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Abstract

We consider settings where agents are evaluated based on ob-
served features, and assume they seek to achieve feature val-
ues that bring about good evaluations. Our goal is to craft
evaluation mechanisms that incentivize the agents to invest
effort in desirable actions; a notable application is the design
of course grading schemes. Previous work has studied this
problem in the case of a single agent. By contrast, we investi-
gate the general, multi-agent model, and provide a complete
characterization of its computational complexity.

1 Introduction
Any reader who has ever taught a course would have
undoubtedly faced some variant of the grading-scheme
dilemma: Should the final exam count for 30% of the grade,
and the homework assignments for 40%? Or should these
two components perhaps be weighted equally? Should the
lowest homework grade be dropped? Admittedly, grades
only serve as a proxy for students’ (unobservable) learning
outcomes. But once a grading scheme is in place, students
will optimize their grades by investing effort accordingly.
Therefore, the grading scheme must be designed to encour-
age desirable behaviors. For example, a participation grade
may make some students come to class, but those same stu-
dents — who are now short on time — may elect to cheat on
their homework assignments.

The design of course grading schemes is an instance of a
much broader challenge. Whenever an evaluator designs a
scheme for evaluating an agent based on observed features,
the agent is incentivized to achieve feature values that lead
to a good evaluation. The hope is that the agent will do so
through genuine self-improvement rather than blatant gam-
ing. The evaluation of creditworthiness through credit his-
tory in the United States serves as an especially egregious
example: instead of promoting true financial responsibility,
it encourages idiosyncratic practices such as using a specific
percentage of one’s credit card limit.

In a very recent paper, Kleinberg and Raghavan (2019)
model and analyze these scenarios. In their model, an agent
has a given amount of effort that can be invested in different
actions (e.g., attempt to solve a homework assignment or
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cheat). There are also effort conversion functions that map
the levels of effort invested in each action to features (e.g.,
homework grade, exam grade, or participation grade). The
evaluator’s task is to design a mechanism that maps the fea-
ture values to a score, which coincides with the agent’s util-
ity. The agent seeks to distribute effort between actions to
achieve maximum utility. The evaluator’s goal, then, is to
design the mechanism to elicit a desirable effort profile.

Importantly, an instance of the evaluation problem of
Kleinberg and Raghavan (2019) includes only a single
agent — or, equivalently, multiple agents that share the same
model. However, in the domains of interest there are mul-
tiple types of agents. For example, one student might opti-
mize exam grades by studying alone, whereas another would
derive more benefit from studying with peers. With this in
mind, we wish to extend the model and results of Kleinberg
and Raghavan to the multi-agent case. In other words, our
main research challenge is this:

Given a set of different agent models, design mecha-
nisms that induce all agents, or as many agents as pos-
sible, to invest effort in desirable actions.

1.1 Our Results
The foregoing challenge gives rise to multiple problems,
each of which is determined by the answers to the follow-
ing three questions.

First, what requirements must the mechanism satisfy? The
minimal assumption made by Kleinberg and Raghavan is
that the mechanism must be monotone, meaning that agents
should receive higher payoffs for higher feature scores. A
more restrictive requirement is that the mechanism be lin-
ear, meaning that the payoff is just a linear combination of
all feature scores.

Second, what is the goal of the evaluator? Is there some
specific admissible profile of effort investment the evaluator
wishes to incentivize, or will they be content with any pro-
file, as long as all of the actions which the agent invests a
nonzero amount of effort into are admissible actions?

Third, are we interested in incentivizing all agents in a
particular way, or just a maximum number of agents?

With only one agent, the main result of Kleinberg and
Raghavan is that the answers to these questions do not mat-
ter: whenever a monotone mechanism exists a linear mecha-
nism exists, and whether an effort profile can be incentivized



Problem # Type of
mechanism Incentivize Admissible

set Complexity

1 monotone all agents admissible
profile P

2 monotone all agents admissible
actions

P (const. n)
NP-c (gen.)

3 monotone max #
of agents

admissible
profile NP-c

4 monotone max #
of agents

admissible
actions NP-c

5 linear all agents admissible
profile P

6 linear all agents admissible
actions

P (const. n)
NP-c (gen.)

7 linear max #
of agents

admissible
profile

P (const. n)
NP-c (gen.)

8 linear max #
of agents

admissible
actions

P (const. n)
NP-c (gen.)

Table 1: Complexity of the 8 different variants of the eval-
uation problem. Note that n is the number of features, and
“NP-c” stands for NP-complete.

depends only on the actions it is supported by. However,
with multiple agents, we find striking differences between
the problem variants, both qualitatively and in terms of com-
putational complexity. We provide a complete classification
of the complexity of each of these 8 problems, as shown in
Table 1. For each problem, we also consider the complexity
for the realistic restriction of a constant number of features
n. (For example, even in MOOCs with massively-many stu-
dents, the number of features factored into the final grade
is likely to be held constant.) Problems 1-4 are analyzed in
Section 3, and Problems 5-8 are analyzed in Section 4.

1.2 Related Work
There are two main lines of related work. First, evaluation
can be viewed as classifying strategic agents (into classes
such as “A students”, “B students”, etc.). Self-interested
agents facing classification may invest in distorting their true
attributes, in order to steer the classifier away from their
“ground-truth” class. The goal in strategic classification is
to build classifiers robust to such gaming (Hardt et al. 2016).
Our goal is in some sense opposite to this line of work — we
aim to encourage agents to invest in changing their features,
but by choosing desirable actions like studying over unde-
sirable ones like cheating. In other words, in our case the
evaluation is not meant to expose some ground truth, but
rather to incentivize worthwhile behavior. Strategic classifi-
cation is part of a more general literature on learning in the
presence of strategic behavior (Meir, Procaccia, and Rosen-
schein 2008; 2012; Dekel, Fischer, and Procaccia 2010).

A second line of research closely related to our work is
contract design, a branch of microeconomics (Grossman

and Hart 1983) that has recently gained interest in com-
puter science (Babaioff, Feldman, and Nisan 2006; Dütting,
Roughgarden, and Talgam-Cohen 2019). The precise re-
lation between our model and the classic principal-agent,
hidden-action1 model from microeconomics is explained in
Appendix A.2 In a nutshell, the basic setting of our model
can be reinterpreted as a simplified principal-agent one, in
which the principal (the evaluator in our model) has no in-
herent interest in the agents’ outputs except to incentivize
the agents to choose permissible hidden actions. Given the
connection between the models, to avoid confusion it is im-
portant to note here that we use the term linear mechanism
for an entirely different object than the linear contract term
that is standard in microeconomics — see the appendix for
details.3 We also diverge from previous work on contract de-
sign for multiple agents in our motivation for applying a uni-
fied approach to incentivizing the agents, instead of dealing
with each of them separately: rather than aiming to encour-
age cooperation or optimize information as is common in the
contract design literature, we are motivated by the fairness
requirement that all agents face a single uniform evaluation
mechanism (see the appendix for more details).

In parallel work, Xiao et al. (2020) also study the problem
of incentivizing multiple agents under a single mechanism.
In their model, actions are directly observable, and in de-
signing the contract, the principal is motivated by profit and
has to compensate the agents at personal expense. Hence,
their model applies to an entirely different set of principal-
agent problems than ours.

2 The Model
For consistency we adopt the notation of Kleinberg and
Raghavan (2019) where possible. An instance of the evalua-
tion problem consists of actions 1, 2, . . . ,m (indexed by j);
features F1,F2, . . . ,Fn (indexed by i); and agents (e.g., stu-
dents) S = {s1,s2, . . . ,s`} (indexed by k). Each agent sk
has a matrix αk in Rm×n

≥0 called their effort conversion ma-
trix. Entry αk

j,i ∈ R≥0 (which we assume is described us-
ing a polynomial number of bits in m,n) specifies how ef-
fort put into action j translates into feature i (as specified
in the next paragraph). We assume that every agent sk has
the ability to affect every feature, that is, no matrix αk has
an all-zero column.4 We denote the jth row and its entries
by αk

j = (αk
j,1, . . . , α

k
j,n). It is often convenient to describe

an instance of the evaluation problem as an effort graph as
depicted in Figure 1. The instance in Figure 1 has m = 2
actions, n = 2 features and ` = 2 agents, and the conversion
matrices are α1

1 = (4, p), α1
2 = (0, 9) for the first agent and

α2
1 = (p, 4), α2

2 = (9, 0) for the second.
Each agent sk has a budget of one unit of effort to divide

1As opposed to hidden-type models; note that while we deal
with different types of agents, these are not hidden.

2The appendix is included in the full version of our paper, avail-
able at http://procaccia.info.

3We use the term linear mechanism to be consistent with
(Kleinberg and Raghavan 2019).

4This is implicitly assumed in (Kleinberg and Raghavan 2019).



among different actions.5 Their choice of how to divide their
budget is specified by their effort profile xk, where xkj ≥ 0
(or xj — we sometimes omit the k index where clear from
context) is the effort they invest in action j, and

∑
j x

k
j ≤ 1

(feasibility). We refer to the set of all feasible effort profiles
as X .

An effort profile is converted into the agent’s n features as
follows: F k(xk)i =

∑
j α

k
j,ix

k
j for every i ∈ [n]. In words,

for feature Fi, the effort sk puts into action j is multiplied by
αk
j,i, and this is summed over all actions. Note that Kleinberg

and Raghavan (2019) introduce a generalization: they define
F k(xk)i = fki (

∑
j α

k
j,ix

k
j ), where fki is a concave, strictly

increasing function. We use the simpler form for ease of ex-
position, and indeed most of our results hold for the more
general model — see Appendix I for details.

