

1 Singletions for Simpletons

2 Revisiting Windowed Backoff with Chernoff Bounds

3 Qian M. Zhou

4 Mississippi State University, Department of Mathematics and Statistics, MS, USA

5 qz70@msstate.edu

6 Aiden Calvert

7 Mississippi School for Mathematics and Science, MS, USA

8 calverta20@themssms.org

9 Maxwell Young

10 Mississippi State University, Department of Computer Science and Engineering, MS, USA

11 myoung@cse.msstate.edu

12 Abstract

13 Backoff algorithms are used in many distributed systems where multiple devices contend for a shared
14 resource. For the classic balls-into-bins problem, the number of singletions—those bins with a single
15 ball—is important to the analysis of several backoff algorithms; however, existing analyses employ
16 advanced probabilistic tools to obtain concentration bounds. Here, we show that standard Chernoff
17 bounds can be used instead, and the simplicity of this approach is illustrated by re-analyzing some
18 well-known backoff algorithms.

19 2012 ACM Subject Classification Theory of computation → Distributed algorithms

20 Keywords and phrases Chernoff bounds, backoff, contention resolution, algorithms

21 Digital Object Identifier 10.4230/LIPIcs.FUN.2020.24

22 Funding *Maxwell Young*: This research is supported by the National Science Foundation grant CNS
23 1816076, and by the U.S. National Institute of Justice (NIJ) Grant 2018-75-CX-K002.

24 1 Introduction

25 Backoff algorithms address the general problem of how to share a resource among multiple
26 devices [38]. A ubiquitous application is IEEE 802.11 (WiFi) networks [31, 48, 34], where
27 the resource is a wireless channel, and devices each have packets to send. Any single packet
28 sent uninterrupted over the channel is likely to be received, but if the sending times of two
29 or more packets overlap, communication often fails due to destructive interference at the
30 receiver (i.e., a collision). An important performance metric is the time required for all
31 packets to be sent, which is known as the *makespan*.

32 Formal Model. Time is discretized into *slots*, and each packet can be transmitted within a
33 single slot. Starting from the first slot, a *batch* of *n packets* is ready to be transmitted on a
34 shared channel. This case, where all packets start at the same time, is sometimes referred to
35 as the *batched-arrivals* setting. Each packet can be viewed as originating from a different
36 source device, and going forward we speak only of packets rather than devices.

37 For any fixed slot, if a single packet sends, then the packet *succeeds*; however, if two or
38 more packets send, then all corresponding packets *fail*. A packet that attempts to send in a
39 slot learns whether it succeeded and, if so, the packet takes no further action; otherwise, the
40 packet learns that it failed in that slot, and must try again at a later time.

41 Background on Analyzing Makespan. A natural question is the following: *For a given*
42 *backoff algorithm under batched-arrivals, what is the makespan as measured in the number of*
43 *slots?*

© Qian M. Zhou, Aiden Calvert, and Maxwell Young;

licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2020).

Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 24; pp. 24:1–24:19

 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

24:2 **Singletons for Simpletons**

44 This question was first addressed by Bender et al. [5] who analyze several backoff
45 algorithms that execute over disjoint, consecutive sets of slots called ***windows***. In every
46 window, each packet that has not yet succeeded selects a single slot uniformly at random in
47 which to send. If the packet succeeds, then it leaves the system; otherwise, the failed packet
48 waits for the next window to begin and repeats this process.

49 Bender et al. [5] analyze several algorithms where windows monotonically increase in size.
50 The well-known ***binary exponential backoff*** algorithm—a critical component of many
51 WiFi standards—exemplifies this behavior, where each successive window increases in size
52 by a factor of 2.¹

53 There is a close relationship between the execution of such algorithms in a window, and
54 the popular balls-in-bins scenario, where N balls (corresponding to packets) are dropped
55 uniformly at random into B bins (corresponding to slots). In this context, we are interested in
56 the number of bins containing a single ball, which are sometimes referred to as ***singletons*** [52].

57 Despite their simple specification, windowed backoff algorithms are surprisingly intricate
58 in their analysis. In particular, obtaining concentration bounds on the number of slots (or
59 bins) that contain a single packet (or ball)—which we will *also* refer to as **singletons**—is
60 complicated by dependencies that rule out a straightforward application of Chernoff bounds
61 (see Section 2.1). This is unfortunate given that Chernoff bounds are often one of the first
62 powerful probabilistic tools that researchers learn, and they are standard material in a
63 randomized algorithms course.

64 In contrast, the makespan results in Bender et al. [5] are derived via delay sequences [33, 49],
65 which are arguably a less-common topic of instruction. Alternative tools for handling
66 dependencies include Poisson-based approaches by Mizenmacher [40] and Mitzenmacher and
67 Upfal [39], and the Doob martingale [21], but to the best of our knowledge, these have not
68 been applied to the analysis of windowed backoff algorithms.

69 1.1 Our Goal

70 Is there a simpler route to arrive at makespan results for windowed backoff algorithms?

71 Apart from being a fun theoretical question to explore, an affirmative answer might
72 improve accessibility to the area of backoff algorithms for researchers. More narrowly, this
73 might benefit students embarking on research, many of whom cannot fully appreciate the very
74 algorithms that enable, for example, their ~~Instagram~~ posts access to online course notes.²
75 Arguably, Chernoff bounds can be taught without much setup. For example, Dhubashi
76 and Panconesi [21] derive Chernoff bounds starting on page 3, while their discussion of
77 concentration results for dependent variables is deferred until Chapter 5.

78 What if we could deploy standard Chernoff bounds to analyze **singletons**? Then, the
79 analysis distills to proving the correctness of a “guess” regarding a recursive formula (a
80 well-known procedure for students) describing the number of packets remaining after each
81 window, and that guess would be accurate with small error probability.

82 Finally, while it may not be trivial to show that Chernoff bounds are applicable to
83 backoff, showing that another problem—especially one that has such important applications—
84 succumbs to Chernoff bounds is aesthetically satisfying.

¹ In practice, the doubling terminates at some fixed large value set by the standard.

² In our experience, the makespan analysis is inaccessible to most students in the advanced computer networking course.

85 1.2 Results

86 We show that Chernoff bounds can indeed be used as proposed above. Our approach involves
 87 an argument that the indicator random variables for counting singletons satisfy the following
 88 property from [22]:

89 ▶ **Property 1.** *Given a set of n indicator random variables $\{X_1, \dots, X_n\}$, for all subsets
 90 $\mathbb{S} \subset \{1, \dots, n\}$ the following is true:*

$$91 \quad \Pr \left[\bigwedge_{j \in \mathbb{S}} X_j = 1 \right] \leq \prod_{j \in \mathbb{S}} \Pr [X_j = 1]. \quad (1)$$

92 We prove the following:

93 ▶ **Theorem 1.** *Consider N balls dropped uniformly at random into B bins. Let $I_j = 1$ if
 94 bin j contains exactly 1 ball, and $I_j = 0$ otherwise, for $j = 1, \dots, B$. If $B \geq N + \sqrt{N}$ or
 95 $B \leq N - \sqrt{N}$, then $\{I_1, \dots, I_B\}$ satisfy the Property 1.*

96 Property 1 permits the use of standard Chernoff bounds; this implication is posed as an
 97 exercise by Dubhashi and Panconesi [21] (Problem 1.8), and we provide the argument in our
 98 appendix.

99 We then show how to use Chernoff bounds to obtain asymptotic makespan results for
 100 some of the algorithms previously analyzed by Bender et al. [5]: BINARY EXPONENTIAL
 101 BACKOFF (BEB), FIXED BACKOFF (FB), and LOG-LOG BACKOFF (LLB). Additionally,
 102 we re-analyze the asymptotically-optimal (non-monotonic) SAWTOOTH BACKOFF (STB)
 103 from [29, 25].

104 These algorithms are specified in Section 5, but our makespan results are stated below.

105 ▶ **Theorem 2.** *For a batch of n packets, the following holds with probability at least $1 - O(1/n)$:*

- 106 ■ FB has makespan at most $n \lg \lg n + O(n)$.
- 107 ■ BEB has makespan at most $512n \lg n + O(n)$.
- 108 ■ LLB has makespan $O(n \lg \lg n / \lg \lg \lg n)$.
- 109 ■ STB has makespan $O(n)$.

110 We highlight that both of the cases in Theorem 1, $B \leq N + \sqrt{N}$ and $B \geq N - \sqrt{N}$, are
 111 useful. Specifically, the analysis for BEB, FB, and STB uses the first case, while LLB uses
 112 both.

113 1.3 Related Work

114 Several prior results address dependencies and their relevance to Chernoff bounds and load-
 115 balancing in various balls-in-bins scenarios. In terms of backoff, the literature is vast. In
 116 both cases, we summarize closely-related works.

