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ABSTRACT
Moving target defense has emerged as a critical paradigm of protect-

ing a vulnerable system against persistent and stealthy attacks. To

protect a system, a defender proactively changes the system config-

urations to limit the exposure of security vulnerabilities to potential

attackers. In doing so, the defender creates asymmetric uncertainty

and complexity for the attackers, making it much harder for them to

compromise the system. In practice, the defender incurs a switching

cost for each migration of the system configurations. The switching

cost usually depends on both the current configuration and the

following configuration. Besides, different system configurations

typically require a different amount of time for an attacker to ex-

ploit and attack. Therefore, a defender must simultaneously decide

both the optimal sequence of system configurations and the optimal

timing for switching. In this paper, we propose a Markov Stack-

elberg Game framework to precisely characterize the defender’s

spatial and temporal decision-making in the face of advanced at-

tackers. We introduce a value iteration algorithm that computes

the defender’s optimal moving target defense strategies. Empirical

evaluation on real-world problems demonstrates the advantages of

the Markov Stackelberg game model for spatial-temporal moving

target defense.
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1 INTRODUCTION
Moving target defense (MTD) has established itself as a power-

ful framework to counter persistent and stealthy threats that are

frequently observed in Web applications [30, 32], cloud-based ser-

vices [10, 22], database systems [39], and operating systems [7]. The

core idea of MTD is that a defender proactively switches configura-

tions (a.k.a., attack surfaces) of a vulnerable system to increase the

uncertainty and complexity for potential attackers and limits the

resources (e.g., window of vulnerabilities) available to them [8]. In

contrast to MTD techniques, traditional passive defenses typically

use analysis tools to identify vulnerabilities and detect attacks.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

A major factor for a defender to adopt MTD techniques rather

than passive defensive applications is that adaptive and sophisti-

cated attackers often have asymmetric advantages of resources (e.g.,

time, prior knowledge of the vulnerabilities) over the defender due

to the static nature of system configurations [19, 29]. For instance,

clever attackers are likely to exploit the system over time and subse-

quently identify the optimal targets to compromise without being

detected by the static defensive applications [38]. In such case, a

well-crafted MTD technique is more effective because it changes

the static nature of the system and increases the attackers’ com-

plexity and cost of mounting successful attacks [5]. In this way, it

reduces or even eliminates the attackers’ asymmetric advantages

of the resources.

Despite the promising prospects of MTD techniques, it is chal-

lenging to implement optimal MTD strategies. Two factors con-

tribute to the difficult situation. On one hand, the defender must

make the switching strategies sufficiently unpredictable because

otherwise the attacker can thwart the defense. On the other hand,

the defender should not conduct too frequent system migrations be-

cause each migration incurs a switching cost that depends on both

the current configuration and the following configuration. Thus,

the defender must make a careful tradeoff between the effectiveness

and the cost efficiency of the MTD techniques. The tradeoff requires

the defender to simultaneously decide both the optimal sequence

of system configurations (i.e., the next configuration to be switched

to) and the optimal timing for switching. To this end, an MTD

model must precisely characterize the defender’s spatial-temporal

decision-making.

A natural approach to model the strategic interactions between

the defender and the attacker is to use game-theoretic models such

as the zero-sum dynamic game [36] and the Stackelberg Security

game (SSG) model [25, 27, 31]. The dynamic game model is gen-

eral enough to capture different transition methods of the system

states and various information structures but optimal solutions

to the game are often difficult to compute. This model also as-

sumes that the switching cost from one configuration to another is

fixed [36]. The SSG model belongs to an important game-theoretic

model called Stackelberg games [33] that has broad applications

in many fields, including spectrum allocation [35], smart grid [34]

and security [28]. In the SSG model, the defender commits to a

mixed strategy that is independent of the state transitions of the

system [27, 31]. The attacker adopts a best-response strategy to

the defender’s mixed strategy. Whenever there is a tie, the attacker

always breaks the tie in favor of the defender [18]. This solution

concept is called the strong Stacklberg equilibrium [3]. While opti-

mal solutions to an SSG can be obtained efficiently, the SSG models

neglect the fact that both the defender’s and the attacker’s strategy

can be contingent on the system configuration state. To address



this problem, Feng et al. incorporate both Markov decision process

and Stackelberg game into the modeling of the MTD game [6].

Many MTD models [4, 9, 25, 27] do not explicitly introduce the

concept of the defending period, although they usually assume

that the defender chooses to execute a migration after a constant

time period [26]. A primary reason is that when both time and the

system’s state influence the defender’s decision making, optimal

solutions to the defender’s MTD problem are non-trivial [15, 26].

Recently, Li and Zheng has proposed to incorporate timing into

the defender’s decision making processes [14]. Their work assumes

that there is a positive transition probability between any two

configurations (so that the corresponding Markov decision process

is unichain), whichmay lead to sub-optimalMTD strategies. Further,

their model assumes that all the attackers have the same type, which

might not be true in reality. To solve the defender’s optimal MTD

problem in more general settings, an MTD model that precisely

models the strategic interactions between the defender and the

attacker is in urgent need.

Our contributions. In this paper, we propose a general frame-

work called the Markov Stackelberg Game (MSG) model for spatial-

temporal moving target defense. The MSG model enables the de-

fender to implement optimal defense strategy that is contingent

on both the source state and the destination state of the system. It

also allows the defender to simultaneously decide which state the

system should be migrated to and when it should be migrated. In

the MSG model, we formulate the defender’s optimization prob-

lem as an average-cost semi-Markov decision process (SMDP) [23]

problem. We present a value iteration algorithm that can solve

the average-cost SMDP problem efficiently after transforming the

original average-cost SMDP problem into a discrete time Markov

decision process (DTMDP) problem. We empirically evaluate our

algorithm using real-world data obtained from the National Vul-

nerability Database (NVD) [20]. Experimental results demonstrate

the advantages of using MSG over the state-of-the-art approaches

in MTD.

2 MODEL
In this section, we describe the Markov Stackelberg Game (MSG)

model for moving target defense.

