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ABSTRACT

Moving target defense has emerged as a critical paradigm of protect-
ing a vulnerable system against persistent and stealthy attacks. To
protect a system, a defender proactively changes the system config-
urations to limit the exposure of security vulnerabilities to potential
attackers. In doing so, the defender creates asymmetric uncertainty
and complexity for the attackers, making it much harder for them to
compromise the system. In practice, the defender incurs a switching
cost for each migration of the system configurations. The switching
cost usually depends on both the current configuration and the
following configuration. Besides, different system configurations
typically require a different amount of time for an attacker to ex-
ploit and attack. Therefore, a defender must simultaneously decide
both the optimal sequence of system configurations and the optimal
timing for switching. In this paper, we propose a Markov Stack-
elberg Game framework to precisely characterize the defender’s
spatial and temporal decision-making in the face of advanced at-
tackers. We introduce a value iteration algorithm that computes
the defender’s optimal moving target defense strategies. Empirical
evaluation on real-world problems demonstrates the advantages of
the Markov Stackelberg game model for spatial-temporal moving
target defense.
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1 INTRODUCTION

Moving target defense (MTD) has established itself as a power-
ful framework to counter persistent and stealthy threats that are
frequently observed in Web applications [30, 32], cloud-based ser-
vices [10, 22], database systems [39], and operating systems [7]. The
core idea of MTD is that a defender proactively switches configura-
tions (a.k.a., attack surfaces) of a vulnerable system to increase the
uncertainty and complexity for potential attackers and limits the
resources (e.g., window of vulnerabilities) available to them [8]. In
contrast to MTD techniques, traditional passive defenses typically
use analysis tools to identify vulnerabilities and detect attacks.
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A major factor for a defender to adopt MTD techniques rather
than passive defensive applications is that adaptive and sophisti-
cated attackers often have asymmetric advantages of resources (e.g.,
time, prior knowledge of the vulnerabilities) over the defender due
to the static nature of system configurations [19, 29]. For instance,
clever attackers are likely to exploit the system over time and subse-
quently identify the optimal targets to compromise without being
detected by the static defensive applications [38]. In such case, a
well-crafted MTD technique is more effective because it changes
the static nature of the system and increases the attackers’ com-
plexity and cost of mounting successful attacks [5]. In this way, it
reduces or even eliminates the attackers” asymmetric advantages
of the resources.

Despite the promising prospects of MTD techniques, it is chal-
lenging to implement optimal MTD strategies. Two factors con-
tribute to the difficult situation. On one hand, the defender must
make the switching strategies sufficiently unpredictable because
otherwise the attacker can thwart the defense. On the other hand,
the defender should not conduct too frequent system migrations be-
cause each migration incurs a switching cost that depends on both
the current configuration and the following configuration. Thus,
the defender must make a careful tradeoff between the effectiveness
and the cost efficiency of the MTD techniques. The tradeoff requires
the defender to simultaneously decide both the optimal sequence
of system configurations (i.e., the next configuration to be switched
to) and the optimal timing for switching. To this end, an MTD
model must precisely characterize the defender’s spatial-temporal
decision-making.

A natural approach to model the strategic interactions between
the defender and the attacker is to use game-theoretic models such
as the zero-sum dynamic game [36] and the Stackelberg Security
game (SSG) model [25, 27, 31]. The dynamic game model is gen-
eral enough to capture different transition methods of the system
states and various information structures but optimal solutions
to the game are often difficult to compute. This model also as-
sumes that the switching cost from one configuration to another is
fixed [36]. The SSG model belongs to an important game-theoretic
model called Stackelberg games [33] that has broad applications
in many fields, including spectrum allocation [35], smart grid [34]
and security [28]. In the SSG model, the defender commits to a
mixed strategy that is independent of the state transitions of the
system [27, 31]. The attacker adopts a best-response strategy to
the defender’s mixed strategy. Whenever there is a tie, the attacker
always breaks the tie in favor of the defender [18]. This solution
concept is called the strong Stacklberg equilibrium [3]. While opti-
mal solutions to an SSG can be obtained efficiently, the SSG models
neglect the fact that both the defender’s and the attacker’s strategy
can be contingent on the system configuration state. To address



