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Abstract12

Backoff algorithms are used in many distributed systems where multiple devices contend for a shared13

resource. For the classic balls-into-bins problem, the number of singletons—those bins with a single14

ball—is important to the analysis of several backoff algorithms; however, existing analyses employ15

advanced probabilistic tools to obtain concentration bounds. Here, we show that standard Chernoff16

bounds can be used instead, and the simplicity of this approach is illustrated by re-analyzing some17

well-known backoff algorithms.18
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1 Introduction24

Backoff algorithms address the general problem of how to share a resource among multiple25

devices [38]. A ubiquitous application is IEEE 802.11 (WiFi) networks [31, 48, 34], where26

the resource is a wireless channel, and devices each have packets to send. Any single packet27

sent uninterrupted over the channel is likely to be received, but if the sending times of two28

or more packets overlap, communication often fails due to destructive interference at the29

receiver (i.e., a collision). An important performance metric is the time required for all30

packets to be sent, which is known as the makespan.31

Formal Model. Time is discretized into slots, and each packet can be transmitted within a32

single slot. Starting from the first slot, a batch of n packets is ready to be transmitted on a33

shared channel. This case, where all packets start at the same time, is sometimes referred to34

as the batched-arrivals setting. Each packet can be viewed as originating from a different35

source device, and going forward we speak only of packets rather than devices.36

For any fixed slot, if a single packet sends, then the packet succeeds; however, if two or37

more packets send, then all corresponding packets fail. A packet that attempts to send in a38

slot learns whether it succeeded and, if so, the packet takes no further action; otherwise, the39

packet learns that it failed in that slot, and must try again at a later time.40

Background on Analyzing Makespan. A natural question is the following: For a given41

backoff algorithm under batched-arrivals, what is the makespan as measured in the number of42

slots?43
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This question was first addressed by Bender et al. [5] who analyze several backoff44

algorithms that execute over disjoint, consecutive sets of slots called windows. In every45

window, each packet that has not yet succeeded selects a single slot uniformly at random in46

which to send. If the packet succeeds, then it leaves the system; otherwise, the failed packet47

waits for the next window to begin and repeats this process.48

Bender et al. [5] analyze several algorithms where windows monotonically increase in size.49

The well-known binary exponential backoff algorithm—a critical component of many50

WiFi standards—exemplifies this behavior, where each successive window increases in size51

by a factor of 2.152

There is a close relationship between the execution of such algorithms in a window, and53

the popular balls-in-bins scenario, where N balls (corresponding to packets) are dropped54

uniformly at random into B bins (corresponding to slots). In this context, we are interested in55

the number of bins containing a single ball, which are sometimes referred to as singletons [52].56

Despite their simple specification, windowed backoff algorithms are surprisingly intricate57

in their analysis. In particular, obtaining concentration bounds on the number of slots (or58

bins) that contain a single packet (or ball)—which we will also refer to as singletons—is59

complicated by dependencies that rule out a straightforward application of Chernoff bounds60

(see Section 2.1). This is unfortunate given that Chernoff bounds are often one of the first61

powerful probabilistic tools that researchers learn, and they are standard material in a62

randomized algorithms course.63

In contrast, the makespan results in Bender et al. [5] are derived via delay sequences [33, 49],64

which are arguably a less-common topic of instruction. Alternative tools for handling65

dependencies include Poisson-based approaches by Mizenmacher [40] and Mitzenmacher and66

Upfal [39], and the Doob martingale [21], but to the best of our knowledge, these have not67

been applied to the analysis of windowed backoff algorithms.68

1.1 Our Goal69

Is there a simpler route to arrive at makespan results for windowed backoff algorithms?70

Apart from being a fun theoretical question to explore, an affirmative answer might71

improve accessibility to the area of backoff algorithms for researchers. More narrowly, this72

might benefit students embarking on research, many of whom cannot fully appreciate the very73

algorithms that enable, for example, their Instagram posts access to online course notes.274

Arguably, Chernoff bounds can be taught without much setup. For example, Dhubashi75

and Panconesi [21] derive Chernoff bounds starting on page 3, while their discussion of76

concentration results for dependent variables is deferred until Chapter 5.77

What if we could deploy standard Chernoff bounds to analyze singletons? Then, the78

analysis distills to proving the correctness of a “guess” regarding a recursive formula (a79

well-known procedure for students) describing the number of packets remaining after each80

window, and that guess would be accurate with small error probability.81

Finally, while it may not be trivial to show that Chernoff bounds are applicable to82

backoff, showing that another problem—especially one that has such important applications—83

succumbs to Chernoff bounds is aesthetically satisfying.84

1 In practice, the doubling terminates at some fixed large value set by the standard.
2 In our experience, the makespan analysis is inaccessible to most students in the advanced computer

networking course.
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1.2 Results85

We show that Chernoff bounds can indeed be used as proposed above. Our approach involves86

an argument that the indicator random variables for counting singletons satisfy the following87

property from [22]:88

I Property 1. Given a set of n indicator random variables {X1, · · · , Xn}, for all subsets89

S ⊂ {1, · · · , n} the following is true:90

Pr





∧

j∈S
Xj = 1



 ≤
∏

j∈S
Pr [Xj = 1] . (1)91

We prove the following:92

I Theorem 1. Consider N balls dropped uniformly at random into B bins. Let Ij = 1 if93

bin j contains exactly 1 ball, and Ij = 0 otherwise, for j = 1, · · · , B. If B ≥ N +
√

N or94

B ≤ N −
√

N , then {I1, · · · , IB} satisfy the Property 1.95

Property 1 permits the use of standard Chernoff bounds; this implication is posed as an96

exercise by Dubhashi and Panconesi [21] (Problem 1.8), and we provide the argument in our97

appendix.98

We then show how to use Chernoff bounds to obtain asymptotic makespan results for99

some of the algorithms previously analyzed by Bender et al. [5]: Binary Exponential100

Backoff (BEB), Fixed Backoff (FB), and Log-Log Backoff (LLB). Additionally,101

we re-analyze the asymptotically-optimal (non-monotonic) Sawtooth Backoff (STB)102

from [29, 25].103

These algorithms are specified in Section 5, but our makespan results are stated below.104

I Theorem 2. For a batch of n packets, the following holds with probability at least 1−O(1/n):105