2.1 System Configuration
In moving target defense, a defender proactively shifts variables

of a computing system to increase uncertainty for the attacker

to mount successful attacks. The variables of the system are of-

ten called adaptation aspects [37, 38]. Typical adaptation aspects

include IP address, port number, network protocol, operating sys-

tem, programming language, machine replacement, and memory

to cache mapping [37]. A computing system usually has multiple

adaptation aspects. Let 𝐷 denote the number of adaptation aspects

for the computing system and Φ𝑖 the set of sub configurations in the
𝑖-th adaptation aspect. If the defender selects the sub configuration

𝜙𝑖 ∈ Φ𝑖 for the 𝑖-th adaptation aspect, then the configuration state

of the system is denoted as 𝑠 = (𝜙1, 𝜙2, . . . , 𝜙𝐷 ). Here, 𝑠 is a generic
element of the set of system configurations 𝑆 = Φ1 ×Φ2 × · · · ×Φ𝐷 .

Let 𝑛 = |𝑆 | denote the number of system configurations in 𝑆 . We

use configuration and state interchangeably throughout the paper.

Figure 1: An illustration of the relationship between at-
tacker types, attack methods, adaptation aspects, sub-
configuration parameters, and system configurations.

2.2 The Attacker
2.2.1 Attacker Type. A successful attack requires a competent

attacker that has the expertise to exploit the vulnerabilities. For

instance, to gain control of a remote computer, the attacker needs

the capability to obtain the control of at least one of the following

resources: the IP address of the computer, the port number of a

specific application running on the machine, the operating system

type, the vulnerabilities of the application, or the root privilege

of the computer [37]. The attacker’s ability profile is called the

attacker type. There are different attacker types. Let 𝐿 denote the

set of attacker types. Each attacker type 𝑙 ∈ 𝐿 is capable of mounting

a set of attacks 𝐴𝑙 . The attacker type space 𝐴𝑙 is a nonempty set

of the attack methods that each targets one vulnerability in one

adaption aspect, which may affect multiple sub configurations in

that aspect. Multiple attacks may target the same vulnerability but

may have different benefit (loss) to the attacker (defender). Whether

an attack method belongs to an attacker type space or not depends

on the application scenarios. Figure 1 illustrates the relationship

between attacker types, attack methods, adaptation aspects, sub-

configuration parameters and system configurations.

2.2.2 Attacking Time. If an attacker with the attacker type 𝑙

chooses an attack method 𝑎 ∈ 𝐴𝑙 to attack the system in state

𝑗 , then the time needed for him to compromise the system is a

random variable 𝜉𝑎,𝑗 that is drawn from a given distribution Ξ𝑎,𝑗 .
If 𝑎 is not targeting a vulnerability of any sub configuration in

state 𝑗 , 𝜉𝑎,𝑗 = +∞. The attacker only gains benefits when he has

successfully compromised the system. A system is considered to be

compromised as long as the attacker compromises one of the sub

configurations. In this work, 𝐿, {𝐴𝑙 }, and {Ξ𝑎,𝑗 } are assumed to be

common knowledge.

2.3 The Defender
2.3.1 Migration Cost. During the migration process, the de-

fender updates the system to retake or maintain the control of the

system and pays some updating cost. The defender then selects

and shifts the system from the current state 𝑖 ∈ 𝑆 to the next valid

system state 𝑗 ∈ 𝑆 with a cost𝑚𝑖 𝑗 . We can consider that the mi-

gration is implemented instantaneously. This is without loss of



generality because one can always assume that during the migra-

tion the system is still at state 𝑖 . If the defender decides to stay at

the current state 𝑖 , then the cost is 𝑚𝑖𝑖 . Since there is a cost for

updating the system, it requires that𝑚𝑖𝑖 > 0 for all 𝑖 ∈ 𝑆 . Let 𝑀

be the matrix of the migration cost between any states 𝑖, 𝑗 ∈ 𝑆 , we

have𝑀 = [𝑚𝑖 𝑗 ]𝑛×𝑛 . It is crucial to note that the migration cost𝑚𝑖 𝑗

may depend on both the source state 𝑖 and the destination state 𝑗 .

2.3.2 Defending Period. The defender not only needs to deter-

mine which state to use but also should decide when to move. If

the defender stays in a state sufficiently long, the attacker is likely

to compromise the system even if the defender shifts eventually.

Thus, the defender needs to pick the defending period judiciously.

Let 𝑡𝑘 denote the time instance that the 𝑘-th migration happens.

The 𝑘-th defending period is calculated by 𝑡𝑘 − 𝑡𝑘−1. In practice, the

system needs some time to prepare migration or updating. Thus,

it is natural to require that the defending period is lower bounded.

On the other hand, the defending period cannot be arbitrarily large

because otherwise the system will be compromised eventually and

stay compromised afterwards. Therefore, we assume that 𝜏 ∈ [𝜏, 𝜏]
where 0 < 𝜏 < 𝜏 .

2.3.3 Defender’s Strategy. In our model, the defender adopts a

stationary strategy u that simultaneously decides where to move

and when to move. Let 𝑝𝑖 𝑗 denote the probability that the defender

moves from state 𝑖 to state 𝑗 , then the transition probabilities be-

tween any two states in 𝑆 can be represented by a transition matrix

𝑃 = [𝑝𝑖 𝑗 ]𝑛×𝑛 , where
∑

𝑗 ∈𝑆 𝑝𝑖 𝑗 = 1 for any 𝑖 ∈ 𝑆 . When the sys-

tem state is 𝑖 , the defender uses a mixed strategy p𝑖 = (𝑝𝑖 𝑗 )𝑗 ∈𝑆 to

determine the next state to switch to. It is crucial to note that the

transition probabilities depend on both the source and destination

configurations.

Moreover, instead of a fixed defending period as in most MTD

models, we consider a state-dependent defending period in our

model. In particular, let 𝜏𝑖 denote the length of the (𝑘 + 1)-th de-

fending period when the system is in state 𝑖 in the 𝑘-th defending

period. The defending period matrix is thus 𝝉 = [𝜏1, 𝜏2, . . . , 𝜏𝑛]. In
our model, we assume that the (𝑘 + 1)-th defending period only

depends on the system state in the 𝑘-th period due to two consid-

erations. First, the transition probabilities have already captured

the dependencies on destination states. Second, it allows the de-

fender’s problem to be modeled as a semi-Markov decision process

(defined in Section 2.4.3). The defender’s strategy is then denoted

by u = (𝑃,𝝉 ) = [𝑢 (𝑖)]𝑖∈𝑆 where 𝑢 (𝑖) = (p𝑖 , 𝜏𝑖 ) is the defender’s
action when the system is in state 𝑖 . See Figure 2 for an illustration

of the system model.

