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The regulation of the phosphorylation of mitogen-activated protein kinases
(MAPKYS) is essential for cellular processes such as proliferation, differenti-
ation, survival, and death. Mutations within the MAPK signaling cascades
are implicated in diseases such as cancer, neurodegenerative disorders,
arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an
intricate balance between MAPK kinases (enzymes that add phosphate
groups) and MAPK phosphatases (MKPs) (enzymes that remove phos-
phate groups). MKPs are complex negative regulators of the MAPK path-
way that control the amplitude and spatiotemporal regulation of MAPKs.
MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a
member of the MKP subfamily, which lacks the critical histidine and
nucleophilic cysteine residues in the active site required for catalysis. MK-
STYX does not influence the phosphorylation status of MAPK, but even
so it adds to the complexity of signal transduction cascades as a signaling
regulator. This review highlights the function of MK-STYX, providing
insight into MK-STYX as a signal regulating molecule in the stress
response, HDAC 6 dynamics, apoptosis, and neurite differentiation.

Introduction

Pseudoenzymes were described more than fifty years
ago [1], and genomics has revealed that approximately
ten percent of the proteins encoded in the human gen-
ome are pseudoenzymes [2—4]. The evolutionary con-
servation of these catalytically inactive homologs and
their widespread existence (they can be found among
the bacterial luciferases, bacterial and eukaryotic
kinases, phosphatases, proteases, GTPases, syn-
thetases, etc.) underlines the importance of under-
standing their functions [2,4,5]. Although use of the
‘pseudo’ prefix inhibited their investigation for many
years, by implying a lack of function, in the past ten

Abbreviations

years, they have become appreciated and viewed as rel-
evant and important signaling molecules—highlighting
the necessity of this special issue on pseudoenzymes.
Early on, Jack Dixon’s laboratory coined the term
‘STYX’ (phosphoserine/threonine/tyrosine-interacting
protein) to designate the phosphotyrosine-binding
domain of a pseudophosphatase [6]. Use of a point
mutation to ‘restore’ catalytic activity in the STYX
domain has proved to be a helpful tool to initiate the
process of investigating molecules that contain STYX
domains. Knockout mouse studies revealed that STYX
associates with a unique RNA-binding phosphoprotein
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in spermatids termed CRHSP-24 (calcium-responsive
heat-stable protein with a molecular mass of 24 kDa)
that has an essential function in spermatogenesis [7].
Furthermore, cellular, siRNA, and biochemical assays
revealed the role of STYX in cell fate and migration,
as a signaling regulator of the ERK 1/2 MAPK signal-
ing pathway by competing with MAP kinase phos-
phatase-2. STYX was also found to be a signaling
regulator in ubiquitinylation that regulates the ubiqui-
tin ligase SCF (SKP/CULI-F-box) complex by inter-
acting with FBXW?7 (F-box and WD repeat domain
containing 7) [8]. Furthermore, when misregulated,
STYX plays an oncogenic role by inhibiting the func-
tion of FBXW7, resulting in metastasis and colorectal
cancer [9].

Eyer’s and Farhan’s research teams provide an
extensive and excellent review of all the pseudophos-
phatases, including the protein tyrosine phosphatases
(PTPs) [10]. STYX domains of PTPs highlight that
many pseudophosphatases have mutations within their
signature active site motif (HCXsR) that renders them
inactive [4,6,11-13]. The majority of mutations lead to
catalytically inactive phosphatases, but not all [14]. In
addition, not all pseudophosphatases have a mutation
in their active signature motif [10]; for example, the
myotubularins (MTM) have mutations within their
SET domain [12]. Myotubularins, which are the most
prevalent pseudophosphatases, form complexes with
their active homolog, resulting in enhanced phos-
phatase activity [15-17]. Moreover, a mutation in
either the myotubularin or its active homolog leads to
the Charcot—Marie-Tooth  disease (neurological
demyelination disorder) [11,15-17]. These mutations
may render the phosphatase catalytically inactive,
while maintaining the three-dimensional fold and the
ability to bind phosphorylated proteins [4,12,18]. More
importantly, numerous studies demonstrate that pseu-
dophosphatases are bona fide signaling regulators of
many cellular processes such as spermatogenesis, cell
fate, migration, ubiquitylation, demyelination, oocyte-
to-zygote transition, transcription, stress response,
apoptosis, and neuronal differentiation [10,18-22];
affirming that the paradigm has shifted from the
notion of pseudophosphatases simply serving as domi-
nant-negative antagonists of endogenous protein phos-
phatases [4,12,18,23]. In addition, misregulation of
pseudophosphatases has been implicated in the etiol-
ogy of various diseases such as leukemia, breast can-
cer, Ewing sarcomas, obesity, Charcot—Marie-Tooth
disorder, and neurological disorders [4,10,24,25].