this problem, Feng et al. incorporate both Markov decision process
and Stackelberg game into the modeling of the MTD game [6].
Many MTD models [4, 9, 25, 27] do not explicitly introduce the
concept of the defending period, although they usually assume
that the defender chooses to execute a migration after a constant
time period [26]. A primary reason is that when both time and the
system’s state influence the defender’s decision making, optimal
solutions to the defender’s MTD problem are non-trivial [15, 26].
Recently, Li and Zheng has proposed to incorporate timing into
the defender’s decision making processes [14]. Their work assumes
that there is a positive transition probability between any two
configurations (so that the corresponding Markov decision process
is unichain), which may lead to sub-optimal MTD strategies. Further,
their model assumes that all the attackers have the same type, which
might not be true in reality. To solve the defender’s optimal MTD
problem in more general settings, an MTD model that precisely
models the strategic interactions between the defender and the
attacker is in urgent need.
Our contributions. In this paper, we propose a general frame-
work called the Markov Stackelberg Game (MSG) model for spatial-
temporal moving target defense. The MSG model enables the de-
fender to implement optimal defense strategy that is contingent
on both the source state and the destination state of the system. It
also allows the defender to simultaneously decide which state the
system should be migrated to and when it should be migrated. In
the MSG model, we formulate the defender’s optimization prob-
lem as an average-cost semi-Markov decision process (SMDP) [23]
problem. We present a value iteration algorithm that can solve
the average-cost SMDP problem efficiently after transforming the
original average-cost SMDP problem into a discrete time Markov
decision process (DTMDP) problem. We empirically evaluate our
algorithm using real-world data obtained from the National Vul-
nerability Database (NVD) [20]. Experimental results demonstrate
the advantages of using MSG over the state-of-the-art approaches
in MTD.

2 MODEL

In this section, we describe the Markov Stackelberg Game (MSG)
model for moving target defense.

2.1 System Configuration

In moving target defense, a defender proactively shifts variables
of a computing system to increase uncertainty for the attacker
to mount successful attacks. The variables of the system are of-
ten called adaptation aspects [37, 38]. Typical adaptation aspects
include IP address, port number, network protocol, operating sys-
tem, programming language, machine replacement, and memory
to cache mapping [37]. A computing system usually has multiple
adaptation aspects. Let D denote the number of adaptation aspects
for the computing system and ®; the set of sub configurations in the
i-th adaptation aspect. If the defender selects the sub configuration
¢;i € @; for the i-th adaptation aspect, then the configuration state
of the system is denoted as s = (¢1, ¢2, . .., ¢p). Here, s is a generic
element of the set of system configurations S = &1 X 3 X - - - X .
Let n = |S| denote the number of system configurations in S. We
use configuration and state interchangeably throughout the paper.
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Figure 1: An illustration of the relationship between at-
tacker types, attack methods, adaptation aspects, sub-
configuration parameters, and system configurations.

2.2 The Attacker

2.2.1 Attacker Type. A successful attack requires a competent
attacker that has the expertise to exploit the vulnerabilities. For
instance, to gain control of a remote computer, the attacker needs
the capability to obtain the control of at least one of the following
resources: the IP address of the computer, the port number of a
specific application running on the machine, the operating system
type, the vulnerabilities of the application, or the root privilege
of the computer [37]. The attacker’s ability profile is called the
attacker type. There are different attacker types. Let L denote the
set of attacker types. Each attacker type [ € L is capable of mounting
a set of attacks A;. The attacker type space A; is a nonempty set
of the attack methods that each targets one vulnerability in one
adaption aspect, which may affect multiple sub configurations in
that aspect. Multiple attacks may target the same vulnerability but
may have different benefit (loss) to the attacker (defender). Whether
an attack method belongs to an attacker type space or not depends
on the application scenarios. Figure 1 illustrates the relationship
between attacker types, attack methods, adaptation aspects, sub-
configuration parameters and system configurations.

2.2.2  Attacking Time. If an attacker with the attacker type [
chooses an attack method a € A; to attack the system in state
Jj, then the time needed for him to compromise the system is a
random variable £ ; that is drawn from a given distribution =g ;.
If a is not targeting a vulnerability of any sub configuration in
state j, £z j = +0o. The attacker only gains benefits when he has
successfully compromised the system. A system is considered to be
compromised as long as the attacker compromises one of the sub
configurations. In this work, L, {A;}, and {Z4,;} are assumed to be
common knowledge.

2.3 The Defender

2.3.1 Migration Cost. During the migration process, the de-
fender updates the system to retake or maintain the control of the
system and pays some updating cost. The defender then selects
and shifts the system from the current state i € S to the next valid
system state j € S with a cost m;;. We can consider that the mi-
gration is implemented instantaneously. This is without loss of



generality because one can always assume that during the migra-
tion the system is still at state i. If the defender decides to stay at
the current state i, then the cost is m;;. Since there is a cost for
updating the system, it requires that m;; > 0 for all i € S. Let M
be the matrix of the migration cost between any states i, j € S, we
have M = [m;;j]nxn. It is crucial to note that the migration cost m;;
may depend on both the source state i and the destination state j.

2.3.2 Defending Period. The defender not only needs to deter-
mine which state to use but also should decide when to move. If
the defender stays in a state sufficiently long, the attacker is likely
to compromise the system even if the defender shifts eventually.
Thus, the defender needs to pick the defending period judiciously.
Let t; denote the time instance that the k-th migration happens.
The k-th defending period is calculated by t; — t;._;. In practice, the
system needs some time to prepare migration or updating. Thus,
it is natural to require that the defending period is lower bounded.
On the other hand, the defending period cannot be arbitrarily large
because otherwise the system will be compromised eventually and
stay compromised afterwards. Therefore, we assume that 7 € [z, 7]
where 0 < 7 <T.

