIX Annual Technical Conference 543

is performed periodically (say, once every few hours) as an
offline process and uses the predicted user demand for the
traffic classes and available server resources to produce an
assignment of traffic classes to servers. Subsequently, each
user request of each traffic class is routed [12] in real-time to
a server that is provisioned to serve that traffic class’.

2) Each CDN server has a cache that stores the content
requested by users. Each server employs a cache management
system that implements policies for managing the cache, such
as an admission policy to decide what objects are cached and
an eviction policy to decide what objects are evicted.

Minimizing midgress. The midgress bandwidth could cost
tens of millions of dollars a year4. Thus, even a small reduc-
tion in midgress can be significant. Much of the prior work
has focused on better cache management for reducing cache
misses The past decades have seen research on numerous
caching algorithms, such as Adapt-Size [4], Cliffhanger [15],
SLRU [40], TLRU [23], S4LRU [34], CFLRU [59], ARC [53],
LRU-S [65], LRU-K [56], and GDS [7]. However, the com-
plementary problem of optimizing the traffic provisioning
process to minimize midgress has not received much atten-
tion. In the current state-of-the-art, production CDNs assign
traffic classes to servers with the goal of not overloading the
servers, without explicitly minimizing midgress.

Our work shows that traffic provisioning in a midgress-
aware manner can provide additional benefits to what can
accrue from better cache management alone. Our traffic provi-
sioning approach incorporates both traditional load balancing
and the newer midgress considerations to minimize midgress
traffic. The main thesis of the paper is that by explicitly in-
corporating midgress considerations, it is possible to devise
traffic provisioning schemes that minimize midgress traffic
by nearly 20%, potentially resulting in millions of dollars of
bandwidth cost savings. Further, the midgress reduction due
to better traffic provisioning is complementary to any improve-
ments in cache management. As CDNs already implement
traffic provisioning algorithms, albeit in a midgress-unaware
manner, our contribution can be viewed as a drop-in replace-
ment for an existing (midgress-unaware) traffic provisioning
system.

Why be midgress-aware? “Midgress-aware” traffic pro-
visioning algorithms explicitly incorporate cache miss traffic
in addition to “balancing” the load. We illustrate the need
for midgress awareness through a simple example. Consider
two servers and three traffic classes. Each server has a cache
size of 4 TB and sufficient capacity to serve all traffic classes.
The three traffic classes have equal load of A that need to be
assigned to the two servers. The miss rate curves (MRCs) for

3The results of the traffic provisioning are used to create DNS records
that can be resolved by the user in real-time using a DNS lookup [12].

4As a back-of-the-envelope calculation, a large CDN serving 50 Tbps of
egress traffic at a 20% miss rate at the edge has a midgress traffic of 10 Tbps.
The price of network bandwidth varies greatly throughout out the world.
Though hard to estimate accurately, assuming a blended price of 50 cents per
Mbps per month, midgress bandwidth costs 60 million dollars per year.

the three traffic classes are as shown in Figure 1. The MRCs
of traffic classes 7C| and T C3 flatten out quickly. This means
that they require very little cache space to achieve the best
possible performance. On the other hand, traffic class TC;
has a slowly decreasing gradient. Thus, the miss rate of 7C,
keeps decreasing as more cache space is allocated to it.

100 A
\\\ --TC_1
. 80\ TC 2
S \\
o Wi —~=-TC_3
© 60 X T 2 i o
2 \
E 40 S‘\——-)(-———x————x———-><
<
®
o
20
0
0 1 2 3 4 5 6

Cache size, TB

Figure 1: MRCs of traffic classes TCy, TC, and TCj3.

Current traffic provisioning algorithms are midgress-
unaware in that they only ensure that no server is overloaded.
Such an algorithm could choose any assignment of traffic
classes to servers, since any server has sufficient capacity
to serve all classes, e.g., assigning 7C; and TC; to server 1
and T'C; to server 2 is one possible solution. More generally,
any assignment with (x +y+z) x A traffic to server 1 and
((1=x)4 (1 —y)+ (1 —x)) x A traffic to server 2 is feasible,
where x,y and z € [0, 1], are the traffic fractions of TC}, TC,
and T'C;5 respectively. Note that in this paper, we split the load
of a traffic class by requests.

On the other hand, a midgress-aware algorithm would
choose an assignment that minimizes the overall cache miss
traffic from the two servers, while also ensuring that no server
is overloaded. In the above example, assigning all of TC; and
TC5 to server 1 and all of TC, to server 2 would result in the
least amount of cache miss traffic from the two servers. This
is because TC, gets the largest cache space possible for its
entire load and 7C| and T'C3 get enough space to achieve the
smallest cache miss rates.

1.1 Contributions

We make the following contributions.

1) We develop an optimization model for midgress-aware
traffic provisioning that assigns traffic classes to servers in a
manner that minimizes midgress traffic. The model is a non-
convex mixed-integer linear program (MILP) that we solve
using CPLEX. Our work is the first to explicitly model and
minimize midgress in the traffic provisioning process. Since
a large CDN could incur a midgress of 10+ Tbps at a cost of
860+ million/year, even a small midgress reduction translates
into large cost savings for the CDN.

544 2020 USENIX Annual Technical Conference

USENIX Association

2) We apply our optimization solution to metro-level traffic
provisioning where the traffic classes provisioned to server
clusters within a metro area (e.g., NY city) are re-provisioned
to minimize midgress. Metro-level traffic re-provisioning is
a common operation, since the latency impact of moving a
traffic classes across clusters within the same metro is likely
minimal. Using extensive production traces from Akamai, we
show that our midgress-aware traffic provisioning can reduce
the midgress of a metro-area by 18.37% on average compared
to midgress-unaware provisioning.

3) We also use our optimization solution for cluster-level
provisioning where the traffic classes assigned to servers
within a cluster are re-provisioned to minimize midgress.
Cluster-level traffic (re-)provisioning is also a common opera-
tion since moving a traffic class across servers within the same
cluster will likely not impact end-user latencies. Using produc-
tion traces from Akamai’s CDN, we show that cluster-level
provisioning in conjunction with metro-level provisioning can
reduce the midgress of a traffic class by 41.07% on average
compared to midgress-unaware provisioning.

4) To be useful in practice, midgress-aware traffic provi-
sioning has to be computationally efficient. We propose a
midgress-aware heuristic called local search that is fast
and near-optimal. The midgress achieved by local search
was within 1.1% of optimal for both the metro-level and the
cluster-level traffic provisioning. Further, in our experiments,
local search completed in only 2 minutes, while finding
the optimal took several hours.

5) We also show that our traffic provisioning algorithms
are robust across different cache management policies and
provide a midgress reduction in the range of 7.76% - 13.3%.

6) CDN operators often have to deal with additional con-
straints such as maintaining a certain level of traffic class
redundancy or guaranteeing a minimum level of caching per-
formance for traffic classes. We show how the optimization
model for midgress-aware traffic provisioning and the heuris-
tic algorithm, local search, can be extended to accommo-
date such constraints.

7) While the above results are for “shared” caches where
a single unpartitioned cache is used to store objects from all
traffic classes, we show that our traffic provisioning approach
can be modified to work with “partitioned” caches where each
traffic class is assigned a separate cache partition. We show
that the midgress of partitioned caches can be reduced by
more than 14% using our midgress-aware traffic provisioning
approach, when compared to a midgress-unaware baseline.

1.2 Roadmap

The rest of the paper is organized as follows. In Section 2, we
model midgress-aware traffic provisioning as a non-convex
mixed-integer optimization problem. In Section 3, we pro-
pose a faster heuristic for midgress-aware traffic provision-
ing called local search, as well as a midgress-unaware

baseline called baseline fit. In Section 4, we evaluate
our optimization model and heuristics using extensive traces
from Akamai’s production CDN to empirically understand the
midgress reduction achieved by our algorithms. In Section 5,
we extend and evaluate our midgress-aware traffic provision-
ing algorithms to include other constraints such as minimum
redundancy and maximum cache miss rates. Further, we ex-
tend our work to partitioned caches. We discuss some related
work in Section 6 and conclude in Section 7.

