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Abstract

When a model makes a consequential decision, e.g., deny-
ing someone a loan, it needs to additionally generate action-
able, realistic feedback on what the person can do to favor-
ably change the decision. We cast this problem through the
lens of program synthesis, in which our goal is to synthesize
an optimal (realistically cheapest or simplest) sequence of ac-
tions that if a person executes successfully can change their
classification. We present a novel and general approach that
combines search-based program synthesis and test-time ad-
versarial attacks to construct action sequences over a domain-
specific set of actions. We demonstrate the effectiveness of
our approach on a number of deep neural networks.

1 Introduction
Today, predictive models are responsible for an ever-
expanding spectrum of decisions, some of which are con-
sequential to the lives and well-being of individuals—e.g.,
mortgage underwriting, job screening, healthcare decisions,
criminal risk assessment, and many more. As such, ques-
tions about fairness and transparency have taken center stage
in the debate over the increasing use of machine learning to
automate decisions in sensitive domains, and a vibrant re-
search community has emerged to explore and address the
many facets of these questions.

In this paper, we are interested in the problem of pro-
viding actionable feedback to the subjects of algorithmic
decision-making. For instance, imagine that you are denied
a mortgage to buy your first home, thanks to a model that
consumed a set of features and deemed you too risky. We
envision that such an algorithmic process should addition-
ally give you realistic, actionable feedback that will increase
your chances of receiving a loan. For instance, you might re-
ceive the following feedback: increase your down payment
by $1000 and limit credit card debt to a maximum of $5000
for the next two months. This is probably reasonable advice,
in contrast with, say, a much harder to fulfill feedback like
change your marital status from single to married.

We view this problem through the lens of program syn-
thesis (Gulwani, Polozov, and Singh 2017): we want to syn-
thesize an optimal sequence of instructions that a human can
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execute so that they favorably change the decision of some
model. Optimality here is with respect to a measure of how
hard it is for a person to perform the provided actions—we
want to provide the simplest, cheapest feedback. There are
many challenges in solving this problem: (i) the combina-
torial blow-up in the space of action sequences, (ii) the fact
that actions are parameterized by real values and have vari-
able cost (e.g., increase savings by $X), (iii) and the fact that
action ordering is important, e.g., you can only do A after
you have done B or you can only do A if you are more than
35 years old.

To attack this problem, we make the key observation that
the problem resembles that of generating adversarial exam-
ples (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2015; Carlini and Wagner 2017; Papernot et al. 2017), where
we usually want to slightly perturb the pixels of an input
image to modify the classification, e.g., make a neural net-
work think a dog is a panda. However, in our case, we are
not looking for an imperceptible perturbation to the input
features, but one that results from the application of real-
world actions. With this view in mind, we present a new
technique that adapts and combines (i) search-based pro-
gram synthesis (Alur et al. 2018) to traverse the space of
action sequences and (ii) optimization-based adversarial ex-
ample generation (Carlini and Wagner 2017) techniques to
discover action parameters. This combination allows our ap-
proach to handle a rich class of (differentiable) models, e.g.,
deep neural networks, and complex domain-specific actions
and cost models.

Setting and Consequences. At this point, it is important
to recognize the possibility that the solution we propose for
the problem setting may be vulnerable to unethical practices.
Although our technique, in principle, may be used by users
to maliciously game the system, we believe in its importance
and cannot envision a world in which subjects are unable
to understand and act on black-box decisions. One setting
we envision is where users cannot adversarially attack the
decision-maker as they do not have access to the model. The
intention would be to use our technique as a means for the
service provider to give meaningful and actionable feedback
to its users, making the decision process more transparent.