This review focuses on a MK-STYX, a pseudophos-
phatase member of the MKP [mitogen-activated pro-
tein kinase (MAPK) phosphatase (MKP)] subfamily,
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and its role as a signaling regulator, beyond the role
of its active homologs (MKPs), to negatively regulate
MAPK. A foundation is established for why the inter-
actors (binding partners) of MK-STYX differ from the
MAPK substrates of MKPs, the active homologs [26]
of MK-STYX. Moreover, MK-STYX serves as an
essential regulator in signaling pathways such as apop-
tosis, the stress response, and neurite formation
[4,13,27-29].

MAP kinase phosphatases

Mitogen-activated protein kinase phosphatases, mem-
bers of the dual-specificity phosphatase (DUSP) sub-
family, dephosphorylate both threonine/serine and
tyrosine residues within the TXY activation loop of
MAPKSs [30,31]. The dual-specificity results in the abil-
ity of these enzymes to accommodate both phospho-
threonine and phosphotyrosine residues in their
shallow enzymatic pockets [30]. MKPs consist of ele-
ven mammalian members (10 catalytically active
MKPs and one atypical noncatalytically active mem-
ber, MK-STYX) [4,6,13,26,32]. They all possess a C-
terminal catalytic phosphatase domain and an N-ter-
minal noncatalytic domain composed of two CDC25
(cell division cycle 25)/rhodanese homology (CH2/rho-
danese) domains [32-34] (Fig. 1). It is noteworthy that
the rhodanese domain (rhodaneses are sulfurtrans-
ferases) is inactive in MKPs [33,34], but still has a role
in modulating signaling. The C-terminal DUSP
domain has conserved aspartic acid, arginine, and cys-
teine residues within the catalytic active site [26,30],
while the N-terminal noncatalytic domain has inter-
vening clusters of basic amino acids [26,30]. These
clusters make up the kinase-interacting domain (KIM)
(Fig. 1), which positions the MAPK substrate for
effective catalysis [26,34]. Thus, the KIM domain
serves as the modular docking site for specific MAPK
isoforms, which determines the subcellular localization
of the phosphatase [26,35]. MKPs are differentiated by
their subcellular localization, sequence homology, and
substrate specificity into three subfamilies: nuclear,
cytoplasmic, and both nuclear and cytoplasmic
[26,36,37]. The prototypical mammalian MKP, DUSP-
1/MKP-1, has a nuclear localization signal (NLS), ren-
dering it nuclear (Fig. 1A). DUSP-1/MKP-1 is a mito-
gen-activated and stress-inducible phosphatase that
dephosphorylates MAPK in the nucleus [38,39].
DUSP-6/MKP-3 has a nuclear export signal (NES),
which localizes it to the cytoplasm (Fig. 1A), where it
regulates extracellular signal-regulated kinases (ERKs).
MKPs that function in both the nucleus and cyto-
plasm include the JNK (c-Jun amino terminus kinase)/
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p38-specific activated phosphatases [26,36,37]. These
various MAPK-MKP interactions demonstrate that
MKPs are essential regulators of MAPK signaling.

Intriguingly, MKPs may recognize a single class of
MAPKs and inactivate them, as is the case with
DUSP-6/MKP-3, which dephosphorylates the ERKs
[35]. Or, MKPs can regulate multiple MAPK path-
ways such as nuclear DUSP-1/MKP-1. DUSP-1/MKP-
1 dephosphorylates ERKs, c-Jun amino terminus
kinase, and p38 [35,40]. These multiple and distinctive
levels of regulation illustrate the complicated regula-
tion of MAPKs by MKPs.