2 Optimization model for traffic provisioning

We model traffic provisioning in a CDN as follows. We are
given a set of N traffic classes. For each traffic class j, we are
given the (predicted) amount of load of A; Gbps,Vj € 1...N.
The predicted load for traffic provisioning is derived from
historical load values for these classes by the CDN. Further,
we are given M sites where the i’" site has a cache of size
C; TB and a capacity of 7; Gbps, Vi € 1...M. In cluster-level
traffic provisioning, each site models a single CDN server
within a cluster of M servers. In the more complex setting of
metro-level traffic provisioning, we model an entire cluster
as a single site within a metro area with M clusters. While
not strictly accurate, we show that viewing the entire cluster
as a single site in the metro-area setting is useful in practice.
The capacity (resp. cache size) of each site is calculated as
either the capacity (resp. cache size) of a single server in the
former setting or as the aggregate capacity (resp. cache size)
of the entire cluster in the latter setting. Henceforth, a site
refers to a server in the cluster-level setting and a cluster in
the metro-level setting.

The goal of traffic provisioning is to produce an assignment
of traffic classes to sites, such that the total midgress across
all the sites is minimized within the constraint that no site
is assigned more load than its capacity. Note that a traffic
class may be fractionally assigned across multiple sites, e.g.,
a traffic class with 10 Gbps of load can be assigned across
two sites to host 7 Gpbs and 3 Gbps each of that class”.

2.1 Modeling cache eviction and midgress

Given a site with an assignment of traffic classes, we need
to model the miss traffic (i.e., midgress) that will result from
serving those classes. The miss traffic is dependent on the
cache management policies used by the sites. Nearly all pro-
duction CDN caches use LRU (least-recently-used) variants
as their eviction policy, since it is very efficient and achieves
a comparable (byte) miss rate for typical CDN content traf-
fic in comparison with other more complex eviction policies.
For example, Akamai servers evict content using LRU, while
admitting objects on second hit [47]. Production installations
of the popular content caches Varnish [39] and NGINX [63]

3> A CDN can implement such a fractionally-provisioned traffic class via
a DNS mechanism that returns the ip address of the first site 70% and ip
address of the second site 30% of the time.

USENIX Association

2020 USENIX Annual Technical Conference 545

also use LRU variants, as do recent academic work on content
caching such as AdaptSize [4].

Production CDN servers also typically use a shared cache
architecture where each server uses a single unpartitioned
cache to serve all its traffic classes [66]. It is known that a
partitioned cache that is sized in an optimal fashion can yield
a greater reduction in midgress over a shared unpartitioned
cache under the independent reference model (IRM) traffic
assumptions [20]. However, in a production CDN, each server
hosts a large number of traffic classes. Further, both the set
of traffic classes hosted by a given server and the volume of
traffic served per class by that server varies throughout the day.
Thus, there is significant overhead involved in maintaining
multiple cache partitions whose sizes must be dynamically
varied throughout the day. The constant resizing of cache par-
titions could itself also lead to an increase in the midgress [61].
For these reasons, a shared unpartitioned cache is typically
used by CDNSs in practice.

In light of the above discussion, since our goal is to devise
traffic provisioning algorithms to reduce midgress in produc-
tion CDN settings, we develop a model for sites that use an
LRU cache eviction policy with a shared cache architecture.
But, later, we show empirically that our optimization model
and algorithms produce a significant reduction in midgress,
even if the CDN were to use other eviction policies (Sec-
tion 4.3). Further, we show that our approach can also be
easily extended to provide midgress reduction in a partitioned
cache architecture (Section 5.3).

Eviction age equality. The eviction age of an object in
cache is the difference between the time the object is evicted
and the time that it was last accessed. In an LRU cache, at
the time of access, the object goes to the head of the LRU list.
Then, the eviction age of the object is the time for that object
to move from the head to the tail of the LRU list and then
get evicted. Thus, this time is about the same for all objects,
when the size of an object is small with respect to the size of
the cache. We make the modeling assumption that the eviction
age of all objects in cache are equal. This assumption is also
borne out in production caches and the common eviction age
of the objects is logged as the eviction age of the cache.

The notion of eviction age can be extended to a traffic class
by averaging the eviction age of all the requested objects from
that traffic class. Since we model each object as having the
same eviction age, all traffic classes assigned to a site share
the same cache, and so they must have the same eviction age,
which we also denote to be the eviction age of the cache.
The eviction age of a cache has a direct relationship with the
cache hit rate. Requests that have inter-arrival times less than
or equal to the eviction age experience a cache hit and the rest
experience a cache miss. So, for a given mix of traffic classes,
as the cache size increases, the eviction age increases and so
does the cache hit rate. Eviction age of a cache is similar to
the concept of window size in [24]. Eviction age equality is
crucial in our modeling of the midgress of traffic classes that

share a single LRU cache.
2.2 Formulation of our optimization model

We now formulate our optimization model (referred to as OPT
henceforth) for midgress-aware traffic provisioning.

Inputs of OPT. The input parameters used in the model
are summarized in Table 1. We are given N traffic classes and
M sites. The load A ; of the j’h traffic class is given, for all
1 < j < N. The cache size C; and the capacity T; of the /"
site is also given, for all 1 < i < M. Further, for each traffic
class, we are given the miss rate curve (MRC) and eviction
age function as described below.

1) Miss rate curve (MRC), Mj(c). The MRC of a traffic
class plots the cache miss rate as a function of cache size c. In
this work, we assume that this function is convex (decreasing)
which is generally true for stack-based algorithms [66]. As
examples, MRC of two traffic classes, traffic class 2 and 14
(see Table 3) are shown in Figure 2.

100
|
I - - Traffic class 2
80 |
9 N Traffic class 14
© 60 >or
€ IRk N
o 40 -\ T T T == ———
<
Q
©
o
20
0
0 5 10 15 20 25 30

Cachessize, TB

Figure 2: MRCs of two traffic classes.

From Figure 2, we can see that the MRCs are both convex.
However, their gradients vary at different rates. Traffic class
2 has higher gradient at very small cache sizes but gradually
flattens out as it reaches a cache space of 30 TB. Traffic class
14 on the other hand has a relatively high gradient until about
15 TB after which the MRC flattens out.

2) Eviction age function, I;(c,\). The eviction age function
of a traffic class plots the eviction age at load A as a function
of the cache size c¢. The eviction age function also gives us
information about footprint pressure of a traffic class, which
is a relative measure of the amount of unique bytes accessed
over a time period. A traffic class has high footprint pressure
if a large number of unique bytes are accessed over a short
time period. In this work, we assume that the eviction age
function is convex (increasing) based on observations from
production traces. The eviction age functions of two traffic
classes, 2 and 14 (see Table 3) are shown in Figure 3.

From Figure 3, we can see that the eviction age functions
are convex. As expected, at the given load, the eviction age
increases with increase in cache size. Note that until about an
eviction age of 2.1 days, traffic class 14 has higher footprint

546 2020 USENIX Annual Technical Conference

USENIX Association

18
15 | -Traffic class 2
2)
g1 Traffic class 14
%
© 9
c
R
S 6 -
S _ -
W Ly
3 T
'd"’/-'
0 e
0 5 10 15 20 25 30

Cachessize, TB

Figure 3: Eviction age functions of two traffic classes.

pressure when compared to traffic class 2, after which this
behavior is flipped. Hence, if traffic classes 2 and 14 are
assigned to the same site, traffic class 14 gets more cache
space at smaller eviction ages (< 2.1 days) due to higher
footprint pressure and lesser cache space at larger eviction
ages (> 2.1 days) due to smaller footprint pressure.

To efficiently compute the MRC and eviction age function
for every traffic class, we use a succinct space-time represen-
tation of the cacheability properties of a traffic class known
as footprint descriptors [66].

We now briefly describe footprint descriptors.