117 **Dependencies, Chernoff Bounds, & Ball-in-Bins.** Backoff is closely-related to balls-
 118 and-bins problems [4, 18, 47, 50], where balls and bins correspond to packets and slots,
 119 respectively. Balls-in-bins analysis often arises in problems of load balancing (for examples,
 120 see [9, 10, 11]).

121 Dubhashi and Ranjan [22] prove that the occupancy numbers — random variables N_i
 122 denoting the number of balls that fall into bin i — are negatively associated. This result is
 123 used by Lenzen and Wattenhofer [35] to prove negative association for the random
 124 variables that correspond to at most $k \geq 0$ balls.

24:4 Singletons for Simpletons

125 Czumaj and Stemann [19] examine the maximum load in bins under an adaptive process
 126 where each ball is placed into a bin with minimum load of those sampled prior to placement.
 127 Negative association of the occupancy numbers is important to this analysis.

128 Finally, Dubhashi and Ranjan [22] also show that Chernoff bounds remain applicable
 129 when the corresponding indicator random variables that are negatively associated. The same
 130 result is presented in Dubhashi and Panconesi [21].

131 **Backoff Algorithms.** Many early results on backoff are given in the context of statistical
 132 queuing-theory (see [30, 28, 43, 26, 30, 27]) where a common assumption is that packet-arrival
 133 times are Poisson distributed.

134 In contrast, for the batched-arrivals setting, the makespan of backoff algorithms with
 135 monotonically-increasing window sizes has been analyzed in [5], and with packets of different
 136 sizes in [6]. A windowed, but non-monotonic backoff algorithm which is asymptotically
 137 optimal in the batched-arrival setting is provided in [25, 29, 2].

138 A related problem is *contention resolution*, which addresses the time until the first packet
 139 succeeds [51, 41, 24, 23]. This has close ties to the well-known problem of leader election
 140 (for examples, see [13, 12]).

141 Several results examine the *dynamic* case where packets arrive over time as scheduled in
 142 a worst-case fashion [36, 20, 8]; this is in contrast to batched-arrivals where it is implicitly
 143 assumed that the current batch of packets succeeds before the next batch arrives. A similar
 144 problem is that of *wake-up* [16, 15, 17, 14, 37, 32], which addresses how long it takes for a
 145 single transmission to succeed when packets arrive under the dynamic scenario.

146 Finally, several results address the case where the shared communication channel is
 147 unavailable at due to malicious interference [3, 44, 45, 46, 42, 1, 7].

148 2 Analysis for Property 1

149 We present our results on Property 1. Since we believe this result may be useful outside
 150 of backoff, our presentation in this section is given in terms of the well-known balls-in-bins
 151 terminology, where we have \mathbf{N} balls that are dropped uniformly at random into \mathbf{B} bins.

152 2.1 Preliminaries

153 Throughout, we often employ the following inequalities (see Lemma 3.3 in [46]), and we will
 154 refer to the left-hand side (LHS) or right-hand side (RHS) when doing so.

155 ▶ **Fact 1.** For any $0 < x < 1$, $e^{-x/(1-x)} \leq 1 - x \leq e^{-x}$.

156 Knowing that indicator random variables (i.r.v.s) satisfy Property 1 is useful since the
 157 following Chernoff bounds can then be applied.

158 ▶ **Theorem 3.** (Dubhashi and Panconesi [21])³ Let $X = \sum_i X_i$ where X_1, \dots, X_m are i.r.v.s
 159 that satisfy Property 1. For $0 < \epsilon < 1$, the following holds:

$$160 \quad \Pr[X > (1 + \epsilon)E[X]] \leq \exp\left(-\frac{\epsilon^2}{3}E[X]\right) \quad (2)$$

$$161 \quad \Pr[X < (1 - \epsilon)E[X]] \leq \exp\left(-\frac{\epsilon^2}{2}E[X]\right) \quad (3)$$

³ This is stated in Problem 1.8 in [21]; we present a proof in Section A of our appendix.

¹⁶² We are interested in the i.r.v.s I_j , where:

$$\begin{aligned} \text{163} \quad I_j = \begin{cases} 1, & \text{if bin } j \text{ contains exactly 1 ball.} \\ 0, & \text{otherwise.} \end{cases} \end{aligned}$$

¹⁶⁴ Unfortunately, there are cases where the I_j s fail to satisfy Property 1. For example, consider
¹⁶⁵ $N = 2$ balls and $B = 2$ bins. Then, $Pr(I_1 = 1) = Pr(I_2 = 1) = 1/2$, so $Pr(I_1 = 1) \cdot Pr(I_2 = 1) = 1/4$, but $Pr(I_1 = 1 \wedge I_2 = 1) = 1/2$.

¹⁶⁷ A naive approach (although, we have not seen it in the literature) is to leverage the
¹⁶⁸ result in [35], that the variables used to count the number of bins with at most k balls are
¹⁶⁹ negatively associated. We may bound the number of bins that have at most 1 ball, and the
¹⁷⁰ number of bins that have (at most) 0 balls, and then take the difference. However, this is a
¹⁷¹ cumbersome approach, and our result is more direct.

¹⁷² Returning briefly to the context of packets and time slots, another approach is to consider
¹⁷³ a subtly-different algorithm where a packet sends with probability $1/w$ in each slot of a
¹⁷⁴ window with w slots, rather than selecting uniformly at random a single slot to send in.
¹⁷⁵ However, as Bender et al. [5] point out, when n is within a constant factor of the window size,
¹⁷⁶ there is a constant probability that the packet will not send in *any* slot. Consequently, the
¹⁷⁷ number of windows required for all packets to succeed increases by a $\log n$ -factor, whereas
¹⁷⁸ only $O(\log \log n)$ windows are required under the model used here.

¹⁷⁹ 2.2 Property 1 and Bounding Singletons

To prove Theorem 1, we establish the following Lemma 4. For $j = 1, \dots, B - 1$, define:

$$\mathcal{P}_j = Pr[I_{j+1} = 1 \mid I_1 = 1, \dots, I_j = 1]$$

¹⁸⁰ which is the conditional probability that bin $j + 1$ contains exactly 1 ball given each of the
¹⁸¹ bins $\{1, \dots, j\}$ contains exactly 1 ball. Note that $Pr[I_j = 1]$ is same for any $j = 1, \dots, B$,
¹⁸² and let:

$$\text{183} \quad \mathcal{P}_0 \triangleq Pr[I_j = 1] = N \left(\frac{1}{B} \right) \left(1 - \frac{1}{B} \right)^{N-1}. \quad (4)$$

¹⁸⁴ ▶ **Lemma 4.** *If $B \geq N + \sqrt{N}$ or $B \leq N - \sqrt{N}$, the conditional probability \mathcal{P}_j is a
¹⁸⁵ monotonically non-increasing function of j , i.e., $\mathcal{P}_j \geq \mathcal{P}_{j+1}$, for $j = 0, \dots, B - 2$.*

¹⁸⁶ **Proof.** First, for $j = 1, \dots, \min\{B, N\} - 1$, the conditional probability can be expressed as

$$\text{187} \quad \mathcal{P}_j = (N - j) \left(\frac{1}{B - j} \right) \left(1 - \frac{1}{B - j} \right)^{N-j-1}. \quad (5)$$

¹⁸⁸ Note that \mathcal{P}_0 in (4) is equal to (5) with $j = 0$.

¹⁸⁹ For $B \geq N + \sqrt{N}$, we note that beyond the range $j = 1, \dots, \min\{B, N\} - 1$ (i.e., $N - 1$),
¹⁹⁰ it must be that $\mathcal{P}_j = 0$. In other words, $\mathcal{P}_j = 0$ for $j = N, N + 1, \dots, B - 1$ since all balls
¹⁹¹ have already been placed. Thus, we need to prove $\mathcal{P}_j \geq \mathcal{P}_{j+1}$, for $j = 0, \dots, N - 2$.

¹⁹² On the other hand, if $B \leq N - \sqrt{N}$, we need to prove $\mathcal{P}_j \geq \mathcal{P}_{j+1}$, for $j = 0, \dots, B - 2$.
¹⁹³ Thus, this lemma is equivalent to prove if $B \geq N + \sqrt{N}$ or $B \leq N - \sqrt{N}$, the ratio
¹⁹⁴ $\mathcal{P}_j/\mathcal{P}_{j+1} \geq 1$, for $j = 0, \dots, \min\{B, N\} - 2$.