MK-STYX/DUSP-24

Considering that MK-STYX/DUSP24 has homology
to DUSP-1/MKP-1 and DUSP-6/MKP-3, initial

investigations addressed whether MK-STYX regu-
lated the MAPK substrates of these active homologs.
MK-STYX/DUSP24 is an inactive MKP [4,12,13,41]
(serine/

that is also referred to as STYXL-1

DUSP-1/MKP-1
DUSP-6/MKP-3

Consensus

4.3 bits

Sequence logo
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threonine/tyrosine-interacting like protein-1) [13,24].
For simplicity, it will be referred to as MK-STYX
from this point. MK-STYX lacks the critical cysteine
in its active site signature motif (HCXsR), which is
essential for phosphatase activity [4,12,13,41]. It has
a phenylalanine and serine (FSTQGISR) in this sig-
nature motif (Fig. 1A), replacing histidine and the
essential cysteine, respectively. This results in MK-
STYX being catalytically inactive [4,12,13.41]. In
addition, MK-STYX has a presumed kinase interac-
tion motif (KIM), because it has a CH2/rhodanese
domain [4,12,13]. KIM binds MAPK/ERK1/2 [33]
(Fig. 1A). However, studies suggest that MK-STYX
does not interact with or modulate MAPK/ERK1/2
activation. When HEK/293 cells were stimulated
with epidermal growth factor and the phosphoryla-
tion of MAPK/ERKI1/2 was assessed, MK-STYX
did not change MAPK/ERK1/2 phosphorylation (un-
published data). This finding was validated by Niemi
et al. [4,23,27,42], further complicating the elucida-
tion of the role of MK-STYX.

DUSP-1/MKP-1

DUSP-6/MKP-3

DUSP-24/MK-STYX

“FSTQGISR”

THVRRRAK - G
GEVMERREQKG
pusp24mk-sTYX  [ITABRMKKKN

X1 XLRRXKKG

sTofRkeRke

Fig. 1. Comparison of the structure of pseudophosphatase MK-STYX to that of active homologs DUSP-1/MKP-1 and DUSP-6/MKP-3. All
have a C-terminal CH2/rhodanese domain interrupted by a kinase-interacting (docking) motif (KIM) and a N terminus DUSP (dual-specificity
phosphatase) domain. (A) Structural depiction of DUSP-1/MKP-1(MAPK phosphatase-1) that has a nuclear localization signal to locate it to
the nucleus; DUSP-6/MKP-3 that has a nuclear export signal keeping it cytosolic; DUSP-24/MK-STYX (MAPK phosphoserine/threonine/
tyrosine-binding protein) has a mutated DUSP domain in the signature active site motif (instead of HCXsR required for catalysis) and a
mutated KIM domain (required for MAPK docking). (B) Alignment of DUSP-24/MK-STYX, DUSP-1/MKP-1, and DUSP-6/MKP-3 shows that
DUSP-24/MK-STYX lacks essential arginines required for MAPKs to dock to MAPK phosphatases. The lower panel depicts the sequence
logo to compare the consensus sequence for the KIM, which shows that MK-STYX has only one conserved amino acid (R) within the KIM.

The sequence logo was built by Weblogo and is at 4.3 bits.
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The protein basic local alignment search tool
(BLAST) revealed additional mutations of MK-STYX
within the KIM domains, relative to its active homo-
logs. MK-STYX is missing critical arginine residues
required for MAPK/ERK docking [35,43] (Fig. 1B).
These positively charged arginine residues bind nega-
tively charged aspartic acid residues when docking to
proteins such as MAPK [44]. The KIM motif of
DUSP-1/MKP-1 consists of three consecutive argini-
nes, whereas the DUSP-6/MKP-3 consists of two
repetitive arginines (Fig. 1B) [35]. MK-STYX lacks
two arginines; the KIM contains one arginine, a
valine, and a lysine (Fig. 1B). These mutations in the
KIM of MK-STYX may explain why it does not bind
MAPK/ERK and does not impact MAPK/ERK1/2
signaling (unpublished data and Niemi et al. [27]).
Although the arginine replaced by lysine may not
appear critical, because both residues are positively
charged, it is important to note that the positive
charges are not consecutive, which is a crucial aspect
of the repeated arginines [35,43]. For example, the
KIM of DUSP-6/MKP-3 consists of two consecutive
arginines, instead of three, and maintains its ability to
serve as a docking site for MAPK [35]. The sequence
logos show that there is the conservation of one argi-
nine between DUSP-1/MKP-1, DUSP-6/MKP-3, and
MK-STYX—indicating that MK-STYX may not
interact with MAPKSs, which has been reported [27].

