
This paper is included in the Proceedings of the

2020 USENIX Annual Technical Conference.
July 15–17, 2020

978-1-939133-14-4

Open access to the Proceedings of the

2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Midgress-aware traffic provisioning for
content delivery

Aditya Sundarrajan, University of Massachusetts Amherst; Mangesh Kasbekar,

Akamai Technologies; Ramesh K. Sitaraman, University of Massachusetts Amherst

& Akamai Technologies; Samta Shukla, CVS Health

https://www.usenix.org/conference/atc20/presentation/sundarrajan

Midgress-aware traffic provisioning for content delivery

Aditya Sundarrajan

UMass Amherst
Mangesh Kasbekar

Akamai Technologies
Ramesh K. Sitaraman

UMass Amherst
& Akamai Technologies

Samta Shukla

CVS Health

Abstract

Content delivery networks (CDNs) cache and deliver hun-

dreds of trillions of user requests each day from hundreds

of thousands of servers around the world. The traffic served

by CDNs can be partitioned into hundreds of traffic classes,

each with different user access patterns, popularity distribu-

tions, object sizes, and performance requirements. Midgress

is the cache miss traffic between the CDN’s servers and the

content provider origins. A major goal of a CDN is to mini-

mize its midgress, since higher midgress translates to higher

bandwidth costs and increased user-perceived latency.

We propose algorithms that provision traffic classes to

servers such that midgress is minimized. Using extensive

traces from Akamai’s CDN, we show that our midgress-aware

traffic provisioning schemes can reduce midgress by nearly

20% in comparison with the midgress-unaware schemes cur-

rently in use. We also propose an efficient heuristic for traffic

provisioning that achieves near-optimal midgress and is suit-

able for use in production settings. Further, we show how

our algorithms can be extended to other settings that require

minimum caching performance per traffic class and minimum

content duplication for fault tolerance. Finally, our paper pro-

vides a strong case for implementing midgress-aware traffic

provisioning in production CDNs.

1 Introduction

Content delivery networks (CDNs) carry more than 50% of all

Internet traffic today [35] and that fraction is projected to in-

crease over the coming years. Modern CDNs host a wide vari-

ety of content such as videos, software downloads, web pages,

etc. that belong to hundreds of content providers. CDNs de-

ploy hundreds of thousands of servers in clusters at the edge

of the Internet to serve the hosted content to billions of end-

users around the world. If the requested content is available

in the edge server, a cache hit occurs and the end-user expe-

riences a quicker response with lower latency. Otherwise, a

cache miss occurs, and the edge server must fetch the content

from the content provider’s origin. A cache miss increases

the user-perceived latency for a response and also increases

the “midgress” traffic, which is the cache miss traffic between

the CDN’s edge servers and the content provider origins.

A CDN has many performance and cost objectives that

must be optimized. Three important metrics are origin of-

fload that is the amount of traffic offloaded from the origin

servers, end-user latency that is the time between request and

response for content as perceived by the end-user, and the

midgress bandwidth cost1 that is the cost of internal traffic

in the CDN caused mainly due to cache misses at the edge

servers. A metric that ties the three objectives together is

the cache miss rate2 which is the fraction of content bytes

that were not present in the edge caches and needed to be

fetched from origin. Smaller miss rate implies lesser cache

miss traffic. Reduced cache miss traffic in turn implies in-

creased origin offload, reduced end-user latency and reduced

midgress bandwidth cost. Hence, minimizing the midgress, is

a key performance objective from multiple perspectives.

Traffic classes. When users request content that is hosted

on a CDN, the requests are classified into traffic classes. A

traffic class is a collection of domains that host a specific type

of content belonging to one or more content providers with

similar requirements. For example, CNN videos and Apple

iOS software downloads are each examples of a traffic class.

Large CDNs host content that belong to hundreds of traffic

classes. Recent work [66] has shown that traffic classes hosted

on CDNs exhibit wide variations in popularity distributions,

object size distributions and caching characteristics.

How CDNs serve content to users. Two interacting sys-

tems determine how content is served to users.

1) The traffic provisioning system decides which servers

serve what fraction of each traffic class. Traffic provisioning

1The CDN also incurs a bandwidth cost for the “egress” traffic of content

sent from the edge servers to the end-users. However, content providers

pay the CDN for their egress traffic, while the midgress traffic is purely an

overhead for the CDN operator that must be minimized.
2The miss rate metric that we use in this paper is sometimes called byte

miss rate. An alternate definition is the (unweighted) fraction of requests that

are cache misses and is less relevant for our work.

USENIX Association 2020 USENIX Annual Technical Conference 543

is performed periodically (say, once every few hours) as an

offline process and uses the predicted user demand for the

traffic classes and available server resources to produce an

assignment of traffic classes to servers. Subsequently, each

user request of each traffic class is routed [12] in real-time to

a server that is provisioned to serve that traffic class3.

2) Each CDN server has a cache that stores the content

requested by users. Each server employs a cache management

system that implements policies for managing the cache, such

as an admission policy to decide what objects are cached and

an eviction policy to decide what objects are evicted.

Minimizing midgress. The midgress bandwidth could cost

tens of millions of dollars a year4. Thus, even a small reduc-

tion in midgress can be significant. Much of the prior work

has focused on better cache management for reducing cache

misses The past decades have seen research on numerous

caching algorithms, such as Adapt-Size [4], Cliffhanger [15],

SLRU [40], TLRU [23], S4LRU [34], CFLRU [59], ARC [53],

LRU-S [65], LRU-K [56], and GDS [7]. However, the com-

plementary problem of optimizing the traffic provisioning

process to minimize midgress has not received much atten-

tion. In the current state-of-the-art, production CDNs assign

traffic classes to servers with the goal of not overloading the

servers, without explicitly minimizing midgress.

Our work shows that traffic provisioning in a midgress-

aware manner can provide additional benefits to what can

accrue from better cache management alone. Our traffic provi-

sioning approach incorporates both traditional load balancing

and the newer midgress considerations to minimize midgress

traffic. The main thesis of the paper is that by explicitly in-

corporating midgress considerations, it is possible to devise

traffic provisioning schemes that minimize midgress traffic

by nearly 20%, potentially resulting in millions of dollars of

bandwidth cost savings. Further, the midgress reduction due

to better traffic provisioning is complementary to any improve-

ments in cache management. As CDNs already implement

traffic provisioning algorithms, albeit in a midgress-unaware

manner, our contribution can be viewed as a drop-in replace-

ment for an existing (midgress-unaware) traffic provisioning

system.

Why be midgress-aware? “Midgress-aware” traffic pro-

visioning algorithms explicitly incorporate cache miss traffic

in addition to “balancing” the load. We illustrate the need

for midgress awareness through a simple example. Consider

two servers and three traffic classes. Each server has a cache

size of 4 TB and sufficient capacity to serve all traffic classes.

The three traffic classes have equal load of λ that need to be

assigned to the two servers. The miss rate curves (MRCs) for

3The results of the traffic provisioning are used to create DNS records

that can be resolved by the user in real-time using a DNS lookup [12].
4As a back-of-the-envelope calculation, a large CDN serving 50 Tbps of

egress traffic at a 20% miss rate at the edge has a midgress traffic of 10 Tbps.

The price of network bandwidth varies greatly throughout out the world.