2.3.3 Defender’s Strategy. In our model, the defender adopts a
stationary strategy u that simultaneously decides where to move
and when to move. Let p;; denote the probability that the defender
moves from state i to state j, then the transition probabilities be-
tween any two states in S can be represented by a transition matrix
P = [pijlnxn, where ¥ jes pij = 1 for any i € S. When the sys-
tem state is i, the defender uses a mixed strategy p; = (pij)jes to
determine the next state to switch to. It is crucial to note that the
transition probabilities depend on both the source and destination
configurations.

Moreover, instead of a fixed defending period as in most MTD
models, we consider a state-dependent defending period in our
model. In particular, let 7; denote the length of the (k + 1)-th de-
fending period when the system is in state i in the k-th defending
period. The defending period matrix is thus = = [71, 72, ..., 72]. In
our model, we assume that the (k + 1)-th defending period only
depends on the system state in the k-th period due to two consid-
erations. First, the transition probabilities have already captured
the dependencies on destination states. Second, it allows the de-
fender’s problem to be modeled as a semi-Markov decision process
(defined in Section 2.4.3). The defender’s strategy is then denoted
by u = (P,7) = [u(i)]jes where u(i) = (pji, 7;) is the defender’s
action when the system is in state i. See Figure 2 for an illustration
of the system model.

2.4 Markov Stackelberg Game

In our paper, we model moving target defense as a Markov Stackel-
berg game (MSG) where the defender is the leader and the attacker
is the follower. At the beginning the defender commits to a station-
ary strategy that is announced to the attacker. The attacker’s goal
is to maximize his expected reward by constantly attacking the
system’s vulnerabilities. The defender’s objective is to minimize
the total loss due to attacks plus the total migration cost.

The MSG model is an extension of the Stackelberg Security Game
(SSG) model that has been widely adopted in security domains [28].
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Figure 2: An illustration of the Markov Stackelberg game
model. A light green block represents the time period when
the system is protected while a dark red block denotes the
time period when the system is compromised; p;; is the prob-
ability that the defender moves from state i to j, and 7; is the
length of the current defending period when the previous
configuration is i. The first defending period (between t; and
t1) depends on the initial configuration (State 2 in this case).

A key advantage of using the Stackelberg game model is that it
enables the defender to act first to commit to a mixed strategy that
the attacker observes and then selects his best response accord-
ingly [12]. This advantage allows the defender to implement de-
fense strategies prior to potential attacks [14]. In MTD, the defender
proactively switches the system between different configurations
to increase the attacker’s uncertainty. It is thus natural to model
the defender as the leader and the attacker as the follower.

2.4.1 Information Structure. In our model, we consider a stealthy
and persistent attacker that learns the defender’s stationary strategy
u. We assume that the defender announces her stationary strategy
to the attacker before the game starts. This is without loss of gen-
erality because the attacker will learn the system states and the
defender’s strategy eventually due to the stealthy and persistent
nature of the attacks. We further assume that the attacker always
learns the system state at the end of a defending period no matter
the attack is successful or not in that period. Hence, at the beginning
of each stage, the only uncertainty to the attacker is the current
state as he has already known the previous state and the length of
the current defending period. This is a worse-case scenario from
the defender’s perspective.

In many security domains, it is often difficult for the defender to
obtain real-time feedback about whether the system is compromised
or not because the attacker is likely to be stealthy. The defender,
however, may have some prior knowledge about the attacker type
distribution [21, 27]. Thus, we assume that the defender has a prior
belief 7 = {m;} on the probability distribution of the attacker type
L

2.4.2  Attacker’s Optimization Problem. Since the defender adopts
a stationary strategy that is known to the attacker, the attacker can
maximize its long-term payoff by always following a best response
in each stage. Hence, we consider a myopic attacker that always
adopts a best response to the defender’s strategy in each defending
period according to its knowledge on the previous system state.



Consider the beginning of the k-th defending period from the at-
tacker’s perspective. Assume that the system was in state i (known
to the attacker) in the (k — 1)-th period and has moved to state j
(unknown to the attacker) in the k-th period. For an attack method
a to be successful in the k-th period, the time &, ; required for the
attacker when using attack method a targeting state j should be
less than the length of the defending period 7;. Let sz, ; denote the
attacker’s benefit per unit of time when the system is compromised,
which is jointly determined by the attacker’s type I, its chosen at-
tack method a, and the state j. The reward that the attacker receives
in the k-th period is then (z; — §a,j)+sz,j where (x)* £ max(0, x).
Since the attacker only knows i but not j when it chooses the attack
method at the beginning of the k-th defending period, the opti-
mization problem for the attacker with type [ is to maximize his
expected reward by choosing an attack method a from his attack
space Aj: maxgen, 2 jes PijE[(7i — §a,j)+]RéJ: where 7; and {p;;}
are the defending period length and the transition probabilities
given by the defender under state i, respectively.

24.3 Defender’s Optimization Problem. We consider a defender
that constantly migrates among the system configurations in order
to minimize the total loss due to attacks plus the total migration
cost. We use an average cost semi-Markov decision process (SMDP)
to model the defender’s optimization problem. The SMDP model
considers a defender that aims to minimize her long-term defense
cost in an infinite time horizon using spatial-temporal decision
making.