MK-STYX regulates stress granule
formation

Pursuing MK-STYX as a regulator of MAPK/
ERK1/2 revealed G3BP-1 (Ras-GTPase activating
protein SH3 domain-binding protein-1), a nucleator
of stress granules (SG) [45], as its first identified
interactor [13]. The formation of stress granules is
an immediate protective response to stressful envi-
ronmental cues such as heat shock, UV irradiation,
hypoxia, and oxidative stress [46]. Stress granules are
cytoplasmic storage sites for abortive translational
initiation complexes, which act as stations where
mRNA can be routed to other sites for storage, dis-
assembly, or degradation [47,48]. As part of the cel-
lular response to stress, the SG cycle involves
assembly, coalescence, and disassembly. We discov-
ered that MK-STYX binds G3BP-1 and inhibits
G3BP-1-induced stress granules and those (Fig. 2A)
induced by sodium arsenite [13]. Furthermore, this
interaction is independent of the phosphorylation
status of G3BP-1 at Ser 149 [29], where dephospho-
rylation at this site was thought to be critical for
stress granule formation [45]. Recently, Pana et al.
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reported that phosphorylation at Ser 149 does not
influence stress granule formation [49], which is con-
sistent with our observations. Point mutations, where
phenylalanine and serine in MK-STYX are restored
to a histidine and the critical cysteine within the
active site signature motif of MK-STYX, generate
an active phosphatase [4,13] that is referred to as
MK-STY X (active mutant) [13,29]. We noticed that MK-
STYX(active mutanty causes G3BP-1-induced stress
granule formation (Fig. 2B) [13,29], eliciting the
opposite effect of wild-type MK-STYX.

Stress granules represent a complex assemblage of
translational initiation factors such as eIF3 and
elF4, proteins involved in translational control, the
microtubule array, and chaperone proteins [50-53].
Phosphorylation of elF2a (eukaryotic initiation fac-
tor 20) by several stress-activated kinases triggers the
formation of stress granules by reducing the fre-
quency of the initiation of translation [47]. Heat
shock also induces stress granules and activates
many heat shock proteins (Hsps). For example,
Hsp70 expression increases as SG disappear, leading
to translational recovery [53]. Therefore, there are
many avenues that MK-STYX may use to decrease
stress granules, but the role of MK-STYX in the
stress response pathway is not directly through the
elF2a signaling or Hsp70 (unpublished data). There
are many other recent reports and exciting signaling
networks that MK-STYX may exert its function to
decrease stress granules, which are ongoing and
promising studies such as regulation of histone
deacetylase isoform 6.

MK-STYX,,.,..., [

Fig. 2. (A) Model of pseudophosphatase MK-STYX effects on
stress granules. (A) MK-STYX inhibits stress granules (stalled
mRNA as a protective response to stress) [46]. (B) The signature
active site motif of MK-STYX was mutated from FSXsR to HCXsR
to restore phosphatase activity [4,13]. This mutant referred to as
MK-STYX(active mutant) induces stress granules.
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MK-STYX promotes
dephosphorylation of histone
deacetylase 6