FB has makespan at most n lg lg n + O(n).106

BEB has makespan at most 512n lg n + O(n).107

LLB has makespan O(n lg lg n/ lg lg lg n).108

STB has makespan O(n).109

We highlight that both of the cases in Theorem 1, B ≤ N +
√

N and B ≥ N −
√

N , are110

useful. Specifically, the analysis for BEB, FB, and STB uses the first case, while LLB uses111

both.112

1.3 Related Work113

Several prior results address dependencies and their relevance to Chernoff bounds and load-114

balancing in various balls-in-bins scenarios. In terms of backoff, the literature is vast. In115

both cases, we summarize closely-related works.116

Dependencies, Chernoff Bounds, & Ball-in-Bins. Backoff is closely-related to balls-117

and-bins problems [4, 18, 47, 50], where balls and bins correspond to packets and slots,118

respectively. Balls-in-bins analysis often arises in problems of load balancing (for examples,119

see [9, 10, 11]).120

Dubhashi and Ranjan [22] prove that the occupancy numbers — random variables Ni121

denoting the number of balls that fall into bin i — are negatively associated. This result is122

used by Lenzen and Wattenhofer [35] use it to prove negative association for the random123

variables that correspond to at most k ≥ 0 balls.124

FUN 2020
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Czumaj and Stemann [19] examine the maximum load in bins under an adaptive process125

where each ball is placed into a bin with minimum load of those sampled prior to placement.126

Negative association of the occupancy numbers is important to this analysis.127

Finally, Dubhashi and Ranjan [22] also show that Chernoff bounds remain applicable128

when the corresponding indicator random variables that are negatively associated. The same129

result is presented in Dubhashi and Panconesi [21].130

Backoff Algorithms. Many early results on backoff are given in the context of statistical131

queuing-theory (see [30, 28, 43, 26, 30, 27]) where a common assumption is that packet-arrival132

times are Poisson distributed.133

In contrast, for the batched-arrivals setting, the makespan of backoff algorithms with134

monotonically-increasing window sizes has been analyzed in [5], and with packets of different135

sizes in [6]. A windowed, but non-monotonic backoff algorithm which is asymptotically136

optimal in the batched-arrival setting is provided in [25, 29, 2].137

A related problem is contention resolution, which addresses the time until the first packet138

succeeds [51, 41, 24, 23]. This has close ties to the well-known problem of leader election139

(for examples, see [13, 12]).140

Several results examine the dynamic case where packets arrive over time as scheduled in141

a worst-case fashion [36, 20, 8]; this is in contrast to batched-arrivals where it is implicitly142

assumed that the current batch of packets succeeds before the next batch arrives. A similar143

problem is that of wake-up [16, 15, 17, 14, 37, 32], which addresses how long it takes for a144

single transmission to succeed when packets arrive under the dynamic scenario.145

Finally, several results address the case where the shared communication channel is146

unavailable at due to malicious interference [3, 44, 45, 46, 42, 1, 7].147

2 Analysis for Property 1148

We present our results on Property 1. Since we believe this result may be useful outside149

of backoff, our presentation in this section is given in terms of the well-known balls-in-bins150

terminology, where we have N balls that are dropped uniformly at random into B bins.151

2.1 Preliminaries152

Throughout, we often employ the following inequalities (see Lemma 3.3 in [46]), and we will153

refer to the left-hand side (LHS) or right-hand side (RHS) when doing so.154

I Fact 1. For any 0 < x < 1, e−x/(1−x) ≤ 1 − x ≤ e−x.155

Knowing that indicator random variables (i.r.v.s) satisfy Property 1 is useful since the156

following Chernoff bounds can then be applied.157

I Theorem 3. (Dubhashi and Panconesi [21])3 Let X =
∑

i Xi where X1, ..., Xm are i.r.v.s158

that satisfy Property 1 . For 0 < ε < 1, the following holds:159

Pr[X > (1 + ε)E[X]] ≤ exp

(

−ε2

3
E[X]

)

(2)160

Pr[X < (1 − ε)E[X]] ≤ exp

(

−ε2

2
E[X]

)

(3)161

3 This is stated in Problem 1.8 in [21]; we present a proof in Section A of our appendix.
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We are interested in the i.r.v.s Ij , where:162

Ij =

{

1, if bin j contains exactly 1 ball.

0, otherwise.
163

Unfortunately, there are cases where the Ijs fail to satisfy Property 1. For example, consider164

N = 2 balls and B = 2 bins. Then, Pr(I1 = 1) = Pr(I2 = 1) = 1/2, so Pr(I1 = 1) · Pr(I2 =165

1) = 1/4, but Pr(I1 = 1 ∧ I2 = 1) = 1/2.166

A naive approach (although, we have not seen it in the literature) is to leverage the167

result in [35], that the variables used to count the number of bins with at most k balls are168

negatively associated. We may bound the number of bins that have at most 1 ball, and the169

number of bins that have (at most) 0 balls, and then take the difference. However, this is a170

cumbersome approach, and our result is more direct.171

Returning briefly to the context of packets and time slots, another approach is to consider172

a subtly-different algorithm where a packet sends with probability 1/w in each slot of a173

window with w slots, rather than selecting uniformly at random a single slot to send in.174

However, as Bender et al. [5] point out, when n is within a constant factor of the window size,175

there is a constant probability that the packet will not send in any slot. Consequently, the176

number of windows required for all packets to succeed increases by a log n-factor, whereas177

only O(log log n) windows are required under the model used here.178

2.2 Property 1 and Bounding Singletons179

To prove Theorem 1, we establish the following Lemma 4. For j = 1, · · · , B − 1, define:

Pj = Pr [Ij+1 = 1 | I1 = 1, · · · , Ij = 1]

which is the conditional probability that bin j + 1 contains exactly 1 ball given each of the180

bins {1, · · · , j} contains exactly 1 ball. Note that Pr[Ij = 1] is same for any j = 1, · · · , B,181

and let:182

P0 , Pr[Ij = 1] = N

(

1

B

)(

1 − 1

B

)N−1

. (4)183

I Lemma 4. If B ≥ N +
√

N or B ≤ N −
√

N , the conditional probability Pj is a184

monotonically non-increasing function of j, i.e., Pj ≥ Pj+1, for j = 0, · · · , B − 2.185

Proof. First, for j = 1, · · · , min{B, N} − 1, the conditional probability can be expressed as186

Pj = (N − j)

(

1

B − j

)(

1 − 1

B − j

)N−j−1

. (5)187

Note that P0 in (4) is equal to (5) with j = 0.188

For B ≥ N +
√

N , we note that beyond the range j = 1, ..., , min{B, N} − 1 (i.e., N − 1),189

it must be that Pj = 0. In other words, Pj = 0 for j = N, N + 1, · · · , B − 1 since all balls190

have already been placed. Thus, we need to prove Pj ≥ Pj+1, for j = 0, · · · , N − 2.191

