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Abstract—This paper presents a voltage control design
algorithm for a three-phase voltage source converter (VSC)
connected to a linear load using a passive LCL filter. The
controller is based on an optimal regulator, combined with the
integral of the voltage error, which is called LQI that achieves
null tracking of the error. The main objective of this paper is to
present an algorithm to design a voltage controller through
frequency analysis of the singular values of the system, the
weight of the states involved in the system, the movement of the
closed poles and their respective step response to evaluate
performance and robustness against load changes. The
simulation results show a satisfactory operation of the voltage
controller with fast recovery after a resistive load change.
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I. BACKGROUND

Microgrid control is typically separated into different
hierarchical levels [1]: V-I Control, primary control,
secondary control, and tertiary control. V-1 control level
regulates the inverter’s output signal waveform in order to
meet power quality requirements such as amplitude,
frequency, and harmonic distortion. Primary control
regulates power-sharing between generators and the main
grid. Secondary control regulates microgrid power quality.
Finally, tertiary control manages issues related to energy
markets such as microgrid power-sharing to the main grid,
controlling battery usage, predicting energy production
values, demand response against sudden generator changes,
etc. From these control levels, V-1 control level is the baseline
for developing the other control levels.

The V-I control level regulates inverter’s output voltage
and current. A typical V-I control scheme for an inverter
generator is shown in fig. 1. The control objectives of the V-
I control level include perfect tracking of the voltage or
current reference signal, harmonic rejection caused by
nonlinear loads, and robustness against load changes. To
achieve these objectives, many different control strategies
have been proposed in literature [2]. Classical controllers
refer to Laplace-domain controllers with typical structures
such as P, PI, or PID controllers. These controllers are
commonly used due to their “tuning” nature that makes their
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implementation quite straightforward. Some of the
applications of PI controllers for the V-I control level are
presented in [3]-[7]. One of the main drawbacks of these
works is that the control gains are found heuristically without
considering the model of the inverter.

Optimal and are based on improving inverter performance
according a defined objective function. Optimal controllers
such as the Linear-Quadratic Regulator (LQR) are aimed to
minimize the energy in the states and inputs. The most
common implementation of LQR controllers for inverter
control is the well-known Linear-Quadratic Integrator (LQI).
This control method has the advantage of being robust by
nature providing infinite gain margin and a minimum phase
margin of 60 degrees [8]. Some of the relevant works related
to optimal control using LQI controllers may be found in [9]-
[13]. Most of these approaches show the mathematical
formulation of the LQI controller. However, there are no
works in the literature focused on showing how to select the
weighting matrices Q and R.

One of the most common approaches to select the values
of Q and R is presented in [8]. The author suggests to start
selecting the diagonal elements of Q and R as the inverse of
the maximum quadratic value of the corresponding state-
variable or input. Although this method presents a good start
point, the selection of the final Q and R is a process that
requires knowledge of the dynamics of the plant and the
control objectives.

In this work, an algorithm for designing an LQI controller
for wvoltage-source inverters is presented. This design
algorithm analyzes the closed-loop eigenvalues, the singular
value diagram, and the simulated step-response to define
suitable values of Q and R. Although this algorithm
demonstrates adequate results, the final definition of the
weighting matrices will always depend on the designer
expertise on the control application.

The rest of this document is organized as follows: section
II shows the model used for the design of the LQI controller.
Section III presents the design algorithm for the LQI
controller. Finally, simulation results are presented in section
V.



II. SYSTEM MODELING

The system structure shown in fig. 1 is composed of three
blocks organized in decrease order. The first one is the VSC
connected to load through LCL filter considering the series
resistance R; in each inductor L; . The second one is
transformation blocks from abc to dg-axes from an angular
frequency of 377 rad/sec corresponding to operation
angular frequency w, . The final block is the voltage
controller. The new variables connected to discretization
block ZOH arrives at the optimal control system block which
contains the feedback gain Ky, y two additional stated
variables corresponding to a delay time in the control signal
and the integral of the voltage error in the capacitor. The
Model neglects the PWM switching frequency.