24:6 Singletons for Simpletons

195 Using the expression (5), the ratio can be expressed as

$$\begin{aligned}
 \frac{\mathcal{P}_j}{\mathcal{P}_{j+1}} &= \frac{(N-j) \left(\frac{1}{B-j}\right) \left(1 - \frac{1}{B-j}\right)^{N-j-1}}{(N-j-1) \left(\frac{1}{B-j-1}\right) \left(1 - \frac{1}{B-j-1}\right)^{N-j-2}} \\
 &= \frac{1}{\left(\frac{B-j}{N-j}\right) \left(\frac{N-j-1}{B-j-1}\right)} \cdot \frac{\left(1 - \frac{1}{B-j}\right)^{N-j-1}}{\left(1 - \frac{1}{B-j-1}\right)^{N-j-2}} \\
 &= \frac{1}{\left(\frac{B-j}{N-j}\right) \left(\frac{N-j-1}{B-j-1}\right)} \cdot \frac{\left(\frac{B-j-1}{B-j}\right)^{N-j-1}}{\left(\frac{B-j-2}{B-j-1}\right)^{N-j-1} \left(\frac{B-j-1}{B-j-2}\right)} \\
 &= \frac{1}{\left(\frac{B-j}{N-j}\right) \left(\frac{N-j-1}{B-j-2}\right)} \cdot \left(\frac{\frac{B-j-1}{B-j}}{\frac{B-j-2}{B-j-1}}\right)^{N-j-1} \\
 &= \frac{\left(1 + \frac{1}{(B-j)(B-j-2)}\right)^{N-j-1}}{\frac{(N-j-1)(B-j)}{(N-j)(B-j-2)}}.
 \end{aligned}$$

201 Let $a = N - j$, then $2 \leq a \leq N$; and let $y = B - N$. Thus, the ratio becomes

$$\frac{\mathcal{P}_j}{\mathcal{P}_{j+1}} = \frac{\left[1 + \frac{1}{(a+y)(a+y-2)}\right]^{a-1}}{\frac{(a-1)(a+y)}{a(a+y-2)}}.$$

By the Binomial theorem, we have

$$\left[1 + \frac{1}{(a+y)(a+y-2)}\right]^{a-1} = 1 + \frac{a-1}{(a+y)(a+y-2)} + \sum_{k=2}^{a-1} \binom{a-1}{k} \left[\frac{1}{(a+y)(a+y-2)}\right]^k.$$

204 Thus, the ratio can be written as:

$$\begin{aligned}
 \frac{\mathcal{P}_j}{\mathcal{P}_{j+1}} &= \frac{a(a+y-2)}{(a-1)(a+y)} + \frac{a}{(a+y)^2} + \frac{\sum_{k=2}^{a-1} \binom{a-1}{k} \left[\frac{1}{(a+y)(a+y-2)}\right]^k}{\frac{(a-1)(a+y)}{a(a+y-2)}} \\
 &= \frac{a^3 + 2a^2y - a^2 + ay^2 - 2ay - a}{a^3 + 2a^2y - a^2 + ay^2 - 2ay - y^2} + \frac{\sum_{k=2}^{a-1} \binom{a-1}{k} \left[\frac{1}{(a+y)(a+y-2)}\right]^k}{\frac{(a-1)(a+y)}{a(a+y-2)}} \\
 &= \frac{a^3 + 2a^2y - a^2 + ay^2 - 2ay - a + (y^2 - y^2)}{a^3 + 2a^2y - a^2 + ay^2 - 2ay - y^2} + \frac{\sum_{k=2}^{a-1} \binom{a-1}{k} \left[\frac{1}{(a+y)(a+y-2)}\right]^k}{\frac{(a-1)(a+y)}{a(a+y-2)}} \\
 &= 1 + \frac{y^2 - a}{(a+y)^2(a-1)} + \frac{\sum_{k=2}^{a-1} \binom{a-1}{k} \left[\frac{1}{(a+y)(a+y-2)}\right]^k}{\frac{(a-1)(a+y)}{a(a+y-2)}}. \tag{6}
 \end{aligned}$$

209 Note that because $0 \leq j \leq \min\{B, N\} - 2$, then $a + y = B - j \geq 2$. Thus, the third term
210 in (6) is always non-negative. If $y = B - N \geq \sqrt{N}$ or $y \leq -\sqrt{N}$, then $y^2 \geq N \geq a$ for any
211 $2 \leq a \leq N$. Consequently, the ratio $\mathcal{P}_j/\mathcal{P}_{j+1} \geq 1$. \blacktriangleleft

212 We can now give our main argument:

213 **Proof of Theorem 1.** Let s denote the size of the subset $\mathbb{S} \subset \{1, \dots, B\}$, i.e. the number
 214 of bins in \mathbb{S} . First, note that if $B \geq N + \sqrt{N}$, when $s > N$ (i.e., more bins than balls),
 215 the probability on the left hand side (LHS) of (1) is 0, thus, the inequality (1) holds. In
 216 addition, shown above $\Pr[I_j = 1] = \mathcal{P}_0$ for any $j = 1, \dots, B$. Thus, the right hand side of
 217 (1) becomes \mathcal{P}_0^s . Thus, we need to prove for any subset, denoted as $\mathbb{S} = \{j_1, \dots, j_s\}$ with
 218 $1 \leq s \leq \min\{B, N\}$

$$219 \quad \Pr \left[\bigwedge_{k=1}^s I_{j_k} = 1 \right] \leq \mathcal{P}_0^s.$$

220 The LHS can be written as:

$$\begin{aligned} 221 \quad &= \Pr \left[I_{j_s} = 1 \mid \bigwedge_{k=1}^{s-1} I_{j_k} = 1 \right] \Pr \left[\bigwedge_{k=1}^{s-1} I_{j_k} = 1 \right] \\ 222 \quad &= \mathcal{P}_{s-1} \Pr \left[\bigwedge_{k=1}^{s-1} I_{j_k} = 1 \right] \\ 223 \quad &= \mathcal{P}_{s-1} \Pr \left[I_{j_{s-1}} = 1 \mid \bigwedge_{k=1}^{s-2} I_{j_k} = 1 \right] \Pr \left[\bigwedge_{k=1}^{s-2} I_{j_k} = 1 \right] \\ 224 \quad &= \mathcal{P}_{s-1} \mathcal{P}_{s-2} \Pr \left[\bigwedge_{k=1}^{s-2} I_{j_k} = 1 \right] \\ 225 \quad &= \mathcal{P}_{s-1} \mathcal{P}_{s-2} \cdots \mathcal{P}_0 \\ 226 \quad &\vdots \\ 227 \quad &= \mathcal{P}_{s-1} \mathcal{P}_{s-2} \cdots \mathcal{P}_0 \end{aligned}$$

Lemma 4 shows that if $B \geq N + \sqrt{N}$ or $B \leq N - \sqrt{N}$, \mathcal{P}_j is a non-increasing function of $j = 0, \dots, B - 1$. Consequently, $\mathcal{P}_0 \geq \mathcal{P}_j$, for $j = 1, \dots, B - 1$. Thus:

$$\Pr \left[\bigwedge_{k=1}^s I_{j_k} = 1 \right] \leq \mathcal{P}_0^s,$$

228 and so the bound in Equation (1) holds. \blacktriangleleft

229 The standard Chernoff bounds of Theorem 3 now apply, and we use them obtain bounds
 230 on the number of singletons. For ease of presentation, we occasionally use $\exp(x)$ to denote
 231 e^x .

232 **► Lemma 5.** For N balls that are dropped into B bins where $B \geq N + \sqrt{N}$ or $B \leq N - \sqrt{N}$,
 233 the following is true for any $0 < \epsilon < 1$.

- 234 ■ The number of singletons is at least $\frac{(1-\epsilon)N}{e^{N/(B-1)}}$ with probability at least $1 - e^{\frac{-\epsilon^2 N}{2 \exp(N/(B-1))}}$.
- 235 ■ The number of singletons is at most $\frac{(1+\epsilon)N}{e^{(N-1)/B}}$ with probability at least $1 - e^{\frac{-\epsilon^2 N}{3 \exp(N/(B-1))}}$.

236 **Proof.** We begin by calculating the expected number of singletons. Let I_i be an indicator
 237 random variable such that $I_i = 1$ if bin i contains a single ball; otherwise, $I_i = 0$. Note that:

$$\begin{aligned} 238 \quad \Pr(I_i = 1) &= \binom{N}{1} \left(\frac{1}{B} \right) \left(1 - \frac{1}{B} \right)^{N-1} \\ 239 \quad &\geq \binom{N}{1} \left(\frac{1}{B} \right) \left(1 - \frac{1}{B} \right)^N \\ 240 \quad &\geq \frac{N}{B e^{(N/(B-1))}} \end{aligned} \tag{7}$$

24:8 Singletons for Simpletons

241 where the last line follows from the LHS of Fact 1. Let $I = \sum_{i=1}^B I_i$ be the number of
242 singletons. We have:

$$\begin{aligned} 243 \quad E[I] &= \sum_{i=1}^B E[I_i] \quad \text{by linearity of expectation} \\ 244 \quad &\geq \frac{N}{e^{(N/(B-1))}} \quad \text{by Equation (7)} \end{aligned}$$

245 Next, we derive a concentration result around this expected value. Since $B \geq N + \sqrt{N}$ or
246 $B \leq N - \sqrt{N}$, Theorem 1 guarantees that the I_i s are negatively associated, and we may
247 apply the Chernoff bound in Equation 3 to obtain:

$$248 \quad \Pr \left(I < (1 - \epsilon) \frac{N}{e^{(N/(B-1))}} \right) \leq \exp \left(- \frac{\epsilon^2 N}{2e^{(N/(B-1))}} \right)$$

250 which completes the lower-bound argument. The upper bound is nearly identical. \blacktriangleleft

251 3 Bounding Remaining Packets

252 In this section, we derive tools for bounding the number of packets that remain as we progress
253 from one window to the next.