2.4 Markov Stackelberg Game
In our paper, we model moving target defense as a Markov Stackel-

berg game (MSG) where the defender is the leader and the attacker

is the follower. At the beginning the defender commits to a station-

ary strategy that is announced to the attacker. The attacker’s goal

is to maximize his expected reward by constantly attacking the

system’s vulnerabilities. The defender’s objective is to minimize

the total loss due to attacks plus the total migration cost.

TheMSGmodel is an extension of the Stackelberg Security Game

(SSG) model that has been widely adopted in security domains [28].

Configuration

Time

State 1

State 2

State 3

Figure 2: An illustration of the Markov Stackelberg game
model. A light green block represents the time period when
the system is protected while a dark red block denotes the
time periodwhen the system is compromised; 𝑝𝑖 𝑗 is the prob-
ability that the defender moves from state 𝑖 to 𝑗 , and 𝜏𝑖 is the
length of the current defending period when the previous
configuration is 𝑖. The first defending period (between 𝑡0 and
𝑡1) depends on the initial configuration (State 2 in this case).

A key advantage of using the Stackelberg game model is that it

enables the defender to act first to commit to a mixed strategy that

the attacker observes and then selects his best response accord-

ingly [12]. This advantage allows the defender to implement de-

fense strategies prior to potential attacks [14]. In MTD, the defender

proactively switches the system between different configurations

to increase the attacker’s uncertainty. It is thus natural to model

the defender as the leader and the attacker as the follower.

2.4.1 Information Structure. In ourmodel, we consider a stealthy

and persistent attacker that learns the defender’s stationary strategy

u. We assume that the defender announces her stationary strategy

to the attacker before the game starts. This is without loss of gen-

erality because the attacker will learn the system states and the

defender’s strategy eventually due to the stealthy and persistent

nature of the attacks. We further assume that the attacker always

learns the system state at the end of a defending period no matter

the attack is successful or not in that period. Hence, at the beginning

of each stage, the only uncertainty to the attacker is the current

state as he has already known the previous state and the length of

the current defending period. This is a worse-case scenario from

the defender’s perspective.

In many security domains, it is often difficult for the defender to

obtain real-time feedback about whether the system is compromised

or not because the attacker is likely to be stealthy. The defender,

however, may have some prior knowledge about the attacker type

distribution [21, 27]. Thus, we assume that the defender has a prior

belief 𝜋 = {𝜋𝑙 } on the probability distribution of the attacker type

𝑙 .

2.4.2 Attacker’s Optimization Problem. Since the defender adopts
a stationary strategy that is known to the attacker, the attacker can

maximize its long-term payoff by always following a best response

in each stage. Hence, we consider a myopic attacker that always

adopts a best response to the defender’s strategy in each defending

period according to its knowledge on the previous system state.



Consider the beginning of the 𝑘-th defending period from the at-

tacker’s perspective. Assume that the system was in state 𝑖 (known

to the attacker) in the (𝑘 − 1)-th period and has moved to state 𝑗

(unknown to the attacker) in the 𝑘-th period. For an attack method

𝑎 to be successful in the 𝑘-th period, the time 𝜉𝑎,𝑗 required for the

attacker when using attack method 𝑎 targeting state 𝑗 should be

less than the length of the defending period 𝜏𝑖 . Let 𝑅
𝑙
𝑎,𝑗

denote the

attacker’s benefit per unit of time when the system is compromised,

which is jointly determined by the attacker’s type 𝑙 , its chosen at-

tack method 𝑎, and the state 𝑗 . The reward that the attacker receives

in the 𝑘-th period is then (𝜏𝑖 − 𝜉𝑎,𝑗 )+𝑅𝑙𝑎,𝑗 where (𝑥)
+ ≜ max(0, 𝑥).

Since the attacker only knows 𝑖 but not 𝑗 when it chooses the attack

method at the beginning of the 𝑘-th defending period, the opti-

mization problem for the attacker with type 𝑙 is to maximize his

expected reward by choosing an attack method 𝑎 from his attack

space 𝐴𝑙 : max𝑎∈𝐴𝑙

∑
𝑗 ∈𝑆 𝑝𝑖 𝑗E[(𝜏𝑖 − 𝜉𝑎,𝑗 )+]𝑅𝑙𝑎,𝑗 , where 𝜏𝑖 and {𝑝𝑖 𝑗 }

are the defending period length and the transition probabilities

given by the defender under state 𝑖 , respectively.

2.4.3 Defender’s Optimization Problem. We consider a defender

that constantly migrates among the system configurations in order

to minimize the total loss due to attacks plus the total migration

cost. We use an average cost semi-Markov decision process (SMDP)

to model the defender’s optimization problem. The SMDP model

considers a defender that aims to minimize her long-term defense

cost in an infinite time horizon using spatial-temporal decision

making.

Consider the end of the (𝑘 − 1)-th defending period from the

defender’s perspective. Again assume that the system is in state 𝑖

in the (𝑘 − 1)-th period. Given the defender’s action 𝑢 (𝑖) = (p𝑖 , 𝜏𝑖 ),
her expected cost in the 𝑘-th defending period is:

𝑐 (𝑖, 𝑢 (𝑖)) =
∑
𝑙 ∈𝐿

𝜋𝑙
©­«
∑
𝑗 ∈𝑆

𝑝𝑖 𝑗E[(𝜏𝑖 − 𝜉𝑎𝑙 , 𝑗 )
+]𝐶𝑙

𝑎𝑙 , 𝑗

ª®¬ +
∑
𝑗 ∈𝑆

𝑝𝑖 𝑗𝑚𝑖 𝑗

𝑠 .𝑡 . 𝑎𝑙 = arg max

𝑎∈𝐴𝑙

©­«
∑
𝑗 ∈𝑆

𝑝𝑖 𝑗E[(𝜏𝑖 − 𝜉𝑎,𝑗 )+]𝑅𝑙𝑎,𝑗
ª®¬ , ∀𝑙 ∈ 𝐿 (1)

where 𝐶𝑙
𝑎,𝑗

denotes the unit time loss for the defender under state

𝑗 due to an attack 𝑎 launched by a type 𝑙 attacker. The first part in

the objective function is the expected attacking loss and the second

part is the expected migration cost.