Footprint descriptors. A footprint descriptor is a space-time
representation of the caching properties of a traffic class. It
is the joint probability distribution of the stack distance [51]
(aka reuse distance) and the interarrival time distributions of
a traffic class. A footprint descriptor can be used to determine
the cache size and the eviction age that is required to achieve
a certain cache hit rate, as a function of the traffic load. A
footprint descriptor can also be used to determine the eviction
age of a cache at different cache sizes and vice versa.

A reuse sequence is a sequence of requests where the first
and the last request in the sequence is for the same object and
that object is not requested anywhere else in that sequence. A
simplified version of a footprint descriptor of a traffic class
Jjis a tuple < A;,P"(s,t)) > where A; is the load of traffic
class j and P (s,?) is the reuse-sequence descriptor which is
the joint probability distribution that a reuse sequence of the
traffic class has s unique bytes and time duration ¢. Given
a footprint descriptor, the miss rate curve at cache size s is
defined as MRC(s) = 1— Y, Y P'(s',t). The eviction age

s/<st
function Zj(s,A;), is computed from P’ (s,t) by plotting the
duration ¢ as a function of unique bytes s at load A ;.

Given the footprint descriptor of different traffic classes, the
footprint descriptor of a traffic mix can be computed using the
addition operator () of the footprint descriptor calculus [66].
The crux of the addition operation is the convolution of the
joint probability distribution, P"(s,t), of all the traffic classes,
which can be efficiently computed using the Fast Fourier

Transform algorithm. The MRC of the traffic mix can then
be computed from the footprint descriptor of the traffic mix
as described above. Note that the request characteristics of
a traffic class could change slowly over time, requiring the
footprint descriptor to be recomputed periodically.

Outputs of OPT. The output parameters of OPT are pre-
sented in Table 2. The primary output is x;; that represents
the fraction of traffic class j assigned to site i.

| Notation | Description |

N Number of traffic classes

M Number of sites

Aj Load of traffic class j

Mi(cij) Miss rate of traffic class j at cache capacity
cij in site i

Ti(cij,A;) | Eviction age of traffic class j at cache capac-
ity c;; and load A; in site i

C; Cache size of site i

T; Capacity of site i

Table 1: Input parameters of optimization model.

Notation | Description |

Cij Cache size occupied by traffic class j in site i

Pi Eviction age of site i and of traffic classes
assigned to site i

Xij Fraction of A; € [0, 1] assigned to site i

Table 2: Output parameters of optimization model.

Objective function. The objective of midgress-aware traf-
fic provisioning is to assign the N traffic classes to the M sites
such that the midgress traffic from all the sites is minimized
as follows.

M N
min. Z fojkijj(cij) (1)
i=1j=1

Resource constraints. The first set of constraints are the
cache size and the capacity constraints of each site.

N
Y <G vi=1..M)
j=1

xl,kngl Vi=1...M (3)
1

N
j=
The cache size constraint (Equation 2) states that the cache
size occupied by all traffic classes assigned to all sites must
not exceed the cache size of the site. The capacity constraint
(Equation 3) states that the load of all traffic classes assigned
to all sites should not exceed the capacity of the site.
Eviction age equality constraint. The eviction age func-
tion, Tj(cij,A;) is defined at load A; for traffic class j. When
traffic class j is assigned to site i, its load can be less than

USENIX Association

2020 USENIX Annual Technical Conference 547

or equal to A; due to fractional assignments. Let the load of
traffic class j assigned to site i be X’j < Aj. Then, the eviction
age of traffic class j in site i is.

Ti(cijsAj) _ Tlcij, Aj)

T'(C,",?\,/~)= J = =i
S Yy Xij

The first equality is due to the fact that decreasing the load
of a traffic class by a factor increases the eviction age of that
class by the same factor, since eviction rate decreases by that
factor. In the last equality, p; is the eviction age of site i which
is also the eviction age of all traffic classes that are assigned
to site i. The eviction age equality constraint for all traffic
classes at all sites is then given by

Tj(cijyhj) = pixij Vj(i)=1...N(M). “4)

As previously discussed, the eviction age equality constraint
in Equation 4 establishes the condition under which traffic
classes assigned to site i share the cache.

Load assignment constraint. The load of a given traffic
class can be fractionally assigned across sites. This means that
for some traffic class j, 50% of the load A ; could be assigned
to site 1, 30% to site 2 and the remaining 20% to site 3, and
so on. The load assignment constraint ensures that all the load
of each traffic class is assigned to one or more sites.

L

M
=1

Non-negativity constraints. The output parameters p;, c;;
and x;; should be non-negative.

pi>0 Vi=1...M 6)
¢ij>0 Vj=1...N @)
xij €[0,1] Vj(i)=1...N(M) ®)

Together, Equations 1-8 constitute the optimization model
for midgress-aware traffic provisioning OPT.

2.3 Solving the optimization model OPT

The complexity of solving the optimization model OPT pro-
posed in Section 2.2 is evaluated as follows. The objective
function (Equation 1) is biconvex since the load fraction x;;
is linear and the MRC 9(c;;) is convex. Equations 2-3, 5-8
are affine constraints. The eviction age function Z;(c;;) is
convex and the product term p;x;; is bilinear. Equation 4 is a
non-convex constraint because the feasible set defined by this
constraint is non-convex. Overall, the optimization problem
is non-convex and in general an NP-hard problem. We make
a number of mathematical transformations to convert the opti-
mization problem to a mixed integer linear program (MILP),
which in turn can be solved efficiently using CPLEX.

3 Traffic provisioning heuristics

The optimization model OPT proposed in Section 2.2 is an
NP-hard problem and it can take several hours for a solver
to obtain the exact optimal solution. A faster but approxi-
mate solution is valuable for a large production CDN that has
hundreds of traffic classes, 1000+ clusters with deployments
in every major metro region of the world. To that end, we
propose a traffic provisioning heuristic called local search
that is fast and sufficiently accurate to be used in produc-
tion. Intuitively, our traffic provisioning heuristic is a “hill
climbing” solution for our optimization model in Section 2.2.
We also consider a midgress-unaware traffic provisioning al-
gorithm called baseline fit that we use as a baseline to
evaluate the benefits of being midgress-aware. The baseline
fit algorithm is similar to the midgress-unaware algorithms
currently used in production settings.

3.1 Midgress-unaware baseline

The midgress-unaware traffic provisioning algorithm called
baseline fit (see Algorithm 1) is based on consistent hash-
ing, similar to the algorithms used in production settings [47].
The algorithm takes as input the set of N traffic classes and
the set of M sites that are both hashed to points on a unit
circle. The traffic classes are picked in a random order and
assigned to sites as follows. Each traffic class j is assigned to
the nearest site 7 on the unit circle in the clockwise direction.
If the chosen site i does not have enough capacity to host
the entire load A}, then a first fit algorithm is used, starting
from the chosen site i, and continuing to subsequent sites on
the unit circle in the clockwise direction, until all traffic is
assigned. The key point to note is that baseline fit does
not explicitly minimize the miss traffic, but rather it only en-
sures that no site gets more load than its capacity. That is, it
produces a feasible solution for our model OPT by obeying
Equations 2 - 8, but does not minimize midgress.

Algorithm 1 Baseline fit algorithm
Input: N,M,A;,C;,T;
Output: Fraction of traffic class j assigned to site i, x;;,Vj(i) =
1...N(M)
I xjj = 0
2: TCqe = set of all traffic classes arranged in random order
3: Sser = set of all sites hashed to a unit circle
4: for all j € TC;,s do

5: i = Site chosen by consistent hashing

6: if site i has remaining traffic capacity > A; then
7. Xij +=1

8: else

9:

Assign traffic fraction A; using first fit starting from site
i on the unit circle

548 2020 USENIX Annual Technical Conference

USENIX Association

3.2 Midgress-aware local search

We propose a midgress-aware traffic provisioning algorithm
called local search (see Algorithm 2) that uses a hill climb-
ing approach to solve the optimization model OPT. It is de-
signed to be fast, but may not always produce the optimal
solution. The algorithm local search begins with a feasible
assignment as determined by baseline fit. The algorithm
operates in rounds where every traffic class is picked one at
a time in each round. The traffic class that is picked is re-
assigned in small increments of a fraction 8 (0 < 8 < 1) of
its load to the server that minimizes the midgress objective
while maintaining feasibility. If a round does not decrease the
midgress traffic objective by at least a specified € << 1, the
algorithm stops and outputs the final assignment.