An evaluation mechanism is a function M : Rn
≥0 → R≥0

that maps an agent’s features to a score or payoff. The score
coincides with the agent’s utility. Given a mechanism, the
agent chooses an effort profile xk that maximizes their score;
we then say xk is incentivized by the mechanism. The de-
sign goal is to have the mechanism incentivize all agents,
or as many agents as possible, to invest only in a prescribed
set of admissible profiles (we assume that if several profiles
are incentivized, the agent breaks ties in favor of admissible
ones). We use A ⊆ X to denote the set of admissible pro-
files, and consider two different problem variants depend-
ing on the form of A: (1) In the admissible profile variant,
|A| = 1, meaning that the agents must be incentivized to
choose a particular effort profile, which is given as part of
the input. (2) In the admissible actions variant, A is implic-
itly specified by a subset of actions A ⊆ [m], and an effort
profile is admissible if and only if it is supported only over
admissible actions (xkj = 0 for every j /∈ A).

We consider two main classes of evaluation mechanisms:
monotone mechanisms and their subclass of linear mecha-
nisms. An evaluation mechanism is monotone if two condi-
tions hold: (i) for every two feature vectors F ′ ≥ F , it holds
that M(F ′) ≥ M(F );6 and (ii) for every feature vector F
there exists a subset S of features such that increasing all
features FS in the subset strictly increases M(F ).7 An eval-
uation mechanism is linear ifM(F ) is a multilinear function
in the features, namely, M(F ) =

∑
i βiFi where βi ≥ 0 for

every i and βi′ > 0 for some i′.

5In Kleinberg and Raghavan (2019), the agent has an arbitrary
effort budget B. Note it is without loss of generality to assume
B = 1 for all agents as we do, since any discrepancies in effort
budgets can instead be realized by scaling the effort conversion
matrices.

6Throughout the paper, whenever we write an inequality be-
tween two vectors, it means that the inequality holds in each coor-
dinate.

7Together with the assumption that no effort conversion matrix
has a column of zeros, condition (ii) implies there is always poten-
tial to increase the score by investing more effort, so all agents are
strictly incentivized to exhaust their effort budgets. Without con-
dition (ii), the evaluation problem would be trivial, since we could
always just use the mechanism that gives a payoff of zero no matter
what the feature scores are.

Figure 1: A two-agent instance of the evaluation problem,
where p ∈ [1, 8] is an arbitrary parameter.

2.1 Examples
The following examples illustrate the complexity that is
added to the evaluation problem when there are multiple
agents.

Example 2.1. Returning to the classroom setting, suppose
that there are two types of students, s1 and s2, who can
choose between studying (action 1) and cheating (action 2).
Studying improves both test scores (feature F1) and home-
work scores (feature F2) for both types, while cheating im-
proves just one of the scores by an even greater amount. The
effort conversion rates in such a scenario might be as de-
picted in Figure 1, where 1 ≤ p ≤ 8.

Since cheating only improves one kind of score, there are
simple linear mechanisms that can incentivize studying for
either student type in isolation, no matter what p is: for s1,
set β := (1, 0) (final score depends only on the test), and for
s2, set β := (0, 1) (final score depends only on the home-
work). But what if we wish to simultaneously incentivize
both student types to study?

At p = 6, there is a still a linear mechanism that works.
Taking β := (1, 1), the marginal benefit toward studying is
10, while the marginal benefit toward cheating is 9, so both
student types will invest all of their effort into studying.

At p = 4, no linear mechanism exists. For if some β =
(β1, β2) incentivizes s1 to study, we must have 4β1+4β2 ≥
9β2, or in other words, 4β1 ≥ 5β2. Analogously, if that same
β incentivizes s2 to study, we must have 4β2 ≥ 5β1. This is
only satisfied by β = (0, 0), which violates the monotonic-
ity requirement that at least one coordinate be strictly pos-
itive (and makes no sense as a classroom scoring method).
Thus, no linear mechanism can simultaneously incentivize
both student types to study. However, consider a nonlinear,
monotone mechanism: M(F1, F2) := min(F1, F2). Neither
type of student is incentivized to cheat under this mecha-
nism, since that will not improve their minimum score.

At p = 1, there is no monotone mechanism at all, not even
a nonlinear one. Supposing there was such an M : R2

≥0 →
R≥0, consider the choice of an s1 student between two dif-
ferent profiles: the admissible profile (1, 0), and the inadmis-
sible profile ( 12 ,

1
2 ). If s1 chooses the admissible profile, they

obtain a feature vector (4, 1), and if they choose the inad-
missible profile, they obtain the feature vector (2, 5). Since
we are assuming M incentivizes only studying, we must
therefore have M(4, 1) ≥ M(2, 5). Monotonicity implies
M(2, 5) > M(1, 4), so M(4, 1) > M(1, 4). However, by a
completely symmetric argument, for s2 students to be incen-



Figure 2: A three-agent instance of the evaluation problem
exhibiting the power of nonlinear mechanisms. This con-
struction can be generalized to any number of agents.

tivized to study we must have M(1, 4) > M(4, 1), which is
a contradiction. Thus, no monotone mechanism can exist.

One of the most remarkable conclusions from Exam-
ple 2.1 is that, in stark contrast to the one-agent case, non-
linear mechanisms can succeed where linear mechanisms
fail. One can interpret the scenarios where nonlinear mech-
anisms gain an advantage from a machine learning perspec-
tive. Nonlinear classifiers can see more complex relation-
ships among data, such as the conjunction of two separate
conditions like, “in order to be in the positive class, feature
1 must have value at least x and feature 2 must have value
at least y.” Analogously, a nonlinear evaluation mechanism
can make more complicated distinctions between desirable
and undesirable behavior, such as, “in order to get a high
score, feature 1 must have value at least x and feature 2 must
have value at least y.” Nonlinear mechanisms are necessary
when the effort conversion rates of several agents combine
to form a complex boundary in the feature space between
the results of desirable agent behavior and undesirable agent
behavior, which cannot be linearly separated. This effect can
be quite dramatic: as the following extreme example shows,
there exist situations where the best linear mechanisms per-
form arbitrarily worse than the best nonlinear ones.
Example 2.2. For any positive integer n, define an instance
of the evaluation problem with n actions, n features, and n
agents, where only action 1 is admissible, and the rate of
effort conversion for agent sk from action j to feature Fi is

αk
ji :=


1 if i < k

2 if i = k

5 if i > k

if j+k−1 = i mod n, and zero otherwise. Figure 2 shows
an example of this construction when n = 3.

Suppose some pair of agents sk, sk′ where k′ > k could
be jointly incentivized to invest only in action 1 with some
linear mechanism β. For sk to be incentivized to invest only
in action 1, we must have 2βk ≥ 5βk′ , and for sk′ we must
have 2βk′ ≥ βk. Therefore, βk ≥ 5

4βk, so βk = 0, in which
case monotonicity implies it is strictly preferable for sk to
invest in some other, inadmissible action yielding a nonzero
payoff. Hence, no linear mechanism can incentivize more
than one agent to invest only in action 1. However, we will

see in Section 3.1 that all agents can be incentivized to invest
only in action 1 with a monotone, nonlinear mechanism.

3 Monotone Mechanisms
In this section we first describe one of our main contribu-
tions — a useful characterization of when it is possible to
jointly incentivize a given set of agents to choose admissible
actions via a monotone mechanism. The proof is construc-
tive, giving an efficiently computableM : Rn

≥0 → R≥0 with
the guarantee that if any monotone mechanism “works,” so
doesM . Using this characterization, we present polynomial-
time algorithms to solve Problem 1 for an unbounded num-
ber of features, and Problem 2 for a constant number of
features. We then present hardness results for the remaining
problems in the top half of Table 1.

3.1 Imitation Graphs
The central obstacle in the multi-agent evaluation problem is
that one agent may be able to achieve good scores by choos-
ing admissible actions, while another agent may be able to
achieve even better scores by choosing inadmissible actions.
In such scenarios, we say that the second agent is able to
imitate the first one. The key observation is that, when this
happens, the second agent must be given a greater payoff
than the first agent, rewarding them for not acting in this
undesirable way. This idea will allow us to characterize ex-
actly when it is possible to jointly incentivize multiple agent
types. Moreover it will imply that the incentivizing mecha-
nism will have quite a natural form, ranking agents by their
capability to emulate others’ achievements, and assigning
them payoffs according to this ranking.

To formally define imitation, we shall refer to two agents
s1 and s2, where we somewhat abuse notation using s1, s2
for arbitrary agents as opposed to the agents with index k =
1, 2. We use this convention throughout Section 3 to avoid
excessive subscripts.

Fix an admissible action profile x∗(s) for each agent
s ∈ S. We say that agent s1 can imitate agent s2 with re-
spect to x∗ if s1 can play an inadmissible action profile x
such that F s1(x) ≥ F s2(x∗(s2)). If x can be chosen so that
F s1(x) > F s2(x∗(s2)), we say that s1 can strictly imitate
s2. The imitation graph with respect to x∗ is the directed
graph with vertex set S and an edge from s1 to s2 if and
only if s1 can imitate s2. If s1 can strictly imitate s2, we say
that (s1, s2) is a strict edge.

Theorem 3.1. It is possible to incentivize all agents in S
to choose effort profiles in A using a monotone mechanism
if and only if there exists some x∗ : S → A such that the
imitation graph with respect to x∗ has no cycles containing
any strict edges.