Let 𝑠0 be the initial system configuration before the game starts,

which is arbitrarily chosen from the state space 𝑆 and is known

to the attacker. The game starts at 𝑡0 = 0 when the defender ap-

plies the first migration. Let 𝑠𝑘 denote the system state in the 𝑘-th

defending period for 𝑘 = 1, 2, .... The defender adopts a stationary

policy 𝑢 where 𝑢 (𝑠𝑘 ) = (p𝑠𝑘 , 𝜏𝑠𝑘 ) for each state 𝑠𝑘 , which generates

an expected cost 𝑐 (𝑠𝑘 , 𝑢 (𝑠𝑘 )) that includes potential loss from com-

promises and migrations. Given the initial state 𝑠0, the defender’s

long-term average cost is defined as:

𝑧 (𝑠0, 𝑢 (𝑠0)) = lim sup

𝑁→∞

∑𝑁−1
𝑘=0

𝑐 (𝑠𝑘 , 𝑢 (𝑠𝑘 ))∑𝑁−1
𝑘=0

𝜏𝑠𝑘

(2)

The goal of the defender is to commit to a stationary policy u∗ =
[𝑢∗ (𝑖)]𝑛 that minimizes the time-average cost for any initial state.

For each𝑢 (𝑖) = (p𝑖 , 𝜏𝑖 ), we have 𝑝𝑖 𝑗 ∈ [0, 1] for all 𝑗 ,∑𝑗 𝑝𝑖 𝑗 = 1, and

𝜏𝑖 ∈ [𝜏, 𝜏]. Thus, the action space 𝑈 (𝑖) for every 𝑢 (𝑖) is [0, 1]𝑛 ×
[𝜏, 𝜏], which is a continuous space. We assume that 𝑐 (𝑖, 𝑢 (𝑖)) is
continuous over 𝑈 (𝑖). The defender’s optimization problem cor-

responds to finding a strong Stackelberg equilibrium [3] where

the defender commits to an optimal strategy assuming that the at-

tacker will choose the best response to the defender’s strategy and

break ties in favor of the defender. This is a common assumption

in Stackelberg security game literature.

2.4.4 Challenges of Computing Optimal MTD Strategies. The are
two main challenges for the defender to compute the optimal strate-

gies. First, when an arbitrary transition matrix 𝑃 is allowed, the

Markov chain associated with the given 𝑃 may have a complicated

chain structure. The optimal solution may not exist and standard

methods such as Value Iteration (VI) and Policy Iteration (PI) [23]

may never converge when applied to an average-cost SMDP with

a continuous action space. Second, a bilevel optimization problem

needs to be solved in each iteration of VI or PI, which is challenging

due to the infinite action space and the coupling of spatial and

temporal decisions.

2.5 MSG versus SSG
Our Markov Stackelberg game model extends the classic Stackel-

berg Security Game (SSG) [21] in important ways. In the classic

SSG model, there is a set of targets and a defender has a limited

amount of resources to protect them. The defender serves as the

leader and commits to a mixed strategy. The attacker observes the

defender’s strategy (but not her action) and then responds accord-

ingly. Thus, the SSG model is essentially a one-shot game. The

SSG model has been extended to Bayesian Stackelberg Game (BSG)

model to capture multiple attack types where the defender knows

the distribution of attack types a prior as we assumed. In a recent

work [28], the BSG model has been used to model moving target

defense where only the spatial decision is considered and the de-

fender commits to a vector [𝑝 𝑗 ]𝑛 where 𝑝 𝑗 is the probability of

moving to state 𝑗 in the next stage, which is independent of the

current state.

We note that the BSG model in [28] is a special case of our MSG

model. Specifically, let 𝜏𝑖 = 1 for all 𝑖 ∈ 𝑆 , 𝜉𝑎𝑙 , 𝑗 = 0 for all 𝑎𝑙 ∈ 𝐴𝑙 , 𝑙 ∈
𝐿, 𝑗 ∈ 𝑆 , and 𝑝𝑖 𝑗 = 𝑝 𝑗 for all 𝑖, 𝑗 ∈ 𝑆 . Then the SMDP becomes an

MDP with state independent transition probabilities. Since each

row of the transition matrix is the same, the stationary distribution

of the corresponding Markov chain is just [𝑝 𝑗 ]𝑛 . Therefore, the
average-cost SMDP reduces to the following one-stage optimization

problem to the defender:

min

p

∑
𝑙

𝜋𝑙

(∑
𝑗

𝑝 𝑗𝐶
𝑙
𝑎𝑙 , 𝑗

)
+
∑
𝑖, 𝑗

𝑝𝑖𝑝 𝑗𝑚𝑖 𝑗

𝑠 .𝑡 . 𝑎𝑙 = arg max

𝑎∈𝐴𝑙

(∑
𝑗

𝑝 𝑗𝑅
𝑙
𝑎,𝑗

)
, ∀𝑙 ∈ 𝐿 (3)

This is exactly the BSG model for MTD in [28]. In the BSG variant,

the transition probabilities depend on the destination state only.

This simplified MTD strategy is optimal only if the migration cost

depends on the destination state only but not the source state.

Our MSG model enables the defender to handle the complex

scenarios when the migration cost is both source and destination



dependent. It also takes the defending period into account in com-

puting the optimal defense strategy. This consideration is useful

because a stealthy and persistent attacker will compromise the

system eventually if the system stays in a state longer than the

corresponding attacking time.

3 OPTIMAL MOVING TARGET DEFENSE
3.1 Assumptions

Assumption 1. The transition probability matrix 𝑃 can be arbi-
trarily chosen by the defender.

Assumption 2. For any 𝑖 ∈ 𝑆 , the defender’s cost per unit time
𝑐 (𝑖, 𝑢 (𝑖))/𝜏𝑖 is continuous and bounded over 𝑈 (𝑖).

Both assumptions are reasonable and can be easily satisfied.

Assumption 1 implies an important structure property of the SMDP

as formally defined below.

Definition 3.1 (CommunicatingMDP [23]). For every pair of states
𝑖 and 𝑗 in 𝑆 , there exists a deterministic stationary policy u under

which 𝑗 is accessible from 𝑖 , that is, Pr(𝑠𝑘 = 𝑗 |𝑠0 = 𝑖, u) > 0 for

some 𝑘 ≥ 1.

It is easy to check that the SMDP in our problem is communi-

cating under Assumption 1. It is known that for a communicating

MDP, the optimal average cost is a constant, independent of the ini-

tial state [23]. This property significantly simplifies the algorithm

design and analysis as we discuss below. Assumption 2 is used in

establishing the convergence of the value iteration algorithm under

the continuous action space (see Section 3.3.3).

3.2 Data Transformation
Solving the defender’s optimization problem requires the algorithm

to simultaneously determine the optimal transition probabilities

and the optimal defending periods. The average-cost SMDP problem

with continuous action space is known to be difficult to solve [11].

