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Abstract— Wind plants can increase annual energy produc-
tion with advanced control algorithms by coordinating the
operating points of individual turbine controllers across the
farm. It remains a challenge to achieve performance improve-
ments in practice because of the difficulty of utilizing models
that capture pertinent complex aerodynamic phenomena while
remaining amenable to control design. We formulate a multi-
stage stochastic optimal control problem for wind farm power
maximization and show that it can be solved analytically via
dynamic programming. In particular, our model incorporates
state- and input-dependent multiplicative noise whose distribu-
tions capture stochastic wind fluctuations. The optimal control
policies and value functions explicitly incorporate the moments
of these distributions, establishing a connection between wind
flow data and optimal feedback control. We illustrate the results
with numerical experiments.

I. INTRODUCTION

Wind energy is an important component of future energy
systems to meet growing energy demands. As wind power
continues to account for a larger portion of the world-wide
energy portfolio, the optimal operation of wind farms offers
both challenges and opportunities to further improve perfor-
mance at the levels of single turbines, wind farms, and power
grids. Due to nonlinear aerodynamic interaction through
wakes and unpredictable wind variations, future optimal
control strategies for wind farms will require sophisticated
models to capture and manage stochastic wind fluctuations.

Maximizing the wind power capture has been discussed
in the scope of wind turbines [1]–[4] and wind farms [5]–
[26]. In Region 2 operation (below-rated wind speed), the
wind plant is operated to maximize the power output. In
this regime, there are inherent tradeoffs between the wake of
upstream turbines and the power extracted from downstream
turbines. Due to this aerodynamic coupling, maximizing total
power of wind farms cannot be achieved by myopically max-
imizing the power output for each individual wind turbine
in the array [27]. Therefore, depending on layout and wind
conditions, it may be essential to have a coordinated control
framework for wind farms to determine the optimal control
strategy for each wind turbine to improve annual energy
production.

Many challenges and related solutions for wind farm
power maximization have been highlighted and discussed
in [1]. Recent control strategies for optimal operation have
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been proposed using both model-based [6]–[14], [19], [20],
[22], and model-free strategies [17], [21], [24]–[26]. Model-
based strategies provide solutions that typically have faster
response times than model-free approaches. However, the
models used for control design can deviate from actual
wind field and turbine characteristics in practice, which can
limit the effectiveness of model-based control strategies.
The reader is referred to the introduction in [17], and the
references therein, for further discussion on model-based and
model-free strategies for wind plant power maximization.

In this paper, we focus on wind power maximization in
Region 2. The work presented here generalizes the simple
actuator disk model (ADM) utilized in [22] to a stochastic
version and pose a multi-stage stochastic optimal control
problem for wind farm power maximization. The stochastic
actuator disk model balances complexity and tractability
by incorporating unsteady aerodynamic phenomena into the
distributions of random variables in the model. Estimates of
the statistics of these distributions can then be exploited in
the control algorithm to improve overall efficiency of the
farm in the presence of stochastic wind flow.

Our main contributions are as follows:

- We formulate a multi-stage stochastic optimal control
problem for wind farm power maximization and show
that it can be analytically solved via dynamic program-
ming. In particular, our model generalizes that of [22]
by incorporating state- and input-dependent multiplica-
tive noises to capture the uncertain wake effects of wind
turbines. The stochastic version of the ADM relaxes
a strong assumption of a deterministic ADM, such as
steady wind over the rotor disk. In contrast to existing
work, the proposed stochastic multi-stage formulation
allows us to maximize the wind farm power by ex-
plicitly incorporating information about the probability
distributions of wind fluctuations into control decisions.

- By solving the proposed multi-stage stochastic opti-
mization, we show that the optimal feedback control
policies for the turbines are linear with respect to up-
stream wind velocity, but in contrast to [22], the optimal
gain coefficients depend explicitly on the statistics of the
multiplicative noises, which can be estimated from high-
fidelity wind flow simulations or experimental data.
This provides a direct connection between statistical
properties of the unsteady wind flow physics and the
optimal feedback control of wind farms. We also show
that for the stochastic ADM with both multiplicative
and additive noise, the optimal policies are nonlinear.