Note that local search could end up in a local opti-
mum that isn’t close to the global optimum. However, local
search is efficient enough that it can be run multiple times
(in parallel) with different starting points to improve a sub-
optimal solution. We discuss the running time of local
search in Section 4.

Computing the midgress of a traffic assignment. The
local search algorithm requires an efficient way to com-
pute the midgress traffic of each site, given a traffic class
assignment. A known technique for computing miss traffic
of a site is footprint descriptor calculus [66]. Knowing the
footprint descriptor of each traffic class that is assigned to
a site, we use the calculus to efficiently derive the footprint
descriptor for the traffic mix, that in turn provides the MRC
of the traffic mix, from which we derive the midgress of the
traffic mix.

4 Experimental evaluation

Using production traces collected from a metro area of Aka-
mai’s CDN, we compare the midgress of OPT with that of
baseline fit and local search in both metro-level and
cluster-level traffic provisioning. We perform the evaluation
in two steps: 1) We evaluate metro-level traffic provision-
ing by viewing each cluster as a site. The site is assumed to
have cache size and capacity equal to the sum of the cache
sizes and capacities of all servers in that cluster. The output
of metro-level traffic provisioning is an assignment of traffic
classes to clusters that minimizes the midgress of the metro
area. 2) The output of metro-level traffic provisioning is the
input to cluster-level traffic provisioning. We evaluate cluster-
level traffic provisioning by assigning traffic classes to servers
within a cluster to further minimize midgress.

Production traces. To perform our evaluation, we collect
production traces from all Akamai CDN servers from a metro
area serving traffic for 25 traffic classes over a period of
16 days. The characteristics of the traffic classes are listed
in Table 3. From Table 3, we see that, in this metro area, 9
traffic classes serve web content, 11 traffic classes serve media

Algorithm 2 Local search algorithm

Input: N,M,)\,j,ci,T,‘

Output: Fraction of traffic class j assigned to site i, x;;, V(i) =
1...N(M)

1: Get feasible assignment using baseline fit algorithm
2: TCqe = set of all traffic classes arranged in random order
3: Sger = set of all sites
4: while True do
5: mgeurr = midgress of current assignment
6: for all j € TCye; do
7 xij=0 Vi=1...M
8: N= 7\,1‘
9: while 1’ > 0 do
10: 8., C Sser = set of all sites with remaining traffic
capacity > OA;
11: if S/,; # 0 then
12: i = site in S/, that gives the lowest overall
midgress after assigning TC j
13: Xij +=)
14: else
15: Assign load 6); using fractional first fit starting
from a random site
16: N—=28
17: Mgnew = midgress of new assignment
18: if mgcurr — mgnew < € then
19: break

content and the remaining 5 traffic classes serve software
downloads. The traffic classes exhibit a wide variation in load
(Gbps), arrival rate (requests/sec), content footprint (in unique
bytes), and number of objects. The majority of the load is for
media content at 47.3% followed by software downloads at
41.5% and web content at 11.2%. In terms of the unique bytes
that are cached in the metro area, the majority is again for
media content at 60.9%, followed by 25.6% for web content
and 13.5% for software downloads.

Footprint descriptors described in [66] are periodically
computed for all traffic classes on the production CDN. We
use these footprint descriptors to compute the MRCs and the
eviction age functions for the 25 traffic classes in Table 3, to
be used as inputs to our traffic provisioning algorithms.

Evaluation setup. To evaluate the traffic provisioning al-
gorithms, we simulate a small metro region with 10 clusters,
each containing 10 servers®. The capacity of the metro region
is set so that the average load is 70% of capacity to reflect
the load-to-capacity ratio in a typical CDN. We evaluate the
traffic provisioning algorithms at different cache sizes per
cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB. For
simplicity, we assume that every cluster in the metro area has
equal capacity and cache size. Every server within a cluster is
also assumed to have equal capacity and cache size.

OPT is solved using CPLEX as part of the GAMS modeling

®While a metro region in a large CDN typically has much larger server
deployments, we simulate a scaled-down version to keep our experiments
computationally tractable.

USENIX Association

2020 USENIX Annual Technical Conference 549

Traffic | Content | Load Arrival | Unique | Unique
class type (Gbps) rate bytes objects
id (req/s) (TB) (million)
1 web 0.39 438.41 1.83 16.36
2 web 1.12 23248 | 70.74 38.38
3 media 3.75 34594 | 198.85 176.68
4 web 0.24 143.67 0.008 0.03

5 web 0.17 145.13 0.03 0.08

6 download | 4.74 1338.91 | 28.16 19.55

7 web 0.30 851.73 | 6.21 70.23
8 web 0.58 1213.87 | 6.38 137.60
9 web 1.59 71442 | 22.58 5291
10 download | 0.39 307.92 | 1.68 0.82

11 download | 10.66 809.29 | 22.74 10.75
12 media 0.43 110.22 14.13 24.41
13 web 0.0013 | 136.32 | 0.04 3.58
14 media 7.54 93.01 30.55 2.90
15 media 7.22 89.28 30.14 2.86
16 media 6.04 75.14 30.38 2.89
17 media 0.37 139.23 12.41 26.59
18 web 2.12 935.76 | 83.42 93.54
19 media 0.35 134.87 24.48 25.12
20 download | 1.36 276.63 | 3.12 2.07

21 media 0.08 9.94 7.31 6.43
22 media 0.90 214.53 | 43.48 77.90
23 media 0.44 48.28 28.53 26.83
24 media 0.38 78.09 35.25 55.06
25 download | 6.99 1879.65 | 44.94 21.02

Table 3: Traffic class characteristics

language. We use a macOS machine with a 3 GHz Intel
Xeon processor with 10 cores and 128 GB RAM for all our
experiments. The GAMS program is set to run in parallel
mode using 20 threads with a relative optimality gap of 1e-9
and a maximum run time of 40,000 s. Given the complexity
of the optimization model, the GAMS program almost always
runs for 40,000 s. At that point, the solver has converged to a
solution that seldom changes and achieves a relative gap of
under 5% at smaller cluster cache sizes less than or equal to
10TB and a relative gap of under 10% at larger cache sizes. A
single run of baseline fit takes about 1 s and a single run
of local search takes about 120 s.

4.1 Metro-level traffic provisioning

We evaluate OPT, baseline fit, and local search by
computing the cache miss rate of the entire 10-cluster metro
area for different cache sizes. These three algorithms each
assign the set of 25 input traffic classes to the clusters in the
metro. In the case of baseline fit and local search, we
report the average cache miss rate of 100 runs, where each
run considers the traffic classes in a random order. The 95%
confidence intervals of the expected cache miss rates have a
margin of error of less than 0.4%.

From Figure 4 we can see that OPT gives a 18.37% re-
duction in midgress on average compared to the midgress-

unaware baseline fit algorithm. This is because OPT
takes into account the impact on midgress while assigning
traffic classes to clusters in the metro area. This significant
improvement in midgress makes the case for implementing
midgress-aware traffic provisioning algorithms in CDNs.

From Figure 4, we also see that local search performs
quite well and gives a 15.44% reduction in midgress on av-
erage compared to baseline fit.local search also per-
forms fairly well compared to OPT, with a modest 3.69%
increase in midgress compared to OPT on average.

60
2
50 ¢
X \\
g40 - OPT
© v
830 e, local search
€ Qe
o B ~&-baseline fit
é 20 N \
o SN~ B,
10 R G 2
0
0 100 200 300 400 500 600

Cachessize, TB

Figure 4: MRCs of OPT, local searchandbaseline fit.

