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Abstract

We study the convergence of the Expectation-
Maximization (EM) algorithm for mixtures
of linear regressions with an arbitrary num-
ber k of components. We show that as long
as signal-to-noise ratio (SNR) is Q(k), well-
initialized EM converges to the true regres-
sion parameters. Previous results for £ > 3
have only established local convergence for
the noiseless setting, i.e., where SNR is in-
finitely large. Our results enlarge the scope
to the environment with noises, and notably,
we establish a statistical error rate that is in-
dependent of the norm (or pairwise distance)
of the regression parameters. In particular,
our results imply exact recovery as ¢ — 0, in
contrast to most previous local convergence
results for EM, where the statistical error
scaled with the norm of parameters. Standard
moment-method approaches may be applied
to guarantee we are in the region where our
local convergence guarantees apply.

1 Introduction

The Expectation-Maximization (EM) algorithm is a
powerful tool for statistical inference when we have
samples with missing information, often modeled as
latent variables. It is a general-purpose heuristic for
evaluating the maximum likelihood (ML) estimator
for such problems Wu et al. (1983). A canonical ex-
ample is parameter estimation for the mixture of a
known family of parameterized distributions such as
Gaussian Mixture Models (GMM) or Mixture of Lin-
ear Regressions (MLR). In such problems, solving for
maximum likelihood estimator is NP-hard due to the
non-convexity of the log-likelihood function. The EM
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algorithm successively computes tighter lower bounds
on the likelihood function; each iteration is no more
complex than solving the ML problem with no miss-
ing data. Despite its simplicity and broad success in
practice, a theoretical understanding of EM remains
largely elusive (but see Section 1.1 for important recent
results). In general, the EM algorithm may fail to
converge to a global optimum of log-likelihood function.
Thus, its success story is specific to problems to which
the EM algorithm is applied.

In this paper, we study the convergence behavior of the
EM algorithm for mixture of linear regressions with
k components. We show that the EM algorithm con-
verges to the true parameters when the signal-to-noise
ratio (SNR) is larger than €(k), and the parameter is
well initialized, within O(1/k) of the true parameters
(see related works and Remark 1 for some known ini-
tialization techniques). This is the first result, to the
best of our knowledge, to establish the convergence of
the EM algorithm in MLR with more than two com-
ponents and finite SNR. Furthermore, under the same
regularity conditions, we recover the results of Kwon
et al. (2019) for two-component mixtures, showing that
the statistical error of the sample-splitting finite sample
EM algorithm is O(c\/k2d/n) where n is the number
of samples per iteration. This is significant because our
analysis then implies exact recovery in the noiseless
setting even with finite number of samples, in contrast
to earlier work Balakrishnan et al. (2017); Klusowski
et al. (2019) that only showed statistical error scales
with the norm (or pairwise distance) of the regression
parameters.

1.1 Related Work

Work in Balakrishnan et al. (2017) established a char-
acterization of the local region of attraction within
which EM is guaranteed to converge to a point with
the statistical precision of a global optimum. This
complemented work in Yi et al. (2014) that gave an
analogous result for noise-less mixed regression. A
key aspect in Balakrishnan et al. (2017) involves cou-
pling an analysis of population EM to finite sample
EM. Several results have followed, providing conver-
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gence results for canonical problems such as GMM or
MLR. In the special case of two balanced mixtures,
global convergence results have been established in Jin
et al. (2016); Daskalakis et al. (2017) for GMMs, and
in Kwon et al. (2019) for MLR. Beyond more than two
components, a negative result for global convergence
of the EM algorithm for 3-GMM has been established
Jin et al. (2016), while Zhao et al. (2018); Yan et al.
(2017) give a local convergence result for k-GMM with
arbitrary k > 3. Attempts have been made to obtain
analogous results for mixed linear regression. However,
these efforts have only been successful in the setting of
infinite SNR, i.e., the noiseless setting. Here, Yi et al.
(2016) establishes convergence of alternating minimiza-
tion, while Zhong et al. (2016) obtains a similar result
by solving a non-convex formulation; work in Hand
and Joshi (2018) gives a convex objective that solves
the noiseless MLR problem for well-separated data.