The framework, while elementary for real-world applica-



tions, illustrates a rigorous process for incorporating flow
statistics into the wind farm power maximization problem.
The dependence of control solutions on the statistics of the
wind fluctuations makes intuitive sense, as one cannot expect
a single control algorithm to be optimal under a range of
unsteady wind conditions. In future work, we will extend
the stochastic approach presented in this paper to more
representative, yet tractable, models of the flow physics and
loads as done in [18].

II. PROBLEM FORMULATION

Our model is a generalization of the one in [22], which
utilizes the actuator disk model (ADM) [28], [29]. Let P
denote the power extracted by an ideal turbine rotor, let
F denote the force done by the wind on the rotor, let V0
denote the free stream upwind velocity, let V denote the
wind velocity at the disk, and let V1 denote the far wake
velocity. The ADM model is then

P = FV, (1a)

F = ρA(V0 − V1)V, (1b)

V = V0 − u, (1c)

V1 = V0 − 2u, (1d)

where ρ is the air density, A is the rotor swept area, and u ≥
0 is the reduction in air velocity between the free stream and
the rotor plane, which can be interpreted as a control input.
In practice, u can be controlled by adjusting the angular rotor
speed or the collective blade pitch angle.

Fig. 1. A cascade of N wind turbines; k = 0 indicates the most upstream
location.

Deterministic Model: We consider a one-dimensional
cascade of wind turbines, illustrated in Fig. 1. We assume
that the wind direction is along the row of turbines and is
not varying. The ADM model given in (1) can be written
in state-space form by letting xk and xk+1 denote the wind
velocity upstream and downstream of the k-th turbine (i.e.,
xk = Vk in (1d), for k = 0, 1). The scalar control input for
the k-th turbine is denoted by uk, which is the controllable
wind velocity deficit at the rotor disk, and yk is an output to
estimate the power extraction of turbine k (i.e., yk = Vk−uk
in (1c)). Then the velocity Vk+1 in the far wake of the rotor
(1d) and the rotor effect at the disk in velocity (1c) can be

written as below in (2a) and (2b). The power extraction of
the k-th wind turbine using ADM model (1) in state-space
expression is given in (2c)

xk+1 = xk − 2uk, (2a)
yk = xk − uk, (2b)

pk(yk, uk) = 2ρAy2kuk, (2c)

where the control input is constrained by uk ∈ [0, 12xk] so
that the wind velocity in the far wake remains positive. To
simplify the notation, we eliminate the constant in (2c) and
come to the constant-free turbine power function `(xk, uk),
which will serve as a stage cost in our subsequent multi-stage
optimal control problem

`(xk, uk) = (xk − uk)2uk. (3)

Note that this function is jointly cubic in the state and control
input. Further details of this model may be found in [22].

Stochastic Model: The simple model described above
captures basic wind farm turbine interactions. But it fails
to capture stochastic wind fluctuations that are also relevant
to optimizing the total power output. High fidelity computa-
tional fluid dynamic models offer extreme detail of flows but
are cumbersome to incorporate into high-level operational
decision making. Therefore, we consider here a stochastic
extension of the deterministic actuator disk model above that
can capture more complex phenomena, such as stochastic
wind fluctuations, while remaining computationally tractable.

Fig. 2. Stochastic actuator disk model and stream-tube diagram for
wind power extraction. The solid and dashed lines indicate the wind field
mean and associated stochastic variations, respectively, which relate to the
moments of the multiplicative variations parameters ak and bk .

