DroidMutator: An Effective Mutation Analysis Tool for Android
Applications

Jian Liu
East China Normal University
China

Liang Dou
East China Normal University
China

ABSTRACT

With the rapid growth of Android devices, techniques that ensure
high quality of mobile applications (i.e., apps) are receiving more
and more attention. It is well-accepted that mutation analysis is an
effective approach to simulate and locate realistic faults in the pro-
gram. However, there exist few practical mutation analysis tools for
Android apps. Even worse, existing mutation analysis tools tend to
generate a large number of mutants, hindering broader adoption of
mutation analysis, let alone the remaining high number of stillborn
mutants. Additionally, mutation operators are usually pre-defined
by such tools, leaving users less ability to define specific operators
to meet their own needs. To address the aforementioned problems,
we propose DRoIDMUTATOR, a mutation analysis tool specifically for
Android apps with configurability and extensibility. DroipbMuTaTOR
reduces the number of generated stillborn mutants through type
checking, and the scope of mutation operators can be customized so
that it only generates mutants in specific code blocks, thus generat-
ing fewer mutants with more concentrated purposes. Furthermore,
it allows users to easily extend their mutation operators. We have
applied DroibMuraTor on 50 open source Android apps and our
experimental results show that DrorbMurator effectively reduces
the number of stillborn mutants and improves the efficiency of
mutation analysis.
Demo link: https://github.com/SQS-JLiu/DroidMutator
Video link: https://youtu.be/dtD00TVioHM

CCS CONCEPTS

- Software and its engineering — Software verification and vali-
dation.

KEYWORDS
Android, Mutation analysis, Operators

ACM Reference Format:

Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, and Andy Podgurski. 2020.
DroidMutator: An Effective Mutation Analysis Tool for Android Applica-
tions. In 42nd International Conference on Software Engineering Companion

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °20 Companion, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7122-3/20/05.

https://doi.org/10.1145/3377812.3382134

Xusheng Xiao
Case Western Reserve University
United States

Lihua Xu
New York University
Shanghai, China

Andy Podgurski

Case Western Reserve University
United States

(ICSE 20 Companion), May 23-29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3377812.3382134

1 INTRODUCTION

Android applications (i.e., apps) have grown rapidly over the past
decade. It has penetrated into every part of our lives and has become
an integral part of people’s lives. Therefore, it is very important to
ensure the quality and reliability of apps. Among the technologies
that ensure the quality of apps, mutation analysis is an effective
approach for various software analysis tasks, such as fault localiza-
tion [6, 7, 12, 13], and test generation [4, 9, 15].

Mutation analysis is a fault-based technique that measures the
effectiveness of a test suite. It injects faults into the original program,
and executes test cases to kill the mutants and optimizes the test
suite via the non-killed mutants. Faults are introduced into the
program by creating a set of faulty versions, called mutants, each
of which contains one injected fault. Mutants and the original
program are then executed and compared. The mutants that return
different results as the original program are considered “killed”. The
non-killed mutants are then considered to contain the yet-to-be-
exercised faults, and hence more test cases are generated to cover
them.

Although well recognized, there exist very few mutation anal-
ysis tools for Android apps. To the best of authors’ knowledge,
muDroid [1, 16] and MDroid+ [10] are the only mutation analysis
tools for Android apps. However, a number of challenges exist: First,
the number of generated mutants tends to be very large, rendering
many mutation analysis techniques less effective and thus hinder-
ing the wider adoption of mutation analysis. Second, injecting faults
into the original program may lead to mutants with incorrect syn-
tax, which further hinders the effectiveness of mutation analysis.
Third, the quality of mutation operators, which are used to inject
faults into the original program, affects the quality of mutants. We
believe that not only the pre-defined general purpose operators, but
the user-defined operators are also useful to generate high quality
of mutants. More specifically, muDroid tends to generate a large
number of stillborn mutants (i.e., mutants with incorrect syntax),
while MDroid+ mutates the entire source file and cannot generate
mutants within specific scopes (i.e., applying mutation operators in
specific code blocks). Moreover, both of them provide little support
for Java-specific mutation operators.

To address these challenges, we present a mutation analysis
tool called DrorbMuTartor. DrorpMuTaTOR Utilizes type checking to
reduce the generation of stillborn mutants (i.e., those leading to

https://github.com/SQS-JLiu/DroidMutator
https://youtu.be/dtD0oTVioHM
https://doi.org/10.1145/3377812.3382134
https://doi.org/10.1145/3377812.3382134

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

failed compilations). It also provides configuration capability to
limit the scope of mutation (i.e., applying mutation operators in
specific code blocks), and allow users to define specific mutation
operators to serve their own needs.