Consider the end of the (k — 1)-th defending period from the
defender’s perspective. Again assume that the system is in state i
in the (k — 1)-th period. Given the defender’s action u(i) = (pj, 7i),
her expected cost in the k-th defending period is:

cu®) = Y m| Y piBl( = £ )ICL |+ 3 pijmij

lelL jes jes
st d = arg max ZpijE[(ri - fa,j)Jr]Rtlzj , VieL (1)
acA; jes >

where Cé’ - denotes the unit time loss for the defender under state
Jj due to an attack a launched by a type [ attacker. The first part in
the objective function is the expected attacking loss and the second
part is the expected migration cost.

Let sg be the initial system configuration before the game starts,
which is arbitrarily chosen from the state space S and is known
to the attacker. The game starts at tp = 0 when the defender ap-
plies the first migration. Let s denote the system state in the k-th
defending period for k = 1, 2, .... The defender adopts a stationary
policy u where u(s) = (ps,., 7s, ) for each state si, which generates
an expected cost ¢(sg, u(s)) that includes potential loss from com-
promises and migrations. Given the initial state sp, the defender’s
long-term average cost is defined as:

S e(sg ulse))

z(sg, u(sp)) = lim sup MT )
N—>oo k=0 Tsy

The goal of the defender is to commit to a stationary policy u* =

[u*(i)], that minimizes the time-average cost for any initial state.

For each u(i) = (p;, 1), we have p;; € [0,1] forall j, Zj pij = 1,and
7; € [7,7]. Thus, the action space U (i) for every u(i) is [0,1]" X
[z, 7], which is a continuous space. We assume that c(i, u(i)) is
continuous over U(i). The defender’s optimization problem cor-
responds to finding a strong Stackelberg equilibrium [3] where
the defender commits to an optimal strategy assuming that the at-
tacker will choose the best response to the defender’s strategy and
break ties in favor of the defender. This is a common assumption
in Stackelberg security game literature.

2.4.4 Challenges of Computing Optimal MTD Strategies. The are
two main challenges for the defender to compute the optimal strate-
gies. First, when an arbitrary transition matrix P is allowed, the
Markov chain associated with the given P may have a complicated
chain structure. The optimal solution may not exist and standard
methods such as Value Iteration (VI) and Policy Iteration (PI) [23]
may never converge when applied to an average-cost SMDP with
a continuous action space. Second, a bilevel optimization problem
needs to be solved in each iteration of VI or PI, which is challenging
due to the infinite action space and the coupling of spatial and
temporal decisions.

2.5 MSG versus SSG

Our Markov Stackelberg game model extends the classic Stackel-
berg Security Game (SSG) [21] in important ways. In the classic
SSG model, there is a set of targets and a defender has a limited
amount of resources to protect them. The defender serves as the
leader and commits to a mixed strategy. The attacker observes the
defender’s strategy (but not her action) and then responds accord-
ingly. Thus, the SSG model is essentially a one-shot game. The
SSG model has been extended to Bayesian Stackelberg Game (BSG)
model to capture multiple attack types where the defender knows
the distribution of attack types a prior as we assumed. In a recent
work [28], the BSG model has been used to model moving target
defense where only the spatial decision is considered and the de-
fender commits to a vector [p;], where p; is the probability of
moving to state j in the next stage, which is independent of the
current state.

We note that the BSG model in [28] is a special case of our MSG
model. Specifically,let 7; = 1 foralli € S, §a1’j =0forallal € Al,l €
L j€S, and p;j = pj forall i, j € S. Then the SMDP becomes an
MDP with state independent transition probabilities. Since each
row of the transition matrix is the same, the stationary distribution
of the corresponding Markov chain is just [p;],. Therefore, the
average-cost SMDP reduces to the following one-stage optimization
problem to the defender:

m&nZﬂl(ijCfl,’j)+Zpipjmij
1 Jj i,j
I_ ( pl )
L. = R .), Viel 3
st a argﬁ% ;pl ] ®3)

This is exactly the BSG model for MTD in [28]. In the BSG variant,
the transition probabilities depend on the destination state only.
This simplified MTD strategy is optimal only if the migration cost
depends on the destination state only but not the source state.
Our MSG model enables the defender to handle the complex
scenarios when the migration cost is both source and destination



dependent. It also takes the defending period into account in com-
puting the optimal defense strategy. This consideration is useful
because a stealthy and persistent attacker will compromise the
system eventually if the system stays in a state longer than the
corresponding attacking time.

3 OPTIMAL MOVING TARGET DEFENSE

3.1 Assumptions

AssuMPTION 1. The transition probability matrix P can be arbi-
trarily chosen by the defender.

ASSUMPTION 2. Foranyi € S, the defender’s cost per unit time
c(i,u(i))/z; is continuous and bounded over U (i).

Both assumptions are reasonable and can be easily satisfied.
Assumption 1 implies an important structure property of the SMDP
as formally defined below.