Though hard to estimate accurately, assuming a blended price of 50 cents per

Mbps per month, midgress bandwidth costs 60 million dollars per year.

the three traffic classes are as shown in Figure 1. The MRCs

of traffic classes TC1 and TC3 flatten out quickly. This means

that they require very little cache space to achieve the best

possible performance. On the other hand, traffic class TC2

has a slowly decreasing gradient. Thus, the miss rate of TC2

keeps decreasing as more cache space is allocated to it.

0

20

40

60

80

100

0 1 2 3 4 5 6

C
a

ch
e

 m
is

s
ra

te
,

%

Cache size, TB

TC_1

TC_2

TC_3

Figure 1: MRCs of traffic classes TC1, TC2 and TC3.

Current traffic provisioning algorithms are midgress-

unaware in that they only ensure that no server is overloaded.

Such an algorithm could choose any assignment of traffic

classes to servers, since any server has sufficient capacity

to serve all classes, e.g., assigning TC1 and TC2 to server 1

and TC3 to server 2 is one possible solution. More generally,

any assignment with (x+ y+ z)× λ traffic to server 1 and

((1− x)+(1− y)+(1− x))×λ traffic to server 2 is feasible,

where x,y and z ∈ [0,1], are the traffic fractions of TC1, TC2

and TC3 respectively. Note that in this paper, we split the load

of a traffic class by requests.

On the other hand, a midgress-aware algorithm would

choose an assignment that minimizes the overall cache miss

traffic from the two servers, while also ensuring that no server

is overloaded. In the above example, assigning all of TC1 and

TC3 to server 1 and all of TC2 to server 2 would result in the

least amount of cache miss traffic from the two servers. This

is because TC2 gets the largest cache space possible for its

entire load and TC1 and TC3 get enough space to achieve the

smallest cache miss rates.

1.1 Contributions

We make the following contributions.

1) We develop an optimization model for midgress-aware

traffic provisioning that assigns traffic classes to servers in a

manner that minimizes midgress traffic. The model is a non-

convex mixed-integer linear program (MILP) that we solve

using CPLEX. Our work is the first to explicitly model and

minimize midgress in the traffic provisioning process. Since

a large CDN could incur a midgress of 10+ Tbps at a cost of

$60+ million/year, even a small midgress reduction translates

into large cost savings for the CDN.

544 2020 USENIX Annual Technical Conference USENIX Association

2) We apply our optimization solution to metro-level traffic

provisioning where the traffic classes provisioned to server

clusters within a metro area (e.g., NY city) are re-provisioned

to minimize midgress. Metro-level traffic re-provisioning is

a common operation, since the latency impact of moving a

traffic classes across clusters within the same metro is likely

minimal. Using extensive production traces from Akamai, we

show that our midgress-aware traffic provisioning can reduce

the midgress of a metro-area by 18.37% on average compared

to midgress-unaware provisioning.

3) We also use our optimization solution for cluster-level

provisioning where the traffic classes assigned to servers

within a cluster are re-provisioned to minimize midgress.

Cluster-level traffic (re-)provisioning is also a common opera-

tion since moving a traffic class across servers within the same

cluster will likely not impact end-user latencies. Using produc-

tion traces from Akamai’s CDN, we show that cluster-level

provisioning in conjunction with metro-level provisioning can

reduce the midgress of a traffic class by 41.07% on average

compared to midgress-unaware provisioning.

4) To be useful in practice, midgress-aware traffic provi-

sioning has to be computationally efficient. We propose a

midgress-aware heuristic called local search that is fast

and near-optimal. The midgress achieved by local search

was within 1.1% of optimal for both the metro-level and the

cluster-level traffic provisioning. Further, in our experiments,

local search completed in only 2 minutes, while finding

the optimal took several hours.

5) We also show that our traffic provisioning algorithms

are robust across different cache management policies and

provide a midgress reduction in the range of 7.76% - 13.3%.

6) CDN operators often have to deal with additional con-

straints such as maintaining a certain level of traffic class

redundancy or guaranteeing a minimum level of caching per-

formance for traffic classes. We show how the optimization

model for midgress-aware traffic provisioning and the heuris-

tic algorithm, local search, can be extended to accommo-

date such constraints.

7) While the above results are for “shared” caches where

a single unpartitioned cache is used to store objects from all

traffic classes, we show that our traffic provisioning approach

can be modified to work with “partitioned” caches where each

traffic class is assigned a separate cache partition. We show

that the midgress of partitioned caches can be reduced by

more than 14% using our midgress-aware traffic provisioning

approach, when compared to a midgress-unaware baseline.

1.2 Roadmap

The rest of the paper is organized as follows. In Section 2, we

model midgress-aware traffic provisioning as a non-convex

mixed-integer optimization problem. In Section 3, we pro-

pose a faster heuristic for midgress-aware traffic provision-

ing called local search, as well as a midgress-unaware

baseline called baseline fit. In Section 4, we evaluate

our optimization model and heuristics using extensive traces

from Akamai’s production CDN to empirically understand the

midgress reduction achieved by our algorithms. In Section 5,

we extend and evaluate our midgress-aware traffic provision-

ing algorithms to include other constraints such as minimum

redundancy and maximum cache miss rates. Further, we ex-

tend our work to partitioned caches. We discuss some related

work in Section 6 and conclude in Section 7.

2 Optimization model for traffic provisioning

We model traffic provisioning in a CDN as follows. We are

given a set of N traffic classes. For each traffic class j, we are

given the (predicted) amount of load of λ j Gbps,∀ j ∈ 1 . . .N.

The predicted load for traffic provisioning is derived from

historical load values for these classes by the CDN. Further,

we are given M sites where the ith site has a cache of size

Ci TB and a capacity of Ti Gbps,∀i ∈ 1 . . .M. In cluster-level

traffic provisioning, each site models a single CDN server

within a cluster of M servers. In the more complex setting of

metro-level traffic provisioning, we model an entire cluster

as a single site within a metro area with M clusters. While

not strictly accurate, we show that viewing the entire cluster

as a single site in the metro-area setting is useful in practice.

The capacity (resp. cache size) of each site is calculated as

either the capacity (resp. cache size) of a single server in the

former setting or as the aggregate capacity (resp. cache size)

of the entire cluster in the latter setting. Henceforth, a site

refers to a server in the cluster-level setting and a cluster in

the metro-level setting.

The goal of traffic provisioning is to produce an assignment

of traffic classes to sites, such that the total midgress across

all the sites is minimized within the constraint that no site

is assigned more load than its capacity. Note that a traffic

class may be fractionally assigned across multiple sites, e.g.,

a traffic class with 10 Gbps of load can be assigned across

two sites to host 7 Gpbs and 3 Gbps each of that class5.

2.1 Modeling cache eviction and midgress

Given a site with an assignment of traffic classes, we need

to model the miss traffic (i.e., midgress) that will result from

serving those classes. The miss traffic is dependent on the

cache management policies used by the sites. Nearly all pro-

duction CDN caches use LRU (least-recently-used) variants

as their eviction policy, since it is very efficient and achieves

a comparable (byte) miss rate for typical CDN content traf-

fic in comparison with other more complex eviction policies.

For example, Akamai servers evict content using LRU, while

admitting objects on second hit [47]. Production installations

of the popular content caches Varnish [39] and NGINX [63]

5A CDN can implement such a fractionally-provisioned traffic class via

a DNS mechanism that returns the ip address of the first site 70% and ip

address of the second site 30% of the time.