Proof. For the forward direction, supposeM : Rn
≥0 → R≥0

is a monotone mechanism that incentivizes all agents to in-
vest only in admissible actions. Then for each s ∈ S, choose
x∗(s) to be any admissible best response of s underM . Sup-
pose toward a contradiction that the imitation graph with re-
spect to x∗ contains a directed cycle s1,s2, . . . ,sq, s1, where



(sq, s1) is a strict edge. Then for each k from 1 to q − 1, we
must have

M(F sk(x∗(sk))) ≥M(F sk+1(x∗(sk+1))),

for otherwise, if M(F sk+1(x∗(sk+1))) > M(F sk(x∗(sk)))
then agent sk could deviate from x∗(sk) and choose some
inadmissible action x such that

F sk(x) ≥ F sk+1(x∗(sk+1)),

receiving a strictly greater payoff:

M(F sk(x)) ≥M(F sk+1(x∗(sk+1))) > M(F sk(x∗(sk)))

(here the first inequality follows from monotonicity condi-
tion (i)). Additionally, we must have

M(F sq (x∗(sq))) > M(F s1(x∗(s1))),

for otherwise, if M(F s1(x∗(s1))) ≥ M(F sq (x∗(sq))),
agent sq could deviate from x∗(sq) and choose some inad-
missible action x such that F sq (x) > F s1(x∗(s1)), receiv-
ing a strictly greater payoff:

M(F sq (x)) > M(F s1(x∗(s1))) ≥M(F sq (x∗(sq)))

(here the first inequality follows from monotonicity condi-
tion (ii)). Thus, we have an inconsistent cycle of inequalities

M(F s1(x∗(s1))) ≥M(F s2(x∗(s2))) ≥ . . .

≥M(F sq (x∗(sq))) > M(F s1(x∗(s1))).

We have reached a contradiction, so it must be that there are
no cycles containing any strict edges.

For the backward direction, let G be the imitation graph
with respect to some x∗, and assume that G has no directed
cycles containing any strict edges. We topologically sort the
strongly connected components of G in decreasing order,
and let v : S → {1, 2, . . . , |S|} give the index of each ver-
tex’s component in the topological sort (v already provides
a rough ranking of the agents). Let m : Rn

≥0 → R≥0 be the
function that takes the minimum value of all coordinates in
a vector, and let B ∈ R>0 be a strict upper bound on m(F )
for any feature vector F that is attainable by any agent in S.
Consider the mechanism

M(F ) := max
{
v(s) +

m(F − F s(x∗(s)))

B

∣∣∣
s ∈ S, F ≥ F s(x∗(s))

}
(1)

It is not hard to verify that M satisfies both conditions for
monotonicity.8 We claim that M incentivizes every s ∈ S to
play the admissible action x∗(s).

Suppose, toward a contradiction, that for some agent s1,
there existed some alternative, inadmissible effort profile x
yielding a strictly higher payoff, i.e.,

M(F s1(x)) > M(F s1(x∗(s1))).

8Technically speaking, the mechanism is undefined for off-
equilibrium-path strategies of scoring lower than any agent should
ever score. This can be fixed by adding a dummy agent with an
effort conversion rate of zero from every action to every feature.

By the definition of M , this means that

max
{
v(s2) +

m(F s1(x)− F s2(x∗(s2)))

B

∣∣∣
s2 ∈ S, F s1(x) ≥ F s2(x∗(s2))

}
> max

{
v(s3) +

m(F s1(x∗(s1))− F s3(x∗(s3)))

B

∣∣∣
s3 ∈ S, F s1(x∗(s1)) ≥ F s3(x∗(s3))

}
.

Taking any s2 on the LHS that realizes the maximum, and
plugging in s1 for s3 on the RHS, this becomes

v(s2) +
m(F s1(x)− F s2(x∗(s2)))

B
> v(s1).

Since m(F ) < B for any attainable feature vector F , it fol-
lows that v(s2) + 1 > v(s1). Since v is integer-valued, this
means v(s2) ≥ v(s1).

On the other hand, F s1(x) ≥ F s2(x∗(s2)) implies
(s1, s2) ∈ E(G), so v(s1) ≥ v(s2). Thus, we have v(s1) =
v(s2), meaning that s1 and s2 are in the same strongly con-
nected component of G. Also,

m(F s1(x)− F s2(x∗(s2)))

B
> v(s1)− v(s2) = 0,

which implies F s1(x) > F s2(x∗(s2)), so (s1, s2) is a strict
edge. But it is impossible to have a strict edge between two
vertices in the same strongly connected component, as this
would imply that G has a cycle containing that strict edge,
contradicting our hypothesis. We have a contradiction, soM
incentivizes all agents to play according to x∗.

Notice that the imitation graph in Example 2.2 with re-
spect to all agents investing all effort in action 1 consists of
a strict edge (sk′ , sk) whenever k′ > k. Since this graph has
no cycles, Theorem 3.1 implies there is a monotone mecha-
nism that incentivizes all agents to invest only in action 1, in
particular the mechanism specified in (1). Ignoring the small
payoff summand that is a fraction over B (which is only
necessary for satisfying condition (ii) of monotonicity), the
payoff of this mechanism is

M(F ) ≈ max
i∈[n]
{n− i+ 1 | Fi ≥ 2}.

In words, all agents are incentivized to focus all of their ef-
fort on raising the feature of smallest index in which they
can score at least 2. For each agent, this feature is always the
one with an edge from x1 in the effort graph (see Figure 2),
so all agents will invest only in action 1.

3.2 Incentivizing All Agents
Theorem 3.1 directly leads to a simple algorithm to solve
Problem 1.

Corollary 3.2. There is a polynomial-time algorithm to find
a monotone mechanism that incentivizes all agents to choose
a specific effort profile, or determine that no such mechanism
exists.



Proof. Since |A| = 1, there is only one possible x∗ :
S → A to choose from, and thus only one possible imi-
tation graph G. For each strict edge (s1, s2) ∈ E(G), we
just check to see if there is a path in G from s2 to s1. By
Theorem 3.1, it is possible to jointly incentivize all agents if
and only if none of these paths exist.

The only potential difficulty lies in constructing this imi-
tation graph in the first place. We show in Lemma B.1 of Ap-
pendix B that this can be accomplished in polynomial time
using linear programming.

Solving Problem 2 is trickier, since to use our characteri-
zation we must search for an assignment x∗ : S → A pre-
scribing which admissible action profile we would like each
agent to choose. While at first glance this might appear hope-
lessly intractable, we make an observation that turns out to
help when the number of features is constant: If there exists
any x∗ : S → A such that the imitation graph with respect
to x∗ has no cycles containing any strict edges, then there
exist profiles for some nonempty subset of agents T ⊆ S
such that

1. no agents in S \ T can imitate any agents in T , and

2. no agents in T can strictly imitate any agents in T .

Informally, the observation follows from topologically sort-
ing the strongly connected components of the imitation
graph, and noticing that the first component must have these
two properties. Given the observation, if such a subset of
agents T and their effort profiles can be found in polyno-
mial time, those agents can be removed, since they can no
longer create a cycle with any of the remaining agents. If
it is then possible to keep removing sets of agents in this
manner, then the final imitation graph will have no cycles
containing strict edges; otherwise, we can conclude impos-
sibility for the given problem instance.

Finding a subset T and corresponding profiles can be
achieved using an iterative marking algorithm, formally pre-
sented in Appendix C.1. However, it relies on the ability to
efficiently answer the simple question, “Is there some ad-
missible profile that s1 can play that no agent in some given
set R can (strictly) imitate?” Formally, this predicate is,

∃x1 ∈ A, ∀s2 ∈ R,

¬
(
∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i ≥ F s1(x1)i

)
(for the strict version, we have a strict inequality). It turns
out that this is computable in polynomial time for a constant
number of features n, but is NP-hard in general, and so is
Problem 2 (see Appendix C for the details).

Theorem 3.3. The problem of finding a monotone mecha-
nism that incentivizes all agents to choose admissible ac-
tions, or determining that no such mechanism exists, is

1. solvable in polynomial time for a constant number of fea-
tures n, and

2. NP-complete for unbounded n.

Figure 3: An input graph G and the corresponding evalua-
tion problem produced by the reduction.

3.3 Incentivizing a Maximum Number of Agents
Once the imitation graph for all agents has been constructed,
Theorem 3.1 implies that we can incentivize any subset of
agents whose induced subgraph has no cycles with strict
edges. When all edges are strict, this is an instance of the
NP-complete Feedback Vertex Set problem: given a graph,
it asks for a minimum-size subset of vertices whose deletion
would eliminate all cycles. It turns out that there is a reduc-
tion in the other direction too, since all directed graphs can
be constructed as imitation graphs — even with just two fea-
tures! This proves that Problems 3 and 4 are NP-complete.

Theorem 3.4. The problems of finding a monotone mech-
anism that incentivizes a maximum number of agents to
choose admissible actions / a specific admissible profile are
NP-complete even for a constant number of features.

We will sketch the proof of NP-hardness for an un-
bounded number of features, leaving the more complicated
reduction with only two features for Appendix E. Suppose
we are given an instance of Feedback Vertex Set, that is, a
graph G with n vertices. For convenience, assume V (G) =
[n]. We construct an instance of the evaluation problem with
agents s1,s2, . . . ,sn, features F1,F2, . . . ,Fn, and 2 actions,
where action 1 is admissible and action 2 is inadmissible.
For each i, j ∈ [n], define

αk
1,i :=

{
1 i = k

0 otherwise
, αk

2,i :=

{
2 (k, i) ∈ E(G)

ε otherwise

(see Figure 3 for an example where n = 3).
It is proved in Appendix D that, for 0 < ε < 1, G is

the imitation graph with respect to the profile assignment
of (1, 0) for all agents, and all edges are strict edges. By
Theorem 3.1, G has a feedback vertex set of size at most
q if and only if at least n − q agents (namely, those not in
the feedback vertex set) can be jointly incentivized to invest
only in action 1.