Histone deacetylase isoform 6 (HDACG6) has also been
implicated in the stress granule life cycle [54]. Members
of the HDAC superfamily remove acetyl groups from
histones, repressing gene expression [55,56]. HDACs
are primarily localized in the nucleus [57]; however,
HDACS6 is cytoplasmic [58] and is involved in the
stress response [59-61]. HDACG6 contains two catalytic
domains for deacetylation, which are separated by the
dynein-binding domain [57,62,63], a SE14 domain, and
a C terminus cysteine- and histidine-rich ZnF-UBP
(zinc-finger ubiquitin-binding protein) domain [59]. In
particular, the ZnF-UBP domain plays a critical role
in the function of HDAC6 in the cellular stress
response pathway [64,65]. HDAC6 binds G3BP-1 to
regulate stress granule formation [66]. The finding that
both HDAC6 and MK-STYX interact with G3BP-1
led us to investigate whether MK-STY X has an impact
on the dynamics of HDAC6. We found that HDAC6
localizes in both the cytosol and nucleus in the pres-
ence of MK-STYX, instead of solely in the cytosol
(Fig. 3A) [67]. In addition, HDAC6 phosphorylation
at Ser 22 decreases in the presence of MK-STYX
(Fig. 3B) [67], illustrating that MK-STYX influences
HDAC6 dynamics in both its subcellular localization
and post-translational modification [67]. Thus, a
strong link for the role of MK-STYX in HDACS6 sig-
naling has been established, and MK-STYX as a

MK-STYX: the atypical MAP kinase phosphatase

regulator in the stress response pathway has been fur-
ther supported, but how MK-STYX inhibits stress
granules remains elusive.

MK-STYX regulates apoptosis

Studies by Niemi et al. on MK-STYX have been a
great contribution to elucidating the molecular mecha-
nism of this pseudophosphatase [4,27,28]. They estab-
lished that MK-STYX localizes to the mitochondria,
and is a regulator of apoptotic signaling [27]. MK-
STYX is required to decrease chemosensitivity and
induce stress-activated mitochondrial-dependent apop-
tosis [27]. Moreover, the interaction of MK-STYX
with the mitochondrial phosphatase, PTPM1 (PTP
localized to the mitochondrion 1) is required for MK-
STYX to function as a regulator of apoptosis [28]. In
the absence of MK-STYX, PTPMI1 inhibits apoptosis
[27,28]. In the presence of MK-STYX, the pseu-
dophosphatase negatively regulates PTPM1 by binding
it and inhibiting its catalytic activity, thereby promot-
ing apoptosis (Fig. 4) [4,28]. An MK-STYX:PTPM1
complex is essential for proper function, similar to the
MTM pseudophosphatases:phosphatase enzyme com-
plexes. To date, MK-STYX has not been reported to
bind any of its active MKP homologs to enhance their
activity. Instead, MK-STYX binds to members of a
different class of phosphatases and decreases their
activity. This further validates that MK-STYX has
very different interactors, as well as signaling roles
compared with its active homologs.

A HDACG6 HDAC6
MK-STYX ;

B

HDACG’ HDACG’
HDACG. ) HDAC6
HDAC6 HDAC6
MK-STYX
HDAC6 —_— > HDAC6
HDAC6 HDAC6 HDAC6 HDAC6

Fig. 3. Model of the effects of MK-STYX on HDAC6 dynamics. (A) Histone deacetylase 6 (HDACSH) is cytoplasmic [58]; however, it partially
localizes to the nucleus in the presence of MK-STYX. (B) HDAC6 phosphorylation at Ser 22, which has a role in the deacetylase activity of

HDACSG [80], is decreased in the presence of MK-STYX.
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MK-STYX I
| PTPM1 Activity —>» Apoptosis
PTPM1

Fig. 4. Model of the effects of MK-STYX as regulator of apoptosis.
Phosphatase activity of PTPM1 (mitochondrial phosphatase)
prevents apoptosis; therefore, MK-STYX regulates apoptosis by
binding PTPM1 and inhibiting its PTP activity. Thus, when a
complex of MK-STYX-PTPM1 forms, apoptosis is promoted by
inhibiting the inhibitor.