USENIX Association 2020 USENIX Annual Technical Conference 545

also use LRU variants, as do recent academic work on content

caching such as AdaptSize [4].

Production CDN servers also typically use a shared cache

architecture where each server uses a single unpartitioned

cache to serve all its traffic classes [66]. It is known that a

partitioned cache that is sized in an optimal fashion can yield

a greater reduction in midgress over a shared unpartitioned

cache under the independent reference model (IRM) traffic

assumptions [20]. However, in a production CDN, each server

hosts a large number of traffic classes. Further, both the set

of traffic classes hosted by a given server and the volume of

traffic served per class by that server varies throughout the day.

Thus, there is significant overhead involved in maintaining

multiple cache partitions whose sizes must be dynamically

varied throughout the day. The constant resizing of cache par-

titions could itself also lead to an increase in the midgress [61].

For these reasons, a shared unpartitioned cache is typically

used by CDNs in practice.

In light of the above discussion, since our goal is to devise

traffic provisioning algorithms to reduce midgress in produc-

tion CDN settings, we develop a model for sites that use an

LRU cache eviction policy with a shared cache architecture.

But, later, we show empirically that our optimization model

and algorithms produce a significant reduction in midgress,

even if the CDN were to use other eviction policies (Sec-

tion 4.3). Further, we show that our approach can also be

easily extended to provide midgress reduction in a partitioned

cache architecture (Section 5.3).

Eviction age equality. The eviction age of an object in

cache is the difference between the time the object is evicted

and the time that it was last accessed. In an LRU cache, at

the time of access, the object goes to the head of the LRU list.

Then, the eviction age of the object is the time for that object

to move from the head to the tail of the LRU list and then

get evicted. Thus, this time is about the same for all objects,

when the size of an object is small with respect to the size of

the cache. We make the modeling assumption that the eviction

age of all objects in cache are equal. This assumption is also

borne out in production caches and the common eviction age

of the objects is logged as the eviction age of the cache.

The notion of eviction age can be extended to a traffic class

by averaging the eviction age of all the requested objects from

that traffic class. Since we model each object as having the

same eviction age, all traffic classes assigned to a site share

the same cache, and so they must have the same eviction age,

which we also denote to be the eviction age of the cache.

The eviction age of a cache has a direct relationship with the

cache hit rate. Requests that have inter-arrival times less than

or equal to the eviction age experience a cache hit and the rest

experience a cache miss. So, for a given mix of traffic classes,

as the cache size increases, the eviction age increases and so

does the cache hit rate. Eviction age of a cache is similar to

the concept of window size in [24]. Eviction age equality is

crucial in our modeling of the midgress of traffic classes that

share a single LRU cache.

2.2 Formulation of our optimization model

We now formulate our optimization model (referred to as OPT

henceforth) for midgress-aware traffic provisioning.

Inputs of OPT. The input parameters used in the model

are summarized in Table 1. We are given N traffic classes and

M sites. The load λ j of the jth traffic class is given, for all

1 ≤ j ≤ N. The cache size Ci and the capacity Ti of the ith

site is also given, for all 1 ≤ i ≤ M. Further, for each traffic

class, we are given the miss rate curve (MRC) and eviction

age function as described below.

1) Miss rate curve (MRC), M j(c). The MRC of a traffic

class plots the cache miss rate as a function of cache size c. In

this work, we assume that this function is convex (decreasing)

which is generally true for stack-based algorithms [66]. As

examples, MRC of two traffic classes, traffic class 2 and 14

(see Table 3) are shown in Figure 2.

0

20

40

60

80

100

0 5 10 15 20 25 30

C
a

ch
e

 m
is

s
ra

te
, %

Cache size, TB

Traffic class 2

Traffic class 14

Figure 2: MRCs of two traffic classes.

From Figure 2, we can see that the MRCs are both convex.

However, their gradients vary at different rates. Traffic class

2 has higher gradient at very small cache sizes but gradually

flattens out as it reaches a cache space of 30 TB. Traffic class

14 on the other hand has a relatively high gradient until about

15 TB after which the MRC flattens out.

2) Eviction age function, T j(c,λ). The eviction age function

of a traffic class plots the eviction age at load λ as a function

of the cache size c. The eviction age function also gives us

information about footprint pressure of a traffic class, which

is a relative measure of the amount of unique bytes accessed

over a time period. A traffic class has high footprint pressure

if a large number of unique bytes are accessed over a short

time period. In this work, we assume that the eviction age

function is convex (increasing) based on observations from

production traces. The eviction age functions of two traffic

classes, 2 and 14 (see Table 3) are shown in Figure 3.

From Figure 3, we can see that the eviction age functions

are convex. As expected, at the given load, the eviction age

increases with increase in cache size. Note that until about an

eviction age of 2.1 days, traffic class 14 has higher footprint

546 2020 USENIX Annual Technical Conference USENIX Association

or equal to λ j due to fractional assignments. Let the load of

traffic class j assigned to site i be λ′
j ≤ λ j. Then, the eviction

age of traffic class j in site i is.

T j(ci j,λ
′
j) =

T j(ci j,λ j)

λ′
j/λ j

=
T j(ci j,λ j)

xi j
= ρi

The first equality is due to the fact that decreasing the load

of a traffic class by a factor increases the eviction age of that

class by the same factor, since eviction rate decreases by that

factor. In the last equality, ρi is the eviction age of site i which

is also the eviction age of all traffic classes that are assigned

to site i. The eviction age equality constraint for all traffic

classes at all sites is then given by

T j(ci j,λ j) = ρixi j ∀ j(i) = 1 . . .N(M). (4)

As previously discussed, the eviction age equality constraint

in Equation 4 establishes the condition under which traffic

classes assigned to site i share the cache.

Load assignment constraint. The load of a given traffic

class can be fractionally assigned across sites. This means that

for some traffic class j, 50% of the load λ j could be assigned

to site 1, 30% to site 2 and the remaining 20% to site 3, and

so on. The load assignment constraint ensures that all the load

of each traffic class is assigned to one or more sites.

M

∑
i=1

xi j = 1 ∀ j = 1 . . .N (5)

Non-negativity constraints. The output parameters ρi, ci j

and xi j should be non-negative.

ρi > 0 ∀i = 1 . . .M (6)

ci j ≥ 0 ∀ j = 1 . . .N (7)

xi j ∈ [0,1] ∀ j(i) = 1 . . .N(M) (8)

Together, Equations 1-8 constitute the optimization model

for midgress-aware traffic provisioning OPT.

2.3 Solving the optimization model OPT

The complexity of solving the optimization model OPT pro-

posed in Section 2.2 is evaluated as follows. The objective

function (Equation 1) is biconvex since the load fraction xi j

is linear and the MRC M j(ci j) is convex. Equations 2-3, 5-8

are affine constraints. The eviction age function T j(ci j) is

convex and the product term ρixi j is bilinear. Equation 4 is a

non-convex constraint because the feasible set defined by this

constraint is non-convex. Overall, the optimization problem

is non-convex and in general an NP-hard problem. We make

a number of mathematical transformations to convert the opti-

mization problem to a mixed integer linear program (MILP),

which in turn can be solved efficiently using CPLEX.