Fortunately, one can apply the data transformation method intro-

duced by Schweitzer [24] to transform the average-cost SMDP

problem into a discrete-time average Markov decision process (DT-

MDP) problem. The DTMDP has a simpler structure than the SMDP

with the same state space 𝑆 and action space 𝑈 (𝑖) for any 𝑖 ∈ 𝑆 .

The defender’s per-stage cost 𝑐 (𝑖, 𝑢 (𝑖)) is converted to

𝑐 (𝑖, 𝑢 (𝑖)) = 𝑐 (𝑖, 𝑢 (𝑖))
𝜏𝑖

(4)

Further, the transition probability from state 𝑖 to state 𝑗 for the

DTMDP is

𝑝𝑖 𝑗 (𝑢 (𝑖)) = 𝛾
𝑝𝑖 𝑗 − 𝛿𝑖 𝑗

𝜏𝑖
+ 𝛿𝑖 𝑗 (5)

where 𝛿𝑖 𝑗 denotes the Kronecker delta (i.e., 𝛿𝑖𝑖 = 1 and 𝛿𝑖 𝑗 = 0 for

all 𝑗 ≠ 𝑖) and 𝛾 is a parameter that satisfies 0 < 𝛾 < 𝜏 ≤ 𝜏𝑖
1−𝑝𝑖𝑖 ,

where 𝜏 is the lower bound of the defending period length. Let

𝑃 (u) = [𝑝𝑖 𝑗 (𝑢 (𝑖))]𝑛×𝑛 denote the transition probability matrix

of the DTMDP and c̃(u) = [𝑐 (𝑖, 𝑢 (𝑖))]𝑛 the defender’s per-stage

cost across all the states. If the system starts from the initial state

𝑠0 ∈ 𝑆 , then the long-term average cost becomes 𝑧 (𝑠0, 𝑢 (𝑠0)) =

lim sup𝑁→∞
1

𝑁

∑𝑁−1
𝑘=0

𝑐 (𝑠𝑘 , 𝑢 (𝑠𝑘 )).
The above data transformation has some nice properties as sum-

marized below.

Theorem 3.2 (Theorems 5.2 and 5.3 of [11]). Suppose an SMDP
is transformed into a DTMDP using the above method. We have

(1) If SMDP is communicating, then DTMDP is also communicat-
ing.

(2) If SMDP is communicating, then a stationary optimal policy
for DTMDP is also optimal for SMDP.

Theorem 3.2 indicates that the transformed DTMDP also has a

contant optimal cost and further, to find a stationary optimal policy

for the SMDP in our problem, it suffices to find a stationary optimal

policy for the transformed DTMDP.

3.3 Value Iteration Algorithm
3.3.1 Additional Notations. Let𝑉 be any vector inR𝑛 . We define

the mapping 𝐹 : R𝑛 → R𝑛 as: 𝐹 (𝑉 ) = minu [c̃(u) + 𝑃 (u)𝑉 ], where
the minimization is applied to each state 𝑖 separately. For any vector

x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 , let 𝐿(x) = min𝑖=1,...,𝑛 𝑥𝑖 and 𝐻 (x) =

max𝑖=1,...,𝑛 𝑥𝑖 . Let ∥·∥ denotes the span seminorm defined as follows:

∥x∥ = 𝐻 (x) −𝐿(x). It is easy to check that ∥ · ∥ satisfies the triangle
inequality, that is, ∥x − y∥ ≤ ∥x∥ + ∥y∥ for any x, y ∈ R𝑛 . Further,
∥x−y∥ = 0 if and only if there exists a scalar 𝜆 such that x−y = 𝜆e
where e is the 𝑛-dimensional vector of all ones. Thus, there is a

vector𝑉 such that ∥𝐹 (𝑉 ) −𝑉 ∥ = 0 (𝑉 is called a fixed point of 𝐹 (·))
if and only if there is a scalar 𝜆 such that the following optimality

equation is satisfied:

𝜆e +𝑉 = min

u
[c̃(u) + 𝑃 (u)𝑉 ] (6)

An important result in MDP theory [2, 23] is that the stationary

policy u that attains the minimum in the optimality equation (6) is

optimal and 𝜆 gives the optimal long-term average cost.

3.3.2 The VI Algorithm. The VI algorithm (see Algorithm 1)

maintains a vector 𝑉 𝑡 ∈ R𝑛 . The algorithm starts with an arbitrary

𝑉 0
(line 1) and a carefully chosen sequence {𝜅𝑡 } (line 2) that ensures

every limit point of {𝑉 𝑡 } is a fixed point of 𝐹 (𝑉 ) (See Section 3.3.3).

In each iteration, 𝑉 𝑡
is updated by solving a policy improvement

step (line 5).

In each policy improvement step (see Algorithm 2), instead of

finding the optimal p𝑖 and 𝜏𝑖 together for each state 𝑖 , which is

a challenging problem, we discretize [𝜏, 𝜏] and search for 𝜏𝑖 with

a step size 𝛿 (line 3). This approximation is reasonable since in

practice the unit time cannot be infinitely small. The smaller 𝛿 is,

the closer 𝜏∗ (line 9 in Algorithm 1) is to the optimal one. Also note

that the optimization problem in lines 4 is actually a bilevel problem,

which can bemodeled as aMixed Integer Quadratic Program (MIQP)

and will be discussed in detail in Section 3.4.

Under Assumptions 1 and 2, Algorithm 1 stops in a finite number

of iterations (lines 3-8) and is able to find a near-optimal policy

(formally proved in Section 3.3.3). In practice, a near-optimal so-

lution is sufficient because it can be expensive or even unrealistic

to obtain the exact minimum average cost in a large-scale MDP.

The algorithm itself, however, can attain the optimal solution if the

number of iterations goes to infinity (and 𝛿 approaches 0).

Remark: Algorithm 1 can be slow in practice due to the large num-

ber of iterations needed to converge and the complexity of solving

multiple MIQP problems in each iteration. To obtain a more efficient



Algorithm 1 Value Iteration algorithm for the MTD game

Input: 𝑆, 𝑛, 𝜖 > 0, 𝜏, 𝜏, 𝑀,𝐶, 𝑅, 𝜋, 𝐿, {𝐴𝑙 }, 𝛿 > 0.

Output: 𝑃∗, 𝜏∗

1: 𝑉 0 ∈ R𝑛 ;
2: 𝜅0 =

1

2
, 𝜅𝑡 =

𝑡
𝑡+1 for 𝑡 = 1, 2, . . . .