Definition 3.1 (Communicating MDP [23]). For every pair of states
i and j in S, there exists a deterministic stationary policy u under
which j is accessible from i, that is, Pr(sp = j|so = i,u) > 0 for
some k > 1.

It is easy to check that the SMDP in our problem is communi-
cating under Assumption 1. It is known that for a communicating
MDP, the optimal average cost is a constant, independent of the ini-
tial state [23]. This property significantly simplifies the algorithm
design and analysis as we discuss below. Assumption 2 is used in
establishing the convergence of the value iteration algorithm under
the continuous action space (see Section 3.3.3).

3.2 Data Transformation

Solving the defender’s optimization problem requires the algorithm
to simultaneously determine the optimal transition probabilities
and the optimal defending periods. The average-cost SMDP problem
with continuous action space is known to be difficult to solve [11].
Fortunately, one can apply the data transformation method intro-
duced by Schweitzer [24] to transform the average-cost SMDP
problem into a discrete-time average Markov decision process (DT-
MDP) problem. The DTMDP has a simpler structure than the SMDP
with the same state space S and action space U (i) for any i € S.
The defender’s per-stage cost c(i, u(i)) is converted to

é(i,u(i)) = M ©

L
Further, the transition probability from state i to state j for the
DTMDP is
. , pij — 6ij
pij(u(D)) = y———+4ij ®)

1

where J;; denotes the Kronecker delta (i.e., ;; = 1 and ;; = 0 for
all j # i) and y is a parameter that satisfies 0 < y < z < I—L]l)”’
where 7 is the lower bound of the defending period length. Let
P(u) = [pij(u(i))Inxn denote the transition probability matrix
of the DTMDP and ¢(u) = [¢(i,u(i))], the defender’s per-stage
cost across all the states. If the system starts from the initial state
so € S, then the long-term average cost becomes Z(sp, u(sp)) =
lim suppr_, % ZkN:_Ol E(sp, u(sg))-

The above data transformation has some nice properties as sum-
marized below.

THEOREM 3.2 (THEOREMS 5.2 AND 5.3 OF [11]). Suppose an SMDP
is transformed into a DTMDP using the above method. We have

(1) If SMDP is communicating, then DTMDP is also communicat-
ing.

(2) If SMDP is communicating, then a stationary optimal policy
for DTMDRP is also optimal for SMDP.

Theorem 3.2 indicates that the transformed DTMDP also has a
contant optimal cost and further, to find a stationary optimal policy
for the SMDP in our problem, it suffices to find a stationary optimal
policy for the transformed DTMDP.

3.3 Value Iteration Algorithm

3.3.1 Additional Notations. Let V be any vector in R". We define
the mapping F : R” — R" as: F(V) = miny [¢(u) +P(u)V], where
the minimization is applied to each state i separately. For any vector
X = (x1,%2,...,xp) € R, let L(x) = minj—y__,x; and H(x) =
max;=1,._n Xi.Let||-|| denotes the span seminorm defined as follows:
[|Ix|| = H(x) — L(x). It is easy to check that || - || satisfies the triangle
inequality, that is, ||x — y|| < ||x|| + ||y|| for any x,y € R". Further,
[l x —y|| = 0if and only if there exists a scalar A such that x —y = Ae
where e is the n-dimensional vector of all ones. Thus, there is a
vector V such that ||[F(V) — V|| = 0 (V is called a fixed point of F(-))
if and only if there is a scalar A such that the following optimality
equation is satisfied:

Ae+V = min [¢(u) + P(u)V] (6)

An important result in MDP theory [2, 23] is that the stationary
policy u that attains the minimum in the optimality equation (6) is
optimal and A gives the optimal long-term average cost.

3.3.2 The VI Algorithm. The VI algorithm (see Algorithm 1)
maintains a vector V! € R™. The algorithm starts with an arbitrary
V0 (line 1) and a carefully chosen sequence {x;} (line 2) that ensures
every limit point of {V*} is a fixed point of F(V) (See Section 3.3.3).
In each iteration, V? is updated by solving a policy improvement
step (line 5).

In each policy improvement step (see Algorithm 2), instead of
finding the optimal p; and 7; together for each state i, which is
a challenging problem, we discretize [z, 7| and search for 7; with
a step size § (line 3). This approximation is reasonable since in
practice the unit time cannot be infinitely small. The smaller § is,
the closer 7* (line 9 in Algorithm 1) is to the optimal one. Also note
that the optimization problem in lines 4 is actually a bilevel problem,
which can be modeled as a Mixed Integer Quadratic Program (MIQP)
and will be discussed in detail in Section 3.4.

Under Assumptions 1 and 2, Algorithm 1 stops in a finite number
of iterations (lines 3-8) and is able to find a near-optimal policy
(formally proved in Section 3.3.3). In practice, a near-optimal so-
lution is sufficient because it can be expensive or even unrealistic
to obtain the exact minimum average cost in a large-scale MDP.
The algorithm itself, however, can attain the optimal solution if the
number of iterations goes to infinity (and § approaches 0).
Remark: Algorithm 1 can be slow in practice due to the large num-
ber of iterations needed to converge and the complexity of solving
multiple MIQP problems in each iteration. To obtain a more efficient



Algorithm 1 Value Iteration algorithm for the MTD game

Input: S,n,e > 0,7,7,M,C,R, 7, L, {A;},6 > 0.
Output: P*, r*

: VO € Rn;

Ko = %,Kt= %fort=l,2,....