3 Traffic provisioning heuristics

The optimization model OPT proposed in Section 2.2 is an

NP-hard problem and it can take several hours for a solver

to obtain the exact optimal solution. A faster but approxi-

mate solution is valuable for a large production CDN that has

hundreds of traffic classes, 1000+ clusters with deployments

in every major metro region of the world. To that end, we

propose a traffic provisioning heuristic called local search

that is fast and sufficiently accurate to be used in produc-

tion. Intuitively, our traffic provisioning heuristic is a “hill

climbing” solution for our optimization model in Section 2.2.

We also consider a midgress-unaware traffic provisioning al-

gorithm called baseline fit that we use as a baseline to

evaluate the benefits of being midgress-aware. The baseline

fit algorithm is similar to the midgress-unaware algorithms

currently used in production settings.

3.1 Midgress-unaware baseline

The midgress-unaware traffic provisioning algorithm called

baseline fit (see Algorithm 1) is based on consistent hash-

ing, similar to the algorithms used in production settings [47].

The algorithm takes as input the set of N traffic classes and

the set of M sites that are both hashed to points on a unit

circle. The traffic classes are picked in a random order and

assigned to sites as follows. Each traffic class j is assigned to

the nearest site i on the unit circle in the clockwise direction.

If the chosen site i does not have enough capacity to host

the entire load λ j, then a first fit algorithm is used, starting

from the chosen site i, and continuing to subsequent sites on

the unit circle in the clockwise direction, until all traffic is

assigned. The key point to note is that baseline fit does

not explicitly minimize the miss traffic, but rather it only en-

sures that no site gets more load than its capacity. That is, it

produces a feasible solution for our model OPT by obeying

Equations 2 - 8, but does not minimize midgress.

Algorithm 1 Baseline fit algorithm

Input: N,M,λ j,Ci,Ti

Output: Fraction of traffic class j assigned to site i, xi j,∀ j(i) =
1 . . .N(M)

1: xi j = 0

2: TCset = set of all traffic classes arranged in random order

3: Sset = set of all sites hashed to a unit circle

4: for all j ∈ TCset do

5: i = Site chosen by consistent hashing

6: if site i has remaining traffic capacity ≥ λ j then

7: xi j += 1

8: else

9: Assign traffic fraction λ j using first fit starting from site

i on the unit circle

548 2020 USENIX Annual Technical Conference USENIX Association

3.2 Midgress-aware local search

We propose a midgress-aware traffic provisioning algorithm

called local search (see Algorithm 2) that uses a hill climb-

ing approach to solve the optimization model OPT. It is de-

signed to be fast, but may not always produce the optimal

solution. The algorithm local search begins with a feasible

assignment as determined by baseline fit. The algorithm

operates in rounds where every traffic class is picked one at

a time in each round. The traffic class that is picked is re-

assigned in small increments of a fraction δ (0 < δ < 1) of

its load to the server that minimizes the midgress objective

while maintaining feasibility. If a round does not decrease the

midgress traffic objective by at least a specified ε << 1, the

algorithm stops and outputs the final assignment.

Note that local search could end up in a local opti-

mum that isn’t close to the global optimum. However, local

search is efficient enough that it can be run multiple times

(in parallel) with different starting points to improve a sub-

optimal solution. We discuss the running time of local

search in Section 4.

Computing the midgress of a traffic assignment. The

local search algorithm requires an efficient way to com-

pute the midgress traffic of each site, given a traffic class

assignment. A known technique for computing miss traffic

of a site is footprint descriptor calculus [66]. Knowing the

footprint descriptor of each traffic class that is assigned to

a site, we use the calculus to efficiently derive the footprint

descriptor for the traffic mix, that in turn provides the MRC

of the traffic mix, from which we derive the midgress of the

traffic mix.

4 Experimental evaluation

Using production traces collected from a metro area of Aka-

mai’s CDN, we compare the midgress of OPT with that of

baseline fit and local search in both metro-level and

cluster-level traffic provisioning. We perform the evaluation

in two steps: 1) We evaluate metro-level traffic provision-

ing by viewing each cluster as a site. The site is assumed to

have cache size and capacity equal to the sum of the cache

sizes and capacities of all servers in that cluster. The output

of metro-level traffic provisioning is an assignment of traffic

classes to clusters that minimizes the midgress of the metro

area. 2) The output of metro-level traffic provisioning is the

input to cluster-level traffic provisioning. We evaluate cluster-

level traffic provisioning by assigning traffic classes to servers

within a cluster to further minimize midgress.

Production traces. To perform our evaluation, we collect

production traces from all Akamai CDN servers from a metro

area serving traffic for 25 traffic classes over a period of

16 days. The characteristics of the traffic classes are listed

in Table 3. From Table 3, we see that, in this metro area, 9

traffic classes serve web content, 11 traffic classes serve media

Algorithm 2 Local search algorithm

Input: N,M,λ j,Ci,Ti

Output: Fraction of traffic class j assigned to site i, xi j,∀ j(i) =
1 . . .N(M)

1: Get feasible assignment using baseline fit algorithm

2: TCset = set of all traffic classes arranged in random order

3: Sset = set of all sites

4: while True do

5: mgcurr = midgress of current assignment

6: for all j ∈ TCset do

7: xi j = 0 ∀i = 1 . . .M
8: λ′ = λ j

9: while λ′ > 0 do

10: S
j
set ⊆ Sset = set of all sites with remaining traffic

capacity ≥ δλ j

11: if S
j
set 6= /0 then

12: i = site in S
j
set that gives the lowest overall

midgress after assigning TC j

13: xi j += δ

14: else

15: Assign load δλ j using fractional first fit starting

from a random site

16: λ′ −= δ

17: mgnew = midgress of new assignment

18: if mgcurr −mgnew < ε then

19: break

content and the remaining 5 traffic classes serve software

downloads. The traffic classes exhibit a wide variation in load

(Gbps), arrival rate (requests/sec), content footprint (in unique

bytes), and number of objects. The majority of the load is for

media content at 47.3% followed by software downloads at

41.5% and web content at 11.2%. In terms of the unique bytes

that are cached in the metro area, the majority is again for

media content at 60.9%, followed by 25.6% for web content

and 13.5% for software downloads.

Footprint descriptors described in [66] are periodically

computed for all traffic classes on the production CDN. We

use these footprint descriptors to compute the MRCs and the

eviction age functions for the 25 traffic classes in Table 3, to

be used as inputs to our traffic provisioning algorithms.

Evaluation setup. To evaluate the traffic provisioning al-

gorithms, we simulate a small metro region with 10 clusters,

each containing 10 servers6. The capacity of the metro region

is set so that the average load is 70% of capacity to reflect

the load-to-capacity ratio in a typical CDN. We evaluate the

traffic provisioning algorithms at different cache sizes per

cluster of 1 TB, 5 TB, 10 TB, 20 TB, 40 TB and 50 TB. For

simplicity, we assume that every cluster in the metro area has

equal capacity and cache size. Every server within a cluster is

also assumed to have equal capacity and cache size.

OPT is solved using CPLEX as part of the GAMS modeling

6While a metro region in a large CDN typically has much larger server

deployments, we simulate a scaled-down version to keep our experiments

computationally tractable.