4 Linear Mechanisms
While nonlinear monotone mechanisms can incentivize ar-
bitrarily more agents than linear ones (see Example 2.2),



there are still many reasons to consider the problem of find-
ing a linear mechanism to incentivize multiple agents. For
one, what we call a linear mechanism coincides with tra-
ditional contracts investigated in contract theory (see Ap-
pendix A). Linear mechanisms also bear more similarity
to the kinds of grading schemes commonly used in prac-
tice. Furthermore, one might hope that, since linear mecha-
nisms are simpler than monotone mechanisms, finding lin-
ear mechanisms might be an easier problem. This intuition
turns out to be partially correct: under the very reasonable
assumption that the number of features is held constant, each
problem we consider in this section has a polynomial time
algorithm, although some are hard in general.

4.1 Algorithmic Results
Observe first that, when responding to a linear mechanism,
agents can simply compute the marginal payoff toward each
of their actions, and invest effort only in the most profitable
ones. Therefore, an agent may only split their effort among
multiple actions if they are all tied for the highest marginal
payoff. If we only care about an agent investing in any one of
a set of multiple admissible actions, we need only ensure that
one of those admissible actions gives the highest marginal
payoff.

Motivated by these observations, we introduce the fol-
lowing notation: when, for a given agent sk, some action
j1 yields a weakly greater marginal payoff under a linear
mechanism β ∈ Rn than some other action j2, we say that
β satisfies the constraint h(k, j1, j2). Since each h(k, j1, j2)
can be written as a linear constraint over the space of lin-
ear mechanisms Rn, we immediately have an algorithm for
Problem 5.

Theorem 4.1. There is a polynomial-time algorithm to find
a linear mechanism that incentivizes all agents to choose a
specific effort profile, or determine that no such mechanism
exists.

Proof. To solve this problem, we must determine if there
exists β ∈ Rn such that, for every agent sk ∈ S and every
action j1 in the support of the admissible profile, for every
alternative action j2 ∈ [m] the constraint h(k, j1, j2) is sat-
isfied (i.e., αk

j1
· β ≥ αk

j2
· β). This reduces to testing the

feasibility of a linear program with n variables and at most
`m2 constraints (were ` is the number of agents), which is
solvable in polynomial time.

Jumping to Problem 7, we do not require that β satisfy
these constraints for all k ∈ [`], just for as many k as pos-
sible. Let Lk be the polytope in Rn consisting of all points
β that satisfy h(k, j1, j2) for all actions j1 in the support
of the admissible profile, and for all actions j2 ∈ [m]. Our
objective is then to find a point in the intersection of a max-
imum number of the Lk polytopes. This is no longer a con-
vex optimization problem like Problem 5. Yet we can solve
it efficiently when n is a constant, using a geometric data
structure known as a hyperplane arrangement (Goodman
and O’Rourke 1997, Chapter 28).

An arrangement decomposes Rn into connected open
cells, where each cell is a maximal connected region in the

Algorithm 1: An algorithm for Problem 7.
Input: An instance of the evaluation problem with a

single admissible profile x∗
Output: A linear mechanism β that incentivizes a

maximum number of agents to invest effort
according to x∗

1 R ← arrangement of all hyperplanes for constraints
h(k, j1, j2) for all k ∈ [`], j1 ∈ S(x∗), and
j2 ∈ [m];

2 max← −1;
3 for each cell C ∈ R do
4 β′ ← any point in C;
5 numIncentivized← |{sk ∈ S | all actions in

S(x∗) yield the (weakly) greatest marginal
payoff for sk under β′}|;

6 if numIncentivized > max then
7 max← numIncentivized;
8 β ← β′;
9 end

10 end
11 return β;

intersection of a subset of the hyperplanes that is not inter-
sected by any other hyperplane. The key property that we
will use is that all points within a given cell are equivalent in
terms of which of the linear constraints they satisfy. This im-
plies that, to test whether a given predicate on the constraints
holds for any point in Rn, it suffices to check only one point
from each cell. This is tractable when n is constant, since
it is known that the arrangement of p hyperplanes decom-
poses Rn into O(pn) cells, and that the arrangement can be
computed in O(pn) time.

Theorem 4.2. Assuming a constant number of features,
there is a polynomial-time algorithm to find a linear mecha-
nism that incentivizes a maximum number of agents to invest
in a specific admissible profile.

Proof. Using the notation of Kleinberg and Raghavan, for
an effort profile x, let S(x) denote the support of x. Re-
call that, to incentivize a given profile x∗ for all agents,
we must ensure all actions in S(x∗) are weak best re-
sponses. Based on our discussion of arrangements above,
Algorithm 1 solves this problem in polynomial time when n
is constant. Note that the predicate on line 5 is easy to com-
pute for a fixed β′, and does not depend on which β′ ∈ C is
chosen, since whether a given sk ∈ S satisfies the predicate
is completely determined by the constraints from line 1.

With very minor adjustments to Algorithm 1, this same
technique can be used to solve Problems 6 and 8 as well
(see Appendix G).

Theorem 4.3. Assuming a constant number of features,
there is a polynomial-time algorithm to find a linear mech-
anism that incentivizes a maximum number of agents to
choose admissible actions (and consequently, to determine if
all agents can be incentivized to choose admissible actions).



4.2 Hardness Results
Since these algorithms for Problems 6, 7, and 8 all rely
on the ability to efficiently enumerate all cells in a low-
dimensional hyperplane arrangement, it is natural to ask
what happens when the number of features is part of the in-
put, making this technique no longer viable. As it turns out,
all three problems are NP-complete in general.

Theorem 4.4. The following problems are NP-complete:

1. Finding a linear mechanism that incentivizes a maximum
number of agents to invest only in admissible actions / a
specific admissible profile.

2. Finding a linear mechanism that incentivizes all agents to
invest only in admissible actions.9

Part (1) follows from the same reduction outlined in Sec-
tion 3.3 since the instances produced by that reduction have
a special property: whenever a particular subset of agents
can be incentivized to choose admissible actions using a
monotone mechanism, they can, in fact, be so incentivized
using a linear mechanism. The hardness in part (2) is of a
completely different nature, and is proved via a separate re-
duction from 3SAT. See Appendices D and F for the proofs.

5 Discussion
Designing an evaluation scheme for a group of agents is
broad practical dilemma. It comes up in credit scoring,
principal-agent relationships without money (commanders
and soldiers, teachers and students), employment under col-
lective agreements, etc. In these cases, designing a single
evaluation rule for all agents is the only realistic approach.
This paper addresses the challenge of multi-agent evaluation
from a computational perspective, answering an open ques-
tion of Kleinberg and Raghavan (2019). Our main contri-
bution is in showing that the evaluation problem with more
than one agent is “a whole new ball game”: for example,
monotone mechanisms now have more power than linear
ones, and the goal of incentivizing admissible actions is now
separate (and often harder) than incentivizing a particular ef-
fort profile.

There are many directions for future research. A natural
one is approximating the optimal number of incentivized
agents when maximizing is NP-hard. Our techniques are
able to provide insights in this direction, since we show a
close connection to the Feedback Vertex Set problem, for
which both approximations and lower bounds are known
(Bar-Yehuda et al. 1998). Other future directions include set-
tings with hidden types as well as hidden actions, incentiviz-
ing agent cooperation (by allowing features like scores on a
group project), or accommodating complex effects of com-
binations of agent actions.
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Multiagent Evaluation Mechanisms: Supplemental Material

The purpose of this online appendix is to provide additional observations and present complete proofs of results stated in the
manuscript.

A Relation to Contract Design
In this appendix we analyze the connection between our evaluation model and the standard principal-agent model in contract
design. The connection described in Appendix A.1 does not appear to have been observed before.

A.1 Casting our Basic Model as a Principal-Agent Setting
We focus here on the basic setting with a single agent sk (we omit the index k for simplicity) and linear mechanisms.

Evaluation model recap. Recall that in our evaluation problem, there are m actions 1, 2, . . . ,m, and n features
F1,F2, . . . ,Fn. There is a mapping αj from action j to the features; we assume here without loss of generality that

∑
i αj,i ≤ 1

(this is by normalization of the matrix α), so that αj can be treated as a vector of probabilities.9 In general, the agent plays a
mixed strategy x over the actions, where

∑
j x

k
j = 1 (since the agent is strictly incentivized to exhaust their effort budget of

size 1). But given a linear mechanism β = (β1, . . . , βn), recall from Section 4 that it is without loss to assume the agent plays
a pure strategy and picks a single action j that maximizes their utility∑

i

αj,iβi.

The goal of the principal is to design the mechanism such that j is an admissible action.

Principal-agent model. Keeping the evaluation problem in mind, let us turn to the classic principal-agent problem: There
are m action a1,a2, . . . ,am and n rewards r1,r2, . . . ,rn to the principal. There is a distribution αj mapping action aj to the
rewards. Given a contract β = (β1, . . . , βn) specifying the agent’s payment for every reward, the agent chooses action aj that
maximizes their expected payment ∑

i

αj,iβi.

The goal of the principal is to maximize the expected reward minus payment, i.e.,
∑
i αj,i(ri − βi).