The main contributions of DrorbMuTaTor can be summarized as
follows:

(1) We have developed DroipMutator, with type checking ca-
pability for variable expressions, hence reducing the number of
stillborn mutants with incorrect syntax;

(2) DrorbMuTaTOR configures the mutation scope to only generate
mutants within the user’s preferred scope, hence further reducing
the number of generated overall mutants with more concentrated
purposes;

(3) DrorDMuTATOR provides extension capability that allows user
to easily define their own mutation operators for various purposes,
especially Java-specific mutation operators;

(4) We conducted experiments with 50 open source apps. The
experimental results show that the number of stillborn mutants
generated by DrorpMurator is only 0.1%, which is greatly improved
compared to 1.7% of MDroid+. Moreover, DrorbMuTaTOR mutates 5
times faster than MDroid+.

2 DROIDMUTATOR

' Mutator .

Mutants generator

JAVA™T

Mutants
Program

under test

Mutants
viewer

| Configuration
! file

Figure. 1: Overview of DROIDMUTATOR

Figure 1 shows the overview of DROIDMUTATOR. DROIDMUTATOR
takes the source file of an app and the mutation configuration file
as input, parses the target source file, and matches the mutation
location (i.e., the code blocks to be mutated) in source code file.
After finding the mutation location, DrorbMuTATOR resolves the
type of selected statements, aiming to assure whether mutation
operators can be applied. Further, DroibMuraror applies mutation
operators in the chosen mutation locations to generate mutant files
and change log. Finally, each mutant can be build into an installable
APK (Android Application Package) file and mutants that failed
compilation are discareded. Each APK file will also be launched
and discarded if it crashes on launching.

DroipMuTator consists of three components. The first compo-
nent is Mutator, including two parts: Mutants generator and Mutants
viewer. The Mutants generator first uses the JavaParser [8] to parse
a source file into an abstract syntax tree, and then select feasible
mutation locations. Next, it uses Java reflection and static analysis
to check the types of the objects in the mutation locations. Finally, it
mutates the source file to generate mutants and output the change
log. The Mutants viewer shows the change log, so that the develop-
ers can easily inspect every mutant generated by DrRoibDMUTATOR.

Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, Andy Podgurski

The second component is an Builder to compile mutant into
APK file and filter mutants that failed build. It can filter stillborn
mutants whose syntax is wrong completely. Specifically, Builder
uses Gradle [5] to build each mutant into an installable APK file.

The third component is Launcher, which is used to install an
APK file and launch the APK file. In this way, it can filter trivial
mutants that crash on app launch. After this step, the remaining
mutants are the ones we need. Launcher is implemented as a Python
component that calls the Android Emulator [2] or the physical
Android device to install the mutated APK file and launch the
installed APK to determine whether the mutant is working properly
within a reasonably time (i.e., whether it crashes shortly after the
launch). Finally, if the app crashes, it is considered a trivial mutants.

2.1 Type Checking

1. class Test{
2. private Object myobj = new Object();
B. void func(Object obj){
@. if(obj != myobj}{
5. doSomething();
1. class Test{ e }
R private Object myobj = new Object(); 7 } '\/
B. void func(Object obj){ B}
¢ if(obj == myobj){ Effective Mutant
5. doSomething();
3 }) class Test{
8.) private Object myobj = new Object();|
- void func(Object obj){

No Type Checking if(obj < myobj){ //<=,>,>=
doSomething();
}

) X

Stillborn Mutant

Source Code

TN TS BN EL

Figure. 2: Example code for type checking

To reduce the number of generated stillborn mutants, DrorbMu-
tartor includes a type checking, i.e., the Type Checking in Figure 1,
whose job is to analyze variable types (e.g., Integer, String, Array),
and return type of calling function. The types of variables that
can be analyzed include Java primitive data types and object types,
Android component types, and developer-defined object types. By
checking the type of a variable, we can more accurately locate the
location of the mutation, reduce the number of generated stillborn
mutants, and improve the effectiveness of the mutation.

Figure 2 shows an example code after a mutation. In this code,
the mutation operator’s modification rule is to select an if con-
ditional statement and replace relational operators (i.e., using the
ROR mutation operator). First, DroibMuraror will search Source
Code statements to find the conditional statements. Further, Type
Checking analyzes the type of variable obj (Line 4), which is an ob-
ject type. Based on the analysis result, the relational operator (Line
4) is mutated to “!=" in the Line 4 of Effective Mutant, and generate
a new mutant. If there is no type checking, the relational operator
“==" will be replaced by “>”, “>=", “<”, “<=" (In Stillborn Mutant),
which will produce more stillborn mutants.