4.1.1 How traffic provisioning impacts midgress

In Figure 5, we plot the cache miss rate of the 25 traffic classes
when they are provisioned using OPT versus the midgress-
unaware baseline fit, when the cumulative cache size of
clusters in the metro area is 100TB. In addition, we also plot
the average number of sites (across the 100 runs) that each
traffic class is assigned to in Figure 6. From these figures,
we see that OPT reduces the cache miss rate of 21 traffic
classes when compared to baseline fit. In the case of traf-
fic class 11, OPT results in almost 97% reduction in miss rate
when compared to baseline fit. On the other hand, OPT
increases the cache miss rate of four traffic classes, namely
4,5, 13 and 19. By trading off the cache miss rates for these
four traffic classes, OPT is able to reduce the overall midgress.
But why does OPT choose this trade-off? There are three key
insights that midgress-aware traffic provisioning takes into
account to optimize midgress that baseline fit does not.
1) In OPT’s solution, traffic classes that have higher load,
higher footprint pressure and greater MRC gradients get to
occupy larger portions of the available cache space. A traffic
class has high footprint pressure if a large amount of unique
content bytes is requested in a short period of time. This is
true for traffic classes 11, 14, 15, 25 and 16 that account for
66.04% of the total load. OPT assigns traffic class 11 to two
clusters because its load is greater than the capacity of a single
cluster, resulting in that traffic class occupying 6 TB in one

550 2020 USENIX Annual Technical Conference

USENIX Association

120
EOPT

100

[ole]
o

Y
o

Cache missrate, %
D
o

20
i

0 EE Eil B
123 456 7 8

9 10 11 12 13 14 15 16
Trafficclasses

baseline fit

H

id g

R R R

&
E
£
Ed
£
E
£
Ed
£
E
£
Ed
£
E
£
3&
Edl

24 25

Figure 5: Average miss rate of each traffic class in a metro area of cache size 100 TB.

3
EOPT

2.5

Number of sites
=
= w N

o
0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Trafficclasses

B baseline fit

Figure 6: Average number of sites each traffic class is assigned to in a metro area of cache size 100 TB.

cluster with a miss rate of 0.5% and 7 TB in another cluster
with a miss rate of nearly 0%. OPT also assigns an entire
cluster each to traffic classes 14, 15, 25 and 16.

2) OPT may split a traffic class and assigns it to multiple
clusters if it has a relatively flat MRC. This is true of traffic
class 1 which has a relatively flat MRC and is assigned to
two clusters. By reducing its footprint pressure in each of its
assigned clusters, traffic class 1 is able to cede cache space to
other traffic classes that are in more need.

3) In OPT’s solution, traffic classes that have lower foot-
print pressure occupy smaller portions of the available cache
space. This is true for traffic classes 4, 5 and 13. It also hap-
pens to be the case that these 3 traffic classes have very low
load among the traffic classes considered. Both these factors
render a higher cache miss rate relative to baseline fit
that is midgress unaware. Note that low load alone does not
indicate that it will occupy a smaller portion of the cache. For
instance, traffic class 24 has moderate load but it has high
footprint pressure and a greater MRC gradient, and ends up
occupying 4.2 TB in one cluster.

4.2 Cluster-level traffic provisioning

The goal of cluster-level load balancing is to assign traffic
classes to servers such that the midgress of the cluster is
minimized. In our evaluation, we take the output of metro-
level traffic provisioning from Section 4.1 that assigns traffic

classes to each cluster and treat them as the inputs to cluster-
level traffic provisioning. In this manner, we are able to un-
derstand the additional midgress reduction that is achievable
by performing optimization at the cluster level, given that the
metro level has already been optimized.

For cluster-level traffic provisioning, each traffic class de-
fined at the metro-level is typically split into multiple finer-
grained subclasses. The subclasses allow better allocation of
traffic classes within a cluster. Traffic class 14 has very high
load and hence was assigned to a cluster all by itself (Figure 6)
by OPT at the metro-level. We considered that cluster for our
evaluation of cluster-level traffic provisioning. Traffic class
14 consisted of 66 traffic subclasses that must be assigned to
the 10 servers within a cluster, each server with a 1 TB cache.

OPT reduced the midgress for traffic class 14 by 31.26%
after the metro-level optimization, when compared to the
midgress achieved by baseline fit. Further, after using
OPT for cluster-level provisioning, the midgress for traffic
class 14 reduced further by 14.26%. In aggregate, the over-
all reduction of the midgress due to both provisioning steps
of OPT is 41.07%, when compared to the baseline. Algo-
rithm local search provided nearly as much reduction as
OPT. For instance, local search provided a midgress reduc-
tion of 35.49%, compared to the baseline. However, local
search was much faster and completed within 2 minutes, as
opposed to the nearly 40,000 s (~11 hours) taken by OPT.

USENIX Association

2020 USENIX Annual Technical Conference 551

4.3 Robustness to cache management policies

So far, we have developed traffic provisioning algorithms
that model an LRU cache and evaluated the midgress reduc-
tion resulting when the sites also use LRU. The past decades
have seen much academic research on numerous cache man-
agement algorithms that admit and evict objects using some
combination of recency of access, frequency of access and
object size to reduce cache miss rates (see Table 2 of [4]).
We show that midgress-aware traffic provisioning algorithms
proposed in this work, that model an LRU cache, achieve
significant midgress reduction even when a CDN does not
actually implement LRU at its sites.

We choose three typical algorithms from the literature for
our evaluation. The first is an LRU variant called second-
hit-LRU (or, SH-LRU) where the object is admitted to an
LRU cache on second hit. The second is segmented LRU
(SLRU) [40] that uses both recency and frequency for cache
management. Finally, we implement the Greed-Dual-Size-
Frequency (GDSF) [13] that uses all three of recency, fre-
quency and size. Our evaluation uses the same cluster-level
scenario as described in Section 4.2, where the goal is to
assign the 66 traffic subclasses of traffic class 14 across 10
servers of size 1 TB each. First, we solve OPT that models
LRU to get the optimal traffic class assignment across all
servers within the cluster. The midgress of OPT’s assignment
is then computed by simulating the different cache manage-
ment algorithms using the request traces of the subclasses. For
comparison, we use the midgress-unaware baseline fit for
traffic provisioning followed by a trace-based simulation of
the different cache management algorithms to provide a base-
line. When LRU cache management is used, OPT reduces
the midgress by 13.3% when compared to baseline fit.
In comparison, OPT reduces the midgress by 7.78%, 8.45%
and 7.76% for SH-LRU, SLRU and GDSF respectively. The
midgress reduction for the non-LRU algorithms is not as much
as that for LRU. However, the midgress reductions for other
algorithms are still quite robust and significant. The reason is
that even when other factors are used for cache management
decisions, most reasonable algorithms still use recency of ac-
cess in a very significant way, and recency is well-captured in
OPT. It is plausible that OPT can be reformulated to capture
other cache management policies besides LRU and such an
extension is a topic for future work.

5 Extending midgress-aware provisioning

We propose two extensions of midgress-aware traffic provi-
sioning that address constraints in production settings. The
first extension enforces a minimum number of sites that a
traffic class must be assigned to and the second extension
enforces a maximum cache miss rate per traffic class.

All results presented until now are for shared caches. While
partitioned caches are not commonly used in production set-

tings due to the overheads of dynamically resizing those par-
titions, there is increasing interest to implement and evaluate
partitioned caches [1,5,9,14,16,21,25,36,43,44,46,62,67,69].
We propose a third extension to show that our traffic provi-
sioning approach can reduce midgress in partitioned caches.

5.1 Minimum redundancy guarantee

Let M; be the minimum number of sites that traffic class j
should be assigned to. M; is an integer € [1,M], where M
is the total number of sites. Let y;; be an indicator variable
that is set to 1 when x;; > 0 and 0 otherwise. Then, the load
assignment constraint in Section 2.2 is appended to include
the following minimum redundancy constraints.

y,'j:|—xiﬂ VJ:1N (9)
M
Y vij>=M; Vj=1...N (10)
i=1
yij € {0,1} (11)

Equations 9 and 10 ensure that traffic class j is assigned
to at least M sites. We call the modified optimization model
OPT-M. The additional constraints are affine and they do not
increase the complexity of the optimization problem. Both
local search and baseline fit can also be modified to
incorporate the redundancy constraint by simply ensuring that
each traffic class j is assigned to at least M; sites in each
(re-)provisioning step.