Comparison. As can be seen from the descriptions above, the basic evaluation problem and the principal-agent problem
are almost identical, up to the principal’s goal. From the principal’s perspective, evaluation is in some sense simpler: In the
principal-agent model, the principal often wishes to incentivize a certain action aj — like in the evaluation model — but needs
to do so with minimum expected payment

∑
i αj,iβi. In contrast, “paying” the agent in the evaluation model by awarding

them a high score does not affect the utility of the principal. From the agent’s perspective, the two models are equivalent! This
means that some classic results from contract theory like the characterization of incentivizable actions apply to evaluation. The
last observation helps explain the similarity between the classic characterization (see, for example, Proposition 1 in (Dütting,
Roughgarden, and Talgam-Cohen 2019b)), and the characterization of Kleinberg and Raghavan (which holds more generally —
see below).

We end this discussion of the basic evaluation setting by emphasizing that despite the connection to contract design theory,
the term linear mechanism used in this paper is not the same as linear contract. In linear mechanisms, the score is a multilinear
function of the n features with coefficients β1, . . . , βn — and this is referred to simply as a contract in microeconomics. In
linear contracts, there is a single coefficient β that is multiplied by the reward rj to specify the payment of the agent when their
action leads to the realized reward rj .

A.2 Generalizations Beyond Standard Principal-Agent Settings
Interestingly, two aspects of evaluation introduced by Kleinberg and Raghavan (2019) strictly generalize the classic principal-
agent model: concave conversion functions, and non-linear mechanisms.

9If the entries sum up to 1 then we have a distribution, which can be interpreted as follows: the effort which the agent puts into action j
adds to feature Fi with probability αj,i. If the entries sum up to less than 1, we interpret this as if with probability 1−

∑
i αj,i the effort leads

to nothing. This view of the model is nice as it captures the probabilistic aspects of one’s actions. For example, a student may study for the
exam and still fail with some small probability.



Concave conversion functions. Kleinberg and Raghavan (2019) introduce a more general way to translate the agent’s effort
profile x into features: instead of Fi =

∑
j xjαj,i, they define Fi = fi(

∑
j xjαj,i), where fi is a concave, strictly increasing

function. This has an interesting effect — since now putting in only (say) 80% of the effort into a certain action can result
in almost 100% of the feature value, the agent is strictly incentivized to split their effort among different actions. One of
the main contributions of Kleinberg and Raghavan (2019) is in showing that a generalization of the classic incentivizability
characterization holds in this generalized setting, and moreover that for a single agent there is no need to consider mechanisms
beyond linear.

In Appendix I we discuss extensions of our results to concave conversion functions.

Non-linear mechanisms. In the evaluation model, the principal designing the contract is assumed to have access to more
information about the agent’s actions than in the classic model. In particular, they view the full vector of features rather than
a single realization drawn from αj . Thus, they are no longer confined to paying the agent βi for the ith realization, and can
choose any monotone function of the features. This extra freedom becomes significant when dealing with multiple agents, as
demonstrated in the body of this paper.

A.3 Our Treatment of Multiple Agents versus Classic Literature
Our work’s focus is on mechanisms/contracts for multiple agents. In the classic literature, multiple agents have been investigated
under two main models (Salanie 2005, pp. 140-141). In one, a group of agents work together as a team and are evaluated and
rewarded depending on the global outcome. The main design challenge is to discourage agents from free-riding on others’
contribution. A variation is when agents have separate tasks but are expected to help one another. In the other model, the
conversion of different agents’ efforts to outcomes is interconnected, so the principal can learn about one agent’s actions from
the outcomes of another, and the design challenge lies in best utilizing the available information. In both models, each agent has
a personal contract with the principal. We initiate a third model, in which what unifies the ` different principal-agent problems
is not the need to incentivize teamwork or optimize information, but rather the fairness requirement that all agents face the
same evaluation mechanism. In other words, a single contract should apply to the whole group, and still manage to incentivize
desirable actions.

B Constructing Imitation Graphs
The efficiency of the algorithm presented in Corollary 3.2 relies on the following lemma, which we will now prove.

Lemma B.1. Given an assignment of profiles x∗ : S → A and any pair of agents (s1, s2) ∈ S, it is possible to determine, in
polynomial time, whether (s1, s2) is an edge of the imitation graph with respect to x∗, and if so, whether or not that edge is
strict.

Proof. Suppose x∗(s2) = x2. To determine if s1 can imitate s2, we must determine if the following set is nonempty:

I := {x1 ∈ X | x1 /∈ A and F s1(x1) ≥ F s2(x2)}.

In the admissible profile variant of the problem,A is a single point in Rm, while in the admissible actions variant,A is a standard
simplex supported over the admissible actions. In either of these two cases, we can express A as some polytope bounded by at
most 2m hyperplanes

A = {x ∈ Rm | for all j ∈ [2n], aj · x ≤ bj},
where each aj is a vector in Rm and each bj is a scalar. For x1 not to be contained inA, it must violate one of these constraints.
Therefore,

I = {x1 ∈ X | for some j ∈ [2n], aj · x > bj ; and F s1(x1) ≥ F s2(x2)}

=
⋃

j∈[2n]

{x1 ∈ X | aj · x > bj and F s1(x1) ≥ F s2(x2)}

Determining whether each of these 2n sets is nonempty is an LP feasibility problem with a mixture of strong and weak
inequalities, which can be solved in polynomial time using linear programming by Lemma B.2. Computing whether a given
edge is a strict edge is the same, except that we have more strict inequalities.

Lemma B.2. Given matrices A and C, and vectors b and d, it is possible to determine, in polynomial time, whether there exists
an x ∈ Rm satisfying the constraints

Ax ≤ b
Cx < d,

The authors could not find a formal reference for this fact. This proof is inspired by (Lorenz 2012).



Proof. Suppose b and d are column vectors of length k and `, respectively. If Ai refers to the ith row of A and Cj refers to the
jth row of C, we can rewrite these constraints as

Aix ≤ bi ∀i ∈ [k]

Cjx < dj ∀j ∈ [`].

For a given x, these constraints are satisfied if and only if there is some ε > 0 satisfying

Aix ≤ bi ∀i ∈ [k]

Cjx+ ε ≤ dj ∀j ∈ [`].

This is possible if and only if the following LP, with variables x ∈ Rm, ε ∈ R has an optimal value strictly greater than zero:
maximize ε

subject to Aix ≤ bi ∀i ∈ [k]
Cjx+ ε ≤ dj ∀j ∈ [`].

C Problem 2: Algorithm and Hardness
In this appendix we prove both parts of Theorem 3.3.

C.1 Algorithm for Problem 2 with a Constant Number of Features
Proof of Theorem 3.3 Part 1. We claim that Algorithm 2 (together with the mechanism from Theorem 3.1) solves Problem 2
when there are a constant number of features.

Algorithm 2: Finds an assignment of profiles to solve Problem 2.
Input: X , A, {F s | s ∈ S}
Output: An assignment of profiles x∗ : S → A such that the imitation graph with respect to x∗ has no cycles containing

any strict edges, or IMPOSSIBLE if no such assignment exists
1 T1 ← S;
2 x∗ ← an empty map;
3 j ← 1;
4 while Tj is nonempty do
5 Tj+1 ← ∅;
6 while |Tj | is decreasing do
7 move← ∅;
8 for s1 ∈ Tj do
9 if ∃x1 ∈ A,

[
∀s2 ∈ Tj+1, ¬

(
∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i ≥ F s1(x1)i

)]
∧
[
∀s2 ∈ Tj , ¬

(
∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i > F s1(x1)i

)]
then

10 x∗(s1)← some valid choice of x1;
11 else
12 move← move ∪ {s1};
13 end
14 end
15 Tj ← Tj \ move;
16 Tj+1 ← Tj+1 ∪ move;
17 end
18 if Tj = ∅ then
19 return IMPOSSIBLE ;
20 else
21 j ← j + 1;
22 end
23 end
24 return x∗;

In words, the conditional statement on line 9 says that there must exist some admissible profile x1 such that, if s1 plays x1,
no agent in Tj+1 can imitate s1, and no agent in Tj can strictly imitate s1. We will return to the complexity of this predicate
shortly. Assuming for now that it is possible to compute in polynomial time, it is not hard to see that the algorithm as a whole
runs in polynomial time as well, since all three loops run for at most |S| iterations, and consist only of elementary operations.
We now argue that the algorithm is correct.



Suppose first that the algorithm returns on line 19 at some specific iteration j of the outer loop. We claim that there is no
x∗ : S → A such that the imitation graph with respect to x∗ has no cycles containing any strict edges. Suppose toward a
contradiction that there was such an x∗, and let G be the induced subgraph of the imitation graph with respect to x∗ generated
by the vertices in Tj as it was at the beginning of the first iteration of the loop starting on line 6 (or equivalently, the vertices
in Tj+1 at the end of the last iteration of the loop). Let H ⊆ V (G) be the first strongly connected component in some
topologically-sorted order.

We claim that the following invariant holds throughout the loop starting on line 6: H ⊆ Tj . Clearly, it holds before the first
iteration of the loop, since V (G) = Tj by the definition of G. To prove that each iteration preserves this invariant, it suffices
show that the only vertices that are removed from Tj on line 15 are ones which cannot possibly be in H . Suppose toward a
contradiction that some s1 falsifying the predicate on line 9 was contained in H . Since s1 falsifies the predicate, we must have
that either

1. some s2 ∈ Tj+1 can imitate s1 playing x∗(s1), or
2. some s2 ∈ Tj can strictly imitate s1 playing x∗(s1).