3: repeat
4: 𝑡 = 𝑡 + 1;

5: 𝑉 𝑡 = PImp(𝑆,𝑉 𝑡−1, 𝜏, 𝜏, 𝑀,𝐶, 𝑅, 𝜋, 𝐿, {𝐴𝑙 }, 𝛿, 𝜅𝑡−1)
6: 𝑉 = max𝑖∈𝑆 |𝑉 𝑡 (𝑖) −𝑉 𝑡−1 (𝑖) |;
7: 𝑉 = min𝑖∈𝑆 |𝑉 𝑡 (𝑖) −𝑉 𝑡−1 (𝑖) |;
8: until 𝑉 −𝑉 < 𝜖

9: 𝑃∗, 𝜏∗ = argPImp(𝑆,𝑉 𝑡−1, 𝜏, 𝜏, 𝑀,𝐶, 𝑅, 𝜋, 𝐿, {𝐴𝑙 }, 𝛿)

Algorithm 2 Policy Improvement (PImp)

Input: 𝑆,𝑉0, 𝜏, 𝜏, 𝑀,𝐶, 𝑅, 𝜋, 𝐿, {𝐴𝑙 }, 𝛿, 𝜅
Output: 𝑉

1: for 𝑖 ∈ 𝑆 do
2: 𝑣 = +∞;

3: for 𝜏 = 𝜏 ;𝜏 ≤ 𝜏 ;𝜏 = 𝜏 + 𝛿 do
4: 𝑉 (𝑖) = minp𝑖 [𝑐 (𝑖, p𝑖 , 𝜏) + 𝜅

∑
𝑗 ∈𝑆 𝑝𝑖 𝑗 (p𝑖 , 𝜏)𝑉0 ( 𝑗)]

5: if 𝑉 (𝑖) < 𝑣 then
6: 𝑣 = 𝑉 (𝑖);
7: end if
8: end for
9: 𝑉 (𝑖) = 𝑣 ;

10: end for

solution, we have considered a variant of Algorithm 1 using the rel-

ative value iteration (RVI) technique (see our technical report [13]).

Although the RVI variant does not improve the theoretic conver-

gence speed of the VI algorithm, it often requires fewer iterations

for the same 𝜖 in practice. We have further made the following

observation. If we introduce the assumption that 𝑝𝑖𝑠 ≥ 𝜌 > 0 for

all 𝑖 ∈ 𝑆 (where 𝜌 can be arbitrarily small) for some fixed state 𝑠 to

restrict the Markov chain structure and set 𝜅𝑡 = 1 for all 𝑡 , the rate

of convergence can be significantly improved both in theory [2] and

in practice for both the VI and the RVI algorithms. We conjecture

that a near-optimal policy can still be obtained by making 𝜌 small

enough.

3.3.3 Theoretical Analysis. Our VI algorithm is adapted from

the work due to Bertsekas [2] and Bather [1] that originally ad-

dresses the average cost MDP problem with a finite state space

and an infinite action space. However, their proofs do not directly

apply to our algorithm because they either consider the transition

probabilities as the only decision variables [1] or involve the use

of randomized controls [2]. In contrast, our strategy includes both

the probability transition matrix and the (deterministic) defending

periods.

For a given stationary policy u with transition matrix 𝑃 , let 𝑃∗

denote the Cesaro limit given by 𝑃∗ = lim𝑁→∞{𝐼 + 𝑃 + 𝑃2 + · · · +
𝑃𝑁−1}/𝑁 . Then the average cost associated with u can be repre-

sented as 𝑃∗𝑐 (u)[23]. The policy u is called 𝜖-optimal if 𝑃∗𝑐 (u) ≤
𝜆 + 𝜖e where 𝜆 is the optimal cost vector. In practice, it is often

expensive or even unrealistic to compute an exact optimal policy

and an 𝜖-optimal policy might be good enough. Our main results

can be summarized as follows.

Theorem 3.3. Under Assumptions 1 and 2, we have

(1) The DTMDP problem (thus the SMDP problem too) has an
optimal stationary policy;

(2) The sequence of policies in Algorithm 1 eventually leads to an
𝜖-optimal policy.

Proof Sketch: The first part can be proved using the similar tech-

niques in the proofs of Theorem 2.4 of [1] and Proposition 5.2 of [2].

The main idea is to show that (1) {∥𝑉 𝑡 ∥} is bounded thus the vector
sequence {𝑉 𝑡 } must have a limit point; (2) every limit point of

{𝑉 𝑡 } is a fixed point of 𝐹 (·), thus leading to an optimal solution.

The second part follows from Theorem 6.1 and Corollary 6.2 of [1].

The main idea is to show that (1) if ∥𝐹 (𝑉 𝑡 ) − 𝑉 𝑡 ∥ ≤ 𝜖 , then the

corresponding policy is 𝜖-optimal; (2) lim𝑡→∞ ∥𝐹 (𝑉 𝑡 ) − 𝑉 𝑡 ∥ = 0

(again using the boundedness of {∥𝑉 𝑡 ∥}) so that ∥𝐹 (𝑉 𝑡 ) −𝑉 𝑡 ∥ ≤ 𝜖

holds eventually. Note that this condition is exactly the stopping

condition 𝑉 −𝑉 < 𝜖 in Algorithm 1 (line 8).

The proof of Theorem 3.3 relies on the key property that the

vector sequence {∥𝑉 𝑡 ∥} generated by Algorithm 1 is bounded. Due

to the coupling of spatial and temporal decisions in our problem,

the techniques in [1, 2] cannot be directly applied to prove this fact.

Lemma 3.4. Let Assumptions 1 and 2 hold and {𝜅𝑡 } be a nonde-
creasing sequence with 𝜅𝑡 ∈ [0, 1] for each 𝑡 . Consider a sequence
{𝑉 𝑡 } where 𝑉 𝑡+1 = 𝐹 (𝜅𝑡𝑉 𝑡 ) = min𝑃,𝜏 [c̃(𝑃, 𝜏) + 𝜅𝑡𝑃 (𝑃, 𝜏)𝑉 𝑡 ], then
{∥𝑉 𝑡 ∥} is bounded.

Proof Sketch: For a communicating system, for each pair of states 𝑖

and 𝑗 , there exists a stationary policy u𝑖 𝑗 (with transition matrix

𝑃 (u𝑖 𝑗 )) such that 𝑗 is accessible from 𝑖 . The main idea of the proof is

to show that the combined matrix 𝑄 = 1

𝑛2

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑃 (u𝑖 𝑗 ) is still

a valid transition probability matrix. That is, there exists a policy u
such that 𝑄 = 𝑃 (u). This follows from transformations (4) and (5)

and the fact that defender can pick an arbitrary transition matrix.