MK-STYX regulates neurite formation

Because G3BP-1 and stress granules have been linked
to neurological disorders [15,23,68,69], we also focused
on the role of MK-STYX in neurite formation. We
discovered that MK-STYX dramatically increases the
number of primary neurites in rat pheochromocytoma
(PC-12) cells [42], as well as secondary neurites
[4,23,70]. MK-STYX decreases RhoA activation,
which increases when MK-STYX is down-regulated.
MK-STYX-overexpressing cells produce more actin
growth cones than control cells [4,70]. MK-STYX also
affects the actin-binding protein cofilin, a downstream
player of RhoA. MK-STYX decreases the phosphory-
lation of cofilin in unstimulated cells, but increases its
phosphorylation in NGF-stimulated cells, whereas
knocking down MK-STYX caused opposite effects
[4,42]. Furthermore, MK-STYX sustains actin expres-
sion in the absence or presence of NGF [70]. The
effects of MK-STYX on RhoA activation, cofilin, and
actin expression implicate it as a regulator of neurite
formation through the RhoA signaling pathway
(Fig. 5) [4,23,42,70]. Furthermore, MK-STYX also
affects hippocampal primary neurons [70]. MK-STY X-
expressing neurons produce more than the normal
number of primary neurites [4,70].

These dynamic morphological changes in neurites
caused by MK-STYX indicate that MK-STYX has an
effect on various cytoskeletal proteins and/or networks
responsible for the morphology of cells [71]. Intrigu-
ingly, proteomic analysis reveals that MK-STYX
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differentially interacts with various cytoskeletal proteins
(Fig. 6) [72]. Affinity purification mass spectrometry
data revealed six cytoskeletal proteins, MYO1B (uncon-
ventional myosin-1B), ACTA 1 (actin, alpha skeletal
muscle), MYOIC (unconventional myosin-1C), VIM
(vimentin), SPTBN1 (spectrin beta chain, nonerythro-
cytic 1), and SPTANI (spectrin alpha chain, nonery-
throcytic 1) as high-confidence candidates that interact
with MK-STYX (false discovery rate (FDR) < 1 indi-
cates that interaction is real). Cytoskeleton proteins
specifically interact with MK-STYX, but not prototypi-
cal STYX (Fig. 6). Four of these proteins, MYOIB,
SPTBNI1, VIM, and SPTANI, have regulatory roles in
neuronal development such as neurite outgrowths, pro-
jections, vesicle transport, and axon guidance [73-75].
Moreover, there have been a number of correlations
pointing toward a key role of MK-STYX in neuronal
development. A missense mutation of MK-STYX is
highly expressed in intellectual disability and epilepsy
[24], but may not directly contribute to disease pheno-
type [76]. Taken together, this highlights the emergence
of MK-STYX as an important signaling molecule in
neurodegenerative diseases.

Conclusion and perspective

Converting a phosphotyrosine-binding domain into an
active DUSP [6] prompted excitement for these cat-
alytically inactive enzymes but did not revolutionize
their investigation. Almost a quarter of a century later,
pseudophosphatases and pseudoenzymes, in general,
are receiving well-deserved attention and categoriza-
tion of these molecules as integral regulatory compo-
nents of signaling pathways. Through genomic
analysis, it became apparent that pseudoenzymes are
widespread [2,5,10,14,77], and it thus became impor-
tant to understand more of their actions [1,4,10]. This
review detailed substantial and compelling evidence
that one such protein, MK-STYX, is a critical signal-
ing regulator of signaling pathways such as apoptosis,
stress response, RhoA, and neuronal differentiation
[4,13,27-29,42,70].

Actin Polymer

-@-

Actin Monomers

TR

o
Ooo (%]

Neurite

Fig. 5. Model of the effects of MK-STYX on neurite formation. The working model suggests that MK-STYX induces neurites by regulating
the RhoA signaling pathway, which changes actin dynamics to induce neurite formation.
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Fig. 6. MK-STYX interacts with cytoskeletal proteins. Prototypical
pseudophosphatase STYX (phosphoserine/threonine/tyrosine-
interacting protein) or MK-STYX was cloned in Flp-In T-REx (with a
FLAG epitope) and transfected in the Flp-In T-REx HEK293 system
to create an isogenic cell pool of the recombinant protein under
the control of a tetracycline-inducible promoter [72]. FLAG affinity
purification mass spectrometry data represented as a dot plot.
Interactions between archetypical STYX and MK-STYX are very
distinct; STYX interacts with SKP1 and several F-box proteins,
which has also been reported by another laboratory [8], while MK-
STYX was found to interact with cytoskeletal components
(Adapted from St-Denis et al.) [72].