A. Continuos-time mathematical model

Before designing any controller, it is necessary to know
the mathematical model of the system to analyze stability and
check control requirements, for instance, the controllability
of the system. This requirement allows us to infer the
existence of a feedback gains matrix that takes the trajectory
of the system states from a starting point to a final point in a
finite time [14]. Using the first-order differential equations
through Kirchhoff currents and voltage analysis, the
mathematical model for the system shown in fig.1 is obtained
and transformed in to the dq frame [15]. The state-space
model is given by

X(t) = AX(t) + Bu(t)

y() = CX(v)

(1

where the state vector is
2O =[hqg hq lLa Lq Vea ch]T(t) @)
and matrices A, B, C are expressed as (3).

B. Discrete-time mathematical model

The discretization of the system in the state space is done
using the Zero Order Hold method (ZOH) with a sampling
time T. Thus, the system is given by
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Fig. 1. Control Structure for VSC.

During the computational time, a delay appears at the
input to the system. Therefore, it is necessary to take it into
account in the system, and the matrices G, H, and C are
augmented with a new state as follows

[

Hd _ I] (6)
Cq = [C Q]

where the subscript ‘d’ denotes the matrices increased
with computational delay and ‘@’ denotes matrix of zeros
with convenient size. Thus, the new state vector is

Xtk + 1} =[% | dinl"tk+1} (7

and the system in state space becomes

Xq{k + 1} = Gaxg{k} + Hqu{k}

®)
¥{k + 1} = GX{k} + Hu{k} @ y{k} = Caxg{k}
' yik} = Cf{k} C. Linear Quadratic Controller
where matrices G and H are obtan;ed as Optimal quadratic control provides several advantages
3 over other control techniques since it obtains a matrix of state
G = eATs H = f edTdr |'B %) feedback gains that brings the poles of the closed-loop system
o to the location where the best performance of the transient
response is obtained, in addition to providing robustness
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against to deviations. The main control objective is to
minimize the cost function

N-1
1
J=3 kzo(xfzoxk + U Ru) ©)

where Q and R are positive semidefinite and positive
definite hermetic matrices, respectively, where their values
on the diagonal are assigned based on the importance of the
states of the system under study.

Therefore, the control problem is reduced to determine the
control law u = —Kx(t), where K, for multivariate systems,
is a matrix of constant gains found by solving the Ricatti
Algebraic Equation (ARE) of (10) [16]. This control law
obtains the desired trajectories of the system with optimal
performance [8].

G'S +SG—SHR'H'S + C"QC =0 (10)
where S is the solution to ARE and the matrix K is given by

K = RRTS (an

C. Frequency analysis using singular values

For multi-input/multi-output (MIMO) systems, the
individual single-input/single-output (SISO) systems Bode
Plot does not provide clear information that allows
guaranteed stability or robustness. Therefore, the use of the
MIMO Bode Plot of singular values (SV) is a useful tool to
design controllers that guarantee stabilize the system at the
operating point.

Any matrix M may be written by its singular values
decomposition (SVD), as mentioned in [8]. The expression of
M from SVD is given as

M =YAV® (12)

where A = diag{oy, 05, ..., 0;} with i = rank{M}, both
Y and V* are square unit matrices, and o; denotes SV de M
which are the square root of the eigenvalues of M M.

The considerations for Robust State Feedback Controller
Design from SV (¢ y o, maximum and minimum) of the loop
gain Ly, are the following

1) o(Lgy) should be small at high frequency since
disturbances generally predominate in this range and
thus guarantee robustness against perturbations.

2) a(Ly) should be large at low frequency for robust
performance against noise signals, for instance,
switching noise.

3) The magnitude ¢ y o, for a range of frequencies
should have nearby values with the objective that the
transient response of all states of the system is
similar.

4) The slope of SV around zero crossings in the MIMO
Bode plot should be less than 40 dB/dec to guarantee
a margin of stability robustness.

For more details about singular values and loop gains, see [8],
and [17].