Indeed, the problem of solving mixture of linear regres-
sions has been extensively studied. In general, MLR
is NP-hard Yi et al. (2014) due to the combinatorial
nature of the problem. Therefore, it is natural to con-
sider assumptions in the problem, and various efficient
algorithms have been proposed under certain statistical
assumptions Sedghi et al. (2014); Chaganty and Liang
(2013); Yi et al. (2014); Chen et al. (2014); Zhong et al.
(2016); Yi et al. (2016); Chen et al. (2017); Li and
Liang (2018); Hand and Joshi (2018). For instance,
Chen et al. (2014) proposed convex formulation which
achieves the optimal minimax rate for equal-weighted
2-MLR, and later in Chen et al. (2017) extended the
treatment to unequally weighted mixtures, but again
focus on the mixture of only two components. As men-
tioned, Yi et al. (2016); Zhong et al. (2016); Hand and
Joshi (2018) all propose algorithms for solving k-MLR,
in the noiseless setting.

A common technical tool used by many algorithms
is the powerful method of moments. In the various
algorithms based on method of moments Sedghi et al.
(2014); Li and Liang (2018); Yi et al. (2014); Chaganty
and Liang (2013); Zhong et al. (2016); Yi et al. (2016),
up to third-order tensors are constructed from Gaussian
regression models and tensor-decomposition algorithms
are performed. The drawback of a purely moment-
based method is the high sample and computational
complexity. In particular, the statistical error of the
resulting estimator typically scales with the norm of
the regression parameters. Therefore, these methods
are often used in conjunction with fast iterative algo-
rithms, such as gradient descent Zhong et al. (2016);
Li and Liang (2018) or alternating minimization Yi
et al. (2014, 2016). While the work cited provides guar-
antees for these iterative algorithms in the noiseless
setting, they are no longer consistent estimators in

the presence of noise. In practice, the EM algorithm
seems to obtain better results; in theory, however, the
question of whether EM always converges to the global
optimum for k-MLR with & > 3 is open, even when
initialized in a neighborhood of true parameters. This
paper provides an affirmative answer to this question.

1.2 Main Contribution

We prove local convergence of the EM algorithm for
k-MLR, showing that it converges to a global optimum
with high probability, when SNR is Q(lc), and EM is ini-
tialized in a 1/0(k)-neighborhood of a global optimum.
We first establish this result in the infinite sample limit,
i.e., population EM. Our result generalizes the results
in Balakrishnan et al. (2017) which established local
convergence for a symmetrized balanced mixture of
two components. We establish local convergence in the
setting with arbitrary number of components and pos-
sibly unbalanced mixing weights. At a high level, our
analysis proceeds by carefully constructing the event
where the samples are almost correctly assigned their
weights, bringing the next estimator closer to the true
parameter. Given good initialization and high enough
SNR, we expect most samples fall into this category.
At the same time, we bound the portion of bad sam-
ples which do not fall into this event. The effect of
this “leakage” is thus canceled out when the average
is taken over all samples. By this construction, our
convergence rate is no longer dependent on the max-
imum distance between regression parameters which
has often appeared in the EM literature as an artifact
of the analysis.

We then show the convergence of a simple variant of
finite-sample EM' via concentration arguments. To-
ward this goal, we propose “event-wise” concentration
of random variables as a proof strategy. Intuitively
speaking, the samples that fall into the good event in
population EM only induce exponentially small errors.
Consequently, statistical errors from these good sam-
ples should also be exponentially small. Furthermore,
they are the majority among all samples under our
assumption on SNR and initialization. On the other
hand, samples conditioned on bad events could incur
an error as large as the norm of the parameters. How-
ever, they are in the minority, and large norms will be
canceled out when divided by the total number of sam-
ples. See Section 5 and Proposition 5.3 for a detailed
discussion and formal statement. Remarkably, we show
that the statistical error only scales with the variance
of the noise.

'The variant is often called sample-splitting since it
divides entire samples into 7" batches and uses a new batch
in every iteration.
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2 Problem Setup

We consider the mixture of multiple linear regressions,
where a pair of random variables (X,y) € R? x R are
generated from one of k linear models:

Dj:y=(X,B])+e, for j=1,...k

where e represents additive noise in the measurement
with variance o2. Our goal is recovering regression
parameters {35 }¥_, when the labels that indicate from
which domain each pair is generated are missing. Thus,
we are considering the estimation of parameters for the
mixture of distributions {D; };?:1 with mixing weights
{71— j 1
{8;}5_, when we have n samples (X;, ;)i ~ D,
Where D= Z 7;Dj is a mixture distribution.