On the other hand, if B ≤ N −
√

N , we need to prove Pj ≥ Pj+1, for j = 0, · · · , B − 2.192

Thus, this lemma is equivalent to prove if B ≥ N +
√

N or B ≤ N −
√

N , the ratio193

Pj/Pj+1 ≥ 1, for j = 0, · · · , min{B, N} − 2.194

FUN 2020



24:6 Singletons for Simpletons

Using the expression (5), the ratio can be expressed as195

Pj

Pj+1
=

(N − j)
(

1
B−j

)(

1 − 1
B−j

)N−j−1

(N − j − 1)
(

1
B−j−1

)(

1 − 1
B−j−1

)N−j−2
196

=
1

(

B−j
N−j

)(

N−j−1
B−j−1

) ·

(

1 − 1
B−j

)N−j−1

(

1 − 1
B−j−1

)N−j−2
197

=
1

(

B−j
N−j

)(

N−j−1
B−j−1

) ·

(

B−j−1
B−j

)N−j−1

(

B−j−2
B−j−1

)N−j−1 (
B−j−1
B−j−2

)

198

=
1

(

B−j
N−j

)(

N−j−1
B−j−2

) ·
(

B−j−1
B−j

B−j−2
B−j−1

)N−j−1

199

=

(

1 + 1
(B−j)(B−j−2)

)N−j−1

(N−j−1)(B−j)
(N−j)(B−j−2)

.200

Let a = N − j, then 2 ≤ a ≤ N ; and let y = B − N . Thus, the ratio becomes201

Pj

Pj+1
=

[

1 + 1
(a+y)(a+y−2)

]a−1

(a−1)(a+y)
a(a+y−2)

.202

203

By the Binomial theorem, we have

[

1 +
1

(a + y)(a + y − 2)

]a−1

= 1+
a − 1

(a + y)(a + y − 2)
+

a−1
∑

k=2

(

a − 1

k

)[

1

(a + y)(a + y − 2)

]k

.

Thus, the ratio can be written as:204

Pj

Pj+1
=

a(a + y − 2)

(a − 1)(a + y)
+

a

(a + y)2
+

∑a−1
k=2

(

a−1
k

)

[

1
(a+y)(a+y−2)

]k

(a−1)(a+y)
a(a+y−2)

205

=
a3 + 2a2y − a2 + ay2 − 2ay − a

a3 + 2a2y − a2 + ay2 − 2ay − y2
+

∑a−1
k=2

(

a−1
k

)

[

1
(a+y)(a+y−2)

]k

(a−1)(a+y)
a(a+y−2)

206

=
a3 + 2a2y − a2 + ay2 − 2ay − a + (y2 − y2)

a3 + 2a2y − a2 + ay2 − 2ay − y2
+

∑a−1
k=2

(

a−1
k

)

[

1
(a+y)(a+y−2)

]k

(a−1)(a+y)
a(a+y−2)

207

= 1 +
y2 − a

(a + y)2(a − 1)
+

∑a−1
k=2

(

a−1
k

)

[

1
(a+y)(a+y−2)

]k

(a−1)(a+y)
a(a+y−2)

. (6)208

Note that because 0 ≤ j ≤ min{B, N} − 2, then a + y = B − j ≥ 2. Thus, the third term209

in (6) is always non-negative. If y = B − N ≥
√

N or y ≤ −
√

N , then y2 ≥ N ≥ a for any210

2 ≤ a ≤ N . Consequently, the ratio Pj/Pj+1 ≥ 1. J211

We can now give our main argument:212
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Proof of Theorem 1. Let s denote the size of the subset S ⊂ {1, · · · , B}, i.e. the number213

of bins in S. First, note that if B ≥ N +
√

N , when s > N (i.e., more bins than balls),214

the probability on the left hand side (LHS) of (1) is 0, thus, the inequality (1) holds. In215

addition, shown above Pr[Ij = 1] = P0 for any j = 1, · · · , B. Thus, the right hand side of216

(1) becomes Ps
0 . Thus, we need to prove for any subset, denoted as S = {j1, · · · , js} with217

1 ≤ s ≤ min{B, N}218

Pr

[

s
∧

k=1

Ijk
= 1

]

≤ Ps
0 .219

The LHS can be written as:220

= Pr

[

Ijs = 1 |
s−1
∧

k=1

Ijk
= 1

]

Pr

[

s−1
∧

k=1

Ijk
= 1

]

221

= Ps−1Pr

[

s−1
∧

k=1

Ijk
= 1

]

222

223

= Ps−1Pr

[

Ijs−1
= 1 |

s−2
∧

k=1

Ijk
= 1

]

Pr

[

s−2
∧

k=1

Ijk
= 1

]

224

= Ps−1Ps−2Pr

[

s−2
∧

k=1

Ijk
= 1

]

225

...226

= Ps−1Ps−2 · · · P0227

Lemma 4 shows that if B ≥ N +
√

N or B ≤ N −
√

N , Pj is a non-increasing function of

j = 0, · · · , B − 1. Consequently, P0 ≥ Pj , for j = 1, · · · , B − 1. Thus:

Pr

[

s
∧

k=1

Ijk
= 1

]

≤ Ps
0 ,

and so the bound in Equation (1) holds. J228

The standard Cheroff bounds of Theorem 3 now apply, and we use them obtain bounds229

on the number of singletons. For ease of presentation, we occasionally use exp(x) to denote230

ex.231

I Lemma 5. For N balls that are dropped into B bins where B ≥ N +
√

N or B ≤ N −
√

N ,232

the following is true for any 0 < ε < 1.233

The number of singletons is at least (1−ε)N
eN/(B−1) with probability at least 1 − e

−ε2N
2 exp(N/(B−1)) .234

The number of singletons is at most (1+ε)N
e(N−1)/B with probability at least 1 − e

−ε2N
3 exp(N/(B−1)) .235

Proof. We begin by calculating the expected number of singletons. Let Ii be an indicator236

random variable such that Ii = 1 if bin i contains a single ball; otherwise, Ii = 0. Note that:237

Pr(Ii = 1) =

(

N

1

)(

1

B

)(

1 − 1

B

)N−1

238

≥
(

N

1

)(

1

B

)(

1 − 1

B

)N

239

≥ N

Be(N/(B−1))
(7)240
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where the last line follows from the LHS of Fact 1. Let I =
∑B

i=1 Ii be the number of241

singletons. We have:242

E[I] =
B
∑

i=1

E[Ii] by linearity of expectation243

≥ N

e(N/(B−1))
by Equation (7)244

Next, we derive a concentration result around this expected value. Since B ≥ N +
√

N or245

B ≤ N −
√

N , Theorem 1 guarantees that the Iis are negatively associated, and we may246

apply the Chernoff bound in Equation 3 to obtain:247

Pr

(

I < (1 − ε)
N

e(N/(B−1))