III. LQI CONTROLLER ALGORITHM

The design algorithm of a Linear Quadratic Integral (LQI)
controller for the three-phase converter connected to a load,
proposed in this work is as follows:

1.  Express the system in state space as (1) and discretize
the model to bring it into the form as (4). The
discretization method is independent in each case.

2. Analytically obtain the open-loop gain L, of the
feedback system, opening the loop at the input signal wu.

3. Set the weights of the matrices Q and R to get the
feedback gains K from (10) and (11).

4.  Select the appropriate frequency range where the
controller has the desired behavior.

5. Graph the set of closed-circuit poles of the system for
each case obtained in step 4 and carry out their
respective step test.

6.  Graph the MIMO Bode Plot of L; and verify the
considerations mentioned in section I1.C.

7. Select the profit matrix K that satisfies all the design
criteria and simulate the system from the structure
shown in fig.1, otherwise, return to step 3.

Table I consolidates the values of the components shown
in fig.1, among others.
TABLE I. SYSTEM PARAMETERS.

Component | Value | Units
Vae 350 \'
R, 0.01 Q
Ly 1.8 mH
Cy 8.8 uF
R, 0.01 Q
L, 1.8 mH
R 10 Q
Ts 100 us

A. Step 1: State Space Model

To start with the optimal regulator design, matrices 4, B
and C are used from (3), which are subsequently discretized
by the ZOH method as described in section II.B. Finally, the
state space is increased with the computational delay to be
expressed as (8). The sample time is T, = 100 ps (see Table
I). The other consolidated values in Table I are used to the
numerical solution of the system and simulation of the
structure shown in fig. 1.

B. Step 2: Recovery of Robust Loop Gain at the Input

Fig. 2 shows the block diagram proposed to obtain the
loop gain Ly. Blocks @ and W represent the system of (8)
and the integrator system in the dq frame, respectively, and
both expressed as

®=uzI-G;) -H, (13)
Y =(zI—-G;,)" T, H;
with

6i=[o 1 H=lp 1 a9



After opening the feedback control loop at input u and
performing an algebraic matrix operations, the open-loop
gain Ly, without taken into account the reference signal
(Vres = 0), results as

L, =—(K;®— K;¥Cyq®P) (15)

K and K; gain matrices for the system considering the
delay and the error integrator system, in the framework dgq.

K,
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Fig. 2. Block diagram of the feedback system.

C. Step 3: Weighting matrices Q and R

In this step, it is crucial to know the possible weights of Q
and R to avoid multiple iterations and then find the feedback
gain K; o; until achieving the desired behavior. By heuristics,
the most relevant state is the voltage capacitor for island
mode since it is desired that the VSC maintains the sine
waveform (amplitude and frequency) and achieve to provide
it to the load, regardless of a disturbance. However, for the
LQI case, the state of the voltage error becomes the most
critical state because the objective is to eliminate the output
error in steady-state.

From the above, five weight values were selected for this
new state variable, and the value of the matrix R was fixed to
the identity matrix. Table II summary the costs of these Q
matrices. It can be seen that the contribution of the state
variable of the voltage error gradually increases with a
different rate to the other states. The results of these
variations are shown below.

TABLE II. Q MATRIX VARIATIONS.

Value
diag{1,1,10,100,1000}
2 diag{1,1,10,100,10000}
3 diag{1,1,1,10,10000}
4 diag{1,1,1,1,10000}
5 diag{1,1,1,1,100000}

Q matrix

D. Step 4: Frequency range

The frequency limits allow defining a frequency
bandwidth where the controller satisfies the desired
performance and robustness of the system based on the
criteria mentioned above. In this case, the desired frequency
range is defined around 377 rad/sec, the operating frequency
of the system.