: repeat

t=t+1;

Vi = PImp(S, V™, 1,7, M,C,R, n, L, {A;}, 8, k—1)

V = max;es [V/(i) - VI (D)3

V = minges [V (i) = V71 (0);

cuntil V-V <e

P*,t* = arg PImp(S, V™1, 1,7, M,C, R, 7, L, {A;}, 6)

N A A A e

Algorithm 2 Policy Improvement (PImp)
Input: S, Vo, 7,7, M,C, R, 7, L, {A;}, 6,k

Output: V
1: forie Sdo
2 v = +00;
3 fort=rr<T;r=7+ddo
4 V(i) = minp, [¢(i, pi, 7) + K X jes Pij (Pi» T) Vo (J)]
5 if V(i) < v then
6 v=V(i);
7 end if
8 end for
9: V(l) =0;

10: end for

solution, we have considered a variant of Algorithm 1 using the rel-
ative value iteration (RVI) technique (see our technical report [13]).
Although the RVI variant does not improve the theoretic conver-
gence speed of the VI algorithm, it often requires fewer iterations
for the same € in practice. We have further made the following
observation. If we introduce the assumption that p;s > p > 0 for
all i € S (where p can be arbitrarily small) for some fixed state s to
restrict the Markov chain structure and set x; = 1 for all ¢, the rate
of convergence can be significantly improved both in theory [2] and
in practice for both the VI and the RVI algorithms. We conjecture
that a near-optimal policy can still be obtained by making p small
enough.

3.3.3 Theoretical Analysis. Our VI algorithm is adapted from
the work due to Bertsekas [2] and Bather [1] that originally ad-
dresses the average cost MDP problem with a finite state space
and an infinite action space. However, their proofs do not directly
apply to our algorithm because they either consider the transition
probabilities as the only decision variables [1] or involve the use
of randomized controls [2]. In contrast, our strategy includes both
the probability transition matrix and the (deterministic) defending
periods.

For a given stationary policy u with transition matrix P, let P*
denote the Cesaro limit given by P* = limy_,co{I+ P+ P? +--- +
PN~1}/N. Then the average cost associated with u can be repre-
sented as P*é(u)[23]. The policy u is called e-optimal if P*é(u) <
A + ee where A is the optimal cost vector. In practice, it is often
expensive or even unrealistic to compute an exact optimal policy

and an e-optimal policy might be good enough. Our main results
can be summarized as follows.

THEOREM 3.3. Under Assumptions 1 and 2, we have

(1) The DTMDP problem (thus the SMDP problem too) has an
optimal stationary policy;

(2) The sequence of policies in Algorithm 1 eventually leads to an
e-optimal policy.

Proof Sketch: The first part can be proved using the similar tech-
niques in the proofs of Theorem 2.4 of [1] and Proposition 5.2 of [2].
The main idea is to show that (1) {||V*||} is bounded thus the vector
sequence {V!} must have a limit point; (2) every limit point of
{V?'} is a fixed point of F(-), thus leading to an optimal solution.
The second part follows from Theorem 6.1 and Corollary 6.2 of [1].
The main idea is to show that (1) if |[F(V!) — V!|| < e, then the
corresponding policy is e-optimal; (2) lim;—co ||[F(VY) — V|| = 0
(again using the boundedness of {||V*||}) so that |[F(V!) - V|| < €
holds eventually. Note that this condition is exactly the stopping
condition V — V < e in Algorithm 1 (line 8).

The proof of Theorem 3.3 relies on the key property that the
vector sequence {||V!||} generated by Algorithm 1 is bounded. Due
to the coupling of spatial and temporal decisions in our problem,
the techniques in [1, 2] cannot be directly applied to prove this fact.

LEMMA 3.4. Let Assumptions 1 and 2 hold and {x;} be a nonde-
creasing sequence with k; € [0, 1] for each t. Consider a sequence
{V*} where VI*! = F(i;V?) = minp_, [&(P, ) + k:P(P, 7)V'], then
{IIVt||} is bounded.

Proof Sketch: For a communicating system, for each pair of states i
and j, there exists a stationary policy u;; (with transition matrix
P(u; 7)) such that j is accessible from i. The main idea of the proof is
to show that the combined matrix Q = # p ;.1:1 P(u; 7) is still
a valid transition probability matrix. That is, there exists a policy u
such that Q = P(u). This follows from transformations (4) and (5)
and the fact that defender can pick an arbitrary transition matrix.
Using this property, the fact that {||V?||} is bounded can then be
proved by induction. The detailed proof can be found in our online
technical report [13].

