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Abstract—This paper presents a voltage control design 

algorithm for a three-phase voltage source converter (VSC) 

connected to a linear load using a passive LCL filter. The 

controller is based on an optimal regulator, combined with the 

integral of the voltage error, which is called LQI that achieves 

null tracking of the error. The main objective of this paper is to 

present an algorithm to design a voltage controller through 

frequency analysis of the singular values of the system, the 

weight of the states involved in the system, the movement of the 

closed poles and their respective step response to evaluate 

performance and robustness against load changes. The 

simulation results show a satisfactory operation of the voltage 

controller with fast recovery after a resistive load change.  

Keywords—Multivariable Control, Three-Voltage Source 

Converter, Linear Quadratic Integral Controller, Singular Values, 

Optimal Control, Microgrid controllers. 

I. BACKGROUND 

Microgrid control is typically separated into different 

hierarchical levels [1]: V-I Control, primary control, 

secondary control, and tertiary control. V-I control level 

regulates the inverter’s output signal waveform in order to 

meet power quality requirements such as amplitude, 

frequency, and harmonic distortion. Primary control 

regulates power-sharing between generators and the main 

grid. Secondary control regulates microgrid power quality. 

Finally, tertiary control manages issues related to energy 

markets such as microgrid power-sharing to the main grid, 

controlling battery usage, predicting energy production 

values, demand response against sudden generator changes, 

etc. From these control levels, V-I control level is the baseline 

for developing the other control levels. 

The V-I control level regulates inverter’s output voltage 

and current. A typical V-I control scheme for an inverter 

generator is shown in fig. 1. The control objectives of the V-

I control level include perfect tracking of the voltage or 

current reference signal, harmonic rejection caused by 

nonlinear loads, and robustness against load changes. To 

achieve these objectives, many different control strategies 

have been proposed in literature [2]. Classical controllers 

refer to Laplace-domain controllers with typical structures 

such as P, PI, or PID controllers. These controllers are 

commonly used due to their “tuning” nature that makes their 

implementation quite straightforward. Some of the 

applications of PI controllers for the V-I control level are 

presented in [3]–[7]. One of the main drawbacks of these 

works is that the control gains are found heuristically without 

considering the model of the inverter. 

Optimal and are based on improving inverter performance 

according a defined objective function. Optimal controllers 

such as the Linear-Quadratic Regulator (LQR) are aimed to 

minimize the energy in the states and inputs. The most 

common implementation of LQR controllers for inverter 

control is the well-known Linear-Quadratic Integrator (LQI). 

This control method has the advantage of being robust by 

nature providing infinite gain margin and a minimum phase 

margin of 60 degrees [8].  Some of the relevant works related 

to optimal control using LQI controllers may be found in [9]–

[13]. Most of these approaches show the mathematical 

formulation of the LQI controller. However, there are no 

works in the literature focused on showing how to select the 

weighting matrices Q and R. 

One of the most common approaches to select the values 

of Q and R is presented in [8]. The author suggests to start 

selecting the diagonal elements of Q and R as the inverse of 

the maximum quadratic value of the corresponding state-

variable or input. Although this method presents a good start 

point, the selection of the final Q and R is a process that 

requires knowledge of the dynamics of the plant and the 

control objectives.  

 In this work, an algorithm for designing an LQI controller 

for voltage-source inverters is presented. This design 

algorithm analyzes the closed-loop eigenvalues, the singular 

value diagram, and the simulated step-response to define 

suitable values of Q and R. Although this algorithm 

demonstrates adequate results, the final definition of the 

weighting matrices will always depend on the designer 

expertise on the control application. 

The rest of this document is organized as follows: section 

II shows the model used for the design of the LQI controller. 

Section III presents the design algorithm for the LQI 

controller. Finally, simulation results are presented in section 

IV. 



II. SYSTEM MODELING 

 

The system structure shown in fig. 1 is composed of three 

blocks organized in decrease order. The first one is the VSC 

connected to load through LCL filter considering the series 

resistance 𝑅𝑖  in each inductor 𝐿𝑖 . The second one is 

transformation blocks from 𝑎𝑏𝑐 to 𝑑𝑞-axes from an angular 

frequency of 377 rad/sec  corresponding to operation 

angular frequency 𝜔𝑐 . The final block is the voltage 

controller. The new variables connected to discretization 

block ZOH arrives at the optimal control system block which 

contains the feedback gain 𝐾𝐿𝑄𝐼  y two additional stated 

variables corresponding to a delay time in the control signal 

and the integral of the voltage error in the capacitor. The 

Model neglects the PWM switching frequency. 