E. Step 5: Close loop poles and Step Response

The pole movement of the closed-loop system, together
with the state of the voltage error for different Q matrices is
shown in fig. 3. As seen in Cluster 1, these poles are heading
towards the origin but are still far away and are therefore
neglected from the point of view of the transient response
since they quickly fall to zero, which means that the
contribution of these roots is minimal, as indicated in [18].
Observing cluster 2, the movement of the poles on the real
axis does not show significant changes since their movement
is minimal, and they remain in that neighborhood, but they
remain fast poles and are therefore neglected. In cluster 3, as
the ratio of the error state increases regarding other states in
matrix Q (see Table II), the calculated gain of ARE moves
the poles further towards the origin, enough to dominate the
response over time and without reaching marginal stability
(see zoom in cluster 3). This value begins to increase as the
dominant poles move slightly away from the origin, which
indicates less overshooting and fewer oscillations in the step
response.
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Fig. 3. Close loop poles movement.

The step responses are shown in fig. 4 correspond to the
closed-loop system with the five feedback gain matrices. As
can be seen, all the paths on the dg-axis, except the response
using Q3 , behave similarly concerning performance
parameters such as overshoot and transient time. Moreover,
the response obtained with the matrix Q5 has a shorter
establishment time than the others. Therefore, the step
response is influential in the selection of the matrix Ky gy, but
it is not precise enough to meet all the design criteria. For this
reason, the singular value diagram is generated. It is
important to mention that the initial behavior of the step is
due to the non-minimum phase zero generated by the
computational time delay.



Capacitor Voltage Step Response in dq-axis
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Fig. 4. Capacitor Voltage step responses.
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F. Step 6: Singular values plot

Fig. 5 shows the diagram of SV of the loop gain L,
obtained in (15). Regarding the considerations raised in
section I.D, o are below 0 dB in magnitude at high
frequencies for all loop gains while g of Ly3, Lgy and Lys
have a magnitude above 20 dB for low frequency. The paths
of these same loop gains show that o and g have close
magnitudes during the frequency sweep. The value of the
slope in dB for these three cases of L is around 20 dB.
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Fig. 5. MIMO Bode Plot of Lg Variations

G. Step 7: Matrix K selection

The selected feedback gain matrix K is the one that uses
the matrix Q5 according to Table II, since it contains a more
significant proportion in the error state, and its contribution
improves overshoot and establishment time. The last 4 cases
in the SV diagram meet the design criteria, although the
magnitude of ¢ in Lgg achieves a higher gain in low
frequency, and for this reason, it improves noise rejection as
well as increasing its bandwidth. It is important to remember

that the origin in this graph corresponds to the operating
angular frequency w,, due to the transformation in dq.

IV. SIMULATION RESULTS

In order to validate the controller, the structure shown in
fig. 1 was simulated using MATLAB® and Simulink®
environment. The switching frequency of the PWM is set to
10 kHz, and all the variables are initialized. Simulink runs the
entire control system, and the results are exported to
MATLAB® for processing. Fig. 6 shows the signal of the dg-
frame voltage error in the capacitor. The first transient
corresponds to the initial response of the system with initial
conditions at zero. In 50 ms, the load step event is generated,
reducing its resistance to 50% to verify the expected behavior
The overshoot is less than 25%, and the settling time is
around 5 ms (see zoom view), which indicates a quick
response from the controller against this load change.
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Signal control behavior is shown in fig. 7. There can be
appreciated that reference tracking is correct since the



dq signal reaches 170 V and without changes due to the load
step. In this event, the modulating signal decrease to 150 V
but responds quickly with a set time less than 5 ms, in the same
way as the error signal.

Fig. 8 shows the voltage across the capacitor, which has a
slight disturbance in all three lines due to the charging step but
quickly recovers and stabilizes. Initial behavior is due to initial
system conditions.
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Fig. 8. Capacitor Voltage in the abc-axis.

In fig. 9 the current in the output inductor increases from
1.71A pick to 5.07A pick after the generated event.
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Fig. 9. Current inductor in abc-axis.

CONCLUSION

An algorithm of seven steps to MIMO LQI controllers in VSC
was presented. The results show a correct behavior in the
transient response (less than 5 ms), slight recovery of the
capacitor voltage due to the fast action of the proposed
controller against changes in resistive load in an isolated
system. In addition, the SV frequency analysis of the feedback
system, using MIMO Bode Plot, allows to obtain a better
vision of the stability robustness of the control system which
the interaction between all the inputs and outputs of the system
are taken into account.
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