2.2 Configurability

The MUSIC mutation tool proposed by Loc Duy Phan [14] requires
the specification of the mutation scope using a starting line number
and a ending line number, and the tool will only perform mutation
within the scope in the source code file. However, the disadvantage
of this mechanism is that the specified line numbers depends on
the lines of code in a source code file.

DroidMutator: An Effective Mutation Analysis Tool for Android Applications

1 <?xml version="1.0" encoding="UTF-8"?>

2 <LocationSettings control_dependence="N" active="Y">

3 <Class name="TestDemo" qualifiedName="com.example.TestDemo"
active="Y">

4 <Methods>

5 <Method name="runFunc">

6 <Modifiers>public</Modifiers>
7 <returnType>void</returnType>
8 <Parameters></Parameters>

9 </Method>

10

11 </Methods>

12 </Class>

13

14 </LocationSettings>
15

Figure. 3: Fragment of scope configuration

Unlike existing mutation testing tools, DrRorbMuTaToR provides a
configurable scope of mutation for more flexible mutations. Figure 3
shows a fragment of the mutation scope configuration, and we can
configure multiple methods of multiple classes to mutate. This demo
configuration means that we only mutate in the runfunc) method in
the class com.example TestDemo Or in the overridden runFunc) method. If we
want to mutate all scopes of the target file, just set active (Line 2) to
‘N’. By default, the mutating tool will mutate all mutation locations
in the source code file under the target directory (or selected code
files). Of course, DroiDMuTATOR can also mutate the methods we
configure, or even a specific method statement. In addition, if a
class inherits the configured class and overrides the method, then
this overridden method will also be mutated. Thus, the scope of
mutation becomes the directions to mutate a certain parts of the
code, improving the efficiency of DrorbMuTaTor’s mutation.

2.3 Extensibility

With the rapid development of Android apps, the existing muta-
tion operators are often insufficient to meet the testing needs, so
adding custom mutation operators is inevitable. The more effective
mutation operators, the more effective the mutation test is. One
of the advantages of DroipMuraror is that developers can easily
add their own mutation operators. Adding a mutation operator is
like adding a rule to modify the source file. To help developers add
their own mutation operators, DrorbMuTtaror provides an abstract
class MethodLevelMutator. The developers can write a new class with
MethodLevelMutator as its base class, and implement only the methods
for generating mutants. Then the implemented class will become a
new mutation operator and can be plugged into DrorpbMuTATOR fOr
generating mutants. Last but not least, the implemented mutation
operator needs to be added to the DroidMutantsGenerator class and the
configuration file.

2.4 Visibility

DrorpMuraror provides a GUI to the user so that the user can freely
select the source file and the mutation operators for the mutation
operation. After the mutation is completed, DrorpbMuTaTOR provides
an viewer window that shows the mutation results for each of the
mutated source files.

For each source file that is mutated, the viewer window displays
the number of mutants generated by each mutation operator and
the total number of mutants generated. Moreover, the user can use
the filtering function to display all mutants of a source file or to
display the mutants generated in each method separately. If a user
select one of the mutants, then the GUI will display the changed

ICSE 20 Companion, May 23-29, 2020, Seoul, Republic of Korea

statements (i.e., the mutated statements) between the source file and
the mutant file, so that the user can view and analyze the mutant.

2.5 Mutation Operators

DroipMurartor implements two types of mutation operators as de-
fined in [10, 11]: Java-specific mutation operators and Android-
specific mutation operators. The Java-specific mutation operators
handle the primitive features of programming languages. For ex-
ample, They modify expressions by replacing, adding, and deleting
primitive operators. The Android-specific mutation operators han-
dle Android-specific features such as intents, views, and locations.

In this paper, DrorbMuTaTor implements a total of 32 mutation
operators, of which 28 are based on existing mutation operators,
and 4 are new mutation operators proposed for our context. Due
to space limit, we do not list all the mutators, but the detailed
description is available at our project website!.

3 EVALUATION
3.1 Evaluation Subjects and Setup

To evaluate the effectiveness of type checking, we randomly se-
lected 50 open source apps from F-Droid [3] as empirical subjects.
F-Droid is the largest repository for open-source Android apps.