Experimental evaluation. We measure the reduction in
midgress by OPT-M and the modified 1ocal search when
compared to the modified baseline fit. We use the same
evaluation parameters as Section 4.1 where the cache size
of each cluster in the metro area is 10 TB. We find that the
cache miss rates increase with increase in redundancy for
all three algorithms. We also find that the cache miss rate
of baseline fit with minimum redundancy = 1 (resp. 2)
is similar to the cache miss rate of local search and OPT-
M with minimum redundancy 2 (resp. 3). This shows that
midgress-aware traffic provisioning can provide the same
midgress as baseline fit with added redundancy.

5.2 Maximum cache miss rate guarantee

Let MR; be the maximum cache miss rate for traffic class j.
Then, the optimization model in Section 2.2 can be extended
to incorporate the maximum cache miss rate guarantee.

M
Y xijmj(cij) <MR; Vj=1...N (12)
i=1

Equation 12 states that the average miss rate of traffic class
Jj across all M sites should be at most MR ;. We call the modi-
fied optimization model, OPT-MR. Equation 12 is a biconvex
constraint and doesn’t increase the complexity of the problem.

552 2020 USENIX Annual Technical Conference

USENIX Association

We make two modifications to local search. First,
baseline fit in the first step does not always provide a fea-
sible solution when MR; < 100%. This is because baseline
fit is midgress unaware. Hence, we start with all traffic
classes being unassigned. Second, the re-provisioning step
assigns a traffic class to a site only when the miss rate guaran-
tees of all traffic classes assigned to that site are not violated.

Infeasible solutions. OPT-MR can be infeasible in cases
where certain traffic classes fail to meet the maximum cache
miss rate MR; guarantee. For example consider a cache size
of 10 TB. The lowest miss rate that traffic class 3 (Table 3)
can possibly achieve at 10 TB is 91%. Hence, any maximum
cache miss rate target less than 91% cannot be achieved.

Experimental evaluation. We choose traffic classes 13,
23 and 24 that have high miss rates in OPT and set their max-
imum cache miss rates to 70%. We evaluate the performance
of metro-level traffic provisioning under the same conditions
as in Section 4.1 where the cache size is 10 TB.

OPT-MR returns a feasible solution. The overall miss rate
of the metro area is 20.04%, a 3.24% increase in midgress
compared to OPT. In the process, three traffic classes ex-
perience a significant increase in their respective miss rates
relative to OPT. The miss rate of traffic class 2 increases from
50.12% to 65.85%, of traffic class 17 from 36.11% to 54.2%
and of traffic class 21 from 61.22% to 68.01%. This is be-
cause traffic classes 13 and 24 occupy more cache space with
OPT-MR than they do in OPT, so they meet their miss rate
guarantee, despite traffic class 13 having the lowest load and
low footprint pressure, and traffic class 24 having low load.

We run the modified local search 100 times with dif-
ferent random orderings of the input traffic classes. local
search returns a feasible solution 67% of the time indicat-
ing that its feasibility depends on the ordering of the traffic
class inputs. For feasible assignments, local search has an
average miss rate of 21.69%, about 8.23% more than that
of OPT-MR. baseline fit is footprint-unaware and cannot
guarantee cache miss rates.

5.3 Traffic provisioning in partitioned caches

In a partitioned cache, each traffic class is assigned to its
own separate cache partition and each partition performs evic-
tions independently. Production CDNs do not typically im-
plement partitioned caches due to the significant overheads
involved in implementing and dynamically maintaining the
partitions. However, we show that our optimization model for
midgress-aware traffic provisioning can be extended to work
with partitioned caches.

Modeling and implementing traffic provisioning for
partitioned caches. In partitioned caches, every traffic class
occupies a separate partition with its own LRU list, assuming
the LRU eviction policy. Thus, the eviction age of each traffic
class assigned to the same cache can be different. Therefore,
the optimization model for midgress-aware traffic provision-
ing for partitioned caches is the same as that of OPT (Section

2.2), minus the eviction age constraint. Hence, Equations 1-3
and 5-8 accurately model midgress minimization for parti-
tioned caches. We call this modified model OPT-part.

We implement a baseline midgress-unaware algorithm
called baseline fit-part for partitioned caches that is
based on consistent hashing. The algorithm takes as input
the set of NV traffic classes and the set of M sites that are both
hashed to points on a unit circle. Each traffic class j is as-
signed to the nearest site i on the unit circle in the clockwise
direction. If the chosen site i does not have enough capacity to
host the entire load A j» then a first fit algorithm is used, starting
from the chosen site i, and continuing to subsequent sites on
the circle in the clockwise direction, until all load is assigned.
After all traffic class assignments are made, in each site, we
determine the sizes of the partitions that host each traffic class.
To compute the partition sizes, we use a known gradient de-
scent algorithm [62] that minimizes the midgress of each site.
The total midgress achieved by baseline fit-part isthen
the sum of the midgress across all sites.

60
9
50 &
< : "= OPT
o 40 o baseline fit
B \‘i OPT — part
830 \, — - baseline fit — part
€ Q-
o \"- §
5 20 NS
] N \\%,‘
10 ——
0
0 100 200 300 400 500 600

Cache size, TB

Figure 7: MRC of OPT and baseline fit on shared and parti-
tioned caches.

Experimental evaluation. We evaluate baseline
fit-part and OPT-part at the metro-level using production
traces described in Section 4 and at different cache sizes per
cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB. We
report the average cache miss rate of 100 runs. The 95%
confidence intervals of the expected cache miss rates have a
margin of error of less than 0.4%.

As shown in Figure 7 we find that OPT-part reduces
midgress when compared to baseline fit-part by more
than 14%, on average across the different cache sizes. Thus
midgress-aware traffic provisioning can significantly reduce
the midgress even for partitioned caches. As comparison, in
Figure 7, we also plot OPT and baseline fit that we de-
scribed for shared caches in Sections 2 and 3. Interestingly,
we find that the cache miss rate of OPT-part is only 0.49%
less than that of OPT, on average across the different cache
sizes. Hence, while OPT-part has the lowest cache miss rate,

USENIX Association

2020 USENIX Annual Technical Conference 553

OPT has nearly the same miss rate without the additional
overhead of cache partitioning.

5.3.1 Implementing cache partitioning for traffic provi-
sioning in production settings

In the previous section, we have seen that cache partitioning
can further reduce the midgress of a metro area since each
traffic class occupies a separate partition and traffic classes
assigned to the same site could have different eviction ages.
But it is not implemented in practice for traffic provisioning
due to the following reasons.

1) In large CDNs, many different traffic classes must share
a cache. Further, the mix of traffic classes sharing a cache
and their respective loads change frequently over time at the
whim of the load balancer. To obtain the benefits of cache
partitioning, the partitions need to be constantly resized by
shrinking cache space for certain traffic classes and expanding
the cache space for others. Such resizing is resource inten-
sive. Further, constantly resizing dynamic partitions may not
lead to lower midgress, especially during transitions between
cache sizes. While partitioning the cache statically is easier
to implement, static partitions do not adjust to changes in the
traffic mix, leading to sub-optimal performance. On the other
hand, an unpartitioned shared cache dynamically adjusts the
cache space occupied by different traffic classes based on
the load and the traffic characteristics, without the need for
complex (re)partitioning operations.

2) From the previous section, we see that traffic provision-
ing in a shared unpartitioned cache provides nearly the same
midgress as a partitioned cache. Thus, there is little incen-
tive to redesign the traffic provisioning system to work with
partitioned caches and incurring the additional software com-
plexity and resource overhead.

For the reasons outlined above, the shared unpartitioned
cache studied in our work is the implementation of choice for
many major CDNs, including Akamai.