A. Continuos-time mathematical model 

Before designing any controller, it is necessary to know 

the mathematical model of the system to analyze stability and 

check control requirements, for instance, the controllability 

of the system. This requirement allows us to infer the 

existence of a feedback gains matrix that takes the trajectory 

of the system states from a starting point to a final point in a 

finite time [14]. Using the first-order differential equations 

through Kirchhoff currents and voltage analysis, the 

mathematical model for the system shown in fig.1 is obtained 

and transformed in to the 𝑑𝑞  frame [15]. The state-space 

model is given by 

𝑥⃗(𝑡) = 𝑨𝑥⃗(𝑡) + 𝑩𝑢⃗⃗(𝑡) 
(1) 

𝑦⃗(𝑡) = 𝑪𝑥⃗(𝑡)                  

where the state vector is 

𝑥⃗(𝑡) = [𝐼1𝑑 𝐼1𝑞 𝐼2𝑑 𝐼2𝑞 𝑉𝑐𝑑 𝑉𝑐𝑞]
𝑇
(𝑡) (2) 

and matrices 𝑨, 𝑩, 𝑪 are expressed as (3). 

B. Discrete-time mathematical model 

The discretization of the system in the state space is done 

using the Zero Order Hold method (ZOH) with a sampling 

time 𝑇𝑠. Thus, the system is given by 

 

𝑥⃗{𝑘 + 1} = 𝑮𝑥⃗{𝑘} + 𝑯𝑢⃗⃗{𝑘} 

 
(4) 

𝑦⃗{𝑘} = 𝑪𝑥⃗{𝑘} 
where matrices 𝑮 and 𝑯 are obtained as 

𝑮 =  𝑒𝑨∙𝑇𝑠  
𝑯 = (∫ 𝑒𝑨∙𝜏

𝑇𝑠

0

𝑑𝜏) ∙ 𝑩 (5) 
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Fig. 1. Control Structure for VSC. 

During the computational time, a delay appears at the 

input to the system. Therefore, it is necessary to take it into 

account in the system, and the matrices 𝑮 , 𝑯 , and 𝑪  are 

augmented with a new state as follows 

𝑮𝒅 = [
𝑮 𝑯
⊘ ⊘

] 
(6) 

𝑯𝒅 = [⊘ 𝑰]𝑇  
𝑪𝒅 = [𝑪 ⊘]   

where the subscript ‘𝑑’ denotes the matrices increased 

with computational delay and ‘⊘’ denotes matrix of zeros 

with convenient size. Thus, the new state vector is  

 

𝑥𝑑⃗⃗⃗⃗⃗{𝑘 + 1} = [ 𝑥⃗ | 𝑑𝑖𝑛]𝑇{𝑘 + 1} (7) 

and the system in state space becomes 

 

𝑥𝑑⃗⃗⃗⃗⃗{𝑘 + 1} = 𝑮𝒅𝑥𝑑⃗⃗⃗⃗⃗{𝑘} + 𝑯𝒅𝑢⃗⃗{𝑘} 

 (8) 
𝑦⃗{𝑘} = 𝑪𝒅𝑥𝑑⃗⃗⃗⃗⃗{𝑘} 

 

C. Linear Quadratic Controller 

Optimal quadratic control provides several advantages 

over other control techniques since it obtains a matrix of state 

feedback gains that brings the poles of the closed-loop system 

to the location where the best performance of the transient 

response is obtained, in addition to providing robustness 

 

𝑨 =

[
 
 
 
 
 
 
− 𝑅1 𝐿1⁄ 𝜔𝑐 0 0 −1 𝐿1⁄ 0

−𝜔𝑐 −𝑅1 𝐿1⁄ 0 0 0 −1 𝐿1⁄

0 0 − (𝑅2 + 𝑅) 𝐿2⁄ 𝜔𝑐 1 𝐿2⁄ 0

0 0 −𝜔𝑐 −(𝑅2 + 𝑅) 𝐿2⁄ 0 1 𝐿2⁄

1 𝐶1⁄ 0 −1 𝐶1⁄ 0 0 𝜔𝑐

0 1 𝐶1⁄ 0 −1 𝐶1⁄ −𝜔𝑐 0 ]
 
 
 
 
 
 

 

 

 

 

(3) 

𝑩 = [
1 𝐿1⁄ 0

0 1 𝐿1⁄
0 0
0 0

1 0
0 1

]
𝑇

 𝑪 = [
0 0
0 0

0 0
0 0

1 0
0 1

] 

 

 



against to deviations. The main control objective is to 

minimize the cost function 

𝐽 =
1

2
∑(𝑥𝑘

∗𝑸𝑥𝑘 + 𝑢𝑘
∗𝑹𝑢𝑘)

𝑁−1

𝑘=0

 (9) 

where 𝑸  and 𝑹  are positive semidefinite and positive 

definite hermetic matrices, respectively, where their values 

on the diagonal are assigned based on the importance of the 

states of the system under study.  