In either case, (s2, s1) ∈ E(G), implying that s2 ∈ H as well. In case (1) this contradicts the assumption that the invariant holds
at the beginning of the iteration, since s2 ∈ Tj+1 =⇒ s2 /∈ Tj =⇒ s2 /∈ H . In case (2) this contradicts the assumption that
G has no cycles containing any strict edges, since (s2, s1) is a strict edge between two vertices in the same strongly connected
component H . Thus, in either case, we have a contradiction, so no s1 ∈ H is removed from Tj on line 15. It follows that
H ⊆ Tj is an invariant of the loop starting on line 6.

However, since we are assuming that the algorithm returns on line 19, at the end of this loop we must have Tj = ∅. Thus,
we have H ⊆ Tj = ∅, implying H is empty. This is a contradiction, since the first strongly connected component of G cannot
possibly be empty. Hence, there can be no x∗ : S → A such that the imitation graph with respect to x∗ has no cycles containing
any strict edges.

Now suppose that the algorithm returns on line 24. LetG be the imitation graph with respect to the assignment x∗ returned by
the algorithm. We must show that G has no cycles containing any strict edges. Suppose toward a contradiction that G contains
a directed cycle s1,s2, . . . ,sq, s1, where (sq, s1) is a strict edge. For each k ∈ [q], let jk be the unique index such that sk ∈ Tjk .

Observe that for each k ∈ [q − 1], if jk+1 < jk, then on iteration jk+1 of the outer loop, sk must have been moved out of
Tjk+1

and into Tjk+1+1, so the condition on line 9 implies that sk should not be able to imitate sk+1 playing x1 = x∗(sk+1).
Since (sk, sk+1) ∈ E(G), we have by modus tollens that jk ≤ jk+1.

Similarly, if j1 ≤ jq then on iteration j1 of the outer loop, on the final iteration of the loop on line 6, sq ∈ Tj1 ∪Tj1+1, so the
condition on line 9 implies that sq should not be able to strictly imitate s1 playing x1 = x∗(s1). So again, by modus tollens,
since (sq, s1) ∈ E(G) is a strict edge, we have that jq < j1.

Thus, we have a contradiction in the form of an inconsistent cycle of inequalities

j1 ≤ j2 ≤ · · · ≤ jq < j1,

so it must be that G has no cycles containing any strict edges.
We have now proved that the algorithm is correct in both cases. All that is left to show is that we can compute the predicate

on line 9 in polynomial time when n is constant.
It will be more convenient to consider the negation:

∀x1 ∈ A,
[
∃s2 ∈ Tj+1, ∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i ≥ F s1(x1)i

]
∨
[
∃s2 ∈ Tj , ∃x2 ∈ X \ A, ∀i ∈ [n], F s2(x2)i > F s1(x1)i

]
(2)

For each s2 ∈ Tj+1, let
C(s2) := {F ∈ Rn | ∃x2 ∈ X \ A, ∀i ∈ [n], Fi ≤ F s2(x2)i}.

and for each s2 ∈ Tj , let
C(s2) := {F ∈ Rn | ∃x2 ∈ X \ A, ∀i ∈ [n], Fi < F s2(x2)i}.

Then (2) becomes
∀x1 ∈ A, F s1(x1) ∈

⋃
s2∈Tj∪Tj+1

C(s2), (3)

In other words, we need to determine if
F s1(A) ⊆

⋃
s2∈Tj∪Tj+1

C(s2). (4)

If this is not the case, then we would additionally like to find specific evidence in the form of a point

F ∈ F s1(A) \
⋃

s2∈Tj∪Tj+1

C(s2), (5)



as well as an x1 ∈ A such that F = F s1(x1).
Since we are assuming F s1 is linear, the set on the left-hand side of (4) is a polytope. As it turns out, we can write each

C(s2) as a polytope as well (but with some faces open). Geometrically, C(s2) is the set you get by taking F s2(X \ A) and
projecting downward in each coordinate. More formally, one can see that F ∈ C(s2) if and only if F is a convex combination
of some point in x2 ∈ X \ A and each of its 2n projections onto subspaces spanned by sets of coordinate axes. So, to compute
the (closure of the) polytope C(s2), simply take the convex hull of all vertices of the polytope F s2(X \ A), and all of their
2n projections. Since n is constant, it follows from (Kaibel and Pfetsch 2003, Problem 1) that there are a polynomial number
of such vertices, and that they can be enumerated in polynomial time. By (Kaibel and Pfetsch 2003, Problem 2), we can then
obtain a description of the polytope as the intersection of polynomially-many halfspaces. Note that, since some faces of X \ A
are open (and there are additional strict inequalities in the description of C(s2) for any s2 ∈ Tj), some faces of C(s2), might
be open as well.

So determining whether (4) holds is really the question of whether one polytope is contained in a union of other polytopes. To
solve this, we construct an arrangement of all hyperplanes defining F s1(A) and each C(s2). (See Section 4 for a more detailed
discussion of arrangements). Since n is constant and we have polynomially-many hyperplanes, it follows from Goodman
and O’Rourke (1997) that the arrangement has polynomially-many cells. To check if (4) holds, simply enumerate every cell
contained in F s1(A) and check if it is contained in some C(s2). These containments are easy to determine, since either all
points of the first cell are contained in the second one, or none are, so we can just test one point per cell, as done in Algorithm
1. Note that having a mixture of closed and open faces does not matter here, since boundaries of cells in an arrangement are
considered to be distinct cells. If we find some point in some cell that is contained in F s1(A) but is not contained in the union
of the C(s2) sets (as in (5)), then we can easily invert F s1 to obtain an x1 to set x∗(s1) to on line 10.

Hence, for constant n, the computation involved in lines 9 and 10 can be done in polynomial time, and thus the entire
algorithm runs in polynomial time.

C.2 Hardness of Problem 2

Proof of Theorem 3.3 Part 2. Problem 2 is in NP since we can easily verify that a given choice of preference profile for each
agent gives an imitation graph with no cycles containing any strict edges by Lemma B.1.

To prove NP-hardness, we give a reduction from 3SAT, involving 3 different kinds of agents, 5 different kinds of actions, and
2 different kinds of features. An example is given in Figure 4. For a 3SAT formula

ϕ = c1 ∧ c2 ∧ · · · ∧ cm

where each clause is a disjunction of 3 literals in the set {v1, v1, v2, v2, . . . , vn, vn}, we construct an instance of Problem 2
with the following agents, actions, and features. Note that in this section we break a few of the notational conventions laid out
in Section 2. First, we use lowercase f ’s for the feature values so as to avoid confusion with the symbol “F ,” which is used to
denote the Boolean value “false.” These features are indexed by 2 variables instead of 1. Second, we refer to some of the actions
not as numbers between 1 and m, but instead by symbols ai,b, indexed by two variables i and b. We refer to the level of effort
invested by an agent in such an action as xi,b.

Agents Purpose/Meaning
s0 Can always strictly imitate all other agents, so the goal is to make no other agents able to imitate s0.

s1,i for i ∈ [n] Ensure s0 invests in either action ai,T or ai,F (corresponding to setting vi to be true or false).
s2,j for j ∈ [m] Ensure clause cj is satisfied by the assignment of variables corresponding to the actions

that s0 invests in.

Actions In A? Purpose/Meaning
ai,b for i ∈ [n], b ∈ {T, F} X If s0 invests in action ai,b, it corresponds to setting vi = b in ϕ.

1 × The action that any s1,i could use to imitate s0 if s0 does not invest
in either ai,T or ai,F .

2 × The action that any s2,j could use to imitate s0 if s0’s choice of actions
does not satisfy clause cj .

3 X The action that each s 6= s0 should take in equilibrium.
4 × The action that s0 can use to imitate any s 6= s0.

Features Purpose/Meaning
fi,b for i ∈ [n], b ∈ {T, F} The feature values by which some s 6= s0 might be able to imitate s0.

f0 The feature value by which s0 can imitate every s 6= s0.
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Figure 4: An example of the reduction for Theorem 3.3 part 2 where n = 4 and m = 6. The formula is uniquely satisfied by
setting v1 and v4 to be false, and v2 and v3 to be true. Note that ε does not have to be 1

11 exactly; it just has to be strictly smaller
than 1
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Formally, the coefficients for converting actions into features are given below, where, to avoid excessive subscripts, we denote
by α(s, a, f) the effort conversion rate of action a into feature f , for agent s. Any α values that cannot be matched to an entry
on the list are defined to be zero. Here ε can be any real number such that 0 < ε < 1

2(n+1) .

α(s0, ai,b, fi,b) := n α(s1,i, 3, f0) := 1

α(s1,i, 1, fi′,b) :=

{
1− ε if i = i′

n otherwise
α(s2,j , 3, f0) := 1

α(s2,j , 2, fi,T ) :=

{
1
2 if literal vi appears in clause cj
n otherwise

α(s0, 4, f0) := 2

α(s2,j , 2, fi,F ) :=

{
1
2 if literal vi appears in clause cj
n otherwise

To prove the theorem, it suffices to show that ϕ has a satisfying assignment if and only if there exists an effort profile x∗(s)
for each agent s such that the imitation graph with respect to x∗ has no cycles containing any strict edges. It will be helpful
for the reader to refer back to the “Purpose/Meaning” columns in the tables above as needed. Notice that, in this construction,
all imitations can only occur between s0 and other agents. This is because all features that are affected by s0 choosing an
admissible action can only be affected by inadmissible actions from other agents; and similarly, all features that are affected
by agents other than s0 choosing admissible actions can only be affected by inadmissible actions from s0. Note also that, since
agents other that s0 have only one admissible action to choose from (action 3), and s0 can strictly imitate this action by investing
in the inadmissible action 4, no matter what, s0 will always be able to strictly imitate all other agents. Therefore, to determine
whether we can find an imitation graph with no cycles containing strict edges, it is equivalent to simply ensure that no agents
can imitate s0. So we must prove that ϕ has a satisfying assignment if and only if there exists a feasible x∗ ∈ A such that no
agents can imitate s0 playing x∗.