)

≤ exp

(

− ε2N

2e(N/(B−1))

)

248

249

which completes the lower-bound argument. The upper bound is nearly identical. J250

3 Bounding Remaining Packets251

In this section, we derive tools for bounding the number of packets that remain as we progress252

from one window to the next.253

All of our results hold for sufficiently large n > 0. Let wi denote the number of slots in254

window i ≥ 0. Let mi be the number of packets at the start of window i ≥ 0.255

We index windows starting from 0, but this does not necessarily correspond to the initial256

window executed by a backoff algorithm. Rather, in our analysis, window 0 corresponds to257

the first window where packets start to succeed in large numbers; this is different for different258

backoff algorithms.259

For example, BEB’s initial window consists of a single slot, and does not play an important260

role in the makespan analysis. Instead, we apply Chernoff bounds once the window size is at261

least n+
√

n, and this corresponds to window 0. In contrast, for FB, the first window (indeed,262

each window) has size Θ(n), and window 0 is indeed this first window for our analysis. This263

indexing is useful for our inductive arguments presented in Section 4.264

3.1 Analysis265

Our method for upper-bounding the makespan operates in three stages. First, we apply an266

inductive argument—employing Case 1 in Corollary 6 below—to cut down the number of267

packets from n to less than n0.7. Second, Case 2 of Corollary 6 is used whittle the remaining268

packets down to O(n0.4). Third, we hit the remaining packets with a constant number of269

calls to Lemma 7; this is the essence of Lemma 8.270

Intuition for Our Approach. There are a couple things worth noting. To begin, why not271

carry the inductive argument further to reduce the number of packets to O(n0.4) directly272

(i.e., skip the second step above)? Informally, our later inductive arguments show that mi+1273

is roughly at most n/22i

, and so i ≈ lg lg(n) windows should be sufficient. However, lg lg(n)274

is not necessarily an integer and we may need to take its floor. Given the double exponential,275

taking the floor (subtracting 1) results in mi+1 ≥ √
n. Therefore, the equivalent of our276

second step will still be required. Our choice of n0.7 is not the tightest, but it is chosen for277

simpicity.278

The second threshold of O(n0.4) is also not completely arbitrary. In the (common) case279

where w0 ≥ n +
√

n, note that we require O(n1/2−δ) packets remaining, for some constant280
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δ > 0, in order to get a useful bound from Lemma 7. It is possible that after the inductive281

argument, that this is already satisfied; however, if not, then Case 2 of Corollary 6 enforces282

this. Again, O(n0.4) is chosen for ease of presentation; there is some slack.283

I Corollary 6. For wi ≥ n +
√

n, the following is true with probability at least 1 − 1/n2:284

Case 1. If mi ≥ n7/10, then mi+1 <
(5/4)m2

i

n .285

Case 2. If n0.4 ≤mi <n7/10, then mi+1 =O(n2/5).286

Proof. For Case 1, we apply the first result of Lemma 5 with ε =
√

4e ln n
n1/3 , which implies287

with probability at least 1 − exp(− 4e ln n
n2/3

n0.7

2 ) ≥ 1 − exp(−2 ln n) ≥ 1 − 1/n2:288

mi+1 ≤ mi − (1 − ε)mi

emi/(wi−1)
289

≤ mi

(

1 − 1

emi/(wi−1)
+ ε

)

290

≤ mi

(

mi

wi − 1
+ ε

)

by RHS of Fact 1291

≤ m2
i

n
+ miε since wi ≥ n +

√
n (8)292

≤ m2
i

n
+
( mi

n1/3

)√
4e ln n293

<
(5/4)m2

i

n
since mi ≥ n7/10

294

where 5/4 is chosen for ease of presentation.295

For Case 2, we again apply the first result of Lemma 5, but with ε =
√

4e ln n
m . Then,296

with probability at least 1 − 1/n2, the first and second terms in Equation 8 are at most n0.4
297

and O(n0.35
√

ln n), respectively, for the any n0.4 ≤ mi ≤ n7/10. J298

The following lemma is useful for achieving a with-high-probability guarantee when the299

number of balls is small relative to the number of bins.300

I Lemma 7. Assume wi > 2mi. With probability at least 1 − m2
i

wi
, all packets succeed in301

window i.302

Proof. Consider placements of packets in the window that yield at most one packet per slot.303

Note that once a packet is placed in a slot, there is one less slot available for each remaining304

packet yet to be placed. Therefore, there are wi(wi − 1) · · · (wi − mi + 1) such placements.305

Since there are wmi
i ways to place mi packets in wi slots, it follows that the probability306

that each of the mi packets chooses a different slot is:307

wi(wi − 1) · · · (wi − mi + 1)

wmi
i

.308
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We can lower bound this probability:309

=
wmi

i (1 − 1/wi) · · · (1 − (mi − 1)/wi)

wmi
i

310

≥ e
−
∑mi−1

j=1

j
wi−j by LHS of Fact 1311

≥ e
−
∑mi−1

j=1

2j
wi since wi > 2mi > 2j which312

leads to j
wi−j < 2j

wj
313

= e−(1/wi)(mi−1)mi by sum of natural numbers314

≥ 1 − m2
i

wi
+

mi

wi
by RHS of Fact 1315

> 1 − m2
i

wi
316

as claimed. J317

I Lemma 8. Assume a batch of mi < n7/10 packets that execute over a window of size wi,318

where wi ≥ n +
√

n for all i. Then, with probability at least 1 − O(1/n), any monotonic319

backoff algorithm requires at most 6 additional windows for all remaining packets to succeed.320

Proof. If mi ≥ n0.4, then Case 2 of Corollary 6 implies mi+1 = O(n0.4); else, we do not need321

to invoke this case. By Lemma 7, the probability that any packets remain by the end of322

window i + 1 is O(n0.8/n) = O(1/n0.2); refer to this as the probability of failure. Subsequent323

windows increase in size monotonically, while the number of remaining packets decreases324

monotonically. Therefore, the probability of failure is O(1/n0.2) in any subsequent window,325

and the probability of failing over all of the next 5 windows is less than O(1/n). It follows326

that at most 6 windows are needed for all packets to succeed. J327

4 Inductive Arguments328

We present two inductive arguments for establishing upper bounds on mi. Later in Section 5,329

these results are leveraged in our makespan analysis, and extracting them here allows us to330

modularize our presentation. Lemma 9 applies to FB, BEB, and LLB, while Lemma 10331

applies to STB. We highlight that a single inductive argument would suffice for all algorithms332