6 Related work

Traffic provisioning in CDNs has been studied in the context
of load balancing. However, the load balancing algorithms
focus on ensuring that servers are not overloaded and do not
explicitly minimize midgress. Likewise, minimizing cache
misses through better cache management policies has a rich
literature. However, we view cache management as comple-
mentary to midgress-aware traffic provisioning. We review
relevant existing literature in these areas.

Load balancing. Request redirection schemes at the net-
work layer, based on DNS [8,32], and at the application layer,
based on URL rewriting or HTTP redirection [48], have been
proposed to load balance traffic across multiple servers. Dy-
namic load balancing algorithms [10, 11, 71] continuously
measure the load on different servers and load balance end-

user requests to improve performance. Consistent-hashing
and randomized load balancing algorithms [41,42, 54, 55]
have also been proposed to load balance end-user requests in
content delivery systems. Extensions to traditional load bal-
ancing, that minimize the energy consumption of CDNs [50]
have also been proposed in the literature. Much of the work
above are in the context of routing user requests in real-time
to servers. But, they can be adapted to our context of perform-
ing (offline) traffic provisioning, a step that precedes request
routing in a production CDN. However, there is no prior work
on explicitly minimizing midgress.

Cache management. There has been a significant amount
of research on cache management policies to minimize cache
miss rates [2,3,6,17-19,22,26-31,33,37,38,45,49,52,57,
58,60, 64,68, 70]. Some proposed caching policies include
Adapt-Size [4], Cliffhanger [15], SLRU [40], TLRU [23],
S4LRU [34], CFLRU [59], ARC [53], LRU-S [65], LRU-
K [56], and GDS [7]. Dynamically partitioning the cache to
reduce miss rates has also been explored [1,5,9, 14, 16,21, 25,
36,43,44,46,62,67,69]. However, production CDNs do not
employ dynamically-partitioned caches since it introduces
significant performance and operational overheads. We view
work on cache management as a complementary technique to
traffic provisioning, both with the goal of midgress reduction.

Recent work on footprint descriptors [66] is focused on
efficient techniques for evaluating the miss rates of traffic
mixes. We use footprint descriptors to quickly compute the
midgress of a traffic class assignment, as well as to efficiently
compute the MRC and eviction age function of traffic classes.
However, the work on footprint descriptors does not minimize
midgress.

7 Conclusion

We propose midgress-aware traffic provisioning that explic-
itly minimizes the midgress traffic of a CDN, while ensuring
that no server or cluster is overloaded. Using extensive traces
for 25 traffic classes from Akamai’s CDN, we show that the
midgress of a metro can be reduced by 18.37% when com-
pared to a midgress-unaware baseline. We propose a midgress-
aware heuristic, local search, that provisions traffic classes
to achieve a midgress reduction that is within 1.1% of the op-
timum, and is very fast and well suited for production settings.
We also show that using our traffic provisioning algorithms at
the cluster level results in significant reductions in midgress.
Given that a large CDN can have midgress of over 10 Tbps,
even a small reduction in midgress can result in millions of
dollars of savings per year. Our work provides a strong case
for implementing midgress-aware provisioning in CDNs.

8 Acknowledgments

We thank our reviewers and our shepherd Kiran Kumar Mu-
niswamy Reddy for their great feedback. This research was
supported in part by NSF grant CNS-1763617.

554 2020 USENIX Annual Technical Conference

USENIX Association

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan
Sundararaman, and Ming Zhao. Cloudcache: On-
demand flash cache management for cloud computing.
In FAST, pages 355-369, 2016.

Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin
Ciucu. Exact analysis of TTL cache networks. Perform.
Eval., 79:2 — 23,2014. Special Issue: Performance 2014.

Daniel S Berger, Sebastian Henningsen, Florin Ciucu,
and Jens B Schmitt. Maximizing cache hit ratios by
variance reduction. ACM SIGMETRICS Performance
Evaluation Review, 43(2):57-59, 2015.

Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. Adaptsize: Orchestrating the hot ob-
ject memory cache in a content delivery network. In
NSDI, pages 483-498, 2017.

Sem Borst, Varun Gupta, and Anwar Walid. Distributed
caching algorithms for content distribution networks. In
INFOCOM, 2010 Proceedings IEEE, pages 1-9. Cite-
seer, 2010.

PJ Burville and JFC Kingman. On a model for storage
and search. Journal of Applied Probability, pages 697—
701, 1973.

Pei Cao and Sandy Irani. Cost-aware WWW proxy
caching algorithms. In USENIX symposium on Internet
technologies and systems, volume 12, pages 193-206,
1997.

Valeria Cardellini, Michele Colajanni, and Philip S. Yu.
Request redirection algorithms for distributed web sys-
tems. IEEE transactions on parallel and distributed
systems, 14(4):355-368, 2003.

Damiano Carra and Pietro Michiardi. Memory partition-
ing and management in memcached. /EEE Transactions
on Services Computing, 2016.

Robert L. Carter and Mark E Crovella. Server selec-
tion using dynamic path characterization in wide-area
networks. In INFOCOM’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Driving the Information Revolution., Proceed-
ings IEEE, volume 3, pages 1014-1021. IEEE, 1997.

Chung-Min Chen, Yibei Ling, Marcus Pang, Wai Chen,
Shengwei Cai, Yoshihisa Suwa, and Onur Altintas. Scal-
able request routing with next-neighbor load sharing in
multi-server environments. In Advanced Information
Networking and Applications, 2005. AINA 2005. 19th
International Conference on, volume 1, pages 441-446.
IEEE, 2005.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres.
End-user mapping: Next generation request routing for
content delivery. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 167-181. ACM,
2015.

Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Hewlett-Packard Laboratories, 1998.

Weibo Chu, Mostafa Dehghan, John CS Lui, Don
Towsley, and Zhi-Li Zhang. Joint cache resource alloca-
tion and request routing for in-network caching services.
Computer Networks, 131:1-14, 2018.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffthanger: Scaling performance cliffs in
web memory caches. In USENIX NSDI, pages 379-392,
2016.

Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In Usenix ATC, 2017.

Edward G. Coffman and Predrag Jelenkovié. Perfor-
mance of the move-to-front algorithm with Markov-
modulated request sequences. Operations Research
Letters, 25:109-118, 1999.

Edward Grady Coffman and Peter J Denning. Operating
systems theory. Prentice-Hall, 1973.

Asit Dan and Don Towsley. An approximate analysis
of the LRU and FIFO buffer replacement schemes. In
ACM SIGMETRICS, pages 143-152, 1990.

Mostafa Dehghan, Weibo Chu, Philippe Nain, Don
Towsley, and Zhi-Li Zhang. Sharing cache re-
sources among content providers: A utility-based ap-
proach. IEEE/ACM Transactions on Networking (TON),
27(2):477-490, 2019.

Mostafa Dehghan, Laurent Massoulie, Don Towsley,
Daniel Menasche, and Yong Chiang Tay. A utility
optimization approach to network cache design. In
Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on, pages
1-9. IEEE, 2016.

Robert P Dobrow and James Allen Fill. The move-to-
front rule for self-organizing lists with Markov depen-
dent requests. In Discrete Probability and Algorithms,
pages 57-80. Springer, 1995.

Gil Einziger and Roy Friedman. Tinylfu: A highly effi-
cient cache admission policy. In IEE Euromicro PDP,
pages 146-153, 2014.

USENIX Association

2020 USENIX Annual Technical Conference 555

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Ronald Fagin. Asymptotic miss ratios over independent
references. Journal of Computer and System Sciences,
14(2):222-250, 1977.

Michal Feldman and John Chuang. Service differenti-
ation in web caching and content distribution. In Pro-
ceedings of the IASTED International Conference on
Communications and Computer Networks, 2002.

James Allen Fill and Lars Holst. On the distribution of
search cost for the move-to-front rule. Random Struc-
tures & Algorithms, 8:179-186, 1996.

Philippe Flajolet, Daniele Gardy, and Loys Thimonier.
Birthday paradox, coupon collectors, caching algorithms
and self-organizing search. Discrete Applied Mathemat-
ics, 39:207-229, 1992.