The stochastic actuator disk model is given by

xk+1 = akxk + bkuk, (5)

where ak ∼ Pa,k is a state multiplicative random variable
and bk ∼ Pb,k is an input multiplicative random variable.
The model is illustrated in Fig. 2. We assume that the
random variables ak and bk are independent for all k and
independent of each other. This model captures stochastic
wind fluctuations. In particular, the multiplicative noises ak
and bk provide a simple model for the inherent stochasticity
of far wake recovery. We assume that moments up to order
three of each of the distributions Pa,k,Pb,k are known (or can
be estimated from high-fidelity simulation or experimental
data). For the state mean dynamics to match the deterministic
model (2a), we can set E[ak] = 1, E[bk] = −2.



ψk = −
3Qk+1Σb,kµa,k − 2 +

√
(3Qk+1Σb,kµa,k − 2)2 − 3(Qk+1Γb,k + 1)(3Qk+1Σa,kµb,k + 1)

3(Qk+1Γb,k + 1)
, (4a)

Qk = (1− ψk)2ψk +Qk+1

(
Γa,k + Γb,kψ

3
k + 3Σb,kµa,kψ

2
k + 3Σa,kµb,kψk

)
. (4b)

III. STOCHASTIC OPTIMAL CONTROL FOR WIND POWER
MAXIMIZATION

The objective of the operator is to select control inputs
u0, ..., uN−1 to maximize the aggregate power of the wind
turbine cascade given by the sum of (3) over all turbines.
However, since in the stochastic model the states (and there-
fore the power outputs) are random variables, we maximize
the expected aggregate power and search for closed-loop
feedback control policies that specify control inputs as a
function of the state xk. In particular, we seek to solve the
multi-stage stochastic optimal control problem

max
π0,...,πN−1

E

N−1∑
k=0

(xk − uk)2uk, (6)

where the decision variables πk(·) are the control policies
(i.e., uk = πk(xk)), and the expectation is taken with respect
to the random variable sequences ak, bk. As in [22], we will
show that the optimal policies are linear and the optimal
value functions are cubic. In contrast to [22], the parameters
of both the optimal policies and value functions depend on
the moments of the distribution of the random variables in
the model. We have the following main result.

Theorem 1: Consider the wind farm power maximization
problem for a cascade of N identical turbines modeled with
the stochastic actuator disk model (5), (6). Let x0 denote the
free stream velocity entering the cascade. The distributions
of ak and bk are described by their raw moments up to third
order, namely their means µa,k, µb,k, second (raw) moments
Σa,k, Σb,k and third (raw) moments Γa,k, Γb,k. Under these
assumptions, the optimal feedback control policies are linear
in the state and given by

u∗k = π∗(xk) = ψkxk, k = 1, ..., N − 1, (7)

where the gain coefficients ψk are given in (4a) and the back-
wards recursion (4b) for k = N − 1, ..., 0 with initialization
QN = 0. The maximum power produced by the wind farm
as a function of initial upstream wind velocity is given by

P ∗0 (x0) = 2ρAQ0x
3
0, (8)

where ρ is the air density, A is the rotor swept area, and
Q0 is the initial value of the backwards recursion (4b) with
QN = 0.

Proof: The dynamic programming algorithm [30], [31]
for solving stochastic optimal control problems is given by
the recursion
G∗k(xk) = max

uk∈[0, 12xk]
E
{
`(xk, uk) +G∗k+1 (xk+1))

}
,

π∗(xk) = arg max
uk∈[0, 12xk]

E
{
`(xk, uk) +G∗k+1 (xk+1))

}
,

(9)

where G∗k(xk) represents the optimal (normalized) wind farm
power from turbine k as a function of the state xk, with
initialization G∗N (xk) = 0. We first solve the last tail sub-
problem at k = N − 1 with G∗N (x) = 0. We have

∂`(xN−1, uN−1)

∂uN−1
= (xN−1 − uN1

)(xN−1 − 3uN−1) = 0,

for which the policy u∗N−1 = 1
3xN−1 is the unique maxi-

mizer and satisfies the constraint uN−1 ∈ [0, 12xN−1]. Sub-
stituting this optimal policy back into the value expression
yields the optimal power function

G∗N−1(xN−1) =
4

27
x3N−1.