Therefore, the control problem is reduced to determine the 

control law 𝑢 = −𝑲𝑥(𝑡), where 𝑲, for multivariate systems, 

is a matrix of constant gains found by solving the Ricatti 

Algebraic Equation (ARE) of (10) [16]. This control law 

obtains the desired trajectories of the system with optimal 

performance [8]. 

 

𝑮𝑻𝑺 + 𝑺𝑮 − 𝑺𝑯𝑹−𝟏𝑯𝑻𝑺 + 𝑪𝑻𝑸𝑪 = 𝟎 (10) 

where 𝑺 is the solution to ARE and the matrix 𝑲 is given by 

 

𝑲 = 𝑹−𝟏𝑹𝑻𝑺 (11) 

C. Frequency analysis using singular values 

For multi-input/multi-output (MIMO) systems, the 

individual single-input/single-output (SISO) systems Bode 

Plot does not provide clear information that allows 

guaranteed stability or robustness. Therefore, the use of the 

MIMO Bode Plot of singular values (SV) is a useful tool to 

design controllers that guarantee stabilize the system at the 

operating point. 

Any matrix 𝑴  may be written by its singular values 

decomposition (SVD), as mentioned in [8]. The expression of 

𝑴 from SVD is given as 

𝑴 = 𝒀𝚲𝑽∗ (12) 

where 𝚲 = 𝑑𝑖𝑎𝑔{𝜎1, 𝜎2, … , 𝜎𝑖}  with 𝑖 = 𝑟𝑎𝑛𝑘{𝑴} , both 

𝒀 and 𝑽∗ are square unit matrices, and 𝜎𝑖 denotes SV de M 

which are the square root of the eigenvalues of 𝑴𝑻𝑴. 

The considerations for Robust State Feedback Controller 

Design from SV (𝜎 𝑦 𝜎, maximum and minimum) of the loop 

gain 𝑳𝑔, are the following 

1) 𝜎(𝑳𝑔)  should be small at high frequency since 

disturbances generally predominate in this range and 

thus guarantee robustness against perturbations. 

2) 𝜎(𝑳𝑔) should be large at low frequency for robust 

performance against noise signals, for instance, 

switching noise. 

3) The magnitude 𝜎  y 𝜎 , for a range of frequencies 

should have nearby values with the objective that the 

transient response of all states of the system is 

similar. 

4) The slope of SV around zero crossings in the MIMO 

Bode plot should be less than 40 dB/dec to guarantee 

a margin of stability robustness. 

For more details about singular values and loop gains, see [8], 

and [17]. 

III. LQI CONTROLLER ALGORITHM 

The design algorithm of a Linear Quadratic Integral (LQI) 

controller for the three-phase converter connected to a load, 

proposed in this work is as follows: 

1. Express the system in state space as (1) and discretize 

the model to bring it into the form as (4). The 

discretization method is independent in each case.  

2. Analytically obtain the open-loop gain 𝑳𝑔  of the 

feedback system, opening the loop at the input signal 𝑢. 

3. Set the weights of the matrices 𝑸  and 𝑹  to get the 

feedback gains 𝑲 from (10) and (11). 

4. Select the appropriate frequency range where the 

controller has the desired behavior. 

5. Graph the set of closed-circuit poles of the system for 

each case obtained in step 4 and carry out their 

respective step test. 

6. Graph the MIMO Bode Plot of 𝑳𝑔  and verify the 

considerations mentioned in section II.C. 

7. Select the profit matrix 𝑲 that satisfies all the design 

criteria and simulate the system from the structure 

shown in fig.1, otherwise, return to step 3. 

Table I consolidates the values of the components shown 

in fig.1, among others. 

TABLE I. SYSTEM PARAMETERS. 