In the finite sample regime, we estimate

In this paper, we assume that the design vector X
for all linear components comes from a shared stan-
dard multivariate Gaussian distribution N (0, I;). We
assume e is a zero-mean and unit-variance Gaussian
random variable and independent of X. Thus, the

problem is rescaled with known variance parameter o2.

Notation. We use d to denote the dimension of the
problem and k the number of components. (X,Y)
are a pair of random variables from mixture distribu-
tion D, n is the number of samples, and (X;,y;) are
generated samples. We define pairwise distance R,
and Rin, Rmaee as the smallest and largest distance
between regression vectors of any pair of linear models:

Ri; =167

We define SNR of this problem as R,,;,, which is equiv-
alent to the ratio of minimum pairwise distance versus
variance of noise. Define p, = max;(7})/ min;(77) as
the ratio of maximum mixing weight and minimum

mixing weight, and 7, = min; 7r;.

= Bill, Rinin = mlnR Rppar = max Rj;.

2177 N
J i#]

We denote the max of two scalar quantities a, b as (aVb).
When v is a vector, ||v|| is Iz norm of v. Inner product of
two vectors u, v is denoted as (u,v). When A is positive
semi-definite (PSD) matrix, ||A/op = sup,ega—1(sT As)
is an operator norm of A, where S¢~! represents the
unit sphere in R? space and s is any unit vector in R?.

We use Ep[X] to denote the expectation of random
variable X ~ P. Thus Ep|[-] is the expectation taken
over the mixture distribution D, and Ep,[-] is the ex-
pectation taken over distribution corresponds to ;"
linear model. We denote 1 x¢¢ an indicator function for
event £, and often use a shorthand for it 1¢ when the
context is clear. We use E[X|€] to denote conditional
expectation under event X € £.

For one step analysis of population EM iteration, we
use [3; to denote the current estimator of j th parameter,

and BJ-F to denote the next estimator resulted from EM
B;. We denote Bj and
ﬂ;r be corresponding estlmators for the finite-sample
EM. In the result for entire EM algorithm, 5]@

B](-t) denote the estimator in the " step of population

EM and finite-sample EM respectively. Notations for
mixing weights m; are defined in a similar manner.

operator. We denote A; := 3; —

3 Main Results

We state the main results for both population EM
and finite-sample EM. We provide a proof sketch in
the following two sections, and defer details to the
Appendix.

One iteration of the population EM algorithm for this
problem consists of two steps:

step) | i — T exp(—(Y — (X, 8:))*/2)
(Estep) sy = resp(—(V — (X, A)2/2)
(M-step) : B = (Ep[w; XX T]) " (Eplw,; X YY),

7T]+ = ]ED[U)J'].

We first state our main convergence result for popula-
tion EM after T iterations.

Theorem 3.1 There exists universal constant C,c > 0
such that if Rpyin > Ckpy logz(k;pﬂ), \77(-0) — 77;| <

J
71/2, and ||8; — B\ < cRuin/(kpxlog(k)) for all

j, then EM converges to true parameters after T =
O(log(max; ||Bj* — B](-O)H/e)) steps, i.e., max; Hﬁj* —
B < O(e) for all j.

Remark 1 (Initialization with Tensor Methods)
Tensor-based methods are able to recover all parameters
under the condition that the regression parameters
are linearly independent’. However, tensor methods
either have a poor dependence on d Chaganty and
Liang (2013), or a sub-optimal sample-complexity
(polynomial) dependence on Ryqz, in order to get the
precision error independent of Ryqa.. This is the case
for a natural extension of the temsor-based method
of Yi et al. (2016). Thus it is common procedure to
use spectral methods to get a crude but good enough
initialization, and then continue with EM when the
noise is small.