254 All of our results hold for sufficiently large $n > 0$. Let w_i denote the number of slots in
255 window $i \geq 0$. Let m_i be the number of packets at the start of window $i \geq 0$.

256 We index windows starting from 0, but this does not necessarily correspond to the initial
257 window executed by a backoff algorithm. Rather, in our analysis, window 0 corresponds to
258 the first window where packets start to succeed in large numbers; this is different for different
259 backoff algorithms.

260 For example, BEB's initial window consists of a single slot, and does not play an important
261 role in the makespan analysis. Instead, we apply Chernoff bounds once the window size is at
262 least $n + \sqrt{n}$, and this corresponds to window 0. In contrast, for FB, the first window (indeed,
263 *each* window) has size $\Theta(n)$, and window 0 is indeed this first window for our analysis. This
264 indexing is useful for our inductive arguments presented in Section 4.

265 3.1 Analysis

266 Our method for upper-bounding the makespan operates in three stages. First, we apply an
267 inductive argument—employing Case 1 in Corollary 6 below—to cut down the number of
268 packets from n to less than $n^{0.7}$. Second, Case 2 of Corollary 6 is used whittle the remaining
269 packets down to $O(n^{0.4})$. Third, we hit the remaining packets with a constant number of
270 calls to Lemma 7; this is the essence of Lemma 8.

271 **Intuition for Our Approach.** There are a couple things worth noting. To begin, why not
272 carry the inductive argument further to reduce the number of packets to $O(n^{0.4})$ directly
273 (i.e., skip the second step above)? Informally, our later inductive arguments show that m_{i+1}
274 is roughly at most $n/2^{2^i}$, and so $i \approx \lg \lg(n)$ windows should be sufficient. However, $\lg \lg(n)$
275 is not necessarily an integer and we may need to take its floor. Given the double exponential,
276 taking the floor (subtracting 1) results in $m_{i+1} \geq \sqrt{n}$. Therefore, the equivalent of our
277 second step will still be required. Our choice of $n^{0.7}$ is not the tightest, but it is chosen for
278 simplicity.

279 The second threshold of $O(n^{0.4})$ is also not completely arbitrary. In the (common) case
280 where $w_0 \geq n + \sqrt{n}$, note that we require $O(n^{1/2-\delta})$ packets remaining, for some constant

²⁸¹ $\delta > 0$, in order to get a useful bound from Lemma 7. It is possible that after the inductive
²⁸² argument, that this is already satisfied; however, if not, then Case 2 of Corollary 6 enforces
²⁸³ this. Again, $O(n^{0.4})$ is chosen for ease of presentation; there is some slack.

²⁸⁴ ▶ **Corollary 6.** *For $w_i \geq n + \sqrt{n}$, the following is true with probability at least $1 - 1/n^2$:*

- ²⁸⁵ ■ *Case 1. If $m_i \geq n^{7/10}$, then $m_{i+1} < \frac{(5/4)m_i^2}{n}$.*
- ²⁸⁶ ■ *Case 2. If $n^{0.4} \leq m_i < n^{7/10}$, then $m_{i+1} = O(n^{2/5})$.*

²⁸⁷ **Proof.** For Case 1, we apply the first result of Lemma 5 with $\epsilon = \frac{\sqrt{4e \ln n}}{n^{1/3}}$, which implies
²⁸⁸ with probability at least $1 - \exp(-\frac{4e \ln n}{n^{2/3}} \frac{n^{0.7}}{2}) \geq 1 - \exp(-2 \ln n) \geq 1 - 1/n^2$:

$$\begin{aligned}
 m_{i+1} &\leq m_i - \frac{(1-\epsilon)m_i}{e^{m_i/(w_i-1)}} \\
 &\leq m_i \left(1 - \frac{1}{e^{m_i/(w_i-1)}} + \epsilon\right) \\
 &\leq m_i \left(\frac{m_i}{w_i-1} + \epsilon\right) \text{ by RHS of Fact 1} \\
 &\leq \frac{m_i^2}{n} + m_i \epsilon \quad \text{since } w_i \geq n + \sqrt{n} \\
 &\leq \frac{m_i^2}{n} + \left(\frac{m_i}{n^{1/3}}\right) \sqrt{4e \ln n} \\
 &< \frac{(5/4)m_i^2}{n} \quad \text{since } m_i \geq n^{7/10}
 \end{aligned} \tag{8}$$

²⁹⁵ where $5/4$ is chosen for ease of presentation.

²⁹⁶ For Case 2, we again apply the first result of Lemma 5, but with $\epsilon = \sqrt{\frac{4e \ln n}{m}}$. Then,
²⁹⁷ with probability at least $1 - 1/n^2$, the first and second terms in Equation 8 are at most $n^{0.4}$
²⁹⁸ and $O(n^{0.35} \sqrt{\ln n})$, respectively, for the any $n^{0.4} \leq m_i \leq n^{7/10}$. ◀

²⁹⁹ The following lemma is useful for achieving a with-high-probability guarantee when the
³⁰⁰ number of balls is small relative to the number of bins.

³⁰¹ ▶ **Lemma 7.** *Assume $w_i > 2m_i$. With probability at least $1 - \frac{m_i^2}{w_i}$, all packets succeed in
³⁰² window i .*

³⁰³ **Proof.** Consider placements of packets in the window that yield at most one packet per slot.
³⁰⁴ Note that once a packet is placed in a slot, there is one less slot available for each remaining
³⁰⁵ packet yet to be placed. Therefore, there are $w_i(w_i - 1) \cdots (w_i - m_i + 1)$ such placements.

³⁰⁶ Since there are $w_i^{m_i}$ ways to place m_i packets in w_i slots, it follows that the probability
³⁰⁷ that each of the m_i packets chooses a different slot is:

$$\frac{w_i(w_i - 1) \cdots (w_i - m_i + 1)}{w_i^{m_i}}.$$

24:10 Singletons for Simpletons

309 We can lower bound this probability:

$$\begin{aligned}
 310 \quad &= \frac{w_i^{m_i} (1 - 1/w_i) \cdots (1 - (m_i - 1)/w_i)}{w_i^{m_i}} \\
 311 \quad &\geq e^{-\sum_{j=1}^{m_i-1} \frac{j}{w_i-j}} \quad \text{by LHS of Fact 1} \\
 312 \quad &\geq e^{-\sum_{j=1}^{m_i-1} \frac{2j}{w_i}} \quad \text{since } w_i > 2m_i > 2j \text{ which} \\
 313 \quad &\quad \text{leads to } \frac{j}{w_i-j} < \frac{2j}{w_i} \\
 314 \quad &= e^{-(1/w_i)(m_i-1)m_i} \quad \text{by sum of natural numbers} \\
 315 \quad &\geq 1 - \frac{m_i^2}{w_i} + \frac{m_i}{w_i} \quad \text{by RHS of Fact 1} \\
 316 \quad &> 1 - \frac{m_i^2}{w_i}
 \end{aligned}$$

317 as claimed. \blacktriangleleft

318 **► Lemma 8.** *Assume a batch of $m_i < n^{7/10}$ packets that execute over a window of size w_i ,
319 where $w_i \geq n + \sqrt{n}$ for all i . Then, with probability at least $1 - O(1/n)$, any monotonic
320 backoff algorithm requires at most 6 additional windows for all remaining packets to succeed.*

321 **Proof.** If $m_i \geq n^{0.4}$, then Case 2 of Corollary 6 implies $m_{i+1} = O(n^{0.4})$; else, we do not need
322 to invoke this case. By Lemma 7, the probability that any packets remain by the end of
323 window $i + 1$ is $O(n^{0.8}/n) = O(1/n^{0.2})$; refer to this as the probability of failure. Subsequent
324 windows increase in size monotonically, while the number of remaining packets decreases
325 monotonically. Therefore, the probability of failure is $O(1/n^{0.2})$ in any subsequent window,
326 and the probability of failing over all of the next 5 windows is less than $O(1/n)$. It follows
327 that at most 6 windows are needed for all packets to succeed. \blacktriangleleft

328 4 Inductive Arguments

329 We present two inductive arguments for establishing upper bounds on m_i . Later in Section 5,
330 these results are leveraged in our makespan analysis, and extracting them here allows us to
331 modularize our presentation. Lemma 9 applies to FB, BEB, and LLB, while Lemma 10
332 applies to STB. We highlight that a single inductive argument would suffice for all algorithms
333 — allowing for a simpler presentation — if we only cared about asymptotic makespan. However,
334 in the case of FB we wish to obtain a tight bound on the first-order term, which is one of
335 the contributions in [5].