USENIX Association 2020 USENIX Annual Technical Conference 549

Traffic

class

id

Content

type

Load

(Gbps)

Arrival

rate

(req/s)

Unique

bytes

(TB)

Unique

objects

(million)

1 web 0.39 438.41 1.83 16.36

2 web 1.12 232.48 70.74 38.38

3 media 3.75 345.94 198.85 176.68

4 web 0.24 143.67 0.008 0.03

5 web 0.17 145.13 0.03 0.08

6 download 4.74 1338.91 28.16 19.55

7 web 0.30 851.73 6.21 70.23

8 web 0.58 1213.87 6.38 137.60

9 web 1.59 714.42 22.58 52.91

10 download 0.39 307.92 1.68 0.82

11 download 10.66 809.29 22.74 10.75

12 media 0.43 110.22 14.13 24.41

13 web 0.0013 136.32 0.04 3.58

14 media 7.54 93.01 30.55 2.90

15 media 7.22 89.28 30.14 2.86

16 media 6.04 75.14 30.38 2.89

17 media 0.37 139.23 12.41 26.59

18 web 2.12 935.76 83.42 93.54

19 media 0.35 134.87 24.48 25.12

20 download 1.36 276.63 3.12 2.07

21 media 0.08 9.94 7.31 6.43

22 media 0.90 214.53 43.48 77.90

23 media 0.44 48.28 28.53 26.83

24 media 0.38 78.09 35.25 55.06

25 download 6.99 1879.65 44.94 21.02

Table 3: Traffic class characteristics

language. We use a macOS machine with a 3 GHz Intel

Xeon processor with 10 cores and 128 GB RAM for all our

experiments. The GAMS program is set to run in parallel

mode using 20 threads with a relative optimality gap of 1e-9

and a maximum run time of 40,000 s. Given the complexity

of the optimization model, the GAMS program almost always

runs for 40,000 s. At that point, the solver has converged to a

solution that seldom changes and achieves a relative gap of

under 5% at smaller cluster cache sizes less than or equal to

10TB and a relative gap of under 10% at larger cache sizes. A

single run of baseline fit takes about 1 s and a single run

of local search takes about 120 s.

4.1 Metro-level traffic provisioning

We evaluate OPT, baseline fit, and local search by

computing the cache miss rate of the entire 10-cluster metro

area for different cache sizes. These three algorithms each

assign the set of 25 input traffic classes to the clusters in the

metro. In the case of baseline fit and local search, we

report the average cache miss rate of 100 runs, where each

run considers the traffic classes in a random order. The 95%

confidence intervals of the expected cache miss rates have a

margin of error of less than 0.4%.

From Figure 4 we can see that OPT gives a 18.37% re-

duction in midgress on average compared to the midgress-

unaware baseline fit algorithm. This is because OPT

takes into account the impact on midgress while assigning

traffic classes to clusters in the metro area. This significant

improvement in midgress makes the case for implementing

midgress-aware traffic provisioning algorithms in CDNs.

From Figure 4, we also see that local search performs

quite well and gives a 15.44% reduction in midgress on av-

erage compared to baseline fit. local search also per-

forms fairly well compared to OPT, with a modest 3.69%

increase in midgress compared to OPT on average.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

C
a

ch
e

 m
is

s
ra

te
, %

Cache size, TB

OPT

local search

baseline fit

Figure 4: MRCs of OPT, local search and baseline fit.

4.1.1 How traffic provisioning impacts midgress

In Figure 5, we plot the cache miss rate of the 25 traffic classes

when they are provisioned using OPT versus the midgress-

unaware baseline fit, when the cumulative cache size of

clusters in the metro area is 100TB. In addition, we also plot

the average number of sites (across the 100 runs) that each

traffic class is assigned to in Figure 6. From these figures,

we see that OPT reduces the cache miss rate of 21 traffic

classes when compared to baseline fit. In the case of traf-

fic class 11, OPT results in almost 97% reduction in miss rate

when compared to baseline fit. On the other hand, OPT

increases the cache miss rate of four traffic classes, namely

4, 5, 13 and 19. By trading off the cache miss rates for these

four traffic classes, OPT is able to reduce the overall midgress.

But why does OPT choose this trade-off? There are three key

insights that midgress-aware traffic provisioning takes into

account to optimize midgress that baseline fit does not.

1) In OPT’s solution, traffic classes that have higher load,

higher footprint pressure and greater MRC gradients get to

occupy larger portions of the available cache space. A traffic

class has high footprint pressure if a large amount of unique

content bytes is requested in a short period of time. This is

true for traffic classes 11, 14, 15, 25 and 16 that account for

66.04% of the total load. OPT assigns traffic class 11 to two

clusters because its load is greater than the capacity of a single

cluster, resulting in that traffic class occupying 6 TB in one

550 2020 USENIX Annual Technical Conference USENIX Association

4.3 Robustness to cache management policies

So far, we have developed traffic provisioning algorithms

that model an LRU cache and evaluated the midgress reduc-

tion resulting when the sites also use LRU. The past decades

have seen much academic research on numerous cache man-

agement algorithms that admit and evict objects using some

combination of recency of access, frequency of access and

object size to reduce cache miss rates (see Table 2 of [4]).

We show that midgress-aware traffic provisioning algorithms

proposed in this work, that model an LRU cache, achieve

significant midgress reduction even when a CDN does not

actually implement LRU at its sites.

We choose three typical algorithms from the literature for

our evaluation. The first is an LRU variant called second-

hit-LRU (or, SH-LRU) where the object is admitted to an

LRU cache on second hit. The second is segmented LRU

(SLRU) [40] that uses both recency and frequency for cache

management. Finally, we implement the Greed-Dual-Size-

Frequency (GDSF) [13] that uses all three of recency, fre-

quency and size. Our evaluation uses the same cluster-level

scenario as described in Section 4.2, where the goal is to

assign the 66 traffic subclasses of traffic class 14 across 10

servers of size 1 TB each. First, we solve OPT that models

LRU to get the optimal traffic class assignment across all

servers within the cluster. The midgress of OPT’s assignment

is then computed by simulating the different cache manage-

ment algorithms using the request traces of the subclasses. For

comparison, we use the midgress-unaware baseline fit for

traffic provisioning followed by a trace-based simulation of

the different cache management algorithms to provide a base-

line. When LRU cache management is used, OPT reduces

the midgress by 13.3% when compared to baseline fit.

In comparison, OPT reduces the midgress by 7.78%, 8.45%

and 7.76% for SH-LRU, SLRU and GDSF respectively. The

midgress reduction for the non-LRU algorithms is not as much

as that for LRU. However, the midgress reductions for other

algorithms are still quite robust and significant. The reason is

that even when other factors are used for cache management

decisions, most reasonable algorithms still use recency of ac-

cess in a very significant way, and recency is well-captured in

OPT. It is plausible that OPT can be reformulated to capture

other cache management policies besides LRU and such an

extension is a topic for future work.

5 Extending midgress-aware provisioning

We propose two extensions of midgress-aware traffic provi-

sioning that address constraints in production settings. The

first extension enforces a minimum number of sites that a

traffic class must be assigned to and the second extension

enforces a maximum cache miss rate per traffic class.

All results presented until now are for shared caches. While

partitioned caches are not commonly used in production set-

tings due to the overheads of dynamically resizing those par-

titions, there is increasing interest to implement and evaluate

partitioned caches [1,5,9,14,16,21,25,36,43,44,46,62,67,69].