Next, we state our main results for finite-sample EM.
In finite-sample EM with sample-splitting strategy, we
divide n samples into T" batches, and uses a fresh batch

2Without this structural assumption, there is no known
polynomial-time algorithm for MLR, hence initialization
becomes another challenging open problem.
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of n/T samples per every iteration. To simplify nota-
tion, simply use n rather than n/T when it is clear
from context that we are focusing on the single stage
analysis. The update rule for each step is:

7y exp(=(Y = (X,;))°/2)
S e T exp(—(Y — (X, 3)2/2)

( Z wi,inX;)A( Z wi,inyi)7

i€[n] i€[n]

o1
f:ngm--

1€[n]

(E-step) :

Wi =

(M-step) : Bj

We show similarly the convergence result for finite-
sample EM after T iterations:

Theorem 3.2 There exists universal constants C,c >
0 such that if Ryin > Chkpylog®(kps), |7~T§»0) -7 <

73/2, and ||B; — BJ(-O)H < ¢Rumin/(kpxlog(k)) for all
j, then giwen n i.i.d. samples (X;,y;) from mix-
ture distribution D, where the sample complexity is
n)T = O((k/Tmin)(d/€%)), then with high probability,
sample-splitting finite-sample EM converges to true
parameters, i.e., |35 — BJ(T)H < O(e) for all j after

T = O(log(max; |87 — BJ(O) l/€)) iterations.

Remark 2 The statistical error in our result is inde-
pendent of Ryin 07 Rpmaz. This implies in the original
problem where the variance of noise is o, we have sta-
tistical precision O(ce€). It guarantees exact recovery
as 0 — 0. This is the first result showing that the sta-
tistical error rate of the EM algorithm does not depend
on the distance between any two regression vectors in
noisy environment, as opposed to all previous analysis
on EM Balakrishnan et al. (2017); Klusowski et al.
(2019); Zhao et al. (2018); Yan et al. (2017); Yi and
Caramanis (2015). We provide the detailed discussion
on this issue in Section 5.

Discussion of Main Results. Several points are
in order before we move on to the technical proofs.
First, note that in the balanced setting (where all
mixing weights are nearly equal to 1/k), p, = 1 and
Tmin = 1/k, thus the SNR condition is Q(k), and
sample complexity per each iteration is O(k2d/e?). The
dependency on d and e is thus optimal. We note that
the O(k?) dependency appeared even in the noiseless
setting Yi et al. (2016). The total number of iterations
is T = O(log(max; || 87 — ﬁ](»o) I/€)), as a result of linear
convergence with constant rate in our analysis. In the
original scale with noise variance o2, it is equivalent to
T = O(log(max; || 35 —B](-O) II/€")), to achieve an error of
O(€') where ¢ = oe. Note that in the extreme setting
where 0 — 0, exact recovery can still be guaranteed in

a finite number of steps, but it requires separate case
study on the last iteration which we omit in this paper
(see Lemma 3 and Corollary 1 in Yi et al. (2016)).

A natural question is whether the Q(k) requirement
for SNR Q(k) is sharp. In a very closely related prob-
lem, the parameter estimation of GMM, Regev and
Vijayaraghavan (2017) established the lower bound
for minimum separation between the centers of each
Gaussian component to recover all centers using a
polynomial number of samples. Indeed, the bound
Q(+/Iog k) established in Regev and Vijayaraghavan
(2017) is a threshold above which the labels of most
samples can be correctly identified (thus the majority
are good samples) if the ground truth parameters are
given. However, for mixed linear regression, no such
lower bound result has been established. We conjec-
ture that such lower bound might be much larger in
mixtures of linear regressions, and it might be closely
related to the convergence of the EM algorithm. We
leave it as a main future challenge to find such lower
bounds for mixed linear regression. In this paper, we
focus on the local analysis of the EM algorithm under
the condition where the labels of most samples can be
correctly identified, if we have good estimate of ground
truth parameters. We note that it might be possible to
improve the logarithmic factors on the SNR condition
with more refined analysis.

Doing away with sample splitting in our algorithm is
also a natural and important extension, since we use
it in the analysis, though it is well appreciated that
in practice EM does not appear to need it. One way
to avoid the sample-splitting technique is to get an
uniform concentration bound over local region of inter-
est. Indeed, some previous works on the EM algorithm
does precisely this, obtaining uniform concentration
of EM operators Yan et al. (2017); Zhao et al. (2018);
Cai et al. (2019). However, their statistical errors have
polynomial dependence on R,,4,. It is not clear how
to remove this in their analysis, even if we do allow
sample-splitting. We take an alternate analysis path;
while we cannot seem to avoid sample splitting, we do
succeed in removing this R,,,. dependence (see Section
5). We thus obtain an error rate that is free of distance
between any two regression vectors. We leave it as a
future work to derive the uniform concentration type
result with the same statistical error rate.