Most Relevant Work. To our knowledge, the idea of pro-
viding actionable feedback for algorithmic decisions was



first advocated by Wachter et al. (2017) in a law article. Us-
tun et al. (2019) implemented this idea by searching for a
minimal change to input features to modify the classifica-
tion of simple linear models (logistic regression). Their ap-
proach discretizes the feature space and encodes the search
as an integer programming (IP) problem. Zhang et al. (2018)
consider a similar problem over neural networks composed
of ReLUs, exploiting the linear structure of ReLUs to solve
a series of LP problems to construct a convex region of
positively classified points that are close to the input. Our
work is different in a number of dimensions: (i) Our algo-
rithm is quite general: by reducing the search to an opti-
mization problem, à la test-time adversarial attacks, it can
handle the general class of differentiable models (as well as
differentiable action and cost definitions), instead of just lin-
ear models. (ii) We allow defining complex, nuanced actions
that mimic real-world interventions, as opposed to arbitrary
modifications to input features. (iii) Similarly, we allow en-
coding cost models to assign different costs to actions, with
the goal of synthesizing the simplest feedback a person can
act on. See Section 5 for an extended discussion of related
work.

Contributions. Our contributions are:

• We define the problem of synthesizing optimal action
sequences that can favorably change the output of a
machine-learned model. We view the problem through the
lens of program synthesis, where our goal is to synthesize
a program over a domain-specific language of real-world
actions specified by a domain expert.

• We present an algorithm that combines search-based pro-
gram synthesis to traverse the space of action sequences
and optimization-based test-time adversarial attacks to
discover optimal parameters for action sequences. We
demonstrate how to leverage the results of optimization
to guide the combinatorial search.

• We implement our approach and apply it to a number of
neural networks learned from popular datasets. Our re-
sults demonstrate the effectiveness of our approach, the
benefits of our algorithmic decisions, and the robustness
of the synthesized action sequences to noise.

2 Optimal Action Sequences
In this section, we formally define the problem of synthesiz-
ing optimal action sequences.

Decision-Making Model. We shall use f : X → {0, 1}
to denote a classifier over inputs in X . For simplicity of ex-
position, and without loss of generality, we restrict f to be
a binary classifier—our approach extends naturally to k-ary
classifiers.

A DSL of Actions. For a given classification domain, we
assume that we have a domain-specific set of actions A =
{a1, . . . , an}, perhaps curated by a domain expert. Each ac-
tion a ∈ A is a function a : X × R → X , where R is
the set of parameters that a can take. For example, imagine
x ∈ X are features of a person applying for a loan. An action

a(x, 1000) may be one that increases x’s savings by $1000,
resulting in x′ ∈ X .

For each action ai ∈ A, we associate a cost function
ci : X × R → R>0, denoting the cost of applying ai on
a given input and parameters. Making ci a function of inputs
and parameters of an action allows us to define fine-grained
cost functions, e.g., some actions may be easier for some
people, but not for others. For instance, in the US, acquiring
a credit card is much easier for someone with a credit history
in contrast to someone who recently arrived on a work visa.
Similarly, varying the parameter of an action should vary
the cost, e.g., increase savings by $1000 should be much
cheaper than increase savings by $1,000,000.

Additionally, for each action ai, we associate a Boolean
precondition prei : X × R → B, indicating whether ac-
tion ai(x, r) is feasible for a given input x and parameter r.
There are a number of potential use cases for preconditions.
For instance, the action of renting a car may be only allowed
if you are over 21 years old; this can be encoded as the pre-
condition age > 21. Preconditions can also encode valid
parameters, e.g., you cannot increase your credit score past
850, so an action which recommends increasing your credit
score by r will have the precondition creditScore+r 6 850.

Optimal Action Sequence. Fix an input x ∈ X and as-
sume that f(x) = 0. Informally, our goal is to find the least-
cost, feasible sequence of actions that can transform x into
an x′ such that f(x′) = 1.

Formally, we will define an action sequence using a pair
of sequences 〈σ, ρ〉, denoting actions in A and their corre-
sponding parameters in R, respectively. Specifically, σ is a
sequence of integers in [1, |A|] (action indices), and σi de-
notes the ith element in this sequence. ρ is a sequence of pa-
rameters such that each ρi ∈ R. We assume |ρ| = |σ| = k,
and we will use k throughout to denote |σ|.