Component Value Units 

𝑉𝑑𝑐 350 V 

𝑅1 0.01 Ω 

𝐿1 1.8 mH 

𝐶1 8.8 μF 

𝑅2 0.01 Ω 

𝐿2 1.8 mH 

𝑅 10 Ω 

𝑇𝑠 100 μs 

A. Step 1: State Space Model 

To start with the optimal regulator design, matrices 𝑨, 𝑩 

and 𝑪 are used from (3), which are subsequently discretized 

by the ZOH method as described in section II.B. Finally, the 

state space is increased with the computational delay to be 

expressed as (8). The sample time is 𝑇𝑠 = 100 μs (see Table 

I). The other consolidated values in Table I are used to the 

numerical solution of the system and simulation of the 

structure shown in fig. 1. 

B. Step 2: Recovery of Robust Loop Gain at the Input 

Fig. 2 shows the block diagram proposed to obtain the 

loop gain 𝑳𝒈 . Blocks 𝚽 and 𝚿 represent the system of (8) 

and the integrator system in the 𝑑𝑞 frame, respectively, and 

both expressed as 

𝚽 = (𝑧𝑰 − 𝑮𝒅) ∙ 𝑯𝒅 
(13) 

𝚿 = (𝑧𝑰 − 𝑮𝒊) ∙ 𝑇𝑠 ∙ 𝑯𝒊 

with 

𝑮𝒊 = [
𝟏 𝟎
𝟎 𝟏

] 𝑯𝒊 = [
𝟏 𝟎
𝟎 𝟏

] (14) 



After opening the feedback control loop at input 𝒖 and 

performing an algebraic matrix operations, the open-loop 

gain 𝑳𝒈 , without taken into account the reference signal 

(𝑽𝒓𝒆𝒇 = 𝟎), results as 

𝑳𝑔 = −(𝑲𝒔𝜱 − 𝑲𝒊𝜳𝑪𝒅𝜱) (15) 

𝑲𝒔 and 𝑲𝒊 gain matrices for the system considering the 

delay and the error integrator system, in the framework 𝑑𝑞. 
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Fig. 2. Block diagram of the feedback system. 

C. Step 3: Weighting matrices Q and R 

In this step, it is crucial to know the possible weights of 𝑸 

and 𝑹 to avoid multiple iterations and then find the feedback 

gain 𝐾𝐿𝑄𝐼  until achieving the desired behavior. By heuristics, 

the most relevant state is the voltage capacitor for island 

mode since it is desired that the VSC maintains the sine 

waveform (amplitude and frequency) and achieve to provide 

it to the load, regardless of a disturbance. However, for the 

LQI case, the state of the voltage error becomes the most 

critical state because the objective is to eliminate the output 

error in steady-state. 

From the above, five weight values were selected for this 

new state variable, and the value of the matrix 𝑹 was fixed to 

the identity matrix. Table II summary the costs of these 𝑸 

matrices. It can be seen that the contribution of the state 

variable of the voltage error gradually increases with a 

different rate to the other states. The results of these 

variations are shown below. 

 
TABLE II. Q MATRIX VARIATIONS. 

Q matrix Value 

1 𝑑𝑖𝑎𝑔{1,1,10,100,1000} 

2 𝑑𝑖𝑎𝑔{1,1,10,100,10000} 

3 𝑑𝑖𝑎𝑔{1,1,1,10,10000} 

4 𝑑𝑖𝑎𝑔{1,1,1,1,10000} 

5 𝑑𝑖𝑎𝑔{1,1,1,1,100000} 

D. Step 4: Frequency range 

The frequency limits allow defining a frequency 

bandwidth where the controller satisfies the desired 

performance and robustness of the system based on the 

criteria mentioned above. In this case, the desired frequency 

range is defined around 377 rad/sec, the operating frequency 

of the system. 

 

 

E. Step 5: Close loop poles and Step Response 

The pole movement of the closed-loop system, together 

with the state of the voltage error for different 𝑸 matrices is 

shown in fig. 3. As seen in Cluster 1, these poles are heading 

towards the origin but are still far away and are therefore 

neglected from the point of view of the transient response 

since they quickly fall to zero, which means that the 

contribution of these roots is minimal, as indicated in [18]. 

Observing cluster 2, the movement of the poles on the real 

axis does not show significant changes since their movement 

is minimal, and they remain in that neighborhood, but they 

remain fast poles and are therefore neglected. In cluster 3, as 

the ratio of the error state increases regarding other states in 

matrix 𝑸 (see Table II), the calculated gain of ARE moves 

the poles further towards the origin, enough to dominate the 

response over time and without reaching marginal stability 

(see zoom in cluster 3). This value begins to increase as the 

dominant poles move slightly away from the origin, which 

indicates less overshooting and fewer oscillations in the step 

response. 