Note that this function is a cubic in the state. Accordingly,
we parameterize the optimal power functions as G∗k(xk) =
Qkx

3
k and consider a general step in the backward recursion.

To obtain the optimal policy, we define the function inside
the maximization operation

Gk(xk, uk) := (xk − uk)2uk +Qk+1E
[
(akxk + bkuk)3

]
.

(10)
Expanding the second term and taking the expectation by
utilizing the (raw) moment information from the distributions
of ak and bk, and then taking the partial derivative of
Gk(xk, uk) with respect to uk gives a quadratic polynomial
in uk. As above, one of the roots of this polynomial cor-
responds to the unique maximizing input, which is a linear
function of the state. Carrying out the algebra yields

u∗k = π∗(xk) = ψkxk, (11)

where the gain parameters ψk are given in (4a). Note that the
optimal policies all satisfy the constraints on uk. To obtain a
backwards recursion for the value function coefficients Qk,
we substitute u∗k = ψkxk back into (10)

G∗k(xk, u
∗
k) = Qkx

3
k

=(xk − u∗k)2u∗k +Qk+1E
[
(akxk + bku

∗
k)3
]
.

(12)
Since u∗k is linear in xk, the optimal value functions are cubic
in the state. Matching the coefficients on both sides of (12),
we come to (4b). Eq. (8) follows from (12) for k = 0, (6)
and (2c), which concludes the proof.

Remark 1: (Optimal policies and value functions with
central moments.) The random variables ak and bk can also
be described by their higher-order central moments, namely
their variances σ2

a,k, σ2
b,k and skewnesses γa,k, γb,k. The

optimal linear state feedback control policies can also be
written in terms of central moments instead of raw moments
by using

Σ = σ2 + µ2, Γ = σ3γ + 3σ2µ+ µ3. (14)



π∗N−2(x) = −
∆k +

√
∆2
N−2 − 3(QN−1Γb,N−2 + 1)

[
(3QN−1Σa,N−2µb,N−2 + 1)x2 + 3QN−1Σc,N−2µb,N−2

]
3(QN−1Γb,N−2 + 1)

,

where, ∆N−2 = (3QN−1Σb,N−2µa,N−2 − 2)x.

(13)

Corollary 1: Under the assumptions of Theorem 1, we
define the efficiency η` of the `-th sub-array1 by

η` := E

[
P`

1
2ρAx

3
`

]
, (15)

where x` is the free stream velocity entering the subarray
cascaded turbines from ` to N − 1 and P` denotes the
aggregated power from the `-th subarray of wind turbines.
The optimal efficiency η∗` of the l-th sub-array has the form

η∗` = 4Q`, ∀` ∈ {0, . . . , N − 1}, (16)

which is achieved with the optimal control sequence
u∗` , . . . , u

∗
N−1 , where Q` is calculated from (4b).

Proof: The maximum power produced by the N − `
turbines is

P ∗` = 2ρAQ`x
3
` , (17)

under the optimal control sequence u∗` , . . . , u
∗
N−1 with Q`

computed via (4b). We substitute the optimal power (17) into
(15) and obtain (16), which concludes the proof.

Next, we consider a stochastic actuator disk model with
both multiplicative and additive noise, which allows a more
general description of uncertainty in wind fluctuations. In-
terestingly, in contrast to classical linear quadratic problems,
when additive noise is included the optimal policies are no
longer linear in general, and so the optimal value functions
are no longer cubic. This highlights a computational limita-
tion with this more general model that makes the approach
more difficult to implement in practice.

Theorem 2: (Stochastic actuator disk model with additive
noise.) Consider the stochastic ADM (5) with additive noise

xk+1 = akxk + bkuk + ck, (18)

where ck ∼ Pc is a zero-mean additive random variable
with second moment Σc,k and third moment Γc,k. In the
penultimate tail subproblem, the optimal policy has the
nonlinear form

π∗N−2(x) = δx+
√
α+ βx2

for some constants δ, α, and β; the exact expression is given
in (13). As a result, the corresponding optimal value function
at turbine location N −2 is non-cubic, and so the remaining
optimal policies and value functions are nonlinear and non-
cubic, respectively.