Given pair 〈σ, ρ〉, in what follows, we will use xi =
aσi

(xi−1, ρi), where i ∈ [1, k] and x0 = x. That is, vari-
able xi refers to the result of applying the first i actions de-
fined by 〈σ, ρ〉 to the input x. We are therefore looking for a
feasible, least-cost sequence of actions aσ1

, . . . , aσk
and as-

sociated parameters ρ1, . . . , ρk, which, if applied starting at
x, results in xk that is classified as 1 by f . This is captured
by the following optimization problem:1

argmin
〈σ,ρ〉

k∑
i=1

cσi
(xi−1, ρi) (1)

subject to f(xk) = 1 and
k∧
i=1

preσi
(xi−1, ρi)

3 An Algorithm for Sequence Synthesis
We now present our technique for synthesizing action se-
quences, based on the optimization objective outlined above.
Our algorithm assumes a differentiable model, e.g., a deep
neural network, of the form f : Rm → {0, 1}, as well as

1Equivalently, we can cast this as an optimal planning problem,
where x is the initial state, our goal state xk is one where f(xk) =
1, and actions transition us from one state to another.



Algorithm 1 Full synthesis algorithm

1: function SYNTHESIZE(model f , instance x, actions A)
2: S ← {〈σ∅, ρ∅〉}, where 〈σ∅, ρ∅〉 are the empty action and parameters sequences, respectively
3: repeat
4: Let 〈σ, ρ〉 ∈ S and ai ∈ A be with smallest score(σ, ρ, ai) . 〈σai,−〉 6∈ S
5: Compute parameters ρ′ for sequence σai, ρ′ = argmin

ρ
c · h(xk) +

∑k
i=1 Cσi(xi−1, ρi)

6: S ← S ∪ {〈σai, ρ′〉}
7: until threshold exceeded . threshold can be, e.g., search depth
8: return Solution of Problem 1 restricted to sequences in S

differentiable actions, cost functions and preconditions. To
solve Problem 1, defined in Section 2, we break it into two
pieces: (i) a discrete search through the space of action se-
quences σ and (ii) a continuous-optimization-based search
through the space of action parameters ρ, which we assume
to be real-valued.

In Section 3.1, we begin by describing the optimization
technique, by assuming we have a fixed sequence of ac-
tions and setting up an optimization problem—an adaptation
of Carlini-Wagner’s adversarial attack (Carlini and Wagner
2017)—to learn the parameters to those actions. Then, in
Section 3.2, we present the full algorithm, a search-based
synthesis algorithm for discovering action sequences, which
uses the optimization technique from Section 3.1 as a sub-
routine.

Remark on optimality: We note that the constrained opti-
mization Problem 1 is hard in general—e.g., even very lim-
ited numerical planning problems that can be posed as Prob-
lem 1 are undecidable (Helmert 2002). Our use of adversar-
ial attacks in the following section necessarily relaxes some
of the constraints and is therefore not guaranteed to result in
optimal action sequences.

3.1 Adversarial Parameter Learning

We now assume that we have a fixed sequence of actions
σ, as defined in Section 2. Our goal is to find the parame-
ters ρ such that 〈σ, ρ〉 satisfies the constraints of Problem 1.
Specifically, our solution to this problem is an adaptation of
Carlini and Wagner’s seminal adversarial attack technique
against neural networks (Carlini and Wagner 2017), but in
a setting where the “attack” is comprised of a sequence of
actions with preconditions and varying costs.

Henceforth, we shall assume that the model is a neural
network f : Rm → R2 (where the output denotes a dis-
tribution over the two classification labels). Additionally,
f(x) = softmax(g(x)), i.e., function g is the output of the
pre-softmax layers of the network.