We propose a third extension to show that our traffic provi-

sioning approach can reduce midgress in partitioned caches.

5.1 Minimum redundancy guarantee

Let M j be the minimum number of sites that traffic class j

should be assigned to. M j is an integer ∈ [1,M], where M

is the total number of sites. Let yi j be an indicator variable

that is set to 1 when xi j > 0 and 0 otherwise. Then, the load

assignment constraint in Section 2.2 is appended to include

the following minimum redundancy constraints.

yi j = dxi je ∀ j = 1 . . .N (9)

M

∑
i=1

yi j >= M j ∀ j = 1 . . .N (10)

yi j ∈ {0,1} (11)

Equations 9 and 10 ensure that traffic class j is assigned

to at least M j sites. We call the modified optimization model

OPT-M. The additional constraints are affine and they do not

increase the complexity of the optimization problem. Both

local search and baseline fit can also be modified to

incorporate the redundancy constraint by simply ensuring that

each traffic class j is assigned to at least M j sites in each

(re-)provisioning step.

Experimental evaluation. We measure the reduction in

midgress by OPT-M and the modified local search when

compared to the modified baseline fit. We use the same

evaluation parameters as Section 4.1 where the cache size

of each cluster in the metro area is 10 TB. We find that the

cache miss rates increase with increase in redundancy for

all three algorithms. We also find that the cache miss rate

of baseline fit with minimum redundancy = 1 (resp. 2)

is similar to the cache miss rate of local search and OPT-

M with minimum redundancy 2 (resp. 3). This shows that

midgress-aware traffic provisioning can provide the same

midgress as baseline fit with added redundancy.

5.2 Maximum cache miss rate guarantee

Let MR j be the maximum cache miss rate for traffic class j.

Then, the optimization model in Section 2.2 can be extended

to incorporate the maximum cache miss rate guarantee.

M

∑
i=1

xi jm j(ci j)≤ MR j ∀ j = 1 . . .N (12)

Equation 12 states that the average miss rate of traffic class

j across all M sites should be at most MR j. We call the modi-

fied optimization model, OPT-MR. Equation 12 is a biconvex

constraint and doesn’t increase the complexity of the problem.

552 2020 USENIX Annual Technical Conference USENIX Association

OPT has nearly the same miss rate without the additional

overhead of cache partitioning.

5.3.1 Implementing cache partitioning for traffic provi-

sioning in production settings

In the previous section, we have seen that cache partitioning

can further reduce the midgress of a metro area since each

traffic class occupies a separate partition and traffic classes

assigned to the same site could have different eviction ages.

But it is not implemented in practice for traffic provisioning

due to the following reasons.

1) In large CDNs, many different traffic classes must share

a cache. Further, the mix of traffic classes sharing a cache

and their respective loads change frequently over time at the

whim of the load balancer. To obtain the benefits of cache

partitioning, the partitions need to be constantly resized by

shrinking cache space for certain traffic classes and expanding

the cache space for others. Such resizing is resource inten-

sive. Further, constantly resizing dynamic partitions may not

lead to lower midgress, especially during transitions between

cache sizes. While partitioning the cache statically is easier

to implement, static partitions do not adjust to changes in the

traffic mix, leading to sub-optimal performance. On the other

hand, an unpartitioned shared cache dynamically adjusts the

cache space occupied by different traffic classes based on

the load and the traffic characteristics, without the need for

complex (re)partitioning operations.

2) From the previous section, we see that traffic provision-

ing in a shared unpartitioned cache provides nearly the same

midgress as a partitioned cache. Thus, there is little incen-

tive to redesign the traffic provisioning system to work with

partitioned caches and incurring the additional software com-

plexity and resource overhead.

For the reasons outlined above, the shared unpartitioned

cache studied in our work is the implementation of choice for

many major CDNs, including Akamai.

6 Related work

Traffic provisioning in CDNs has been studied in the context

of load balancing. However, the load balancing algorithms

focus on ensuring that servers are not overloaded and do not

explicitly minimize midgress. Likewise, minimizing cache

misses through better cache management policies has a rich

literature. However, we view cache management as comple-

mentary to midgress-aware traffic provisioning. We review

relevant existing literature in these areas.

Load balancing. Request redirection schemes at the net-

work layer, based on DNS [8,32], and at the application layer,

based on URL rewriting or HTTP redirection [48], have been

proposed to load balance traffic across multiple servers. Dy-

namic load balancing algorithms [10, 11, 71] continuously

measure the load on different servers and load balance end-

user requests to improve performance. Consistent-hashing

and randomized load balancing algorithms [41, 42, 54, 55]

have also been proposed to load balance end-user requests in

content delivery systems. Extensions to traditional load bal-

ancing, that minimize the energy consumption of CDNs [50]

have also been proposed in the literature. Much of the work

above are in the context of routing user requests in real-time

to servers. But, they can be adapted to our context of perform-

ing (offline) traffic provisioning, a step that precedes request

routing in a production CDN. However, there is no prior work

on explicitly minimizing midgress.

Cache management. There has been a significant amount

of research on cache management policies to minimize cache

miss rates [2, 3, 6, 17–19, 22, 26–31, 33, 37, 38, 45, 49, 52, 57,

58, 60, 64, 68, 70]. Some proposed caching policies include

Adapt-Size [4], Cliffhanger [15], SLRU [40], TLRU [23],

S4LRU [34], CFLRU [59], ARC [53], LRU-S [65], LRU-

K [56], and GDS [7]. Dynamically partitioning the cache to

reduce miss rates has also been explored [1,5,9,14,16,21,25,

36, 43, 44, 46, 62, 67, 69]. However, production CDNs do not

employ dynamically-partitioned caches since it introduces

significant performance and operational overheads. We view

work on cache management as a complementary technique to

traffic provisioning, both with the goal of midgress reduction.

Recent work on footprint descriptors [66] is focused on

efficient techniques for evaluating the miss rates of traffic

mixes. We use footprint descriptors to quickly compute the

midgress of a traffic class assignment, as well as to efficiently

compute the MRC and eviction age function of traffic classes.

However, the work on footprint descriptors does not minimize

midgress.

7 Conclusion

We propose midgress-aware traffic provisioning that explic-

itly minimizes the midgress traffic of a CDN, while ensuring

that no server or cluster is overloaded. Using extensive traces

for 25 traffic classes from Akamai’s CDN, we show that the

midgress of a metro can be reduced by 18.37% when com-

pared to a midgress-unaware baseline. We propose a midgress-

aware heuristic, local search, that provisions traffic classes

to achieve a midgress reduction that is within 1.1% of the op-

timum, and is very fast and well suited for production settings.

We also show that using our traffic provisioning algorithms at

the cluster level results in significant reductions in midgress.

Given that a large CDN can have midgress of over 10 Tbps,

even a small reduction in midgress can result in millions of

dollars of savings per year. Our work provides a strong case

for implementing midgress-aware provisioning in CDNs.

8 Acknowledgments

We thank our reviewers and our shepherd Kiran Kumar Mu-

niswamy Reddy for their great feedback. This research was

supported in part by NSF grant CNS-1763617.

554 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan

Sundararaman, and Ming Zhao. Cloudcache: On-

demand flash cache management for cloud computing.

In FAST, pages 355–369, 2016.