Using this property, the fact that {∥𝑉 𝑡 ∥} is bounded can then be

proved by induction. The detailed proof can be found in our online

technical report [13].

3.4 Bilevel Optimization Problem
To compute the optimal value in each iterationwith Algorithm 2, we

need to solve the following optimization problem for a given scalar 𝜏

and a vector 𝑉 𝑡−1
(line 4 in Algorithm 2): 𝑉 𝑡 (𝑖) = minp𝑖 [𝑐 (𝑖, p𝑖 , 𝜏)

+𝜅𝑡−1
∑

𝑗 ∈𝑆 𝑝𝑖 𝑗 (p𝑖 , 𝜏)𝑉 𝑡−1 ( 𝑗)]. Substitute 𝑐 (𝑖, p𝑖 , 𝜏) and 𝑝𝑖 𝑗 (p𝑖 , 𝜏)
by their definitions in Equations (4) and (5), and denote 𝑤 𝑗,𝑎 ≜

𝐸 [(𝜏𝑖 − 𝜉𝑎,𝑗 )+] and 𝜃 𝑗 ≜ 𝑚𝑖 𝑗 + 𝛾𝜅𝑡−1𝑉 𝑡−1 ( 𝑗) to simplify the nota-

tion. Using the similar technique for solving Bayesian Stackelberg

games [21], the defender’s bilevel optimization problem in (3) can

be modeled as the following Mixed Integer Quadratic Program



(MIQP):

min

p𝑖 ,n,v

∑
𝑗 ∈𝑆

∑
𝑙 ∈𝐿

∑
𝑎∈𝐴𝑙

𝜋𝑙𝑤 𝑗,𝑎𝐶
𝑙
𝑎,𝑗𝑝𝑖 𝑗𝑛

𝑙
𝑎 +

∑
𝑗

𝑝𝑖 𝑗𝜃 𝑗

𝑠 .𝑡 .
∑
𝑗 ∈𝑆

𝑝𝑖 𝑗 = 1,
∑
𝑎∈𝐴𝑙

𝑛𝑙𝑎 = 1, ∀𝑙 ∈ 𝐿

0 ≤ 𝑣𝑙 −
∑
𝑗

𝑝𝑖 𝑗𝑤 𝑗,𝑎𝑅
𝑙
𝑎,𝑗 ≤ (1 − 𝑛𝑙𝑎)𝐵, ∀𝑎 ∈ 𝐴𝑙 , 𝑙 ∈ 𝐿 (7)

𝑝𝑖 𝑗 ∈ [0, 1], 𝑛𝑙𝑎 = {0, 1}, 𝑣𝑙 ∈ R, ∀𝑗 ∈ 𝑆, 𝑎 ∈ 𝐴𝑙 , 𝑙 ∈ 𝐿

where the binary variable 𝑛𝑙𝑎 = 1 if 𝑎 ∈ 𝐴𝑙 is the best action

for the type 𝑙 attacker and 𝑛𝑙𝑎 = 0 otherwise. This is ensured by

constraint (7) where 𝑣𝑙 is an upper bound on the attacker’s reward

and 𝐵 is a large positive number.

4 EMPIRICAL EVALUATION
We conducted numerical simulations using the data from the Na-

tional Vulnerability Database (NVD) [20] to demonstrate the ad-

vantages of using MSG for spatial-temporal MTD. In particular,

we derived the key attack/defense parameters from the Common

Vulnerabilities Exposure (CVE) scores [16] in NVD, which has been

widely used to describe the weakness of a system with respect to

certain risk levels. We used data samples in NVD with CVE scores

ranging from January 2013 to August 2016. As in [27], the Base

Scores (BS) and Impact Scores (IS) were used to represent the at-

tacker’s reward (per unit time) and the defender’s cost (per unit

time) respectively. Further, we used the Exploitability Scores (ES)

to estimate the distribution of attack time.

We conducted two groups of experiments
1
: the spatial decision

setting and the joint spatial-temporal decision setting. We com-

pared the MSG method with two benchmarks: the Bayesian Stack-

elberg Game (BSG) model [27] and the Uniform Random Strategy

(URS) [27]. We used the Gurobi solver (academic version 8.1.1) for

the MIQP problems in BSG and MSG. All the experiments were run

on the same 24-core 3.0GHz Linux machine with 128GB RAM.

4.1 Spatial Decision
4.1.1 Benchmarks and Settings: In the spatial decision setting,

the defender periodically moves in unit time length and the attacker

instantaneously compromises the system when he chooses the cor-

rect configuration. We compared the MSG model with the original

BSG and URS models in [27]. In BSG, the defender determines the

next configuration according to a fixed transition probability vector

[𝑝 𝑗 ]𝑛 that is independent of the current configuration. In URS, the

defender selects the next configuration uniform randomly.

For fair comparisons, we followed the same data generation

method as used in the work by Sengupta et al. [27]. The system

has four configurations and the corresponding switching cost is

shown in Figure 3. We added an updating cost of 2 to all the switch-

ing cost in [27]. In this experiment, we considered three attacker

types: the Script Kiddie that could attack 𝑃𝑦𝑡ℎ𝑜𝑛 and 𝑃𝐻𝑃 , the

Database Hacker that is able to attack𝑀𝑦𝑆𝑄𝐿 and 𝑝𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 and

the Mainstream Hacker that could attack all the techniques. The

defender possesses a prior belief of (0.15, 0.35, 0.5) on the three

1
Code is available at https://github.com/HengerLi/SPT-MTD.
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Figure 3: The migration cost in the MTD system. Each row
represents a source configuration and each column repre-
sents a destination configuration.
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Figure 4: A comparison of the defender’s cost in the three
policies with spatial decisions only - MSG (𝜖 = 0.1), BSG and
URS with unit defending period (𝜏𝑖 = 1 for all 𝑖 ∈ 𝑆) and zero
attacking time as the parameter 𝛼 increases.

attacker types. The number of attack methods for each of these

attacker types is 34, 269 and 48, respectively.