For the forward direction, let vi be a satisfying assignment of ϕ. Let x∗ be the action profile defined by

xi,b :=

{
1
n vi = b

0 otherwise
,

x1 := x2 := x3 := x4 := 0.

Note that x∗ is a feasible profile for s0, since there are n nonzero values, each with investment 1
n . Clearly, x∗ ∈ A, since all

ai,b are admissible actions. No s1,i can imitate s0, since even if they dedicated their entire budget to the one inadmissible action
that affects feature fi,vi (namely, action 1), they will at most be able to achieve fi,vi = 1− ε, whereas s0 will achieve

fi,vi = α(s0, ai,vi , fi,vi) · xi,vi = n · 1
n
= 1.

No s2,j can imitate s0 either, for if i is the index of the variable whose literal satisfies clause cj , then the greatest value for fi,vi
that s2,j can achieve is 1

2 (by setting x2 = 1), whereas s0 will again achieve 1. Therefore, no agents can imitate s0 playing x∗,
so the forward direction is proved.

For the backward direction, suppose we have some admissible and feasible profile for s0

x∗ = (x1,T , x1,F , x2,T , x2,F , . . . , xn,T , xn,F , x1, x2, x3, x4)

such that no s 6= s0 can imitate s0. We break this proof up into 3 claims.
Claim 1: For all i ∈ [n], at least one element of the set {xi,T , xi,F } is at least 1−ε

n . Suppose, toward a contradiction,
that there was some i ∈ [n] such that xi,T < 1−ε

n and xi,F < 1−ε
n . Then the feature values that s0 achieves for fi,T and

fi,F are both at most 1 − ε. However, by setting x1 = 1 (which is inadmissible), s1,i can achieve the feature vector where
fi,T = fi,F = 1 − ε, and for all i′ 6= i, fi,T = fi,F = n, which is weakly greater in all coordinates than the feature vector
s0 achieves by choosing x∗ (recall that x4 must be zero for x∗ to be admissible). Thus, s1,i can imitate s0, contradicting our
hypothesis, so Claim 1 holds.

Claim 2: For each i ∈ [n], one element of the set {xi,T , xi,F } is at most
1
2−ε
n , and the other is strictly greater than

1
2−ε
n .

It clearly follows from Claim 1 that at least one element is strictly greater than
1
2−ε
n . Thus, we need only prove that they are not

both strictly greater than
1
2−ε
n , so suppose toward a contradiction that they are. Since at least one element of {xi,T , xi,F } must

be at least 1−ε
n by Claim 1, we have

xi,T + xi,F ≥
1− ε
n

+
1
2 − ε
n

=
3
2 − 2ε

n
.



Therefore, ∑
i′∈[n]

∑
b∈{T,F}

xi′,b ≥
3
2 − 2ε

n
+
∑
i′ 6=i

∑
b∈{T,F}

xi′,b

≥
3
2 − 2ε

n
+ (n− 1)

1− ε
n

(by the previous claim)

=
n+

(
1
2 − (n+ 1)ε

)
n

>
n+ 0

n
(because ε <

1

2(n+ 1)
)

= 1

Since the sum of all effort is greater than 1, x∗ is infeasible, contradicting our hypothesis. Thus, Claim 2 holds.
Claim 3: The following assignment of variables satisfies ϕ:

vi :=

{
T if xi,T >

1
2−ε
n and xi,F ≤

1
2−ε
n

F if xi,F >
1
2−ε
n and xi,T ≤

1
2−ε
n

Note that this is well-defined by Claim 2, as these are the only two possible cases. Suppose, toward a contradiction, that there
was some clause cj which is not satisfied. Let i1, i2, i3 ∈ [n] be the indices of the three variables appearing in cj , and let
b1, b2, b3 ∈ {T, F} be such that bk = T if the variable vik appears positively, and bk = F if it appears as the negated literal vik .
Then for each k ∈ {1, 2, 3}, s2,j achieves fik,bk = 1

2 from investing all effort in the inadmissible action 2, whereas s0 achieves

at most
1
2−ε
n from choosing x∗, since if some xik,bk >

1
2−ε
n , by the definition of the assignment vik we would have that the

literal in which vik appears would satisfy the clause (either vik = bk = T or vik = bk = F ). By investing all effort in action 2,
s2,j clearly dominates s0 in all other features as well, achieving n in each coordinate. Thus, s2,j can imitate s0, contradicting
our hypothesis. It follows that the assignment vi satisfies ϕ, so the proof of the backward direction is complete.

D Hardness of Problems 3, 4, 7 and 8
In this section we prove that maximizing the number of agents that choose admissible action profiles is NP-complete in general.
We give one reduction that works for all four variants of this optimization problem (Problems 3, 4, 7 and 8). However, the
instances of the evaluation problem produced by this reduction have an unbounded number of features, so we can conclude
nothing about the complexity of any of the four problems when there are a constant number of features. As it turns out,
Problems 3 and 4 are still hard under this restriction; we present a separate reduction in Appendix E to prove this fact. On the
other hand, we showed in Section 4 that Problems 7 and 8 are solvable in polynomial time when the number of features is
constant.

Theorem D.1. The problems of finding a monotone mechanism that incentivizes a maximum number of agents to choose
admissible actions / a specific admissible profile, or determining that no such mechanism exists, are NP-complete.

Proof. Problems 3 and 4 are in NP since, given a subset of agents and admissible profiles for each of them to play, we can easily
verify that the imitation graph has with no cycles containing any strict edges by Lemma B.1. To prove that these problems are
NP-hard, we give a reduction from Feedback Vertex Set.

This proof was outlined in Section 3.3, but we repeat the entire argument here for completeness. Suppose we are given
an instance of Feedback Vertex Set, that is, a directed graph G with n vertices. For convenience, assume V (G) = [n]. We
construct an instance of the evaluation problem with agents s1,s2, . . . ,sn, features F1,F2, . . . ,Fn, and 2 actions, where action
1 is admissible and action 2 is inadmissible (for the admissible profile variant, just take the admissible profile to be (1, 0),
meaning all effort should be invested into action 1). For each i, k ∈ [n], define

αk1,i :=

{
1 i = k

0 otherwise
, αk2,i :=

{
2 (k, i) ∈ E(G)

ε otherwise

(see Figure 3 in Section 3.3 for an example).
We claim that that, for 0 < ε < 1, G is the imitation graph with respect to the profile assignment of (1, 0) for all agents

(which is the only potential admissible profile that can be weakly optimal), and all edges are strict edges. Since both graphs
have the same vertex set, we need only show that they have the same edge sets. First suppose (k, i) ∈ E(G). We show that
F k((0, 1)) > F i((1, 0)), so that (k, i) is a strict edge of the imitation graph. Note that, at index i,

F k((0, 1))i = 2 > 1 = F i((1, 0))i,



and for all indices j 6= i,
F k((0, 1))j ≥ ε > 0 = F i((1, 0))j

Thus, F k((0, 1)) > F i((1, 0)) as desired.
Conversely, suppose there is an edge from k to i in the imitation graph. That is, there is some inadmissible x = (x1, x2) ∈ X

such that F k(x) ≥ F i((1, 0)). In particular, considering index i of both vectors, we know that

F k(x)i ≥ F i(1, 0)i = 1.

Suppose, toward a contradiction, that (k, i) /∈ E(G). Then F k((0, 1))i = ε, so, starting from the equation above,

1 ≤ F k(x)i = x1F
k((1, 0))i + x2F

k((0, 1))i = x1F
k((1, 0))i + x2ε ≤ x1 + x2ε,

where the final inequality follows because all entries of F k((1, 0)) are at most 1 by definition. The budget constraint implies
x1 ≤ 1− x2, so it follows that 1 ≤ (1− x2) + x2ε, so (1− ε)x2 ≤ 0. Since ε < 1, this means x2 ≤ 0, which can only happen
if x2 = 0. This contradicts our assumption that x is inadmissible, so we conclude that (k, i) ∈ E(G).

Thus, by Theorem 3.1, G has a feedback vertex set of size at most q if and only if at least n− q agents (namely, those not in
the feedback vertex set) can be jointly incentivized to invest only in action 1.

Proof of Theorem 4.4 Part 2. Problems 7 and 8 are in NP since it is easy to compute best responses to a given linear mechanism,
and hence determine which agents will invest in admissible actions / an admissible profile. For hardness, we claim that, by
specializing ε < 1

n·3n , the same reduction given in the proof of Theorem D.1 works for Problems 7 and 8 as well. To prove
this, it suffices to show that, in this construction, there exists a monotone mechanism to incentivize a given subset of agents to
invest only in action 1 if and only if there exists a linear mechanism. The backward direction is trivial. To prove the forward
direction, we assume that the subgraph of the input graph G induced by some arbitrary subset T ⊆ V (G) has no cycles, and
let v : T → [n] be a reverse topological ordering of these vertices, as in the proof of Theorem 3.1. We claim that the following
linear mechanism incentivizes all agents to invest only in action 1, because it yields a higher marginal payoff:

βi :=

{
3v(i) if i ∈ T
0 if i ∈ S \ T

An arbitrary agent i ∈ T gets a marginal payoff of 3v(i) from investing in action 1, and∑
j∈T s.t. (i,j)∈E(G[T ])

2 · 3v(j) +
∑

j∈T s.t. (i,j)/∈E(G[T ])

ε · 3v(j)

from investing in action 2. Since v is a reverse topological ordering, for any j that i has an edge to, v(j) ≤ v(i) − 1. Also,
note that each such j has to have a distinct index under v. Therefore, we can rewrite the first term above as summing over the
positive v values that are realized in the exponent,

v(i)−1∑
k=1

{
2 · 3k if there exists j such that (i, j) ∈ E(G) and v(j) = k

0 otherwise
,

which is bounded above by

2 ·
v(i)−1∑
k=1

3k = 3v(i) − 1.