[2] Daniel S. Berger, Philipp Gland, Sahil Singla, and Florin

Ciucu. Exact analysis of TTL cache networks. Perform.

Eval., 79:2 – 23, 2014. Special Issue: Performance 2014.

[3] Daniel S Berger, Sebastian Henningsen, Florin Ciucu,

and Jens B Schmitt. Maximizing cache hit ratios by

variance reduction. ACM SIGMETRICS Performance

Evaluation Review, 43(2):57–59, 2015.

[4] Daniel S Berger, Ramesh K Sitaraman, and Mor

Harchol-Balter. Adaptsize: Orchestrating the hot ob-

ject memory cache in a content delivery network. In

NSDI, pages 483–498, 2017.

[5] Sem Borst, Varun Gupta, and Anwar Walid. Distributed

caching algorithms for content distribution networks. In

INFOCOM, 2010 Proceedings IEEE, pages 1–9. Cite-

seer, 2010.

[6] PJ Burville and JFC Kingman. On a model for storage

and search. Journal of Applied Probability, pages 697–

701, 1973.

[7] Pei Cao and Sandy Irani. Cost-aware WWW proxy

caching algorithms. In USENIX symposium on Internet

technologies and systems, volume 12, pages 193–206,

1997.

[8] Valeria Cardellini, Michele Colajanni, and Philip S. Yu.

Request redirection algorithms for distributed web sys-

tems. IEEE transactions on parallel and distributed

systems, 14(4):355–368, 2003.

[9] Damiano Carra and Pietro Michiardi. Memory partition-

ing and management in memcached. IEEE Transactions

on Services Computing, 2016.

[10] Robert L Carter and Mark E Crovella. Server selec-

tion using dynamic path characterization in wide-area

networks. In INFOCOM’97. Sixteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies. Driving the Information Revolution., Proceed-

ings IEEE, volume 3, pages 1014–1021. IEEE, 1997.

[11] Chung-Min Chen, Yibei Ling, Marcus Pang, Wai Chen,

Shengwei Cai, Yoshihisa Suwa, and Onur Altintas. Scal-

able request routing with next-neighbor load sharing in

multi-server environments. In Advanced Information

Networking and Applications, 2005. AINA 2005. 19th

International Conference on, volume 1, pages 441–446.

IEEE, 2005.

[12] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres.

End-user mapping: Next generation request routing for

content delivery. In ACM SIGCOMM Computer Com-

munication Review, volume 45, pages 167–181. ACM,

2015.

[13] Ludmila Cherkasova. Improving WWW proxies perfor-

mance with greedy-dual-size-frequency caching policy.

Hewlett-Packard Laboratories, 1998.

[14] Weibo Chu, Mostafa Dehghan, John CS Lui, Don

Towsley, and Zhi-Li Zhang. Joint cache resource alloca-

tion and request routing for in-network caching services.

Computer Networks, 131:1–14, 2018.

[15] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and

Sachin Katti. Cliffhanger: Scaling performance cliffs in

web memory caches. In USENIX NSDI, pages 379–392,

2016.

[16] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and

Ryan Stutsman. Memshare: a dynamic multi-tenant

key-value cache. In Usenix ATC, 2017.

[17] Edward G. Coffman and Predrag Jelenković. Perfor-

mance of the move-to-front algorithm with Markov-

modulated request sequences. Operations Research

Letters, 25:109–118, 1999.

[18] Edward Grady Coffman and Peter J Denning. Operating

systems theory. Prentice-Hall, 1973.

[19] Asit Dan and Don Towsley. An approximate analysis

of the LRU and FIFO buffer replacement schemes. In

ACM SIGMETRICS, pages 143–152, 1990.

[20] Mostafa Dehghan, Weibo Chu, Philippe Nain, Don

Towsley, and Zhi-Li Zhang. Sharing cache re-

sources among content providers: A utility-based ap-

proach. IEEE/ACM Transactions on Networking (TON),

27(2):477–490, 2019.

[21] Mostafa Dehghan, Laurent Massoulie, Don Towsley,

Daniel Menasche, and Yong Chiang Tay. A utility

optimization approach to network cache design. In

Computer Communications, IEEE INFOCOM 2016-The

35th Annual IEEE International Conference on, pages

1–9. IEEE, 2016.

[22] Robert P Dobrow and James Allen Fill. The move-to-

front rule for self-organizing lists with Markov depen-

dent requests. In Discrete Probability and Algorithms,

pages 57–80. Springer, 1995.

[23] Gil Einziger and Roy Friedman. Tinylfu: A highly effi-

cient cache admission policy. In IEE Euromicro PDP,

pages 146–153, 2014.

USENIX Association 2020 USENIX Annual Technical Conference 555

[24] Ronald Fagin. Asymptotic miss ratios over independent

references. Journal of Computer and System Sciences,

14(2):222–250, 1977.

[25] Michal Feldman and John Chuang. Service differenti-

ation in web caching and content distribution. In Pro-

ceedings of the IASTED International Conference on

Communications and Computer Networks, 2002.

[26] James Allen Fill and Lars Holst. On the distribution of

search cost for the move-to-front rule. Random Struc-

tures & Algorithms, 8:179–186, 1996.

[27] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier.

Birthday paradox, coupon collectors, caching algorithms

and self-organizing search. Discrete Applied Mathemat-

ics, 39:207–229, 1992.

[28] Christine Fricker, Philippe Robert, and James Roberts.

A versatile and accurate approximation for LRU cache

performance. In ITC, page 8, 2012.

[29] Massimo Gallo, Bruno Kauffmann, Luca Muscariello,

Alain Simonian, and Christian Tanguy. Performance

evaluation of the random replacement policy for net-

works of caches. In ACM SIGMETRICS/ PERFOR-

MANCE, pages 395–396, 2012.

[30] Nicolas Gast and Benny Van Houdt. Transient and

steady-state regime of a family of list-based cache re-

placement algorithms. In ACM SIGMETRICS, pages

123–136, 2015.

[31] Erol Gelenbe. A unified approach to the evaluation of a

class of replacement algorithms. IEEE Transactions on

Computers, 100:611–618, 1973.

[32] Michel Goemans. Load balancing in content deliverynet-

works. MA Annual Program Year Workshop:Network

Management and Design, April 2003.

[33] WJ Hendricks. The stationary distribution of an inter-

esting Markov chain. Journal of Applied Probability,

pages 231–233, 1972.

[34] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt

Lloyd, Sanjeev Kumar, and Harry C Li. An analysis of

Facebook photo caching. In ACM SOSP, pages 167–181,

2013.

[35] Cisco Visual Networking Index. The zettabyte era:

Trends and analysis. June 2017.

[36] Stratis Ioannidis and Edmund Yeh. Jointly optimal rout-

ing and caching for arbitrary network topologies. IEEE

Journal on Selected Areas in Communications, 2018.

[37] Predrag R Jelenković. Asymptotic approximation of the

move-to-front search cost distribution and least-recently

used caching fault probabilities. The Annals of Applied

Probability, 9:430–464, 1999.

[38] Predrag R Jelenković and Ana Radovanović. Least-

recently-used caching with dependent requests. Theo-

retical computer science, 326:293–327, 2004.

[39] Poul-Henning Kamp. Varnish LRU architecture, June

2007. Available at https://www.varnish-cache.

org/trac/wiki/ArchitectureLRU, accessed

09/12/16.