Proof: Consider again the dynamic programming re-
cursion (9). Since G∗N (x) = 0, the last tail subproblem is

1The efficiency η` defined here quantifies the energy extraction of sub-
array ` compared to energy in the wind entering the sub-array. Note that
due to aerodynamic wake coupling, it is possible for the optimal efficiency
of the sub-array to exceed the efficiency obtained by independently setting
individual turbine induction factors to achieve the single-turbine Betz limits.

identical to that in Theorem 1, so that G∗N−1(xN−1) =
4
27x

3
N−1. Consider now the penultimate tail subproblem for

k = N − 2

GN−2(x, u) = (x−u)2u+
4

27
E
[
(akx+ bku+ ck)3

]
. (19)

Taking the expectation of the second term by utilizing the
(raw) moments of ak, bk and ck, and then taking the
partial derivative with respect to u and setting to zero yields
a quadratic optimality condition in u. Carrying out some
algebra as above, it turns out that the roots of this polynomial
are no longer linear in the state, in contrast to the results in
Theorem 1. The optimal control policy is thus a nonlinear
function of state of the form π∗N−2(x) = δx +

√
α+ βx2

for some constants δ, α, and β. The exact expression for
the maximizing control input derived from the quadratic
optimality condition is given in (13). It can also be seen
that when the additive noise variance Σc,k is zero (i.e., the
additive noise is absent since it also has zero mean), then
α = 0 and we recover the linear policy of of Theorem 1
since x ≥ 0. Finally, these observations also lead to the
conclusion that none of the remaining optimal policies and
value functions are linear and cubic, respectively, and will
in fact become increasingly complicated as the recursion
proceeds backward toward the beginning of the array.

IV. NUMERICAL EXPERIMENTS

To illustrate our results, we consider a cascade with
N = 10 identical turbines to analyze the performance of
the optimal gain sequence {ψ0, . . . , ψ9} for the proposed
stochastic actuator disk model. As is commonly done in the
literature [28], [29], we refer to these gains as induction
factors. The stochastic model parameters ak and bk are
all independent of each other and spatially homogeneous
(µa,k = µa, µb,k = µb, σa,k = σa, σb,k = σb, γa,k = γa and
γb,k = γb, ∀k)2.

Fig. 3 illustrates the optimal induction factor sequence
{ψ0, . . . , ψ9} and Fig. 4 depicts the optimal efficiency η∗` un-
der different standard deviation values of the input-dependent
multiplicative noise bk. The induction factors in Fig. 3 are
normalized by 1/3, which is the value achieving the Betz
limit for a single isolated turbine [28]. We set the mean
value µa to 1, and the skewness to zero. Fig. 4 demonstrates
that the optimal array efficiency improves with increasing
variance on bk. This result is intuitively reasonable, in the
sense that higher variability of the velocity deficits in the far
wake may lead to increased power extraction. We speculate
that this multiplicative stochastic perturbation on the velocity

2To have clearer interpretation of our results, we discuss the results in the
terms of central moments. No additive noise is considered in this section.
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Fig. 3. Normalized induction factors defined as ψk
1/3

for deterministic
model (µa = 1, µb = −2) and stochastic model with various values of
input-dependent multiplicative noise standard deviation (µa = 1, σa =
0, µb = −2, σb > 0, γa = 0 and γb = 0).