336 In the following, we specify $m_0 \leq n$ since a (very) few packets may have succeeded prior
337 to window 0; recall, this is the window where a large number of packets are expected to
338 succeed.

339 **► Lemma 9.** *Consider a batch of $m_0 \leq n$ packets that execute over windows $w_i \geq m_0 + \sqrt{m_0}$
340 for all $i \geq 0$. If $m_i \geq n^{7/10}$, then $m_{i+1} \leq (4/5) \frac{m_0}{2^{2i} \lg(5/4)}$ with error probability at most
341 $(i+1)/n^2$.*

342 **Proof.** We argue by induction on $i \geq 0$.

343 **Base Case.** Let $i = 0$. Using Lemma 5:

$$\begin{aligned}
 344 \quad m_1 &\leq m_0 - \frac{(1 - \epsilon)m_0}{e^{m_0/(w_0-1)}} \\
 345 \quad &\leq m_0 \left(1 - \frac{1}{e^{m_0/(w_0-1)}} + \epsilon \right)
 \end{aligned}$$

$$\begin{aligned}
 346 \quad & \leq m_0 \left(1 - \frac{1}{e} + \epsilon\right) \\
 347 \quad & \leq (0.64)m_0
 \end{aligned}$$

348 where the last line follows by setting $\epsilon = \frac{\sqrt{4e \ln n}}{n^{1/3}}$, and assuming n is sufficiently large to
 349 satisfy the inequality; this gives an error probability of at most $1/n^2$. The base case is
 350 satisfied since $(4/5) \frac{m_0}{2^{2^i \lg(5/4)}} = (0.64)m_0$.

351 **Induction Hypothesis (IH).** For $i \geq 1$, assume $m_i \leq (4/5) \frac{m_0}{2^{2^{i-1} \lg(5/4)}}$ with error probabil-
 352 ity at most i/n^2 .

353 **Induction Step.** For window $i \geq 1$, we wish to show that $m_{i+1} \leq (4/5) \frac{m_0}{2^{2^i \lg(5/4)}}$ with an
 354 error bound of $(i+1)/n^2$. Addressing the number of packets, we have:

$$\begin{aligned}
 355 \quad m_{i+1} & \leq \frac{(5/4)m_i^2}{w_i} \\
 356 \quad & \leq \left(\frac{4m_0}{5 \cdot 2^{2^{i-1} \lg(5/4)}}\right)^2 \left(\frac{5}{4w_i}\right) \\
 357 \quad & \leq \left(\frac{4m_0}{5 \cdot 2^{2^i \lg(5/4)}}\right) \left(\frac{m_0}{w_i}\right) \\
 358 \quad & < \left(\frac{4m_0}{5 \cdot 2^{2^i \lg(5/4)}}\right) \text{ since } w_i > n
 \end{aligned}$$

359 The first line follows from Case 1 of Corollary 6, which we may invoke since $w_i \geq m_0 + \sqrt{m_0}$
 360 for all $i \geq 0$, and $m_i \geq n^{7/10}$ by assumption. This yields an error of at most $1/n^2$, and so
 361 the total error is at most $i/n^2 + 1/n^2 = (i+1)/n^2$ as desired. The second line follows from
 362 the IH. \blacktriangleleft

363 A nearly identical lemma is useful for upper-bounding the makespan of STB. The main
 364 difference arises from addressing the decreasing window sizes in a run, and this necessitates
 365 the condition that $w_i \geq m_i + \sqrt{m_i}$ rather than $w_i \geq m_0 + \sqrt{m_0}$ for all $i \geq 0$. Later in
 366 Section 5, we start analyzing STB when the window size reaches $4n$; this motivates the
 367 condition that $w_i \geq 4n/2^i$ our next lemma.

368 **► Lemma 10.** Consider a batch of $m_0 \leq n$ packets that execute over windows of size
 369 $w_i \geq m_i + \sqrt{m_i}$ and $w_i \geq 4n/2^i$ for all $i \geq 0$. If $m_i \geq n^{7/10}$, then $m_{i+1} \leq (4/5) \frac{m_0}{2^i 2^{2^i \lg(5/4)}}$
 370 with error probability at most $(i+1)/n^2$.

371 **Proof.** We argue by induction on $i \geq 0$.

372 **Base Case.** Nearly identical to the base case in proof of Lemma 9; note the bound on m_{i+1}
 373 is identical for $i = 0$.

374 **Induction Hypothesis (IH).** For $i \geq 1$, assume $m_i \leq (4/5) \frac{m_0}{2^{i-1} 2^{2^{i-1} \lg(5/4)}}$ with error
 375 probability at most i/n^2 .

376 **Induction Step.** For window $i \geq 1$, we wish to show that $m_{i+1} \leq (4/5) \frac{m_0}{2^i 2^{2^i \lg(5/4)}}$ with an
 377 error bound of $(i+1)/n^2$ (we use the same ϵ as in Lemma 9). Addressing the number of

24:12 Singletons for Simpletons

378 packets, we have:

$$\begin{aligned}
 379 \quad m_{i+1} &\leq \frac{(5/4)m_i^2}{w_i} \\
 380 &\leq \left(\frac{4m_0}{5 \cdot 2^{i-1} 2^{2^{i-1} \lg(5/4)}} \right)^2 \left(\frac{5}{4w_i} \right) \\
 381 &\leq \left(\frac{4m_0}{5 \cdot 2^i 2^{2^i \lg(5/4)}} \right) \left(\frac{m_0}{2^{i-2} w_i} \right) \\
 382 &\leq \left(\frac{4m_0}{5 \cdot 2^i 2^{2^i \lg(5/4)}} \right) \text{ since } w_i \geq 4n/2^i
 \end{aligned}$$

383 Again, the first line follows from Case 1 of Corollary 6, which we may invoke since $w_i \geq$
 384 $m_0 + \sqrt{m_0}$ for all $i \geq 0$, and $m_i \geq n^{7/10}$ by assumption. This gives the desired error bound
 385 of $i/n^2 + 1/n^2 = (i+1)/n^2$. The second line follows from the IH. \blacktriangleleft

386 5 Bounding Makespan

387 We begin by describing the windowed backoff algorithms FIXED BACKOFF (FB), BINARY
 388 EXPONENTIAL BACKOFF (BEB), and LOG-LOG BACKOFF (LLB) analyzed in [5]. Recall
 389 that, in each window, a packet selects a single slot uniformly at random to send in. Therefore,
 390 we need only specify how the size of successive windows change.

391 FB is the simplest, with all windows having size $\Theta(n)$. The value of hidden constant does
 392 not appear to be explicitly specified in the literature, but we observe that Bender et al. [5]
 393 use $3e^3$ in their upper-bound analysis. Here, we succeed using a smaller constant; namely,
 394 any value at least $1 + 1/\sqrt{n}$.

395 BEB has an initial window size of 1, and each successive window doubles in size.

396 LLB has an initial window size of 2, and for a current window size of w_i , it executes
 397 $\lceil \lg \lg(w_i) \rceil$ windows of that size before doubling; we call these sequence of same-sized windows
 398 a *plateau*.⁴

399 STB is non-monotonic and executes over a doubly-nested loop. The outer loop sets the
 400 current window size w to be double that used in the preceding outer loop and each packet
 401 selects a single slot to send in; this is like BEB. Additionally, for each such w , the inner loop
 402 executes over $\lg w$ windows of decreasing size: $w, w/2, w/4, \dots, 1$; this sequence of windows is
 403 referred to as a *run*. For each window in a run, a packet chooses a slot uniformly at random
 404 in which to send.

405 5.1 Analysis

406 The following results employ tools from the prior sections a constant number of times, and
 407 each tool has error probability either $O(\log n/n^2)$ or $O(\frac{1}{n})$. Therefore, all following theorems
 408 hold with probability at least $1 - O(1/n)$, and we omit further discussion of error.

409 **► Theorem 11.** *The makespan of FB with window size at least $n + \sqrt{n}$ is at most $n \lg \lg n +$
 410 $O(n)$ and at least $n \lg \lg n - O(n)$.*

411 **Proof.** Since $w_i \geq n + \sqrt{n}$ for all $i \geq 0$, by Lemma 9 less than $n^{7/10}$ packets remain after
 412 $\lg \lg(n) + 1$ windows; to see this, solve for i in $(4/5) \frac{n}{2^{2^i \lg(5/4)}} = n^{0.7}$. By Lemma 8, all

⁴ As stated by Bender et al. [5], an equivalent (in terms of makespan) specification of LLB is that $w_{i+1} = (1 + 1/\lg \lg(w_i))w_i$.