[40] Ramakrishna Karedla, J Spencer Love, and Bradley G

Wherry. Caching strategies to improve disk system

performance. Computer, (3):38–46, 1994.

[41] David Karger, Eric Lehman, Tom Leighton, Rina Pani-

grahy, Matthew Levine, and Daniel Lewin. Consistent

hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In Pro-

ceedings of the twenty-ninth annual ACM symposium

on Theory of computing, pages 654–663. ACM, 1997.

[42] David Karger, Alex Sherman, Andy Berkheimer, Bill

Bogstad, Rizwan Dhanidina, Ken Iwamoto, Brian Kim,

Luke Matkins, and Yoav Yerushalmi. Web caching with

consistent hashing. Computer Networks, 31(11):1203–

1213, 1999.

[43] Terence Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey

MacKie-Mason. Biased replacement policies for web

caches: Differential quality-of-service and aggregate

user value. 1999.

[44] Seongbeom Kim, Dhruba Chandra, and Yan Solihin.

Fair cache sharing and partitioning in a chip multipro-

cessor architecture. In Proceedings of the 13th Interna-

tional Conference on Parallel Architectures and Com-

pilation Techniques, pages 111–122. IEEE Computer

Society, 2004.

[45] W. Frank King. Analysis of demand paging algorithms.

In IFIP Congress (1), pages 485–490, 1971.

[46] Bong-Jun Ko, Kang-Won Lee, Khalil Amiri, and

Seraphin Calo. Scalable service differentiation in a

shared storage cache. In Distributed Computing Sys-

tems, 2003. Proceedings. 23rd International Conference

on, pages 184–193. IEEE, 2003.

[47] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic

nuggets in content delivery. ACM SIGCOMM Computer

Communication Review, 45(3):52–66, 2015.

[48] Sabato Manfredi, Francesco Oliviero, and Simon Pietro

Romano. A distributed control law for load balancing

556 2020 USENIX Annual Technical Conference USENIX Association

in content delivery networks. IEEE/ACM Transactions

on Networking (TON), 21(1):55–68, 2013.

[49] Valentina Martina, Michele Garetto, and Emilio

Leonardi. A unified approach to the performance analy-

sis of caching systems. In IEEE INFOCOM, 2014.

[50] Vimal Mathew, Ramesh K Sitaraman, and Prashant

Shenoy. Energy-aware load balancing in content deliv-

ery networks. In INFOCOM, 2012 Proceedings IEEE,

pages 954–962. IEEE, 2012.

[51] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and

Irving L. Traiger. Evaluation techniques for storage

hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[52] John McCabe. On serial files with relocatable records.

Operations Research, 13:609–618, 1965.

[53] Nimrod Megiddo and Dharmendra S Modha. ARC:

A self-tuning, low overhead replacement cache. In

USENIX FAST, volume 3, pages 115–130, 2003.

[54] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadi-

moghaddam. Consistent hashing with bounded loads.

arXiv preprint arXiv:1608.01350, 2016.

[55] Michael Mitzenmacher. The power of two choices in

randomized load balancing. IEEE Transactions on Par-

allel and Distributed Systems, 12(10):1094–1104, 2001.

[56] Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard

Weikum. The LRU-K page replacement algorithm for

database disk buffering. ACM SIGMOD, 22(2):297–306,

1993.

[57] Elizabeth J O’Neil, Patrick E O’Neil, and Gerhard

Weikum. An optimality proof of the LRU-K page re-

placement algorithm. JACM, 46:92–112, 1999.

[58] Antonis Panagakis, Athanasios Vaios, and Ioannis

Stavrakakis. Approximate analysis of LRU in the case

of short term correlations. Computer Networks, 52:1142–

1152, 2008.

[59] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-

soo Kim, and Joonwon Lee. CFLRU: a replacement

algorithm for flash memory. In ACM/IEEE CASES,

pages 234–241, 2006.

[60] Konstantinos Psounis, An Zhu, Balaji Prabhakar, and Ra-

jeev Motwani. Modeling correlations in web traces and

implications for designing replacement policies. Com-

puter Networks, 45:379–398, 2004.

[61] Guocong Quan, Jian Tan, Atilla Eryilmaz, and Ness

Shroff. A new flexible multi-flow lru cache manage-

ment paradigm for minimizing misses. Proceedings of

the ACM on Measurement and Analysis of Computing

Systems, 3(2):39, 2019.

[62] Moinuddin K Qureshi and Yale N Patt. Utility-based

cache partitioning: A low-overhead, high-performance,

runtime mechanism to partition shared caches. In

Microarchitecture, 2006. MICRO-39. 39th Annual

IEEE/ACM International Symposium on, pages 423–432.

IEEE, 2006.

[63] Will Reese. Nginx: the high-performance web server

and reverse proxy. Linux Journal, 2008(173):2, 2008.

[64] Eliane R Rodrigues. The performance of the move-to-

front scheme under some particular forms of Markov

requests. Journal of applied probability, pages 1089–

1102, 1995.

[65] David Starobinski and David Tse. Probabilistic methods

for web caching. Perform. Eval., 46:125–137, 2001.

[66] Aditya Sundarrajan, Mingdong Feng, Mangesh Kas-

bekar, and Ramesh Sitaraman. Footprint descriptors:

Theory and practice of cache provisioning in a global

cdn. In Proceedings of the 13th International Confer-

ence on emerging Networking EXperiments and Tech-

nologies, pages 55–67. ACM, 2017.

[67] Dominique Thiébaut, Harold S. Stone, and Joel L Wolf.

Improving disk cache hit-ratios through cache partition-

ing. IEEE Transactions on Computers, 41(6):665–676,

1992.

[68] Naoki Tsukada, Ryo Hirade, and Naoto Miyoshi. Fluid

limit analysis of FIFO and RR caching for independent

reference model. Perform. Eval., 69:403–412, Septem-

ber 2012.

[69] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Col-

oris: a dynamic cache partitioning system using page

coloring. In Parallel Architecture and Compilation Tech-

niques (PACT), 2014 23rd International Conference on,

pages 381–392. IEEE, 2014.

[70] Neal E Young. Online paging against adversarially

biased random inputs. Journal of Algorithms, 37:218–

235, 2000.

[71] Zeng Zeng and Bharadwaj Veeravalli. Design and per-

formance evaluation of queue-and-rate-adjustment dy-

namic load balancing policies for distributed networks.

IEEE Transactions on Computers, 55(11):1410–1422,

2006.

USENIX Association 2020 USENIX Annual Technical Conference 557

	Introduction
	Contributions
	Roadmap

	Optimization model for traffic provisioning
	Modeling cache eviction and midgress
	Formulation of our optimization model
	Solving the optimization model OPT

	Traffic provisioning heuristics
	Midgress-unaware baseline
	Midgress-aware local search

	Experimental evaluation
	Metro-level traffic provisioning
	How traffic provisioning impacts midgress

	Cluster-level traffic provisioning
	Robustness to cache management policies

	Extending midgress-aware provisioning
	Minimum redundancy guarantee
	Maximum cache miss rate guarantee
	Traffic provisioning in partitioned caches
	Implementing cache partitioning for traffic provisioning in production settings

	Related work
	Conclusion
	Acknowledgments