— allowing for a simpler presentation — if we only cared about asymptotic makespan. However,333

in the case of FB we wish to obtain a tight bound on the first-order term, which is one of334

the contributions in [5].335

In the following, we specify m0 ≤ n since a (very) few packets may have succeeded prior336

to window 0; recall, this is the window where a large number of packets are expected to337

succeed.338

I Lemma 9. Consider a batch of m0 ≤ n packets that execute over windows wi ≥ m0 +
√

m0339

for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

22i lg(5/4)
with error probability at most340

(i + 1)/n2.341

Proof. We argue by induction on i ≥ 0.342

Base Case. Let i = 0. Using Lemma 5:343

m1 ≤ m0 − (1 − ε)m0

em0/(w0−1)
344

≤ m0

(

1 − 1

em0/(w0−1)
+ ε

)

345
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≤ m0

(

1 − 1

e
+ ε

)

346

≤ (0.64)m0347

where the last line follows by setting ε =
√

4e ln n
n1/3 , and assuming n is sufficiently large to348

satisfy the inequality; this gives an error probability of at most 1/n2 . The base case is349

satisfied since (4/5) m0

22i lg(5/4)
= (0.64)m0.350

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0

22i−1 lg(5/4)
with error probabil-351

ity at most i/n2.352

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0

22i lg(5/4)
with an353

error bound of (i + 1)/n2. Addressing the number of packets, we have:354

mi+1 ≤ (5/4)m2
i

wi
355

≤
(

4 m0

5 · 22i−1 lg(5/4)

)2(
5

4wi

)

356

≤
(

4m0

5 · 22i lg(5/4)

)(

m0

wi

)

357

<

(

4m0

5 · 22i lg(5/4)

)

since wi > n358

The first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥ m0 +
√

m0359

for all i ≥ 0, and mi ≥ n7/10 by assumption. This yields an error of at most 1/n2, and so360

the total error is at most i/n2 + 1/n2 = (i + 1)/n2 as desired. The second line follows from361

the IH. J362

A nearly identical lemma is useful for upper-bounding the makespan of STB. The main363

difference arises from addressing the decreasing window sizes in a run, and this necessitates364

the condition that wi ≥ mi +
√

mi rather than wi ≥ m0 +
√

m0 for all i ≥ 0. Later in365

Section 5, we start analyzing STB when the window size reaches 4n; this motivates the366

condition that wi ≥ 4n/2i our next lemma.367

I Lemma 10. Consider a batch of m0 ≤ n packets that execute over windows of size368

wi ≥ mi +
√

mi and wi ≥ 4n/2i for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

2i22i lg(5/4)
369

with error probability at most (i + 1)/n2.370

Proof. We argue by induction on i ≥ 0.371

Base Case. Nearly identical to the base case in proof of Lemma 9; note the bound on mi+1372

is identical for i = 0.373

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0

2i−122i−1 lg(5/4)
with error374

probability at most i/n2.375

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0

2i22i lg(5/4)
with an376

error bound of (i + 1)/n2 (we use the same ε as in Lemma 9). Addressing the number of377
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packets, we have:378

mi+1 ≤ (5/4)m2
i

wi
379

≤
(

4m0

5 · 2i−122i−1 lg(5/4)

)2(
5

4wi

)

380

≤
(

4m0

5 · 2i22i lg(5/4)

)(

m0

2i−2wi

)

381

≤
(

4m0

5 · 2i22i lg(5/4)

)

since wi ≥ 4n/2i
382

Again, the first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥383

m0 +
√

m0 for all i ≥ 0, and mi ≥ n7/10 by assumption. This gives the desired error bound384

of i/n2 + 1/n2 = (i + 1)/n2. The second line follows from the IH. J385

5 Bounding Makespan386

We begin by describing the windowed backoff algorithms Fixed Backoff (FB), Binary387

Exponential Backoff (BEB), and Log-Log Backoff (LLB) analyzed in [5]. Recall388

that, in each window, a packet selects a single slot uniformly at random to send in. Therefore,389

we need only specify how the size of successive windows change.390

FB is the simplest, with all windows having size Θ(n). The value of hidden constant does391

not appear to be explicitly specified in the literature, but we observe that Bender et al. [5]392

use 3e3 in their upper-bound analysis. Here, we succeed using a smaller constant; namely,393

any value at least 1 + 1/
√

n.394

BEB has an initial window size of 1, and each successive window doubles in size.395

LLB has an initial window size of 2, and for a current window size of wi, it executes396

dlg lg(wi)e windows of that size before doubling; we call these sequence of same-sized windows397

a plateau.4398

STB is non-monotonic and executes over a doubly-nested loop. The outer loop sets the399

current window size w to be double that used in the preceding outer loop and each packet400

selects a single slot to send in; this is like BEB. Additionally, for each such w, the inner loop401

executes over lg w windows of decreasing size: w, w/2, w/4, ..., 1; this sequence of windows is402

referred to as a run. For each window in a run, a packet chooses a slot uniformly at random403

in which to send.404

5.1 Analysis405

The following results employ tools from the prior sections a constant number of times, and406

each tool has error probability either O(log n/n2) or O( 1
n ). Therefore, all following theorems407

hold with probability at least 1 − O(1/n), and we omit further discussion of error.408

I Theorem 11. The makespan of FB with window size at least n +
√

n is at most n lg lg n +409

O(n) and at least n lg lg n − O(n).410

Proof. Since wi ≥ n +
√

n for all i ≥ 0, by Lemma 9 less than n7/10 packets remain after411

lg lg(n) + 1 windows; to see this, solve for i in (4/5) n

22i lg(5/4)
= n0.7. By Lemma 8, all412

4 As stated by Bender et al. [5], an equivalent (in terms of makespan) specification of LLB is that
wi+1 = (1 + 1/ lg lg(wi))wi.
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remaining packets succeed within 6 more windows. The corresponding number of slots is413

(lg lg n + 7)(n +
√

n) = n lg lg n + O(n). J414

I Theorem 12. The makespan of BEB is at most 512n lg n + O(n).415

Proof. Let W be the first window of size at least n +
√

n (and less than 2(n +
√

n)). Assume416

no packets finish before the start of W ; otherwise, this can only improve the makespan.417

By Lemma 9 less than n7/10 packets remain after lg lg(n) + 1 windows. By Lemma 8 all418

remaining packets succeed within 6 more windows. Since W has size less than 2(n +
√

n),419

the number of slots until the end of W , plus those for the lg lg(n) + 7 subsequent windows,420

is less than:421





lg(2(n+
√

n))
∑

j=0

2j



+





lg lg(n)+7
∑

k=1

2(n +
√

n)2k





422

= 512(n +
√

n) lg n + O(n)423

by the sum of a geometric series. J424

I Theorem 13. The makespan of STB is O(n).425

Proof. Let W be the first window of size at least 4n. Assume no packets finish before the426

start of W , that is m0 = n; else, this can only improve the makespan.427

While mi ≥ n0.7, our analysis examines the windows in the run starting with window428