3.4 Bilevel Optimization Problem

To compute the optimal value in each iteration with Algorithm 2, we
need to solve the following optimization problem for a given scalar ¢
and a vector V!~ (line 4 in Algorithm 2): V¥ (i) = minp, [¢(i, p;, 7)
+Ke—1 X jes Pij(Pis 7)V!=1(j)]. Substitute é(i, p;, 7) and pij(pi, 7)
by their definitions in Equations (4) and (5), and denote wj, =
E[(1i — &,)"] and 6; £ m;; + yx;—1V!71(j) to simplify the nota-
tion. Using the similar technique for solving Bayesian Stackelberg
games [21], the defender’s bilevel optimization problem in (3) can
be modeled as the following Mixed Integer Quadratic Program



(MIQP):
. ! 1
JHKIII{IZ Z Z ”le,aCa,jpij”a + Zpijgj
V7 jeS el acA, j
s.t. ZPU:L Z nézl, VlielL
jes acA;
0<ol - Zpijwj,aRé’j <(1-n)B, YaeA,leL (7)

J
pij € [0,1], nfl:{o,l}, ol eR, VieS,aeA,lel

where the binary variable n}, = 1if a € A; is the best action
for the type [ attacker and nfl = 0 otherwise. This is ensured by
constraint (7) where o’ is an upper bound on the attacker’s reward

and B is a large positive number.

4 EMPIRICAL EVALUATION

We conducted numerical simulations using the data from the Na-
tional Vulnerability Database (NVD) [20] to demonstrate the ad-
vantages of using MSG for spatial-temporal MTD. In particular,
we derived the key attack/defense parameters from the Common
Vulnerabilities Exposure (CVE) scores [16] in NVD, which has been
widely used to describe the weakness of a system with respect to
certain risk levels. We used data samples in NVD with CVE scores
ranging from January 2013 to August 2016. As in [27], the Base
Scores (BS) and Impact Scores (IS) were used to represent the at-
tacker’s reward (per unit time) and the defender’s cost (per unit
time) respectively. Further, we used the Exploitability Scores (ES)
to estimate the distribution of attack time.

We conducted two groups of experiments': the spatial decision
setting and the joint spatial-temporal decision setting. We com-
pared the MSG method with two benchmarks: the Bayesian Stack-
elberg Game (BSG) model [27] and the Uniform Random Strategy
(URS) [27]. We used the Gurobi solver (academic version 8.1.1) for
the MIQP problems in BSG and MSG. All the experiments were run
on the same 24-core 3.0GHz Linux machine with 128GB RAM.

4.1 Spatial Decision

4.1.1 Benchmarks and Settings: In the spatial decision setting,
the defender periodically moves in unit time length and the attacker
instantaneously compromises the system when he chooses the cor-
rect configuration. We compared the MSG model with the original
BSG and URS models in [27]. In BSG, the defender determines the
next configuration according to a fixed transition probability vector
[pjln that is independent of the current configuration. In URS, the
defender selects the next configuration uniform randomly.

For fair comparisons, we followed the same data generation
method as used in the work by Sengupta et al. [27]. The system
has four configurations and the corresponding switching cost is
shown in Figure 3. We added an updating cost of 2 to all the switch-
ing cost in [27]. In this experiment, we considered three attacker
types: the Script Kiddie that could attack Python and PHP, the
Database Hacker that is able to attack MySQL and postgreSQL and
the Mainstream Hacker that could attack all the techniques. The
defender possesses a prior belief of (0.15,0.35,0.5) on the three

1Code is available at https://github.com/HengerLi/SPT-MTD.

PHP, Python, PHP, Python,
MySQL MySQL postgreSQL postgreSQL

PHP,
MySQL 4 8 12
Python,
MySQL 4 11 7
PHP,
postgreSQL 8 u 12
Python,
postgreSQL 12 7 12
Figure 3: The migration cost in the MTD system. Each row

represents a source configuration and each column repre-
sents a destination configuration.
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Figure 4: A comparison of the defender’s cost in the three
policies with spatial decisions only - MSG (e = 0.1), BSG and
URS with unit defending period (7; = 1 for all i € S) and zero
attacking time as the parameter « increases.

attacker types. The number of attack methods for each of these
attacker types is 34, 269 and 48, respectively.

For BSG, the defender’s optimization problem was directly solved
with MIQP as in [27]. For MSG, the bi-level optimization problem
was solved with MIQP for each configuration in every iteration of
Algorithm 1 (with the convergence parameter € = 0.1). Since the
simulated migration cost could not be directly compared with the
attacking cost from NVD, we introduced a parameter « to adjust
the ratio between the attacking cost and the migration cost. That is,
instead of the m;; shown in Figure 3, we used am;; as the migration
cost from state i to state j. As a increases, the migration cost has a
larger impact on the defender’s decisions.

4.1.2  Results: We varied the value of & from 0 to 2.5 with an
increment of 0.1 and compared the defender’s cost for the three
policies: the MSG, the BSG, and the URS (see Figure 4). All three
models were restricted to unit length defending period and zero
attacking time. That is 7; = 1 for alli € S, and &;; = 0 for all
aeAl,leL,jeS.