Characterizing the relationship of pseudophos-
phatases to their interactors is important to under-
standing their role as regulators. This point is
elegantly shown by Caenorhabditis elegans EGG 4/5,
which provided the initial evidence that pseudophos-
phatases are signal regulators [4,21,22]. These studies
emphasize the importance of continuing to develop
new tools and techniques to investigate pseudoen-
zymes. Proteomics and biochemical approaches were
instrumental in understanding the molecular mecha-
nism of MK-STYX as a regulator of apoptosis
[4,27,28]. We have made significant contributions to
the biological function of MK-STYX and have devel-
oped an important phenotypic model (neurite exten-
sions) [4,13,29,42,67]. Our recent report of the impact
of MK-STYX on HDAC6 dynamics [67] demonstrates
that it has many functions as a signaling molecule.
HDACS6 is an intensively investigated target for neu-
rodegenerative diseases such as Alzheimer’s, Parkin-
son’s, and Huntington’s diseases, further validating the
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importance of continuing to pursue the role of MK-
STYX in neuronal development.

These catalytically inactive molecules must be stud-
ied with comparable rigor to their active homologs.
Tools such as those of structural biology, biochem-
istry, and in vivo models must be used to elucidate the
molecular mechanisms and biological functions of
these proteins [4,77]. For example, crystal structures of
pseudokinases revealed insight into their role as allos-
teric regulators, hubs for assembling protein com-
plexes, and switches [3]. Obtaining the crystal structure
of MK-STYX and its active mutant will provide
important insight into its molecular mechanism, just as
structures revealed the mechanism of PTPs [11]. It will
allow the implementation of structure—function studies
to decipher structural changes that MK-STYX confers
on its interactors. These studies will help visualize how
the active site pocket and KIM have been disrupted by
mutations [2], which will help identify unique signaling
networks that may lead to complex pathologies. One
elegant structure—function study demonstrated that
structure features of the KIM/docking motifs were
critical for MAPKs (c-Jun N-terminal kinase, p38, and
extracellular signal-regulated kinase) to differentiate
between specific partners [78]. Ultimately, it will be
imperative for laboratories investigating pseudophos-
phatases to invest in knockout models to have an
overall understanding of the function of these mole-
cules, which may catapult interest in designing inhibi-
tors against the noncatalytic phosphatases. The field
has passed the crossroads, and the time is now to elu-
cidate the molecular mechanisms of all pseudophos-
phatases and establish their roles in pathologies. The
development of substrate-trapping mutants (inactive
PTPs that maintain the ability to bind substrates [79])
illustrated that PTPs display exquisite substrate speci-
ficity, allowing them to function as highly selective reg-
ulators of signal transduction [11]. This indicates the
importance of the ‘naturally occurring’ substrate-trap-
ping mutants [11,18], pseudophosphatases, as critical
selective regulators of signaling cascades, which is
highlighted in this special edition.

This special edition on pseudoenzymes is timely; it
emphasizes that pseudoenzymes are critical regulators
of signal transduction. We are excited about the con-
tinued development of new techniques. Initially, com-
paring pseudophosphatases to their active homologs
was thought to be the best option to understand their
function. Such a comparison is meritorious; however,
it must be combined with the perspective that each
pseudophosphatase may perform its own role as a reg-
ulator in signaling pathways. It is imperative to study
each and every pseudoenzyme in detail [77]. With the
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interest of new investigators, and collaborative efforts,
it is likely that the molecular mechanisms these catalyt-
ically inactive phosphatases exert to achieve these cel-
lular processes will be discovered in the near future [4].
Collectively accomplishing this goal will be a pivotal
moment for the field and science. Moreover, elucidat-
ing the mechanisms of actions of these catalytically
inactive phosphatases may provide insight into how
the allosteric interactions of the active PTPs regulate
biological function.
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