Christine Fricker, Philippe Robert, and James Roberts.
A versatile and accurate approximation for LRU cache
performance. In ITC, page 8, 2012.

Massimo Gallo, Bruno Kauffmann, Luca Muscariello,
Alain Simonian, and Christian Tanguy. Performance
evaluation of the random replacement policy for net-
works of caches. In ACM SIGMETRICS/ PERFOR-
MANCE, pages 395-396, 2012.

Nicolas Gast and Benny Van Houdt. Transient and
steady-state regime of a family of list-based cache re-
placement algorithms. In ACM SIGMETRICS, pages
123-136, 2015.

Erol Gelenbe. A unified approach to the evaluation of a
class of replacement algorithms. IEEE Transactions on
Computers, 100:611-618, 1973.

Michel Goemans. Load balancing in content deliverynet-
works. MA Annual Program Year Workshop:Network
Management and Design, April 2003.

W1J Hendricks. The stationary distribution of an inter-
esting Markov chain. Journal of Applied Probability,
pages 231-233, 1972.

Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of
Facebook photo caching. In ACM SOSP, pages 167-181,
2013.

Cisco Visual Networking Index.
Trends and analysis. June 2017.

The zettabyte era:

Stratis Ioannidis and Edmund Yeh. Jointly optimal rout-
ing and caching for arbitrary network topologies. IEEE
Journal on Selected Areas in Communications, 2018.

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Predrag R Jelenkovi¢. Asymptotic approximation of the
move-to-front search cost distribution and least-recently
used caching fault probabilities. The Annals of Applied
Probability, 9:430-464, 1999.

Predrag R Jelenkovi¢ and Ana Radovanovi¢. Least-
recently-used caching with dependent requests. Theo-
retical computer science, 326:293-327, 2004.

Poul-Henning Kamp. Varnish LRU architecture, June
2007. Available at https://www.varnish-cache.
org/trac/wiki/ArchitectureLRU, accessed
09/12/16.

Ramakrishna Karedla, J Spencer Love, and Bradley G
Wherry. Caching strategies to improve disk system
performance. Computer, (3):38—46, 1994.

David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Pro-
ceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 654—-663. ACM, 1997.

David Karger, Alex Sherman, Andy Berkheimer, Bill
Bogstad, Rizwan Dhanidina, Ken Iwamoto, Brian Kim,
Luke Matkins, and Yoav Yerushalmi. Web caching with
consistent hashing. Computer Networks, 31(11):1203—
1213, 1999.

Terence Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey
MacKie-Mason. Biased replacement policies for web
caches: Differential quality-of-service and aggregate
user value. 1999.

Seongbeom Kim, Dhruba Chandra, and Yan Solihin.
Fair cache sharing and partitioning in a chip multipro-
cessor architecture. In Proceedings of the 13th Interna-
tional Conference on Parallel Architectures and Com-
pilation Techniques, pages 111-122. IEEE Computer
Society, 2004.

W. Frank King. Analysis of demand paging algorithms.
In IFIP Congress (1), pages 485-490, 1971.

Bong-Jun Ko, Kang-Won Lee, Khalil Amiri, and
Seraphin Calo. Scalable service differentiation in a
shared storage cache. In Distributed Computing Sys-

tems, 2003. Proceedings. 23rd International Conference
on, pages 184-193. IEEE, 2003.

Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM Computer
Communication Review, 45(3):52-66, 2015.

Sabato Manfredi, Francesco Oliviero, and Simon Pietro
Romano. A distributed control law for load balancing

556

2020 USENIX Annual Technical Conference

USENIX Association

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

in content delivery networks. IEEE/ACM Transactions
on Networking (TON), 21(1):55-68, 2013.

Valentina Martina, Michele Garetto, and Emilio
Leonardi. A unified approach to the performance analy-
sis of caching systems. In IEEE INFOCOM, 2014.

Vimal Mathew, Ramesh K Sitaraman, and Prashant
Shenoy. Energy-aware load balancing in content deliv-
ery networks. In INFOCOM, 2012 Proceedings IEEE,
pages 954-962. IEEE, 2012.

Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and
Irving L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

John McCabe. On serial files with relocatable records.
Operations Research, 13:609—618, 1965.

Nimrod Megiddo and Dharmendra S Modha. ARC:
A self-tuning, low overhead replacement cache. In
USENIX FAST, volume 3, pages 115-130, 2003.

Vahab Mirrokni, Mikkel Thorup, and Morteza Zadi-
moghaddam. Consistent hashing with bounded loads.
arXiv preprint arXiv:1608.01350, 2016.

Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094-1104, 2001.

Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. ACM SIGMOD, 22(2):297-306,
1993.

Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard
Weikum. An optimality proof of the LRU-K page re-
placement algorithm. JACM, 46:92-112, 1999.

Antonis Panagakis, Athanasios Vaios, and loannis
Stavrakakis. Approximate analysis of LRU in the case
of short term correlations. Computer Networks,52:1142—
1152, 2008.

Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-
soo Kim, and Joonwon Lee. CFLRU: a replacement
algorithm for flash memory. In ACM/IEEE CASES,
pages 234-241, 2006.

Konstantinos Psounis, An Zhu, Balaji Prabhakar, and Ra-
jeev Motwani. Modeling correlations in web traces and
implications for designing replacement policies. Com-
puter Networks, 45:379-398, 2004.

Guocong Quan, Jian Tan, Atilla Eryilmaz, and Ness
Shroff. A new flexible multi-flow Iru cache manage-
ment paradigm for minimizing misses. Proceedings of

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

the ACM on Measurement and Analysis of Computing
Systems, 3(2):39, 2019.

Moinuddin K Qureshi and Yale N Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, pages 423-432.
IEEE, 2006.

Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

Eliane R Rodrigues. The performance of the move-to-
front scheme under some particular forms of Markov
requests. Journal of applied probability, pages 1089—
1102, 1995.

David Starobinski and David Tse. Probabilistic methods
for web caching. Perform. Eval., 46:125-137, 2001.

Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-
bekar, and Ramesh Sitaraman. Footprint descriptors:
Theory and practice of cache provisioning in a global
cdn. In Proceedings of the 13th International Confer-
ence on emerging Networking EXperiments and Tech-
nologies, pages 55-67. ACM, 2017.

Dominique Thiébaut, Harold S. Stone, and Joel L Wolf.
Improving disk cache hit-ratios through cache partition-
ing. IEEE Transactions on Computers, 41(6):665-676,
1992.

Naoki Tsukada, Ryo Hirade, and Naoto Miyoshi. Fluid
limit analysis of FIFO and RR caching for independent
reference model. Perform. Eval., 69:403—412, Septem-
ber 2012.

Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Col-
oris: a dynamic cache partitioning system using page
coloring. In Parallel Architecture and Compilation Tech-
niques (PACT), 2014 23rd International Conference on,
pages 381-392. IEEE, 2014.

Neal E Young. Online paging against adversarially
biased random inputs. Journal of Algorithms, 37:218—
235, 2000.

Zeng Zeng and Bharadwaj Veeravalli. Design and per-
formance evaluation of queue-and-rate-adjustment dy-
namic load balancing policies for distributed networks.
IEEE Transactions on Computers, 55(11):1410-1422,
2006.

USENIX Association

2020 USENIX Annual Technical Conference 557

	Introduction
	Contributions
	Roadmap

	Optimization model for traffic provisioning
	Modeling cache eviction and midgress
	Formulation of our optimization model
	Solving the optimization model OPT

	Traffic provisioning heuristics
	Midgress-unaware baseline
	Midgress-aware local search

	Experimental evaluation
	Metro-level traffic provisioning
	How traffic provisioning impacts midgress

	Cluster-level traffic provisioning
	Robustness to cache management policies

	Extending midgress-aware provisioning
	Minimum redundancy guarantee
	Maximum cache miss rate guarantee
	Traffic provisioning in partitioned caches
	Implementing cache partitioning for traffic provisioning in production settings

	Related work
	Conclusion
	Acknowledgments