Figure 4 shows that the defender’s cost increases for all the three
policies as the migration cost grows. However, the magnitude of
increase differs in the three policies. In URS, the cost increases
linearly due to the uniform random strategy (0.25, 0.25, 0.25, 0.25)
used. In both MSG and BSG, the defender’s cost grows sub-linearly.
However, the defender incurs substantially less cost in MSG. The
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reason is that although both MSG and BSG enable the defender to
choose the respective optimal strategies, MSG allows the defender
to vary her strategy according to different source configurations
while in BSG the defender must choose the same strategy for all
the source configurations (the detail strategies are shown in our
technical report [13]). Further, MSG allows both absorbing states
(when the system moves in, it always stays there) and transient
states (once the system moves out, it never comes back) leading
to more flexible system dynamics, which contributes to the lower
defending cost. However, these states cannot be achieved by BSG
since the only way to always stay in a configuration under BSG is
to assign a probability of 1 to that configuration and the only way
to never come back to a configuration is to assign a probability of
0 to it, which, however, removes any uncertainty to the attacker.
This indicates that MSG can achieve a better trade-off between the
migration cost and the loss from attacks.

4.2 Joint Spatial-Temporal Decision

4.2.1 Benchmarks and Settings: In the joint spatial-temporal
decision setting, the defender needs to decide not only the next con-
figuration to move to but also the length of each defending period 7.
In our experiments, 7 is in the range of [0.1, 2.6] with an increment
parameter § = 0.1. For MSG, the optimal 7; for each configuration i
was obtained together with the spatial decisions using Algorithm 1.
We extended the BSG and URS policies by incorporating the attack-
ing times and the defending periods into the objectives of both the
defender and the attacker (as we did in our MSG model), where an
identical defending period is used for all the configurations since
both policies ignore the source configuration in each migration.
To have a fair comparison with MSG, we searched for the optimal
defending period for BSG and URS respectively.

We assigned a random attacking time for each attack that aims to
compromise the system. The random attacking time &, ; was drawn
from the exponential distribution Exp(ES;) (the mean attacking
time is 1/ES,;) when a is targeting a vulnerability in state j and
&qj = +oo otherwise. Here, ES, refers to the exploitability score
of the vulnerability targeted by attack method a. The ES score
of a vulnerability is a value between 0 and 10 and a higher ES
score means it is easier to exploit the vulnerability [17]. For each
vulnerability, we generated 1000 samples from the corresponding
exponential distribution and used their average as the attacking
time. We used the same migration cost setting as the spatial decision
experiment with the migration cost matrix shown in Figure 3.

4.2.2  Results: When the defender is able to decide when to
migrate, all three models produce lower cost than the respective
models with a fixed unit defending period (see Figure 4 and Fig-
ure 5). When « is small, the attacking cost has a major impact on
the defender’s cost. The shorter defending periods lead to more
frequent switches that can efficiently increases the uncertainty of
the attacker, thus reduce the attacking cost in the end. As a grows,
the migration cost becomes the major factor and the defender’s
spatial decision plays a major role on the cost. Thus, all the three
models set 7 = 2.6 eventually to decrease the unit time migration
cost. With temporal decisions, BSG and URS are capable to adjust
the frequency of migration, which improves their performance sig-
nificantly. Compared with them, the improvement of MSG is less
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Figure 5: A comparison of the defender’s cost in the three
spatial-temporal policies - MSG (¢ = 0.1), BSG and URS as
the parameter « increases. £, j ~ Exp(ESg).

significant. This is because the simulation considers a relatively
small updating cost and MSG allows the defender to partially adjust
the migration frequency implicitly by changing the value of P;;
even without introducing explicit temporal decisions. The detailed
strategies are provided in our technical report [13].

We observed that, the defender in the MSG model tends to
move to configurations with lower attacking cost, namely (PHP,
postgreSQL) and (Python, postgreSQL), and never moves out of
them. That is, these two configurations are recurrent states (once
the system moves in, it can only move between them) and the
other two configurations are transient states of the corresponding
Markov chain. Essentially, MSG has advantages over BSG in all
the scenarios because it allows a more refined trade-off between
migration cost and attacking cost.

5 CONCLUSIONS

In this paper we consider a defender’s optimal moving target prob-
lem in which both the sequence of system configurations and the
timing of switching are important. We introduce a Markov Stackel-
berg Game framework to model the defender’s spatial and temporal
decision making that aims to minimize the loss caused by com-
promises of the system and the cost required for migration. We
formulate the defender’s optimization problem as an average-cost
SMDP and transform the SMDP problem into a DTMDP problem
that can simplify the problem. Then we propose a value iteration al-
gorithm with convergence guarantee to compute the near-optimal
defense policies. Experimental results on real-world data demon-
strate that our algorithm outperforms the state-of-the-art bench-
marks for MTD. Our Markov Stackellberg Game model precisely
captures the defender’s spatial-temporal decision making in face of
adaptive and sophisticated attackers and can potentially be applied
to other security scenarios beyond moving target defense.
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