4 Analysis of Population EM

We first give the sketch of the proof for population
EM and provide detailed proof in Appendix A. For the
ease of the presentation, we assume we know the true
weights and use them in the main text, and tackle the
general setting in the Appendix. We express Bf‘ - b5
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B =1 = (Eplwr XX ') Ep[wr X (Y — (X, 57))]).

Then, we exploit the fact that true parameters are a
fixed point of the EM iteration. That is,

w = P! exp(f(y — <X7 ﬂf))z/Q)
P mexp(—(Y — (X, 57))2/2)’
Ep[wi X (Y — (X, 81))] = miEp, [X(Y — (X, 51))] = 0.

Then 8] — 3f can be re-written as
B — 81 = Eplwr XX )7 (Ep[AuX (Y — (X, 5])),

where we defined A, := w; — wj. We then bound two
terms minimum singular value of A = Epw; XX ']
and norm of B = Ep[A, X (Y — (X, 51))].

Remark 3 We do not exactly verify the so-called gra-
dient smoothness (GS)-condition for population EM
operator as proposed in Balakrishnan et al. (2017).
The reason for that becomes clear in the finite-
sample analysis: the inverse of Ep[w1 X X '] does not
match that of finite sample EM, which has inverse of
1/n >, wi X, X, . If we try to control the deviation of
the entire finite-sample EM operator from the popula-
tion EM operator, this mismatch inevitably results in a
statistical error that scales with Ry,qz.

4.1 Bounding B

We first bound B. The high-level idea of bounding B
is closely related to Balakrishnan et al. (2017). Our
result formalizes the proof idea in Balakrishnan et al.
(2017) to make it applicable to k-mixture of regressions.
Define D, := max; ||8; — B ||. We first treat the case
when D,, > 1, and apply mean-value theorem for
D,, < 1. In either case, we construct good events with
carefully chosen parameters to bound the portion of
bad samples and errors induced by good samples. We
start with stating our lemma on the bound of B.

Lemma 4.1 Under the condition in Theorem 3.1,
when Dy, > 1, there exists universal constants c¢1,¢} €
(0,1/8) and cg,c3,cq > 0 such that:

IB|| < 7 (c1 + caklog(kpx)/Rmin) + > _ 7 (Cﬁ/(kpw)
1
+ c3log(Rikpx) /Riy + (caD /RS Dm).

When D,, <1, there exists another universal constants
c1,¢) € (0,1/8) and cg,c3 > 0 such that:

IB]| < 77 (c1 + coklog(kpr)/Rmin)Dm

+ 75 (c4/Urpe) + 31082 (R} kipe) /Ry ) Din.
j#1

Note that when D,, < O(Rmm/kpﬂ) and Ryin =
Q(kpx), above equations guarantee that ||B| <
cpTi Dy, for some small constant cg. We only present
how to bound errors from other components j # 1 in
the main text, but the same idea is applied to all other
cases. In defining what are the good samples, we need
to consider two things: (i) the noise is not abnormally
large, (ii) residual error due to class mismatch is large
enough to be detected. It can be formalized into the
following on three events in j** component for j # 1:

&1 = {lel <75},

Ej2 = {I(X, A1)V (X, A5)] < (X, B — B)I/4},
&= {I(X, B8] = )| = 4V2r;},

Ejgood =Ej1NEj2NE;}3. (1)

Here, 7; is a threshold parameter that we specify care-
fully in the proof. When these three events occur at
the same time, it is a good sample: weights given to
first component for this sample is almost 0. In fact, we
can show that |A,| < (7 /77) exp(—77). The errors
from this event can be thus bounded by

B, [Auw X (Y — (X, B1) e 000l <

(n1/7) exp(~77) ES;RIEDJ-[KX, s)(Y = (X, )],

where we omitted subscript j in the notation for events.
As the supremum is shown to be in order O(R},), the

choice of 7, = © (, /log(Rjﬂc)) here comes clear if we
want the error less than O ((n}/7%)/k).

When one of the above events are violated, we have
no control on the weights from wrong components.
However, we can instead control the portion of these
bad samples. For instance, consider &£ is violated, i.e.,
measurement noise happens to be large. A Gaussian
tail bound gives P(&f) < 2exp(ij2/2). This small
probability is then used to bound the error from bad
events,

1B, [AwX (Y = (X, Bi)leg]l <
P(E) s Ep, [(X,)(Y — (X, 5)]|E5]

We are left with bounding the expectation conditioned
on &f, which turns out to be O(R};). With the choice

of ;, = © ( log(R;lkpﬂ)), this term is bounded by

small value.