 
Fig. 3. Close loop poles movement. 

The step responses are shown in fig. 4 correspond to the 

closed-loop system with the five feedback gain matrices. As 

can be seen, all the paths on the dq-axis, except the response 

using 𝑸𝟑 , behave similarly concerning performance 

parameters such as overshoot and transient time. Moreover, 

the response obtained with the matrix 𝑸𝟓  has a shorter 

establishment time than the others. Therefore, the step 

response is influential in the selection of the matrix 𝑲𝐋𝐐𝐈, but 

it is not precise enough to meet all the design criteria. For this 

reason, the singular value diagram is generated. It is 

important to mention that the initial behavior of the step is 

due to the non-minimum phase zero generated by the 

computational time delay. 



 
Fig. 4. Capacitor Voltage step responses. 

F. Step 6: Singular values plot 

Fig. 5 shows the diagram of SV of the loop gain 𝑳𝒈 

obtained in (15). Regarding the considerations raised in 

section II.D, 𝜎  are below 0 dB in magnitude at high 

frequencies for all loop gains while 𝜎 of 𝑳𝒈𝟑 , 𝑳𝒈𝟒  and 𝑳𝒈𝟓 

have a magnitude above 20 dB for low frequency. The paths 

of these same loop gains show that 𝜎  and 𝜎  have close 

magnitudes during the frequency sweep. The value of the 

slope in dB for these three cases of 𝑳𝒈 is around 20 dB.  

 
Fig. 5. MIMO Bode Plot of Lg Variations 

G. Step 7: Matrix K selection 

The selected feedback gain matrix 𝑲 is the one that uses 

the matrix 𝑸𝟓 according to Table II, since it contains a more 

significant proportion in the error state, and its contribution 

improves overshoot and establishment time. The last 4 cases 

in the SV diagram meet the design criteria, although the 

magnitude of 𝜎  in 𝑳𝒈𝟓 achieves a higher gain in low 

frequency, and for this reason, it improves noise rejection as 

well as increasing its bandwidth. It is important to remember 

that the origin in this graph corresponds to the operating 

angular frequency 𝜔𝑛 due to the transformation in dq. 

IV. SIMULATION RESULTS 

In order to validate the controller, the structure shown in 

fig. 1 was simulated using MATLAB® and Simulink® 

environment. The switching frequency of the PWM is set to 

10 kHz, and all the variables are initialized. Simulink runs the 

entire control system, and the results are exported to 

MATLAB® for processing. Fig. 6 shows the signal of the dq-

frame voltage error in the capacitor. The first transient 

corresponds to the initial response of the system with initial 

conditions at zero. In 50 ms, the load step event is generated, 

reducing its resistance to 50% to verify the expected behavior 

The overshoot is less than 25%, and the settling time is 

around 5 ms (see zoom view), which indicates a quick 

response from the controller against this load change.  

 

Fig. 6. Capacitor voltage error in dq-axis. 

 

Fig. 7. Controller signal in the dq-axis. 

Signal control behavior is shown in fig. 7. There can be 
appreciated that reference tracking is correct since the 

𝜎 
𝜎 



𝑑𝑞 signal reaches 170 V and without changes due to the load 
step. In this event, the modulating signal decrease to 150 V 
but responds quickly with a set time less than 5 ms, in the same 
way as the error signal. 

Fig. 8 shows the voltage across the capacitor, which has a 
slight disturbance in all three lines due to the charging step but 
quickly recovers and stabilizes. Initial behavior is due to initial 
system conditions. 

 

Fig. 8. Capacitor Voltage in the abc-axis. 

In fig. 9 the current in the output inductor increases from 
1.71A pick to 5.07A pick after the generated event.  

 

Fig. 9. Current inductor in abc-axis. 

CONCLUSION 

An algorithm of seven steps to MIMO LQI controllers in VSC 
was presented. The results show a correct behavior in the 
transient response (less than 5 ms), slight recovery of the 
capacitor voltage due to the fast action of the proposed 
controller against changes in resistive load in an isolated 
system. In addition, the SV frequency analysis of the feedback 
system, using MIMO Bode Plot, allows to obtain a better 
vision of the stability robustness of the control system which 
the interaction between all the inputs and outputs of the system 
are taken into account. 
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