W , and so w0 ≥ 4n, w1 ≥ 2n, etc. To invoke Lemma 10, we must ensure that the condition429

wi ≥ mi+
√

mi holds in each window of this run. This holds for i = 0, since w0 = 4n ≥ n+
√

n.430

For i ≥ 1, we argue this inductively by proving mi ≤ (5/4)2i−1−1 n

32i−1 . For the base case431

i = 1, Lemma 5 implies that m1 ≤ n(1 − e−n/(4n−1) + ε) ≤ n(1 − e−1/3 + ε) ≤ n/3, where432

ε is given in Lemma 6. For the inductive step, assume that mi ≤ (5/4)2i−1−1 n

32i−1 for all433

i ≥ 2. Then, by Case 1 of Corollary 6:434

mi+1 ≤ (5/4)m2
i /n435

≤ (5/4)
(

(5/4)2i−1−1 n

32i−1

)2

/n436

≤ (5/4)2i−1 n

32i437

where the second line follows from the assumption, and so the inductive step holds. On the438

other hand, at window i, wi ≥ 4n
2i > 4n

(5/2)·(12/5)2i−1 = 2 · (5/4)2i−1−1 n

32i−1 ≥ 2mi > mi +
√

mi439

holds.440

Lemma 10 implies that after lg lg n + O(1) windows in this run, less than n0.7 packets441

remain. Pessimistically, assume no other packets finish in the run. The next run starts with442

a window of size at least 8n, and by Lemma 8, all remaining packets succeed within the first443

6 windows of this run.444

We have shown that STB terminates within at most dlg(n)e + O(1) runs. The total445

number of slots over all of these runs is O(n) by a geometric series. J446

It is worth noting that STB has asymptotically-optimal makespan since we cannot hope447

to finish n packets in o(n) slots.448

Bender et al. [5] show that the optimal makespan for any monotonic windowed backoff449

algorithm is O(n lg lg n/ lg lg lg n) and that LLB achieves this. We re-derive the makespan450

for LLB.451
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I Theorem 14. The makespan of LLB is O
(

n lg lg n
lg lg lg n

)

.452

Proof. For the first part of our analysis, assume n/ ln ln ln n ≤ m0 ≤ n packets remain.453

Consider the first window with size w0 = cn/ ln ln ln n for some constant c ≥ 8. By Lemma 5,454

each window finishes at least the following number of packets:455

(1 − ε)m0

e
m0

(cn/ ln ln ln n)−1

>
(1 − ε)n

e
n

(cn/ ln ln ln n)−1 · ln ln ln n
456

=
(1 − ε)n

(ln ln n)
2
c · ln ln ln n

457

=
(1 − ε)n

(ln ln n)
ln ln ln ln n

ln ln ln n + 2
c

458

>
n

(ln ln n)
3
c

459

where the third line follows from noting that (ln ln n)ln(ln ln ln n) = (ln ln ln n)ln(ln ln n), and460

the last line follows for sufficiently-large n. Setting ε =

√

4e ln2(n)
n suffices to give an error461

probability at most exp(− 4e ln2(n)
n · n

2 ln ln ln(n)e
n

(cn/ ln ln ln n)−1
) ≤ 1/n2.462

Observe that in this first part of the analysis, we rely on wi ≤ mi −√
mi or wi ≥ mi +

√
mi463

in order to apply Lemma 5. However, after enough packets succeed, neither of these464

inequalities may hold. But there will be at most a single plateau with windows of size465

O(n/ ln ln ln n) where this occurs, since the window size will then double. During this466

plateau, which consists of O(lg lg(n/ ln ln ln n)) = O(lg lg n) windows, we pessimistically467

assume no packets succeed.468

Therefore, starting with n packets, after at most n−n/ ln ln ln n
n/(ln ln n)3/c + O(lg lg n) = O(ln ln n)469

windows, the number of remaining packets is less than n/ ln ln ln n, and the first part of our470

analysis is over.471

Over the next two plateaus, LLB has at least 2 lg lg(n)−O(1) windows of size Θ(n/ ln ln ln n).472

Since in this part of the analysis, wi ≥ 8n/ ln ln ln n and mi < n/ ln ln ln n, we have473

wi ≥ mi +
√

mi. Therefore, we may invoke Lemma 9, which implies that after at most474

lg lg(n) + 1 windows, less than n0.7 packets remain. If at least n2/5 packets still remain, by475

Case 2 of Corollary 1, at most O(n2/5) packets remain by the end of the next window, and476

they will finish within an additional 6 windows by Lemma 8.477

Finally, tallying up over both parts of the analysis, the makespan is O(ln ln n)O( n
ln ln ln n ) =478

O( n ln ln n
ln ln ln n ). J479

6 Discussion480

We have argued that standard Chernoff bounds can be applied to analyze singletons, and we481

illustrate how they simplify the analysis of several backoff algorithms under batched arrivals.482

While our goal was only to demonstrate the benefits of this approach, natural extensions483

include the following. First, there is some slack in our arguments, and we can likely derive484

tighter constants in our analysis. For example, the number of windows required in Lemma 8485

might be reduced; this would reduce the leading constant for our BEB analysis.486

Second, we strongly believe that lower bounds can be proved using this approach. In487

fact, Max bets Qian (under penalty of eating bitter melon) that a lower bound on FB of488

n lg lg n − O(n) can be proved, which is tight in the highest-order term.489
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Third, a similar treatment is possible for polynomial backoff or generalized exponential490

backoff (see [5] for the specification of these algorithms).491

Fourth, a plausible next step is to examine whether we can extend this type of analysis492

to the case where packets have different sizes, as examined in [6].493

References494

1 Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.495

Medium access control for adversarial channels with jamming. In Proceedings of the 18th Inter-496

national Colloquium on Structural Information and Communication Complexity (SIROCCO),497

pages 89–100, 2011.498

2 Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. Unbounded contention499

resolution in multiple-access channels. Algorithmica, 67(3):295–314, 2013.500

3 Baruch Awerbuch, Andrea Richa, and Christian Scheideler. A jamming-resistant MAC protocol501

for single-hop wireless networks. In Proceedings of the 27th ACM Symposium on Principles of502

Distributed Computing (PODC), pages 45–54, 2008.503

4 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.504

Comput., 29(1):180–200, September 1999.505

5 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.506

Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th507

Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages508

325–332, 2005.509

6 Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. Contention Resolution with510