413 remaining packets succeed within 6 more windows. The corresponding number of slots is
 414 $(\lg \lg n + 7)(n + \sqrt{n}) = n \lg \lg n + O(n)$. \blacktriangleleft

415 **Theorem 12.** *The makespan of BEB is at most $512n \lg n + O(n)$.*

416 **Proof.** Let W be the first window of size at least $n + \sqrt{n}$ (and less than $2(n + \sqrt{n})$). Assume
 417 no packets finish before the start of W ; otherwise, this can only improve the makespan.
 418 By Lemma 9 less than $n^{7/10}$ packets remain after $\lg \lg(n) + 1$ windows. By Lemma 8 all
 419 remaining packets succeed within 6 more windows. Since W has size less than $2(n + \sqrt{n})$,
 420 the number of slots until the end of W , plus those for the $\lg \lg(n) + 7$ subsequent windows,
 421 is less than:

$$422 \left(\sum_{j=0}^{\lg(2(n+\sqrt{n}))} 2^j \right) + \left(\sum_{k=1}^{\lg \lg(n)+7} 2(n + \sqrt{n}) 2^k \right) \\ 423 = 512(n + \sqrt{n}) \lg n + O(n)$$

424 by the sum of a geometric series. \blacktriangleleft

425 **Theorem 13.** *The makespan of STB is $O(n)$.*

426 **Proof.** Let W be the first window of size at least $4n$. Assume no packets finish before the
 427 start of W , that is $m_0 = n$; else, this can only improve the makespan.

428 While $m_i \geq n^{0.7}$, our analysis examines the windows in the run starting with window
 429 W , and so $w_0 \geq 4n, w_1 \geq 2n$, etc. To invoke Lemma 10, we must ensure that the condition
 430 $w_i \geq m_i + \sqrt{m_i}$ holds in each window of this run. This holds for $i = 0$, since $w_0 = 4n \geq n + \sqrt{n}$.

431 For $i \geq 1$, we argue this inductively by proving $m_i \leq (5/4)^{2^{i-1}-1} \frac{n}{3^{2^{i-1}}}$. For the base case
 432 $i = 1$, Lemma 5 implies that $m_1 \leq n(1 - e^{-n/(4n-1)} + \epsilon) \leq n(1 - e^{-1/3} + \epsilon) \leq n/3$, where
 433 ϵ is given in Lemma 6. For the inductive step, assume that $m_i \leq (5/4)^{2^{i-1}-1} \frac{n}{3^{2^{i-1}}}$ for all
 434 $i \geq 2$. Then, by Case 1 of Corollary 6:

$$435 m_{i+1} \leq (5/4)m_i^2/n \\ 436 \leq (5/4) \left((5/4)^{2^{i-1}-1} \frac{n}{3^{2^{i-1}}} \right)^2 / n \\ 437 \leq (5/4)^{2^i-1} \frac{n}{3^{2^i}}$$

438 where the second line follows from the assumption, and so the inductive step holds. On the
 439 other hand, at window i , $w_i \geq \frac{4n}{2^i} > \frac{4n}{(5/2) \cdot (12/5)^{2^{i-1}}} = 2 \cdot (5/4)^{2^{i-1}-1} \frac{n}{3^{2^{i-1}}} \geq 2m_i > m_i + \sqrt{m_i}$
 440 holds.

441 Lemma 10 implies that after $\lg \lg n + O(1)$ windows in this run, less than $n^{0.7}$ packets
 442 remain. Pessimistically, assume no other packets finish in the run. The next run starts with
 443 a window of size at least $8n$, and by Lemma 8, all remaining packets succeed within the first
 444 6 windows of this run.

445 We have shown that STB terminates within at most $\lceil \lg(n) \rceil + O(1)$ runs. The total
 446 number of slots over all of these runs is $O(n)$ by a geometric series. \blacktriangleleft

447 It is worth noting that STB has asymptotically-optimal makespan since we cannot hope
 448 to finish n packets in $o(n)$ slots.

449 Bender et al. [5] show that the optimal makespan for any *monotonic* windowed backoff
 450 algorithm is $O(n \lg \lg n / \lg \lg \lg n)$ and that LLB achieves this. We re-derive the makespan
 451 for LLB.

24:14 Singletons for Simpletons

452 ► **Theorem 14.** *The makespan of LLB is $O\left(\frac{n \lg \lg n}{\lg \lg \lg n}\right)$.*

453 **Proof.** For the first part of our analysis, assume $n/\ln \ln \ln n \leq m_0 \leq n$ packets remain.
454 Consider the first window with size $w_0 = cn/\ln \ln \ln n$ for some constant $c \geq 8$. By Lemma 5,
455 each window finishes at least the following number of packets:

$$\begin{aligned} 456 \quad \frac{(1-\epsilon)m_0}{e^{\frac{m_0}{(cn/\ln \ln \ln n)-1}}} &> \frac{(1-\epsilon)n}{e^{\frac{n}{(cn/\ln \ln \ln n)-1}} \cdot \ln \ln \ln n} \\ 457 \quad &= \frac{(1-\epsilon)n}{(\ln \ln n)^{\frac{2}{c}} \cdot \ln \ln \ln n} \\ 458 \quad &= \frac{(1-\epsilon)n}{(\ln \ln n)^{\frac{\ln \ln \ln \ln n}{\ln \ln \ln n} + \frac{2}{c}}} \\ 459 \quad &> \frac{n}{(\ln \ln n)^{\frac{3}{c}}} \end{aligned}$$

460 where the third line follows from noting that $(\ln \ln n)^{\ln(\ln \ln \ln n)} = (\ln \ln \ln n)^{\ln(\ln \ln n)}$, and
461 the last line follows for sufficiently-large n . Setting $\epsilon = \sqrt{\frac{4e \ln^2(n)}{n}}$ suffices to give an error
462 probability at most $\exp\left(-\frac{4e \ln^2(n)}{n} \cdot \frac{n}{2 \ln \ln \ln(n) e^{\frac{n}{(cn/\ln \ln \ln n)-1}}}\right) \leq 1/n^2$.

463 Observe that in this first part of the analysis, we rely on $w_i \leq m_i - \sqrt{m_i}$ or $w_i \geq m_i + \sqrt{m_i}$
464 in order to apply Lemma 5. However, after enough packets succeed, neither of these
465 inequalities may hold. But there will be at most a single plateau with windows of size
466 $O(n/\ln \ln \ln n)$ where this occurs, since the window size will then double. During this
467 plateau, which consists of $O(\lg \lg(n/\ln \ln \ln n)) = O(\lg \lg n)$ windows, we pessimistically
468 assume no packets succeed.

469 Therefore, starting with n packets, after at most $\frac{n-n/\ln \ln \ln n}{n/(\ln \ln n)^{3/c}} + O(\lg \lg n) = O(\ln \ln n)$
470 windows, the number of remaining packets is less than $n/\ln \ln \ln n$, and the first part of our
471 analysis is over.

472 Over the next two plateaus, LLB has at least $2 \lg \lg(n) - O(1)$ windows of size $\Theta(n/\ln \ln \ln n)$.
473 Since in this part of the analysis, $w_i \geq 8n/\ln \ln \ln n$ and $m_i < n/\ln \ln \ln n$, we have
474 $w_i \geq m_i + \sqrt{m_i}$. Therefore, we may invoke Lemma 9, which implies that after at most
475 $\lg \lg(n) + 1$ windows, less than $n^{0.7}$ packets remain. If at least $n^{2/5}$ packets still remain, by
476 Case 2 of Corollary 1, at most $O(n^{2/5})$ packets remain by the end of the next window, and
477 they will finish within an additional 6 windows by Lemma 8.

478 Finally, tallying up over both parts of the analysis, the makespan is $O(\ln \ln n)O\left(\frac{n}{\ln \ln \ln n}\right) =$
479 $O\left(\frac{n \ln \ln n}{\ln \ln \ln n}\right)$. ◀

6 Discussion

481 We have argued that standard Chernoff bounds can be applied to analyze singletons, and we
482 illustrate how they simplify the analysis of several backoff algorithms under batched arrivals.

483 While our goal was only to demonstrate the benefits of this approach, natural extensions
484 include the following. First, there is some slack in our arguments, and we can likely derive
485 tighter constants in our analysis. For example, the number of windows required in Lemma 8
486 might be reduced; this would reduce the leading constant for our BEB analysis.

487 Second, we strongly believe that lower bounds can be proved using this approach. In
488 fact, Max bets Qian (under penalty of eating bitter melon) that a lower bound on FB of
489 $n \lg \lg n - O(n)$ can be proved, which is tight in the highest-order term.

490 Third, a similar treatment is possible for polynomial backoff or generalized exponential
 491 backoff (see [5] for the specification of these algorithms).

492 Fourth, a plausible next step is to examine whether we can extend this type of analysis
 493 to the case where packets have different sizes, as examined in [6].