Boolean Precondition Relaxation. Our goal is to con-
struct a tractable optimization problem whose solution re-
sults in the parameters ρ to the given action sequence σ.
We begin by defining the following constrained optimiza-
tion problem which relaxes the Boolean precondition con-

straints:

argmin
ρ

k∑
i=1

cσi(xi−1, ρi) + pre ′σi
(xi−1, ρi) (2)

subject to f(xk)1 > f(xk)0

where f(x)j is the probability of class j, and the function
pre ′i is a continuous relaxation of the Boolean precondition
prei. Specifically, we encode preconditions by imposing a
high cost on violating them. For instance, if prei(x, r) =
x > c, where c is a constant, then we define pre ′i(x, r) =
τ exp(−τ ′(x − c)), where τ and τ ′ are hyperparameters.2
The hyperparameters τ and τ ′ determine the steepness of the
continuous boundaries; the values we choose are inversely
proportional to the size of the domain of x. Conjunctions of
Boolean predicates are encoded as a summation of their re-
laxations. We can now define Cσi

(xi−1, ρi) to be the overall
cost incurred by the action-parameter pair 〈σi, ρi〉, i.e.

Cσi
(xi−1, ρi) = cσi

(xi−1, ρi) + pre ′σi
(xi−1, ρi)

Carlini–Wagner Relaxation. Now that we have relaxed
preconditions, what is left is the classification constraint
f(xk)1 > f(xk)0 in Problem 2. Following Carlini and Wag-
ner, we transform the constraint f(xk)1 > f(xk)0 into the
objective function that is the distance between logit (pre-
softmax) output: h(xk) = max(0, g(xk)0 − g(xk)1).3

This results in the following optimization problem:

argmin
ρ

c · h(xk) +
k∑
i=1

Cσi
(xi−1, ρi) (3)

In practice, we perform an adaptive search for the best
value of the hyperparameter c as we solve the optimiza-
tion problem: at a variable length interval t of minimization
steps, we determine how close the search is to the decision
boundary and adjust c and t accordingly.

3.2 Sequence Synthesis and Optimization
Now that we have defined the optimization problem for dis-
covering parameters ρ of a given action sequence σ, we pro-
ceed to describe the full algorithm, where we search the
space of action sequences.

2We assume that expressions in preconditions are differentiable.
3Note that there many alternative relaxations of f(xk)1 >

f(xk)0; Carlini and Wagner explore a number of alternatives, e.g.,
using f instead of g, and show that this outperforms them.



Dataset/model Network architecture #Features #Actions

German Credit Data 2 dense layers of 40 ReLUs each 20 7
Adult Dataset 2 dense layers of 50 ReLUs each 14 6
Fannie Mae Loan Perf. 5 dense layers of 200 ReLUs each 21 5
Drawing Recognition 3 1D conv. layers, 1 dense layer of 1024 ReLUs 512 (pixels) 1

Table 1: Overview of datasets/models for evaluation; we will refer to a model by the italicized prefix of its name

Algorithm Description. Algorithm 1 is a simple search
guided by a parametric score function that directs the
search—lower score is better. The algorithm maintains a set
of sequences S, which initially is the pair 〈σ∅, ρ∅〉, contain-
ing two empty sequences. In every iteration, the algorithm
picks an action sequence in S, extends it with a new action
from A, and solves optimization Problem 3 to compute a
new set of parameters. The search process continues until
some preset threshold is exceeded, e.g., we have covered all
sequences of some length or we have discovered a sequence
that is below some cost upper bound. Finally, we can return
the best pair in S, i.e., the one with the minimal cost that
changes the classification and satisfies all preconditions, as
per Problem 1.

Defining the Scoring Function. The definition of the
scoring function score dictates the speed with which the al-
gorithm arrives at an best action sequence. In our evaluation,
we consider a number of definitions, the first of which, the
vanilla definition, is simple, but often inefficient:

scorev(σ, ρ, ai) = k + 1

This definition turns the search into a breadth-first search, as
shorter sequences are evaluated first.