Heterogeneous Job Sizes. In Proceedings of the 14th Conference on Annual European Symposium511

(ESA), pages 112–123, 2006.512

7 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. How to scale513

exponential backoff: Constant throughput, polylog access attempts, and robustness. In514

Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.515

8 Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention resolution516

with log-logstar channel accesses. In Proceedings of the Forty-eighth Annual ACM Symposium517

on Theory of Computing, STOC ’16, pages 499–508, 2016.518

9 Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel. Multiple-519

choice balanced allocation in (almost) parallel. In Approximation, Randomization, and520

Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM), pages 411–521

422, 2012.522

10 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations:523

The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.524

11 Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-525

into-bins with nearly optimal load distribution. In Proceedings of the Twenty-fifth Annual526

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 326–335,527

2013.528

12 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.529

The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles530

of Distributed Computing, PODC ’18, pages 95–104, 2018.531

13 Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Exponential532

separations in the energy complexity of leader election. In Proceedings of the 49th Annual533

ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,534

June 19-23, 2017, pages 771–783, 2017.535

14 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-536

channel single-hop radio networks. Theoretical Computer Science, 615(C):23 – 44, February537

2016.538

FUN 2020



24:16 Singletons for Simpletons

15 Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the539

wake-up problem in radio networks. In Proceedings of the 32nd International Colloquium on540

Automata, Languages and Programming (ICALP), pages 347–359, 2005.541

16 Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In542

Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages543

266–274, 2004.544

17 Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-up problem in multihop545

radio networks. SIAM Journal on Computing, 36(5):1453–1471, 2007.546

18 Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W. Richa,547

Ramesh K. Sitaraman, and Eli Upfal. On balls and bins with deletions. In Proceedings of the548

Second International Workshop on Randomization and Approximation Techniques in Computer549

Science (RANDOM), pages 145–158, 1998.550

19 A. Czumaj and V. Stemann. Randomized Allocation Processes. In Proceedings 38th Annual551

Symposium on Foundations of Computer Science, pages 194–203, 1997.552

20 Gianluca De Marco and Grzegorz Stachowiak. Asynchronous shared channel. In Proceedings553

of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pages 391–400,554

2017.555

21 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of556

Randomized Algorithms. Cambridge University Press, 1st edition, 2009.557

22 Devdatt Dubhashi and Desh Ranjan. Balls and Bins: A Study in Negative Dependence. Random558

Structures & Algorithms, 13(2):99–124, 1998. doi:10.1002/(SICI)1098-2418(199809)13:559

2<99::AID-RSA1>3.0.CO;2-M.560

23 Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Contention resolution561

on a fading channel. In Proceedings of the ACM Symposium on Principles of Distributed562

Computing (PODC), pages 155–164, 2016.563

24 Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. Contention resolution on multiple564

channels with collision detection. In Proceedings of the 2016 ACM Symposium on Principles565

of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 175–184,566

2016.567

25 Mihály Geréb-Graus and Thanasis Tsantilas. Efficient optical communication in parallel com-568

puters. In Proceedings 4th Annual ACM Symposium on Parallel Algorithms and Architectures569

(SPAA), pages 41–48, 1992.570

26 Leslie Ann Goldberg and Philip D. MacKenzie. Analysis of practical backoff protocols for conten-571

tion resolution with multiple servers. Journal of Computer and System Sciences, 58(1):232 – 258,572

1999. URL: http://www.sciencedirect.com/science/article/pii/S0022000098915902,573

doi:https://doi.org/10.1006/jcss.1998.1590.574

27 Leslie Ann Goldberg, Philip D. Mackenzie, Mike Paterson, and Aravind Srinivasan. Contention575

resolution with constant expected delay. Journal of the ACM, 47(6):1048–1096, 2000.576

28 Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. Stability of binary577

exponential backoff. Journal of the ACM, 35(3):579–602, July 1988.578

29 Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. In Proceedings579

of the 26th Annual Symposium on Foundations of Computer Science (FOCS), pages 241–249,580

1985.581

30 Johan Hastad, Tom Leighton, and Brian Rogoff. Analysis of backoff protocols for multiple582

access channels. SIAM Journal on Computing, 25(4):1996, 740-774.583

31 IEEE. IEEE standard for information technology–telecommunications and information ex-584

change between systems local and metropolitan area networks – Specific requirements - Part585

11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.586

IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, 2016.587

32 Tomasz Jurdzinski and Grzegorz Stachowiak. The cost of synchronizing multiple-access588

channels. In Proceedings of the ACM Symposium on Principles of Distributed Computing589

(PODC), pages 421–430, 2015.590



Q. M. Zhou et al. 24:17

33 A R Karlin and E Upfal. Parallel Hashing - An Efficient Implementation of Shared Memory.591

In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC),592

pages 160–168, 1986.593

34 James F. Kurose and Keith Ross. Computer Networking: A Top-Down Approach. Pearson,594

6th edition, 2013.595

35 Christoph Lenzen and Roger Wattenhofer. Tight Bounds for Parallel Randomized Load596

Balancing: Extended Abstract. In Proceedings of the Forty-third Annual ACM Symposium on597

Theory of Computing, STOC ’11, pages 11–20, 2011.598

36 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm599

for conflict resolution in a dynamic multiple-access channel. SIAM Journal on Computing,600

44(3):868–888, 2015.601

37 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized602

multiple access channel. Theoretical Computer Science, 689:1 – 13, 2017.603

38 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local604

computer networks. Communications of the ACM, 19(7):395–404, July 1976.605

39 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms606

and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.607

40 Michael David Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.608

PhD thesis, University of California, Berkeley, 1996.609

41 K. Nakano and S. Olariu. Uniform leader election protocols for radio networks. IEEE610

Transactions on Parallel and Distributed Systems, 13(5):516–526, May 2002. doi:10.1109/611

TPDS.2002.1003864.612

42 Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Sade:613

competitive MAC under adversarial SINR. Distributed Computing, 31(3):241–254, Jun 2018.614

43 Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays. SIAM615

Journal on Computing, 28(2):709–719, April 1999.616

44 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. A jamming-resistant MAC617

protocol for multi-hop wireless networks. In Proceedings of the International Symposium on618

Distributed Computing (DISC), pages 179–193, 2010.619

45 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and fair620

medium access despite reactive jamming. In Proceedings of the 31st International Conference621

on Distributed Computing Systems (ICDCS), pages 507–516, 2011.622

46 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and Fair623

Throughput for Co-existing Networks Under Adversarial Interference. In Proceedings of the624