In order to handle two other cases £5 or £, we need
the following lemma:

Lemma 4.2 Let X ~ N(0,1;). Suppose any fired
vector v € R?, a set of vectors ui,...,ur, € R? such
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that ||u;|| > ||v]| for all j, and constants o, ...
Then consider two events

yap > 0.
E={|(X,u;)| > (X,v)|, Vj=1,.. Kk},
& ={[{X,u;)| = aj, Vj =1,...k}.
Then for any fized unit vector s € S¥1,

E[[(X, s)[*€°], E[l(X

for some universal constant C' > 0.

,5)[?1€] < Clogk,  (2)

This lemma is crucial to bound the conditional expec-
tation of errors when the sample is not in the good
event set. A weaker version of this lemma appeared in
Yi et al. (2016) with the (weaker) bound O(k) in (2).
The improvement has two consequences. First, it im-
proves required initialization from O(1/k?)-proximity
to O(1/k). Second, this bound is used critically in con-
trolling the required SNR, in Theorem 3.1. Using the
previous results would have produced a k2-scaling of
the SNR. The proof of this lemma is given in Appendix
ALl

The rest of the proof follows similarly. The complete
proof for D,, > 1 including Lemma 4.1 can be found
in Appendix A.2.

When D,,, <1, we first apply the mean-value theorem
to get a tighter error bound that is proportional to D,,
Then we can construct similar events that define good
samples, and apply the same approach. Since D,,, <1
case involves heavy algebraic manipulation, we defer
the proof for this case until Appendix D.

Remark 4 (Unknown mixing weights) Our anal-
ysis also shows that EM succeeds when it is simul-
taneously estimating mizing weights and parameters.
Tensor-based methods can also provide a good estima-
tion of these mizing weights along with the estimate
of regression vectors when they are not known in ad-
vance. In order to handle unknown mixing weights, the
only additional requirement is the initial guess of mizing
weights to be close in relative scale, i.e., |mj —77| < cm}
for some small ¢ > 0, which we set 1/2 as a requirement
for the initial estimator.

When D,, > 1, the only change in the proof is replac-
ing m; with mj, i.e., using the estimator of weights
instead of true weights. In this regime, it is enough to
show that 7r;-r stays in the neighborhood of true mixing
weights, i.e., |7r]+ — 77;| < 77;/2. When D,, < 1, when
we apply mean-value theorem, there is an additional
term differentiated by mizing weights, which can also
be bounded using the same approach. In this regime,
there is also an improvement over mizing weights, i.e.,

max; |7r;'—7r;|/7r;-‘ < ymax(max; \Wj—ﬂﬂ/ﬂj, D,,) for

some v < 1/2 under the SNR and initialization condi-
tion we assume. Proofs for unknown mixing weights are
given in Appendixz A.2 for case D,, > 1, and Appendiz
D for case D,, < 1.

4.2 Bounding A

We give a lower bound on the minimum eigenvalue of

Ep[w; XX T]. We first observe that

Eplwi XX '] =Y miEp, [w; XX ] = m{Ep, [wn XX .

J

Then the minimum singular value of the right hand side

is lower bounded by 77/2. given good initialization
Dy /Rpmin = 1/O(k) and SNR Ry, = Q(k). The

detailed proof including the lemma can be found in

Appendix A.3.

Proof of Theorem &5.1. From Lemma 4.1, given
Rmin = Ckpglog®(kp,) = Q(kpz) and D,, =
cRmin/(kprlogk), we have |B| < (n7/4)D,, with
proper universal constant C,c > 0. Similarly, from
Lemma A.3. we get [[A™Y|,p < 2/7F. Then

Dy, = max |5 = 7 < A7 lopl| Bllz < Din /2.

We can conclude that after T = O(log(max; || ﬁj(.o) —

= B7ll = O(e),
O

. . ¢
B;ll/€) iterations, we have max; ||6]( )
thus we get Theorem 3.1.