494

 References

- 495 1 Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.
 496 Medium access control for adversarial channels with jamming. In *Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO)*,
 497 pages 89–100, 2011.
- 498 2 Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. Unbounded contention
 499 resolution in multiple-access channels. *Algorithmica*, 67(3):295–314, 2013.
- 500 3 Baruch Awerbuch, Andrea Richa, and Christian Scheideler. A jamming-resistant MAC protocol
 501 for single-hop wireless networks. In *Proceedings of the 27th ACM Symposium on Principles of
 502 Distributed Computing (PODC)*, pages 45–54, 2008.
- 503 4 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. *SIAM J. Comput.*, 29(1):180–200, September 1999.
- 504 5 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
 505 Leiserson. Adversarial contention resolution for simple channels. In *Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)*, pages
 506 325–332, 2005.
- 507 6 Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. Contention Resolution with
 508 Heterogeneous Job Sizes. In *Proceedings of the 14th Conference on Annual European Symposium
 509 (ESA)*, pages 112–123, 2006.
- 510 7 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. How to scale
 511 exponential backoff: Constant throughput, polylog access attempts, and robustness. In
 512 *Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2016.
- 513 8 Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention resolution
 514 with log-logstar channel accesses. In *Proceedings of the Forty-eighth Annual ACM Symposium
 515 on Theory of Computing*, STOC ’16, pages 499–508, 2016.
- 516 9 Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel. Multiple-
 517 choice balanced allocation in (almost) parallel. In *Approximation, Randomization, and
 518 Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM)*, pages 411–
 519 422, 2012.
- 520 10 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations:
 521 The heavily loaded case. *SIAM J. Comput.*, 35(6):1350–1385, 2006.
- 522 11 Petra Berenbrink, Kamyar Khadomradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
 523 into-bins with nearly optimal load distribution. In *Proceedings of the Twenty-fifth Annual
 524 ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)*, pages 326–335,
 525 2013.
- 526 12 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
 527 The energy complexity of broadcast. In *Proceedings of the 2018 ACM Symposium on Principles
 528 of Distributed Computing*, PODC ’18, pages 95–104, 2018.
- 529 13 Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Exponential
 530 separations in the energy complexity of leader election. In *Proceedings of the 49th Annual
 531 ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
 532 June 19–23, 2017*, pages 771–783, 2017.
- 533 14 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-
 534 channel single-hop radio networks. *Theoretical Computer Science*, 615(C):23 – 44, February
 535 2016.
- 536 15 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-
 537 channel single-hop radio networks. *Theoretical Computer Science*, 615(C):23 – 44, February
 538 2016.

24:16 Singletons for Simpletons

539 15 Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the
540 wake-up problem in radio networks. In *Proceedings of the 32nd International Colloquium on*
541 *Automata, Languages and Programming (ICALP)*, pages 347–359, 2005.

542 16 Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In
543 *Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC)*, pages
544 266–274, 2004.

545 17 Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-up problem in multihop
546 radio networks. *SIAM Journal on Computing*, 36(5):1453–1471, 2007.

547 18 Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W. Richa,
548 Ramesh K. Sitaraman, and Eli Upfal. On balls and bins with deletions. In *Proceedings of the*
549 *Second International Workshop on Randomization and Approximation Techniques in Computer*
550 *Science (RANDOM)*, pages 145–158, 1998.

551 19 A. Czumaj and V. Stemann. Randomized Allocation Processes. In *Proceedings 38th Annual*
552 *Symposium on Foundations of Computer Science*, pages 194–203, 1997.

553 20 Gianluca De Marco and Grzegorz Stachowiak. Asynchronous shared channel. In *Proceedings*
554 *of the ACM Symposium on Principles of Distributed Computing*, PODC ’17, pages 391–400,
555 2017.

556 21 Devdatt Dubhashi and Alessandro Panconesi. *Concentration of Measure for the Analysis of*
557 *Randomized Algorithms*. Cambridge University Press, 1st edition, 2009.

558 22 Devdatt Dubhashi and Desh Ranjan. Balls and Bins: A Study in Negative Dependence. *Random*
559 *Structures & Algorithms*, 13(2):99–124, 1998. doi:10.1002/(SICI)1098-2418(199809)13:
560 2<99::AID-RSA1>3.0.CO;2-M.

561 23 Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Contention resolution
562 on a fading channel. In *Proceedings of the ACM Symposium on Principles of Distributed*
563 *Computing (PODC)*, pages 155–164, 2016.

564 24 Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. Contention resolution on multiple
565 channels with collision detection. In *Proceedings of the 2016 ACM Symposium on Principles*
566 *of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016*, pages 175–184,
567 2016.

568 25 Mihály Geréb-Graus and Thanasis Tsantilas. Efficient optical communication in parallel com-
569 puters. In *Proceedings 4th Annual ACM Symposium on Parallel Algorithms and Architectures*
570 (*SPAA*), pages 41–48, 1992.

571 26 Leslie Ann Goldberg and Philip D. MacKenzie. Analysis of practical backoff protocols for conten-
572 tion resolution with multiple servers. *Journal of Computer and System Sciences*, 58(1):232 – 258,
573 1999. URL: <http://www.sciencedirect.com/science/article/pii/S002200098915902>,
574 doi:<https://doi.org/10.1006/jcss.1998.1590>.

575 27 Leslie Ann Goldberg, Philip D. Mackenzie, Mike Paterson, and Aravind Srinivasan. Contention
576 resolution with constant expected delay. *Journal of the ACM*, 47(6):1048–1096, 2000.

577 28 Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. Stability of binary
578 exponential backoff. *Journal of the ACM*, 35(3):579–602, July 1988.

579 29 Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. In *Proceedings*
580 *of the 26th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 241–249,
581 1985.

582 30 Johan Hastad, Tom Leighton, and Brian Rogoff. Analysis of backoff protocols for multiple
583 access channels. *SIAM Journal on Computing*, 25(4):1996, 740-774.

584 31 IEEE. IEEE standard for information technology–telecommunications and information ex-
585 change between systems local and metropolitan area networks – Specific requirements - Part
586 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
587 *IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012)*, pages 1–3534, 2016.

588 32 Tomasz Jurdzinski and Grzegorz Stachowiak. The cost of synchronizing multiple-access
589 channels. In *Proceedings of the ACM Symposium on Principles of Distributed Computing*
590 (*PODC*), pages 421–430, 2015.

591 33 A R Karlin and E Upfal. Parallel Hashing - An Efficient Implementation of Shared Memory.
592 In *Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC)*,
593 pages 160–168, 1986.

594 34 James F. Kurose and Keith Ross. *Computer Networking: A Top-Down Approach*. Pearson,
595 6th edition, 2013.

596 35 Christoph Lenzen and Roger Wattenhofer. Tight Bounds for Parallel Randomized Load
597 Balancing: Extended Abstract. In *Proceedings of the Forty-third Annual ACM Symposium on
598 Theory of Computing*, STOC '11, pages 11–20, 2011.

599 36 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm
600 for conflict resolution in a dynamic multiple-access channel. *SIAM Journal on Computing*,
601 44(3):868–888, 2015.

602 37 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
603 multiple access channel. *Theoretical Computer Science*, 689:1 – 13, 2017.

604 38 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
605 computer networks. *Communications of the ACM*, 19(7):395–404, July 1976.

606 39 Michael Mitzenmacher and Eli Upfal. *Probability and Computing: Randomized Algorithms
607 and Probabilistic Analysis*. Cambridge University Press, New York, NY, USA, 2005.

608 40 Michael David Mitzenmacher. *The Power of Two Choices in Randomized Load Balancing*.
609 PhD thesis, University of California, Berkeley, 1996.

610 41 K. Nakano and S. Olariu. Uniform leader election protocols for radio networks. *IEEE
611 Transactions on Parallel and Distributed Systems*, 13(5):516–526, May 2002. doi:10.1109/
612 TPDS.2002.1003864.

613 42 Adrian Ogieman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Sade:
614 competitive MAC under adversarial SINR. *Distributed Computing*, 31(3):241–254, Jun 2018.

615 43 Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays. *SIAM
616 Journal on Computing*, 28(2):709–719, April 1999.

617 44 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. A jamming-resistant MAC
618 protocol for multi-hop wireless networks. In *Proceedings of the International Symposium on
619 Distributed Computing (DISC)*, pages 179–193, 2010.

620 45 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and fair
621 medium access despite reactive jamming. In *Proceedings of the 31st International Conference
622 on Distributed Computing Systems (ICDCS)*, pages 507–516, 2011.

623 46 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and Fair
624 Throughput for Co-existing Networks Under Adversarial Interference. In *Proceedings of the
625 2012 ACM Symposium on Principles of Distributed Computing (PODC)*, pages 291–300, 2012.

626 47 Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A
627 survey of techniques and results. *Combinatorial Optimization*, 9:255–304, 2001.