We compare DrorpMuraTor with a closely related tool, MDroid+ [10],
to demonstrate the effectiveness of our mutant generators and
the mutation operators. To demonstrate the effectiveness of type
checking, we also implemented another version of DrorDMuTATOR
without type checking version, called DrorbMuTaTOR*, as an experi-
mental comparison tool. Therefore, our evaluations will compare
the effectiveness of MDroid+, DroiDMUTATOR, and DROIDMUTATOR".
In our evaluations, DroipMuTtaTOR used the 32 mutation operators
mentioned above, and used the full mutation (i.e., mutated all the
positions where the mutants can be generated) for each code file.

Furthermore, to demonstrate the usabilibity of DrorbMuTaTOR,
we also compare with muDroid, MDroid+ and DroidMutator.

3.2 Effectiveness

Table 1 shows the experimental results MDroid+, DROIDMUTATOR,

and DrorpMurartor*. We mutated all Java files from 50 apps.
Table. 1: Mutant generation result

Mutation tool | Mutation Time (sec) | #Gen. Mutants | #Stillborn Mutants | #Trivial Mutants
MDroid+ 5568 8900 154 213

DROIDMUTATOR® 1231 75213 26297 1030

DROIDMUTATOR 1082 48703 56 1030

*Mutating 50 apps, a total of 1304 Java files.

1.7%.2.4% 0.1%_2.1%

1.3%,

u Effective
m Stillborn

Trivial

DroidMutator

MDroid+ DroidMutator*
Figure. 4: Mutant ratio

Filtering unusable mutants. As we can see, DROIDMUTATOR
has the lowest rate of stillborn mutants, compared to DroipbMuTa-
tor* and MDroid+. The number and the ratio of mutants can be

Thttps://github.com/SQS-JLiu/DroidMutator/blob/master/OperatorsDescription.md

https://github.com/SQS-JLiu/DroidMutator/blob/master/OperatorsDescription.md

ICSE ’20 Companion, May 23-29, 2020, Seoul, Republic of Korea

obtained from the Table 1 and Figure 4. DroibDMuTATOR generates
48703 mutants, 56 stillborn mutants, and thus the stillborn rate
is 0.1%. DroiDMuTATOR* generates 75213 mutants, 26297 stillborn
mutants, and thus the stillborn rate is 35%. MDroid+ generates 8900
mutants, 154 stillborn mutants, and thus the stillborn rate is 1.7%.
This clearly demonstrates the superiority of DROIDMUTATOR over
DroipMutator* and MDroid+ in terms of the stillborn rate.

However, the generation of stillborn mutants is closely related to
the rules of mutation operators. Type checking cannot completely
avoid the generation of stillborn mutants. For example, the mutation
operator InvalidIDFindView is used to replace the id parameter in
the Activity .findviewByld call. If id does not exist, it cannot be compiled.

Also, it shows that generating trivial mutants is inevitable. For
example, the injected faulty statement may be executed when the
program starts and throws an exception to cause the program to
crash. From Figure 4, we can see that the rates of trivial mutants
generated by all three tools are similar.

Table. 2: Mutants generated by DrorpMuTaTor

Mutation operator | Mutation Time (sec) | #Gen. Mutants | #Stillborn Mutants | %Stillborn Mutants
Java-specific 896 44187 34 0.08
Android-specific 186 4516 22 0.5

Another observation from Table 2 is that the Java-specific muta-
tion operator implemented by the DroibMuTaTOR generates more
mutants: the Java-specific mutation operator generates 44187 mu-
tants, and the Android-specific mutation operator generates 4516
mutants. The main reason is that user code in Android apps is
mainly traditional Java code.

In summary, DroipMuTaTOR effectively reduces the generation
of a large number of stillborn mutants and improves the efficiency
of mutation, compared to DrorbMuTtator* and MDroid+.

Execution Time. As shown in Table 1, DroibMuTaTOR took a
total of 1082 seconds to run, averaging 22 seconds per app. Droip-
MuraTor* took a total of 1231 seconds to run, averaging 25 seconds
per app. MDroid+ took a total of 5568 seconds to run, averaging
111 seconds per app. As such, DroibMuTaTor is the most efficient
tool among the three tools but still produces more mutants than
MDroid+. By analyzing the results of the experimental data, we
found that both DroipbMutaTor* and MDroid+ produced more in-
termediate analysis files, which required more IO processing and
thus took more time than DroipMuraror for mutant generation. In
other words, they generate a large number of stillborn mutants and
copies of the source files.