A more informed score function we consider is to simply
return the value of the objective function in Problem 3 for a
given sequence 〈σ, ρ〉. We call this function scoreo. Notice
that scoreo does not consider the action to apply, so the ac-
tion with which to expand the sequence is chosen arbitrarily.

Next, we consider a more sophisticated scoring function:
we want to pick the action that modifies the most important
features. To do so, we use the gradient of model features,
with respect to the target loss, as a proxy for the most im-
portant features. The idea is that we want to pick the action
that modifies the features with the largest gradient. For ev-
ery action ai ∈ A, we use the fp(ai) to denote its footprint:
the set of indices of the input features it can modify, e.g.,
fp(ai) = {1, 2} means that it modifies features 1 and 2 and
leaves all others unchanged. Given 〈σ, ρ〉 ∈ S, let x′ be the
result of applying 〈σ, ρ〉 to the input instance x. We now de-
fine the score function as:

scoreg(σ, ρ, ai) = − mean
j∈fp(ai)

∣∣∣∣d`(f(x′))dxj

∣∣∣∣
In other words, the score of applying ai after the sequence σ
depends on the average gradient of the target loss `—binary
cross-entropy loss with respect to the target label, i.e., 1—
with respect to the features in ai’s footprint.

4 Implementation and Evaluation

Implementation. Our algorithm is implemented4 in
Python 3, using TensorFlow (Abadi et al. 2016). Actions,
along with their costs and preconditions, are implemented
as instances of an Action Python class. The Adam Op-
timizer (Kingma and Ba 2014) is used to solve optimiza-
tion Problem 3. For fast experimentation, we implemented
a brute-force version of Algorithm 1 where all sequences
up to some length n are optimized in parallel using AWS
Lambda—i.e., each sequence is optimized as a separate
Lambda.

Research Questions. We have designed our experiments
to answer the following research questions: Q1: Can our
technique synthesize action sequences for non-trivial mod-
els and actions? Q2: How do different score functions impact
algorithm performance? Q3: How robust are the synthesized
action sequences to noise? Further, Q4: we explore other ap-
plications of our technique, beyond consequential decisions.

Domains for Evaluation. For exploring questions Q1-
3, we consider three popular datasets: The German Credit
Data (Dua and Graff 2017) and the Fannie Mae Single Fam-
ily Loan Performance (Mae 2014) datasets have to do with
evaluating loan applications—high or low risk. The Adult
Dataset (Dua and Graff 2017) predicts income as high or
low—the envisioned use case is it can be used to set salaries.
Table 1 summarizes our datasets and models: For each of the
three datasets, we (i) trained a deep neural network for clas-
sification (in the case of the Fannie Mae dataset, we used
the neural network from (Zhang, Solar-Lezama, and Singh
2018)), (ii) constructed a number of realistic actions along
with their associated costs and preconditions, and (iii) ran-
domly chose 100 negatively classified instances (i.e., 300 in-
stances overall) from the test sets to apply our algorithm to.

The actions constructed for each domain cover both nu-
merical and categorical features; a number of actions for
each domain modify multiple features—e.g., change the
debt-to-income ratio, or get a degree (which takes time and
therefore increases age).

To explore Q4, we also consider the Drawing Recogni-
tion task (Zhang, Solar-Lezama, and Singh 2018) based on
Google’s Quick, Draw! dataset (Google 2017). The goal is
to extend a drawing, represented as a set of straight lines,
so as it is classified as, e.g., a cat. Hence, we only build one
action for this model: add line from point (a, b) to (a′, b′).

4https://github.com/goutham7r/synth-action-seq
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(c) Results for the Fannie Mae model

Figure 1: Number of optimization problems solved—i.e.,
loop iterations of Algorithm 1—before arriving at the so-
lution sequence for different score functions. Each dot rep-
resents an instance.

4.1 Results

We are now ready to discuss the results. Henceforth, when
we refer to solution sequence, we mean the best solution we
find after Algorithm 1 has explored all sequences of length
less than an upper bound.