5 Finite Sample EM Analysis

In the finite sample version of EM, the estimation error
at the next iteration in this problem is:

§ wlz

The key quantity we will focus is the deviation of each
empirical sums from their respected true means. That
is,

B =81 = O wiiXiX,[") — (X5, 81)))-

An Zl/n Z wl,iXiXiT,

en ::(1/1121111,1»)(z

— ]Ep[le(Y —

Xi,81))

Note that 3] — 8; = A;'B,, where B,, := B +ep. In
the analysis of population EM, we have shown that
|B|| < ¢g Dy, for some universal constant c¢g. Thus,
we only have to bound ep, which is the deviation
of finite sample mean from true mean B. Then we
analyze the minimum singular value of A, similarly
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by relating it to A. We focus on the concentration of
sums in one-step iteration of EM. We assume that we
use sample-splitting finite sample EM as we defined in
Section 3, and we run EM for T iterations.

Before getting into our finite-sample analysis, we dis-
cuss briefly why we do not use a simpler standard
concentration argument. Note that our target for
giving a concentration bound is the random variable
w1 X (Y — (X, B7)). On its own, it is a sub-exponential
random variable, since |wi| < 1, X is sub-Gaussian
(vector) with parameter O(1), and Y — (X, 8}) is also
sub-Gaussian with parameter at most 1 + R,,,q:. Thus,
we can apply well-known sub-exponential tail bounds
with parameter O(R)y,q.), and a standard 1/2 covering-
net argument over the unit sphere to get a high proba-
bility guarantee. However, in this manner, we can only
get a O(Rymazy/d/n) deviation of sample mean from
true mean.

Most previous results established on finite-sample EM
analysis have this dependency on R,,,, for statistical
error Balakrishnan et al. (2017); Yi and Caramanis
(2015); Klusowski et al. (2019); Yan et al. (2017); Zhao
et al. (2018). In truth, however, this is an artifact of
analysis and not a real phenomenon: the true statistical
precision is O(y/d/n) when noise is comparably less
than R,,q.. For instance, in the extreme scenario, Yi
et al. (2016) established exact recovery guarantee of EM
in a noiseless setting, though it has not been obvious
how to generalize their analysis to involve some level
of noise.

Now we turn our attention to give a bound for ep,
which is given by the following lemma:

Lemma 5.1 Suppose SNR condition Rin >
Ckprlog(kpr) with sufficiently large C > 0 and ini-
tialization condition D, < ¢Ruyin/(kpxlog(kpr)) for
sufficiently small ¢ > 0. Given n = O((k/Tmin)(d/€%))
samples, we get |leg|| < Dyent + enf with high
probability.

The detailed proof is in Appendix B.1. Our proof
strategy is to get a sharp concentration result is to
partition random variables using indicator functions
for disjoint events. Let &£; be the event that the the
sample comes from the j** component and j # 1.

(HZX Ly, ea—E[XTLxcal H >t>

(IIE

< max P (i ||§:(Yz —E[Y])

ZZ

Then, consider events as in (1) in the population EM.
We then decompose each sample using the indicator
functions of these events. For simplicity of notation,
let W; = wy; X;(Y — (X;, 57)). We can decompose W;
as, for instance,

Mw

wy i Xy (yi— (X, BT))

,1

(W Le;ng; gooa + Wilg,nee
j=1

+ Wile,ne; inee, + Wi]lsjmsj,msj,gmsjgs),

using the definition of events defined in (1). Then we
can provide a finite-sample analysis with the following
proposition.

Fact 5.2 Let X be a random variable defined in some

probability space, and consider a set of disjoint events
A1, ...y A on X, such that P(U,A;) = 1. Then,

m
X]|>t) < Z

t; =1t.

for >0,

This is a restatement of the elementary union bound
and the proof is immediate. It tells us that we can
bound tail probabilities of decomposed random vari-
ables separately, and then collect them. If for all 4,
P(|X14,—E[X14,]| > t:) <J§/m, then P(|X -E[X] >
t) < ¢. Note that this decomposition is only for the
analysis purpose and does not affect the practical im-
plementation of the EM algorithm.

The next proposition is the key ingredient for giving
a sharp concentration on each decomposed random
variable.

Proposition 5.3 Let X be a random d-dimensional
vector, and A be an event defined in the same prob-
ability space with p = P(X € A) > 0. Let random
variable Y = X|A, i.e., X conditioned on event A, and
Z =1xea. Let X;,Y;,Z; be the i.i.d. samples from
corresponding distributions. Then, equation (3) holds
for any 0 < n. <n and t; +t3 =t.