2012 ACM Symposium on Principles of Distributed Computing (PODC), pages 291–300, 2012.625

47 Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A626

survey of techniques and results. Combinatorial Optimization, 9:255–304, 2001.627

48 X. Sun and L. Dai. Backoff Design for IEEE 802.11 DCF Networks: Fundamental Tradeoff628

and Design Criterion. IEEE/ACM Transactions on Networking, 23(1):300–316, 2015.629

49 Eli Upfal. Efficient Schemes for Parallel Communication. J. ACM, 31(3):507–517, June 1984.630

50 Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–589,631

2003.632

51 Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.633

SIAM J. Comput., 15(2):468–477, May 1986.634

52 D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran. Fast and Robust Compressive Phase635

Retrieval with Sparse-Graph Codes. In 2015 IEEE International Symposium on Information636

Theory (ISIT), pages 2583–2587, June 2015.637

FUN 2020



24:18 Singletons for Simpletons

Appendix638

A Chernoff Bounds and Property 1639

In Problem 1.8 of Dubhashi and Panconesi [21], the following question is posed: Show that if640

Property 1 holds, then Theorem 3 holds. We are invoking this result, but an argument is641

absent in [21].642

We bridge this gap with Claim 15 below. This fits directly into the derivation of Chernoff643

bounds given in Dubhashi and Panconesi [21]. In particular, the line above Equation 1.3 on644

page 4 of [21] claims equality for Equation 10 below by invoking independence of the random645

variables. Here, Claim 15 gives an inequality (in the correct direction) and the remainder of646

the derivation in [21] follows without any further modifications.647

B Claim 15. Let X1, · · · , Xn be a set of indicator random variables satisfying the property:648

Pr

[

∧

i∈S
Xi = 1

]

≤
∏

i∈S
Pr [Xi = 1] (9)649

for all subsets S ⊂ {1, · · · , n}. Then the following holds:650

E

[

n
∏

i=1

eλXi

]

≤
n
∏

i=1

E
[

eλXi
]

(10)651

Proof. Let N denote the set of strictly positive integers. First, we need to point out two652

properties of indicator random variables653

(i) Xk
i = Xi for all k ∈ N; and654

(ii) E [Xi] = Pr [Xi = 1], and E
[
∏

i∈S Xi

]

= Pr

[

∧

i∈S
Xi = 1

]

for all subset S.655

By Taylor expansion we have eλXi =
∑∞

k=0 λk Xk
i

k! , and then,656

E
[

eλXi
]

=

∞
∑

k=0

λk E
[

Xk
i

]

k!
(11)657

Thus, the product in the left hand side (LHS) of (10) becomes
∏n

i=1 eλXi =
∏n

i=1

(

∑∞
k=0

λk

k! Xk
i

)

,658

which can be written as a polynomial function of λ, i.e.
∑∞

r=0 frλr, where fr are coeffi-659

cients which may contain the indicator random variables Xis. Here f0 = 1. To get the660

expression of fr for r ≥ 1, we first define a set, for all integers k, r ∈ N with k ≤ r, let661

I(k, r) = {(d1, d2, · · · , dk) : d1, · · · , dk ∈ N, d1 ≤ d2 ≤ · · · ≤ dk, d1 + d2 + · · · + dk = r}.662

Then the coefficients fr, r ≥ 1, can be expressed as663

fr =

min{r,n}
∑

k=1

∑

(d1,··· ,dk)∈I(r,k)

∑

1≤i1 6=i2 6=···6=ik≤n

Xd1
i1

d1!

Xd2
i2

d2!
· · ·

Xdk
ik

dk!
. (12)664
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For example,665

f1 =

n
∑

i=1

Xi666

f2 =

n
∑

i=1

X2
i

2!
+

∑

1≤i1 6=i2≤n

Xi1
Xi2

667

f3 =

n
∑

i=1

X3
i

3!
+

∑

1≤i1 6=i2≤n

Xi1

X2
i2

2!
+

∑

1≤i1 6=i2 6=n3≤n

Xi1
Xi2

Xi3
668

...669
670

With the expression (12), the LHS becomes671

LHS = 1 +
∞
∑

r=1

λr

min{r,n}
∑

k=1

∑

(d1,··· ,dk)∈I(r,k)

∑

1≤i1 6=i2 6=···6=ik≤n

E

[

Xd1
i1

d1!

Xd2
i2

d2!
· · ·

Xdk
ik

dk!

]

672

= 1 +

∞
∑

r=1

λr

min{r,n}
∑

k=1

∑

(d1,··· ,dk)∈I(r,k)

∑

1≤i1 6=i2 6=···6=ik≤n

E
[

Xd1
i1

Xd2
i2

· · · Xdk
ik

]

d1!d2! · · · dk!
673

674

Similarly, with the Taylor expansion of (11), the product in the right hand side (RHS) of675

(10) becomes676

RHS =

n
∏

i=1

( ∞
∑

k=0

λk E
[

Xk
i

]

k!

)

677

= 1 +

∞
∑

r=1

λr

min{r,n}
∑

k=1

∑

(d1,··· ,dk)∈I(r,k)

∑

1≤i1 6=i2 6=···6=ik≤n

E
[

Xd1
i1

]

d1!

E
[

Xd2
i2

]

d2!
· · ·

E
[

Xdk
ik

]

dk!
678

= 1 +

∞
∑

r=1

λr

min{r,n}
∑

k=1

∑

(d1,··· ,dk)∈I(r,k)

∑

1≤i1 6=i2 6=···6=ik≤n

E
[

Xd1
i1

]

E
[

Xd2
i2

]

· · · E
[

Xdk
ik

]

d1!d2! · · · dk!
679

680

By the above-mentioned two properties (i) and (ii) of indicator random variables, then681

E
[

Xd1
i1

Xd2
i2

· · · Xdk
ik

]

= E [Xi1
Xi2

· · · Xik
] = Pr [Xi1

= 1, Xi2
= 1, · · · , Xik

= 1]682

E
[

Xd1
i1

]

E
[

Xd2
i2

]

· · · E
[

Xdk
ik

]

= E [Xi1
] E [Xi2

] · · · E [Xik
]683

= Pr [Xi1 = 1] Pr [Xi2 = 1] · · · Pr [Xik
= 1] .684

685

By the condition (9), we have Pr [Xi1
= 1, Xi2

= 1, · · · , Xik
= 1] ≤ Pr [Xi1

= 1] Pr [Xi2
= 1] · · · Pr [Xik

= 1],

and thus

E
[

Xd1
i1

Xd2
i2

· · · Xdk
ik

]

≤ E
[

Xd1
i1

]

E
[

Xd2
i2

]

· · · E
[

Xdk
ik

]

.

Thus (10) holds. J686
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