Instances Solved. For our primary models, we make our
algorithm consider all sequences of length 6 4. The ratio-
nale behind this choice is that we usually want a small set of
instructions to provide to an individual. Our algorithm was
able to find solutions to 100/100 instances in the German
model, 90/100 instances in the Adult model, and 62/100 in-
stances in the Fannie Mae model. Note that inability to find
a solution could be due to insufficient actions or incomplete-
ness of the search—sequence length limit, relaxation of op-
timization problem, or local minima. In particular, the rel-
atively inferior success rate on the Fannie Mae model may
be a direct result of the fact that the neural network is much
deeper.

To give an example of a synthesized action sequence by
our algorithm, consider the following sequence of 3 actions
for Fannie Mae: Increase credit score by 17 points, Reduce
loan term by 43 months, and Increase interest rate by 0.621.
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Figure 2: Performance of score functions as length of solu-
tion sequence increases—Lx denotes sequence of length x

Effects of Score Function. Next, we explore the effects of
different score functions. Recall, in Section 3.2, we defined
the vanilla score function scorev , where sequences are ex-
plored by length (a breadth-first search); the objective score
function scoreo, where the sequence with the smallest solu-
tion to Problem 3 is explored; and the gradient score func-
tion scoreg , where gradient of cross-entropy loss is used to
choose the sequence and action to explore.

Figure 1 shows the results of the German, Adult, and Fan-
nie Mae models. Each point is one of the instances and the
axes represent the iteration at which a score function arrived
at the solution sequence.5 The left plot compares scorev
vs scoreg (blue) and scoreo (red); the right plot compares
scoreo vs scoreg . We make two important observations:
First, the vanilla score function excels on many instances
(points above diagonal). After investigating those instances,
we observe that they have short solution sequences—of
length 1 or 2. This is perhaps expected, as scoreo and scoreg
may quickly lead the search towards longer sequences, miss-
ing short solutions until much later. We further illustrate this
observation in Figure 2, where we plot the number of times
each score function outperformed others (in terms of num-
ber of iterations of Algorithm 1) when the solution sequence
is of length 2,3, and 4. We see that when solution sequences
are longer, scorev stops being effective. Second, we observe
that both the gradient and objective score functions, scoreg
and scoreo, have their merits, e.g., for Fannie Mae, scoreg
dominates while for Adult scoreo dominates.

Robustness of Synthesized Sequences. We investigate
how robust our solutions are to perturbations in their pa-
rameters. The idea is that a person given feedback from our
algorithm may not be able to fulfil it precisely. We simu-
late this scenario by adding noise to the parameters of the
sequences. Specifically, for each synthesized solution se-
quence and each parameter r in the sequence, we uniformly
sample values from the interval [(1 − θ)r, (1 + θ)r], where
θ denotes the maximum percentage change.

Figure 3 summarizes the results for the three primary
models. We plot the number of instances that succeed with

5Time/iteration is ∼15s across instances; we thus focus on
number of iterations as performance measure.
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Figure 3: Percent of instances (y-axis) that tolerate noise θ (x-axis) noise with probability > 0.8

(a) sequence length = 1 (b) sequence length = 4 (c) sequence length = 6

Figure 4: Three different Quick, Draw! examples. Blue strokes comprise the input instance; red strokes are the results of
applying actions.

a probability > 0.8 (i.e., are still solutions more than 80%
of the time) as the amount of noise θ increases. Obviously,
when θ is 0, all instances succeed with probability 1; as θ in-
creases, the success rate of a number of instances falls below
0.8. We notice that the German and Fannie Mae solutions
are quite robust, while only half of the Adult solutions can
tolerate θ = 0.03 noise.