The proof of the Proposition 5.3 is given in Appendix
C. When applied to the problem of mixed linear re-
gression, Proposition 5.3 helps us to accurately control

> tl)

> ne + 1) (3)

>t2)+p(

n

>

i=1
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the concentration of random vectors under different
events: in a major event where samples are good, we
know that w;; is almost always exponentially small
O(exp(—77)) when the sample did not come from the
first model. Therefore, norm of W; conditioned on good
event can be controlled with tiny w;; (see Appendix
B.1 for precise construction).

On bad events, such as when noise happens to be very
large, the (sub-exponential) norm of W; may be as
large as R4z, since the weights of the wrong compo-
nents could be away from zero. Fortunately, we can
survive from these errors due to low chance of bad
events given large SNR and good initialization. It en-
ables us to choose n, small enough while suppressing
P(|>" Zi] > ne+1), and n./n cancels out large norm
of W; conditioned on bad but rare events. This tech-
nique is critical not only for removing the dependency
on R4z, but also obtaining as small dependency on &
and 7,,,;n as possible.

We see in the proof that W; conditioned on each event
is another sub-exponential random vector with different
sub-exponential norm. Therefore, we can give a sharp
concentration bound on every decomposed random
variable separately. The full details are in Appendix B.

Proof of Theorem 3.2. Given |eg|| < Dpemy + em
and results from population EM, we are left with bound-
ing Ay == (1/n3 e w;1X;X;" ). This task can be
achieved via a direct application of standard concentra-
tion arguments for random matrices Vershynin (2010).
When (1/n3 i€n] w; 1 X;X,") concentrates well around
Ep[w; X X ] in operator norm, we can conclude that
the lower bound of minimum eigenvalue of sample co-
variance is also lower-bounded by 77 /2, which implies
| A, lop < 2/7F (see Appendix B.2 for the concentra-
tion result of A,,).

Then combining two results, we can conclude that

”A;lHOPHBnH < 27TT71(CBD"L7TT + c1Dpeny + caemy)
< D + O(e),

for some 7, < 1/2 and universal constant cg, 1, ca.
This result for 15 component is shown to hold with
probability at least 1 — 6/kT for a given failure prob-
ability 6 > 0 (see (23) in Appendix B.1 for detailed
sample complexity). We can get a same result for
other components, and thus we can take a union bound
over k components. Thus, we have shown that with
probability at least 1 — /T

max 18} = 51 < m max 18; = 851l + OC(e)-

Iterating over T iterations yields Theorem 3.2. O

Remark 5 (Unknown mixing weights) Proof for
mizing weights are also based on the same idea using
Proposition 5.3. Mizing weights will also be well con-
centrated in relative scale, i.e., |71 — m| < O(e)ny. In
the finite sample regime, mizring weights might not be
ezactly recovered even if noise power goes to 0. This
does not conflict with the exact recovery guarantee for
B whose statistical error is proportional to o that goes
to 0, since when max; ||3; — ﬂj*|| >0 orD,, >1, we
do not require mizing weights to be very close (we only
require | — wi| < 75 /2) to get an improved estimator
after one EM iteration. In other words, we do not
require exact value of mizing weights m in order to get
exact regression parameters . Note that in the noise-
less setting, we are always in D,, > 1 regime. Proof for
concentration of mizing weights are given in Appendiz
B.3.

6 Conclusion and Future Works

In this paper, we provided local convergence guarantees
of both population and finite-sample EM algorithm for
MLR with general k£ components. For our finite-sample
based EM analysis, we decomposed a single random
variable into multiple random variables using indicator
functions, each of which corresponds to different event.
With this strategy, we were able to give a near-optimal
statistical error that does not depend on the distances
between regression parameters. We believe our tech-
nique is applicable to other problem settings such as
GMM, and other local heuristic algorithms to get an
improved statistical error.

While we studied the local convergence of the EM
algorithm in high SNR regime, the question whether
EM converges under lower SNR condition, i.e. Ryin =
o(k) regime, is still widely open, even when we assume
we start from a very good initialization. We do not
even know that under this low SNR regime, whether
we can recover all parameters with polynomial number
of samples (in k). It will be also interesting to consider
a milder condition for the initialization requirement.
Finding a polynomial-time algorithm to find a good
initialization is also another challenging problem, if
the linear independence assumption between regression
vectors does not hold (e.g. d < k). Studying the EM
algorithm in more general settings, e.g. with unknown
and different covariance for X in each linear model,
will be also an interesting future direction.
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