3.3 Usability

DroibMuTator provides both a graphical interface and a command
line interface, which allows the developers to visually select the
files to be mutated and the mutation operators to generate the
desired mutants. Moreover, DroipMuTaTOR also visually compares
the code differences before and after the mutation to improve the
usability of the mutation analysis tool. DrorbMuraror also provides
the flexible scope configurability that allows mutation in the user-
defined and rewritten functions. In addition, compared to MDroid+,
DroipMuraror offers better extensibility on the mutation operators
for non-interface mutations. For example, DroibMuTaToR makes it
easier to extend the substitutions of the relational and arithmetic
operators. But compared to MDroid+, DROIDMUTATOR Supports mu-
tation operators that manipulate only Java files.

Jian Liu, Xusheng Xiao, Lihua Xu, Liang Dou, Andy Podgurski

4 CONCLUSION

In this work, we propose DroipbMuTATOR, 2 mutation analysis tool
designed specifically for Android apps. DroipbMuTaTOR checks the
types of variables to be mutated and reduces the number of gener-
ated stillborn mutants. DrorbMuTaTOR can also configure the scope
of each mutation operator, and then generate mutants in specific
code blocks accordingly. Moreover, DrorpbMuTtaTtor implements two
types of mutation operators, including Android-specific mutation
operators and Java-specific mutation operators, and users can eas-
ily extend their mutation operators on top of DroibMuraror. The
experimental results show that DrorpMuraror effectively reduces
the number of stillborn mutants, thus improving the efficiency of
mutation analysis for Android apps.

DroipMuTaTor is publicly available at https://github.com/SQS-
JLiu/DroidMutator.

ACKNOWLEDGMENTS

This research is supported in part by the Science and Technology
Commission of Shanghai Municipality (No.18511106202) and Na-
tional Science Foundation (CNS-1755772).

REFERENCES

[1] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. 2015. Towards
mutation analysis of android apps. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 1-10.

[2] Android Emulator. 2018. . Retrieved August 2, 2018 from https://developer.
android.com/studio/run/emulator

[3] F-Droid. 2018. Free and Open Source Android App Repository. Retrieved
2018-08-08 from https://f-droid.org

[4] Gordon Fraser and Andreas Zeller. 2012. Mutation-driven generation of unit tests
and oracles. IEEE Transactions on Software Engineering 38, 2 (2012), 278-292.

[5] Gradle. 2018. . Retrieved August 1, 2018 from https://gradle.org

[6] Shin Hong, Taechoon Kwak, Byeongcheol Lee, Yiru Jeon, Bongseok Ko, Yunho
Kim, and Moonzoo Kim. 2017. MUSEUM: Debugging real-world multilingual
programs using mutation analysis. Information and Software Technology 82 (2017),
80-95.

[7] Shin Hong, Byeongcheol Lee, Tachoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2016. Mutation-Based Fault Localization for Real-World
Multilingual Programs (T). In IEEE/ACM International Conference on Automated
Software Engineering. 464-475.

[8] JavaParser. 2018. a library to generate, analyze, and process Java code. Retrieved
2018-09-25 from https://javaparser.org

[9] Yunho Kim, Shin Hong, Bongseok Ko, Duy Loc Phan, and Moonzoo Kim. 2018. In-
vasive Software Testing: Mutating Target Programs to Diversify Test Exploration
for High Test Coverage. In 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST). 239-249.

[10] Mario Linares-Vasquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Mas-
similiano Di Penta, Christopher Vendome, Carlos Bernal-Cardenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for android apps. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM,
233-244.

Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. 2006. MuJava: a mutation system
for Java. In Proceedings of the 28th international conference on Software engineering.
ACM, 827-830.

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
Mutants: Mutating Faulty Programs for Fault Localization. In IEEE Seventh Inter-
national Conference on Software Testing. 153-162.

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: Mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605-628.
Duy Loc Phan, Yunho Kim, and Moonzoo Kim. 2018. MUSIC: Mutation Analysis
Tool with High Configurability and Extensibility. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 40-46.

[15] W. Eric Wong, Ruizhi Gao, Yihao Li, Abreu Rui, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707-740.

Yuan-W. 2017. muDroid project at GitHub. Retrieved 2019-05-01 from https:
//g00.gl/sQo6EL

[11

[12

[13

[14

[16

https://github.com/SQS-JLiu/DroidMutator
https://github.com/SQS-JLiu/DroidMutator
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://f-droid.org
https://gradle.org
https://javaparser.org
https://goo.gl/sQo6EL
https://goo.gl/sQo6EL

	Abstract
	1 Introduction
	2 DroidMutator
	2.1 Type Checking
	2.2 Configurability
	2.3 Extensibility
	2.4 Visibility
	2.5 Mutation Operators

	3 Evaluation
	3.1 Evaluation Subjects and Setup
	3.2 Effectiveness
	3.3 Usability

	4 Conclusion
	References