For BSG, the defender’s optimization problemwas directly solved

with MIQP as in [27]. For MSG, the bi-level optimization problem

was solved with MIQP for each configuration in every iteration of

Algorithm 1 (with the convergence parameter 𝜖 = 0.1). Since the

simulated migration cost could not be directly compared with the

attacking cost from NVD, we introduced a parameter 𝛼 to adjust

the ratio between the attacking cost and the migration cost. That is,

instead of the𝑚𝑖 𝑗 shown in Figure 3, we used 𝛼𝑚𝑖 𝑗 as the migration

cost from state 𝑖 to state 𝑗 . As 𝛼 increases, the migration cost has a

larger impact on the defender’s decisions.

4.1.2 Results: We varied the value of 𝛼 from 0 to 2.5 with an

increment of 0.1 and compared the defender’s cost for the three

policies: the MSG, the BSG, and the URS (see Figure 4). All three

models were restricted to unit length defending period and zero

attacking time. That is 𝜏𝑖 = 1 for all 𝑖 ∈ 𝑆 , and 𝜉𝑎,𝑗 = 0 for all

𝑎 ∈ 𝐴𝑙 , 𝑙 ∈ 𝐿, 𝑗 ∈ 𝑆 .

Figure 4 shows that the defender’s cost increases for all the three

policies as the migration cost grows. However, the magnitude of

increase differs in the three policies. In URS, the cost increases

linearly due to the uniform random strategy (0.25, 0.25, 0.25, 0.25)
used. In both MSG and BSG, the defender’s cost grows sub-linearly.

However, the defender incurs substantially less cost in MSG. The

https://github.com/HengerLi/SPT-MTD


reason is that although both MSG and BSG enable the defender to

choose the respective optimal strategies, MSG allows the defender

to vary her strategy according to different source configurations

while in BSG the defender must choose the same strategy for all

the source configurations (the detail strategies are shown in our

technical report [13]). Further, MSG allows both absorbing states

(when the system moves in, it always stays there) and transient

states (once the system moves out, it never comes back) leading

to more flexible system dynamics, which contributes to the lower

defending cost. However, these states cannot be achieved by BSG

since the only way to always stay in a configuration under BSG is

to assign a probability of 1 to that configuration and the only way

to never come back to a configuration is to assign a probability of

0 to it, which, however, removes any uncertainty to the attacker.

This indicates that MSG can achieve a better trade-off between the

migration cost and the loss from attacks.

4.2 Joint Spatial-Temporal Decision
4.2.1 Benchmarks and Settings: In the joint spatial-temporal

decision setting, the defender needs to decide not only the next con-

figuration to move to but also the length of each defending period 𝜏 .

In our experiments, 𝜏 is in the range of [0.1, 2.6] with an increment

parameter 𝛿 = 0.1. For MSG, the optimal 𝜏𝑖 for each configuration 𝑖

was obtained together with the spatial decisions using Algorithm 1.

We extended the BSG and URS policies by incorporating the attack-

ing times and the defending periods into the objectives of both the

defender and the attacker (as we did in our MSG model), where an

identical defending period is used for all the configurations since

both policies ignore the source configuration in each migration.

To have a fair comparison with MSG, we searched for the optimal

defending period for BSG and URS respectively.

We assigned a random attacking time for each attack that aims to

compromise the system. The random attacking time 𝜉𝑎,𝑗 was drawn

from the exponential distribution 𝐸𝑥𝑝 (𝐸𝑆𝑎) (the mean attacking

time is 1/𝐸𝑆𝑎) when 𝑎 is targeting a vulnerability in state 𝑗 and

𝜉𝑎,𝑗 = +∞ otherwise. Here, 𝐸𝑆𝑎 refers to the exploitability score
of the vulnerability targeted by attack method 𝑎. The 𝐸𝑆 score

of a vulnerability is a value between 0 and 10 and a higher 𝐸𝑆

score means it is easier to exploit the vulnerability [17]. For each

vulnerability, we generated 1000 samples from the corresponding

exponential distribution and used their average as the attacking

time.We used the samemigration cost setting as the spatial decision

experiment with the migration cost matrix shown in Figure 3.

4.2.2 Results: When the defender is able to decide when to

migrate, all three models produce lower cost than the respective

models with a fixed unit defending period (see Figure 4 and Fig-

ure 5). When 𝛼 is small, the attacking cost has a major impact on

the defender’s cost. The shorter defending periods lead to more

frequent switches that can efficiently increases the uncertainty of

the attacker, thus reduce the attacking cost in the end. As 𝛼 grows,

the migration cost becomes the major factor and the defender’s

spatial decision plays a major role on the cost. Thus, all the three

models set 𝜏 = 2.6 eventually to decrease the unit time migration

cost. With temporal decisions, BSG and URS are capable to adjust

the frequency of migration, which improves their performance sig-

nificantly. Compared with them, the improvement of MSG is less
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Figure 5: A comparison of the defender’s cost in the three
spatial-temporal policies - MSG (𝜖 = 0.1), BSG and URS as
the parameter 𝛼 increases. 𝜉𝑎,𝑗 ∼ 𝐸𝑥𝑝 (𝐸𝑆𝑎).

significant. This is because the simulation considers a relatively

small updating cost and MSG allows the defender to partially adjust

the migration frequency implicitly by changing the value of 𝑃𝑖𝑖
even without introducing explicit temporal decisions. The detailed

strategies are provided in our technical report [13].

We observed that, the defender in the MSG model tends to

move to configurations with lower attacking cost, namely (𝑃𝐻𝑃 ,

𝑝𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿) and (𝑃𝑦𝑡ℎ𝑜𝑛, 𝑝𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿), and never moves out of

them. That is, these two configurations are recurrent states (once

the system moves in, it can only move between them) and the

other two configurations are transient states of the corresponding

Markov chain. Essentially, MSG has advantages over BSG in all

the scenarios because it allows a more refined trade-off between

migration cost and attacking cost.

5 CONCLUSIONS
In this paper we consider a defender’s optimal moving target prob-

lem in which both the sequence of system configurations and the

timing of switching are important. We introduce a Markov Stackel-

berg Game framework to model the defender’s spatial and temporal

decision making that aims to minimize the loss caused by com-

promises of the system and the cost required for migration. We

formulate the defender’s optimization problem as an average-cost

SMDP and transform the SMDP problem into a DTMDP problem

that can simplify the problem. Then we propose a value iteration al-

gorithm with convergence guarantee to compute the near-optimal

defense policies. Experimental results on real-world data demon-

strate that our algorithm outperforms the state-of-the-art bench-

marks for MTD. Our Markov Stackellberg Game model precisely

captures the defender’s spatial-temporal decision making in face of

adaptive and sophisticated attackers and can potentially be applied

to other security scenarios beyond moving target defense.
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