While our problem formulation does not enforce ro-
bustness of solutions, the results show that most instances
are quite robust to noise. We attribute this phenomenon
to the Carlini–Wagner relaxation. Recall that we minimize
max(0, g(xk)0 − g(xk)1). So solutions need only get to a
point where g(xk)0 6 g(xk)1—intuitively, barely beyond
the decision boundary. However, we notice that, for most in-
stances, solutions end up far from the boundary. Specifically,
for the two models with more robust solutions, German and
Fannie Mae, the average relative difference between g1 and
g0—i.e., (g(xk)1 − g(xk)0)/g(xk)1—is 3.41 (sd=6.79) and
1.92 (sd=5.40), respectively. For Adult, the average relative
difference is much smaller, 0.09 (sd=0.06), indicating that
most solutions where quite close to the decision boundary,
explaining their sensitivity to noise.

It would be interesting to further improve robustness
by incorporating it as a first-class constraint in our prob-
lem, e.g., by reformulating Problem 3 as a robust optimiza-
tion (Ben-Tal, El Ghaoui, and Nemirovski 2009) problem,
so as we only discover solutions that are tolerant to noise.
We plan to investigate this in future work.

Further Demonstration and Discussion. To further ex-
plore applications of our algorithm, we consider the Draw-
ing Recognition model (Zhang, Solar-Lezama, and Singh
2018). Each drawing in this model is composed of up to 128
straight line strokes. We considered 16 sketches of cats that

are not classified as cats by this model. We constructed an
action that adds a single line stroke, where the parameters
to the action are the source and target (x, y) coordinates. To
ensure that the results of the actions are visible to the human
eye, we add the precondition that stroke length is between
0.1 and 0.6 in length, where the image is 1 × 1. The cost of
an action is the length of the stroke.

We ran our algorithm up to and including length 6 (score
has no effect since there is a single action). Our algorithm
managed to synthesize action sequences for 11/16 instances.
Three representative solutions are shown in Figure 4. The
first solution, of length 1, appears to be an additional whisker
to the cat. The second and third solutions, lengths 4 and 6,
appear to be more arbitrary and thus may be more adversar-
ial in nature.

Note that our task is qualitatively different from (Zhang,
Solar-Lezama, and Singh 2018). They want to find the clos-
est image across the decision boundary that has an ε-ball
around it. So they start with an adversarial example and in-
crementally expand it into a region of examples. Our prob-
lem is motivated by application of real-world actions, and
therefore we search for a sequence of actions to modify an
image.

The results of our technique on the Drawing Recognition
model may seem to suggest that the solutions are adversar-
ial in nature. However, it is hard to formally characterize
the difference between an adversarial attack and a reason-
able action sequence. In image-based attacks, it’s easy to
tell if the modification is meaningful, but generally, e.g., in
loans, this can probably be addressed by a domain-expert on
a case-by-case basis. Observationally, we see that all our re-
sults look reasonable, i.e., there are no actions of the form
modify X by ε, where ε is very small for practical purposes.
Moreover, our experiments show that most synthesized se-



quences are robust to random perturbations in their param-
eters, suggesting that they are not adversarial corner cases.
One concrete way we can protect against generating adver-
sarial feedback is to restrict our technique to models that are
trained to be robust against adversarial attacks (Madry et al.
2018)—however, the definition of robustness will have to be
tailored to the specific domain.

The seemingly unrealistic strokes produced as solutions in
the Drawing Recognition model may stem from the fact that
the cost function simply penalizes the length of the stroke
and in no way drives the drawing of a ‘realistic’ stroke (In
fact, it is not obvious how one can specify a cost function
that encourages strokes which look realistic). The demon-
stration of our technique on this dataset serves to exhibit the
versatility of our problem setting and proposed solution.

5 Related Work
We focus on works not discussed in Section 1.

Interpretable Machine Learning. Recently, there has
been a huge interest in explainability in machine learning,
particularly for deep neural networks. Most of the works
have to do with highlighting the important features that led
to a prediction, e.g., pixels of an image or words of a sen-
tence. For instance, the seminal work on LIME (Ribeiro,
Singh, and Guestrin 2016) trains a simple local classifier and
uses it to rank features by importance—many other works
employ different techniques to hone in on important fea-
tures, e.g., (Datta, Sen, and Zick 2016; Sundararajan, Taly,
and Yan 2017; Lundberg and Lee 2017). This is usually not
enough: knowing, for instance, that your credit score af-
fected the loan decision does not tell you how much you
need to increase it by to be eligible for a loan, or whether
there are other actions you can take. This is the distinguish-
ing aspect of our work—providing actionable feedback.