1 2 3 4 5 6 7 8 9 10

0.6

0.62

0.64

0.66

0.68

Fig. 4. Comparison of optimal efficiency η` for deterministic model (µa =
1, µb = −2) and stochastic model with various values of input-dependent
multiplicative noise standard deviation (µa = 1, σa = 0, µb = −2, σb >
0, γa = 0 and γb = 0).

deficit may provide a mathematically simple way of cap-
turing physical phenomena such as mixing or entrainment,
which are known to promote energy extraction [32], [33]
Note also that the case σb = 0 reproduces the results for
the deterministic ADM model in [22]. It should be noted
that as the standard deviation σb is increased, the induction
factors increase. That is, the leading upstream turbines are
working more as the multiplicative noise is increased; which
again is consistent with the conventional wisdom that the
more turbulent the wind is the closer the turbines should be
to their isolated optimum set point [34]

Figures 5 and 6 provide the optimal induction factor
sequence and efficiency under different standard deviation
values of the state-dependent noise on ak, and without
input-dependent noise (i.e., bk is fixed and constant for
all k). Both figures demonstrate that the optimal induction
factor sequence from the stochastic actuator disk model also
increases the efficiency and improves performance under
larger variations.

To match the expected wind velocity of the conventional
deterministic ADM, the mean value of the state-dependent
noise should be set to unity (i.e., µa = 1) [22]. However,
having µa = 1 together with a non-zero variance in the
state-dependent multiplicative noise ak leads to null optimal

induction factors for leading upstream turbines, since in this
case the model essentially predicts that additional energy
will be injected into the wake further downstream. This
indicates that the parameters in the stochastic ADM should
be carefully calibrated based on measured data in order to
capture appropriate (possibly heterogeneous) spatio-temporal
flow variations and obtain reasonable control policies for the
array. To appropriately incorporate stochasticity of the wind
flow, we set the mean value of ak to µa = 0.99, and vary
the standard deviation σa to describe statistical fluctuations.
The key observation is that regardless of the value of µa,
the proposed approach improves efficiency with increasing
variance by exploiting statistical knowledge of wind field
fluctuations and incorporating this information into optimal
control policies for wind farm power maximization.
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Fig. 5. Normalized induction factor defined as ψk
1/3

for deterministic model
(µa = 0.99, µb = −2) and for stochastic model with various values of
state-dependent multiplicative noise standard deviation (µa = 0.99, σa >
0, µb = −2, σb = 0, γa = 0 and γb = 0).
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Fig. 6. Comparison of optimal efficiency η` for deterministic model
(µa = 0.99, µb = −2) and stochastic model with various values of
state-dependent multiplicative noise standard deviation (µa = 0.99, σa >
0, µb = −2, σb = 0, γa = 0 and γb = 0).

The stochastic actuator disk model of a wind farm with
cascaded wind turbines captures stochastic wind fluctua-
tions. By definition, the optimal control laws derived from
stochastic dynamic programming achieve superior perfor-
mance to laws derived from a deterministic model of the
same complexity, allowing the turbines to recognize and react
to the particular wind field characteristics. Data derived di-
rectly from measurements or simulations can be incorporated



directly into the control law to improve the aerodynamic
efficiency a wind farm for specific wind fluctuation statistics.
It is worth emphasizing that more work is necessary to
incorporate tractable noise models that are consistent with
the flow physics; this conference paper is a first step in this
direction.

V. CONCLUSIONS AND OUTLOOKS

We have formulated a multi-stage stochastic optimal con-
trol problem for maximizing the power output of a one
dimensional wind farm array and shown that it can be solved
analytically via dynamic programming. The optimal control
policies depend explicitly on the statistics of multiplicative
noise, which can be related to stochastic wind fluctuations.

Our results provide an initial step toward defining a wind
farm control strategy that tractably incorporates statistical
knowledge of stochastic wind fluctuations. However, there
remain several lines of future work that can extend the
present results in various ways to more fully understand
the possibilities and limits for maximizing annual energy
production. Our future work will involve
(a) utilizing more realistic wake models;
(b) estimating necessary statistics from high-fidelity numer-

ical simulations and experimental data;
(c) performance evaluation of the policies on high-fidelity

models, which may improve the results in [33];
(d) considering more realistic array geometries;
(e) exploring computationally efficient approximation of

nonlinear optimal control strategies; if needed.
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