628 48 X. Sun and L. Dai. Backoff Design for IEEE 802.11 DCF Networks: Fundamental Tradeoff
629 and Design Criterion. *IEEE/ACM Transactions on Networking*, 23(1):300–316, 2015.

630 49 Eli Upfal. Efficient Schemes for Parallel Communication. *J. ACM*, 31(3):507–517, June 1984.

631 50 Berthold Vöcking. How asymmetry helps load balancing. *Journal of the ACM*, 50(4):568–589,
632 2003.

633 51 Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.
634 *SIAM J. Comput.*, 15(2):468–477, May 1986.

635 52 D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran. Fast and Robust Compressive Phase
636 Retrieval with Sparse-Graph Codes. In *2015 IEEE International Symposium on Information
637 Theory (ISIT)*, pages 2583–2587, June 2015.

638 **Appendix**639 **A Chernoff Bounds and Property 1**

640 In Problem 1.8 of Dubhashi and Panconesi [21], the following question is posed: Show that if
 641 Property 1 holds, then Theorem 3 holds. We are invoking this result, but an argument is
 642 absent in [21].

643 We bridge this gap with Claim 15 below. This fits directly into the derivation of Chernoff
 644 bounds given in Dubhashi and Panconesi [21]. In particular, the line above Equation 1.3 on
 645 page 4 of [21] claims equality for Equation 10 below by invoking independence of the random
 646 variables. Here, Claim 15 gives an inequality (in the correct direction) and the remainder of
 647 the derivation in [21] follows without any further modifications.

648 \triangleright **Claim 15.** Let X_1, \dots, X_n be a set of indicator random variables satisfying the property:

$$649 \quad \Pr \left[\bigwedge_{i \in \mathbb{S}} X_i = 1 \right] \leq \prod_{i \in \mathbb{S}} \Pr [X_i = 1] \quad (9)$$

650 for all subsets $\mathbb{S} \subset \{1, \dots, n\}$. Then the following holds:

$$651 \quad E \left[\prod_{i=1}^n e^{\lambda X_i} \right] \leq \prod_{i=1}^n E [e^{\lambda X_i}] \quad (10)$$

652 **Proof.** Let \mathbb{N} denote the set of strictly positive integers. First, we need to point out two
 653 properties of indicator random variables

654 (i) $X_i^k = X_i$ for all $k \in \mathbb{N}$; and

655 (ii) $E [X_i] = \Pr [X_i = 1]$, and $E [\prod_{i \in \mathbb{S}} X_i] = \Pr \left[\bigwedge_{i \in \mathbb{S}} X_i = 1 \right]$ for all subset \mathbb{S} .

656 By Taylor expansion we have $e^{\lambda X_i} = \sum_{k=0}^{\infty} \lambda^k \frac{X_i^k}{k!}$, and then,

$$657 \quad E [e^{\lambda X_i}] = \sum_{k=0}^{\infty} \lambda^k \frac{E [X_i^k]}{k!} \quad (11)$$

658 Thus, the product in the left hand side (LHS) of (10) becomes $\prod_{i=1}^n e^{\lambda X_i} = \prod_{i=1}^n \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} X_i^k \right)$,
 659 which can be written as a polynomial function of λ , i.e. $\sum_{r=0}^{\infty} f_r \lambda^r$, where f_r are coeffi-
 660 cients which may contain the indicator random variables X_i s. Here $f_0 = 1$. To get the
 661 expression of f_r for $r \geq 1$, we first define a set, for all integers $k, r \in \mathbb{N}$ with $k \leq r$, let
 662 $\mathcal{I}(k, r) = \{(d_1, d_2, \dots, d_k) : d_1, \dots, d_k \in \mathbb{N}, d_1 \leq d_2 \leq \dots \leq d_k, d_1 + d_2 + \dots + d_k = r\}$.
 663 Then the coefficients f_r , $r \geq 1$, can be expressed as

$$664 \quad f_r = \sum_{k=1}^{\min\{r, n\}} \sum_{(d_1, \dots, d_k) \in \mathcal{I}(r, k)} \sum_{1 \leq i_1 \neq i_2 \neq \dots \neq i_k \leq n} \frac{X_{i_1}^{d_1}}{d_1!} \frac{X_{i_2}^{d_2}}{d_2!} \dots \frac{X_{i_k}^{d_k}}{d_k!}. \quad (12)$$

665 For example,

$$\begin{aligned}
 666 \quad f_1 &= \sum_{i=1}^n X_i \\
 667 \quad f_2 &= \sum_{i=1}^n \frac{X_i^2}{2!} + \sum_{1 \leq i_1 \neq i_2 \leq n} X_{i_1} X_{i_2} \\
 668 \quad f_3 &= \sum_{i=1}^n \frac{X_i^3}{3!} + \sum_{1 \leq i_1 \neq i_2 \leq n} X_{i_1} \frac{X_{i_2}^2}{2!} + \sum_{1 \leq i_1 \neq i_2 \neq i_3 \leq n} X_{i_1} X_{i_2} X_{i_3} \\
 669 \quad &\vdots \\
 670
 \end{aligned}$$

671 With the expression (12), the LHS becomes

$$\begin{aligned}
 672 \quad \text{LHS} &= 1 + \sum_{r=1}^{\infty} \lambda^r \sum_{k=1}^{\min\{r,n\}} \sum_{(d_1, \dots, d_k) \in \mathcal{I}(r, k)} \sum_{1 \leq i_1 \neq i_2 \neq \dots \neq i_k \leq n} E \left[\frac{X_{i_1}^{d_1}}{d_1!} \frac{X_{i_2}^{d_2}}{d_2!} \dots \frac{X_{i_k}^{d_k}}{d_k!} \right] \\
 673 \quad &= 1 + \sum_{r=1}^{\infty} \lambda^r \sum_{k=1}^{\min\{r,n\}} \sum_{(d_1, \dots, d_k) \in \mathcal{I}(r, k)} \sum_{1 \leq i_1 \neq i_2 \neq \dots \neq i_k \leq n} \frac{E \left[X_{i_1}^{d_1} X_{i_2}^{d_2} \dots X_{i_k}^{d_k} \right]}{d_1! d_2! \dots d_k!} \\
 674
 \end{aligned}$$

675 Similarly, with the Taylor expansion of (11), the product in the right hand side (RHS) of
676 (10) becomes

$$\begin{aligned}
 677 \quad \text{RHS} &= \prod_{i=1}^n \left(\sum_{k=0}^{\infty} \lambda^k \frac{E[X_i^k]}{k!} \right) \\
 678 \quad &= 1 + \sum_{r=1}^{\infty} \lambda^r \sum_{k=1}^{\min\{r,n\}} \sum_{(d_1, \dots, d_k) \in \mathcal{I}(r, k)} \sum_{1 \leq i_1 \neq i_2 \neq \dots \neq i_k \leq n} \frac{E[X_{i_1}^{d_1}]}{d_1!} \frac{E[X_{i_2}^{d_2}]}{d_2!} \dots \frac{E[X_{i_k}^{d_k}]}{d_k!} \\
 679 \quad &= 1 + \sum_{r=1}^{\infty} \lambda^r \sum_{k=1}^{\min\{r,n\}} \sum_{(d_1, \dots, d_k) \in \mathcal{I}(r, k)} \sum_{1 \leq i_1 \neq i_2 \neq \dots \neq i_k \leq n} \frac{E[X_{i_1}^{d_1}] E[X_{i_2}^{d_2}] \dots E[X_{i_k}^{d_k}]}{d_1! d_2! \dots d_k!} \\
 680
 \end{aligned}$$

681 By the above-mentioned two properties (i) and (ii) of indicator random variables, then

$$\begin{aligned}
 682 \quad E[X_{i_1}^{d_1} X_{i_2}^{d_2} \dots X_{i_k}^{d_k}] &= E[X_{i_1} X_{i_2} \dots X_{i_k}] = \Pr[X_{i_1} = 1, X_{i_2} = 1, \dots, X_{i_k} = 1] \\
 683 \quad E[X_{i_1}^{d_1}] E[X_{i_2}^{d_2}] \dots E[X_{i_k}^{d_k}] &= E[X_{i_1}] E[X_{i_2}] \dots E[X_{i_k}] \\
 684 \quad &= \Pr[X_{i_1} = 1] \Pr[X_{i_2} = 1] \dots \Pr[X_{i_k} = 1].
 \end{aligned}$$

By the condition (9), we have $\Pr[X_{i_1} = 1, X_{i_2} = 1, \dots, X_{i_k} = 1] \leq \Pr[X_{i_1} = 1] \Pr[X_{i_2} = 1] \dots \Pr[X_{i_k} = 1]$,
and thus

$$E[X_{i_1}^{d_1} X_{i_2}^{d_2} \dots X_{i_k}^{d_k}] \leq E[X_{i_1}^{d_1}] E[X_{i_2}^{d_2}] \dots E[X_{i_k}^{d_k}].$$

686 Thus (10) holds. ◀