Program Synthesis. We view our algorithm through the
lens of program synthesis. Our algorithm is a form of enu-
merative program synthesis, a simple paradigm that has
shown to be performant in many domains—see (Alur et al.
2018) for an overview. Our work is also related to differen-
tiable programming languages (Reed and De Freitas 2015;
Bošnjak et al. 2017; Gaunt et al. 2017; 2016; Valkov et al.
2018). The idea is to use numerical optimization to fill in
the holes (parameters) in differentiable programs. Our work
is similar in that we define a differentiable language of ac-
tions and costs and use numerical optimization to learn ap-
propriate parameters for those actions. At an abstract level,
our algorithm is similar in nature to that of (Valkov et al.
2018). They enumerate functional programs over neural net-
works and use optimization to learn parameters; here, we
enumerate action sequences and use optimization to learn
their parameters. There is also a growing body of work on
using deep learning to perform and guide program synthe-
sis, e.g., (Parisotto et al. 2017; Chen, Liu, and Song 2019;
Bunel et al. 2018)

Symbolic synthesis techniques typically use SAT/SMT
solvers to search the space of programs (Solar-Lezama et
al. 2006; Gulwani et al. 2011). Unfortunately, the range of

programs they can encode is limited by decidable and prac-
tically efficient theories. While our problem can be encoded
as an optimal SMT problem in linear arithmetic (Li et al.
2014)—equivalently, an MILP problem—we will have to re-
strict all actions, costs, and models to be linear. In practice,
this is quite restrictive. While our approach is incomplete,
unlike in decidable first-order theories, it offers the flexibil-
ity and generality of being able to handle arbitrary differen-
tiable models and actions.

Planning and Reinforcement Learning. Our problem
can also be viewed as a planning problem in a continuous (or
hybrid) domain. Most such planners are restricted to linear
domains that are favorable to an SMT or MILP encoding or
restricted forms of non-linearity, e.g., (Cashmore et al. 2016;
Piotrowski et al. 2016; Bryce et al. 2015). Some such plan-
ners also combine search and a form of optimization, typi-
cally LP, e.g., (Fernández-González, Williams, and Karpas
2018; Coles et al. 2012). Recently, (Wu, Say, and Sanner
2017) presented a scalable approach by reducing the plan-
ning problem to optimization and solving it with Tensor-
Flow. In their setting, they deal with simple domains, e.g.,
1 action; they do not have a goal state (in our case changing
classification of the model), just a reward maximization ob-
jective; and they do not incorporate preconditions. Further,
they are interested in long plans over some time horizon,
while we focus on generating small, actionable plans.

Our problem is also related to reinforcement learning
(RL) with continuous action spaces, e.g., (Lillicrap et al.
2015). The power of RL is its ability to construct a general
policy that can lead to a goal state. Thus, given a model, it
would be interesting to use RL to learn a single policy that
we can then apply to any input, in contrast with our approach
that learns a specific sequence of actions for every input.

6 Conclusion
We described a solution to the problem of presenting simple
actionable feedback to subjects of a decision-making model
so as to favorably change their classification. We presented
a general solution where a domain expert specifies a dif-
ferentiable set of actions that can be performed along with
their costs. Then, we combine a search-based technique with
an optimization technique to construct an optimal sequence
of actions that leads to classification change. Our results
demonstrate the promise of our technique and its applicabil-
ity. There are many potential avenues for future work, e.g.,
exploring effects of different relaxations on optimality and
robustness of results and adapting the algorithm to a com-
plete black-box setting where we can only query the model.
Another interesting avenue is to explore how our approach
can be used to game the system in a strategic classification
setting (Hardt et al. 2016).
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