As for the second term, since there are at most n terms in the sum, v(j) ≤ n for all n, and ε < 1
n·3n , we have that∑

j∈T s.t. (i,j)/∈E(G[T ])

ε · 3v(j) ≤ nε · 3n < n · 3n

n · 3n
= 1.

Adding together these two bounds, we have that the total marginal payoff of agent i from investing in action 2 is strictly less
than

3v(i) − 1 + 1 = 3v(i),

which is the marginal payoff to investing in action 1. Therefore, all agents in T are strictly incentivized to invest only in action
1.

Note the similarities between this mechanism, and the one in the proof of Theorem 3.1. Both mechanisms involve ranking
the agents so that those with the power to imitate other agents do not want to exercise this power, since the other agents are
lower-ranked, and thus receive lower payoffs. As long as there are no inconsistencies among the constraints that certain agents
must be ranked higher than other ones, it is always possible to implement such a ranking system with a monotone mechanism.
The main takeaway from this proof is that, with enough features to distinguish the agents, it is sometimes possible to achieve
the same effect with a linear mechanism. However, as Example 2.2 showed, this is not always the case.



E Hardness of Problems 3 and 4 with a Constant Number of Features
Proof of Theorem 3.4. We follow the same proof strategy as in Theorem D.1. As noted in that proof, to reduce from Feedback
Vertex Set it suffices to show that any directed graph can be constructed as an imitation graph (with only strict edges) in
polynomial time. The only new constraint is that there must be a constant number of features in the instance we create; this
construction uses only 2 features.

Let G be an arbitrary digraph with n vertices. We construct an instance of the evaluation problem where the set of agents is
the same as the set of vertices, which we will label as S = V (G) = [n]. There will be n+1 actions, where only the last action,
n+ 1, is admissible. (As in the proof of Theorem D.1, since there is only one admissible action, the admissible profile variant
of the evaluation problem is equivalent to the admissible actions variant.) The effort invested in these actions converts into the
2 features as follows:

αkn+1,1 := cos
πk

2(n+ 1)

αkn+1,2 := sin
πk

2(n+ 1)

for j ∈ [n]: αkj,1 :=

{
(1 + ε) cos πj

2(n+1) if (k, j) ∈ E(G)

0 otherwise

for j ∈ [n]: αkj,2 :=

{
(1 + ε) sin πj

2(n+1) if (k, j) ∈ E(G)

0 otherwise

It is clear that agent k can strictly imitate agent j if (k, j) ∈ E(G). All that remains is to check that k cannot imitate any other
agents. This is best seen geometrically, plotting F1 on the x-axis and F2 on the y-axis. In this construction, we have arranged
the feature profiles that result from each agent playing the admissible action profile (0, 0, . . . , 0, 1) on a unit circle, equally
spaced throughout the first quadrant.

1

1
(0, 0,… , 0, 1)

2

(0, 0,… , 0, 1)
1

Figure 5: The region that an arbitrary agent corresponding to a vertex of degree 2 can imitate.

The shaded region in Figure 5 denotes the set of feature vectors that an arbitrary agent, with edges to j1 and j2 in G, can
imitate. Note that it extends outside of the unit circle by ε at two points (dominating the feature vectors that agents j1 and j2
achieve by investing all effort in action n + 1). However, due to the strict convexity of the circle, by making ε small enough,
this region will not include any other feature vectors achieved by agents other than j1 and j2. This easily generalizes to vertices
of arbitrary degree. Thus, the imitation graph of this instance is precisely G.

F Hardness of Problem 6
Proof of Theorem 4.4 Part 2. Problem 6 is in NP since, given a linear mechanism, it is easy to compute the best responses
of each agent by comparing the marginal payoffs of each action. One simply checks that some admissible action realizes the
maximum marginal payoff over all actions.



To prove NP-hardness, we give a reduction from 3SAT. For a 3SAT formula

ϕ = c1 ∧ c2 ∧ · · · ∧ cm

where each clause is a disjunction of 3 literals in the set {v1, v1, v2, v2, . . . , vn, vn}, we construct an instance of the evaluation
problem with 7 actions, where only actions 1 and 2 are admissible, and features fi,j,b for every i ∈ [n], j ∈ [m], and b ∈ {T, F}.
Recall that, since we are looking for a linear mechanism, the objective is to choose coefficients βi,j,b for each fi,j,b such that all
agents invest only in admissible actions. The main idea behind this reduction is that choosing a linear mechanism

−→
β ∈ R2mn in

which βi,j,T > βi,j,F will correspond to setting vi to be true in ϕ, and choosing a
−→
β in which βi,j,T < βi,j,F will correspond to

setting vi to be false in ϕ. There are three different kinds of agents which will be used to ensure that all agents are incentivized
to choose admissible actions if and only if the assignment of variables obtained through this correspondence satisfies ϕ:

Agents Purpose/Meaning
s1,i,j for i ∈ [n], j ∈ [m] Ensure that the coefficients of fi,j,T and fi,j,F differ by a

substantial factor.
s2,i,j for i ∈ [n], j ∈ [m− 1] Ensure that the choice of which feature is given greater

weight among the features {fi,j,T , fi,j,F } is consistent
between j and j + 1.

s3,j,k for j ∈ [m], k ∈ [3] These 3 agents create an inconsistent cycle of inequalities
among the β values whenever clause j is not satisfied.

The effort conversion rates for each type of agent are as depicted in Figure 6. Note that, for the last three agents, i1, i2, i3, b1, b2,
and b3 are such that clause cj contains variables vi1 , vi2 , and vi3 , in that order, negated according to b1, b2, and b3, respectively.
Also, all agents have one more inadmissible action 7 to choose from, which is not depicted in the figure, with a conversion rate
of ε := 1

120mn ·
(

6
11

)n
to every feature.
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Figure 6: The effort conversion rates for each type of agent (excluding action 7).

We now prove that the reduction is correct. For the forward direction, suppose that vi is a satisfying assignment of ϕ. We will
show that the following linear mechanism

−→
β ∈ R2mn incentivizes all agents to invest only in the admissible actions 1 and 2:

βi,j,b :=

{
γi,j(

11
6 )j if vi = b

γi,j(
11
6 )j−1 if vi 6= b

,



where

γi,j :=


60 if variable vi appears in cj as an unsatisfied literal, and the next

literal to the right (cyclicly, within cj) is also unsatisfied
59 otherwise

.

First observe that, for all agents, it is never optimal to invest any effort into the inadmissible action 7. This is because there
are 2mn features, each with a β value of at most 60

(
11
6

)n
, so the marginal payoff toward investing in action 7 is at most

ε · 2mn · 60
(
11

6

)n
= 1.

Since all other actions have marginal benefits strictly greater than 1, no agent will be incentivized to invest any effort into action
7. So for each agent type, we need only consider how the marginal payoffs toward actions 1 and 2 compare to the marginal
payoffs toward actions 3, 4, 5, and 6.

For an arbitrary agent s1,i,j , the marginal payoff toward the inadmissible action 3 is

11

(
γi,j

(
11

6

)j
+ γi,j

(
11

6

)j−1)
= 11γi,j

(
11

6

)j (
1 +

(
6

11

))
= 17γi,j

(
11

6

)j
,

while the payoffs toward the admissible actions 1 and 2 are

17.05γi,j

(
11

6

)j
and 17.05γi,j

(
11

6

)j−1
(which action yields which marginal payoff depends on whether vi is set to true or false). The first of these admissible actions
will be the most profitable of the three choices, so agent s1,i,j will invest their entire budget into that admissible action.

For an arbitrary agent s2,i,j , there are two completely analogous cases, depending on whether vi is true or false. By symmetry,
it is without loss of generality to only consider the case where vi = T . In this case, the marginal payoff toward action 1 is

4

(
γi,j

(
11

6

)j
+ γi,j+1

(
11

6

)j+1
)

= 4

(
11

6

)j (
γi,j +

11

6
γi,j+1

)
Since γi,j and γi,j+1 are each at least 58.5, this marginal payoff is at least

4 · 58.5 ·
(
11

6

)j (
1 +

11

6

)
=

4 · 58.5 · 17
6

(
11

6

)j
= 663

(
11

6

)j
.

Since γi,j and γi,j+1 are each at most 60, the marginal payoffs toward the four inadmissible actions are at most

11 · 60
(
11

6

)j
= 660

(
11

6

)j
, 11 · 60

(
11

6

)j−1
= 660

(
11

6

)j−1
,

6 · 60
(
11

6

)j+1

= 660

(
11

6

)j
, and 6 · 60

(
11

6

)j
= 660

(
11

6

)j−1
,

respectively. Since each of these are less than the marginal payoff toward action 1, we conclude that agent s2,i,j will invest their
entire budget into that admissible action. (Analogously, if vi = F , essentially the same proof shows that agent s2,i,j will invest
their entire budget into the admissible action 2.)

Finally, we consider the s3,j,k agents. Again observe that, for each j, there is a symmetry among all three of these agents, so
it suffices to consider only the first agent, s3,j,1. We break this argument up into 3 cases, depending on which variable satisfies
the clause cj .

If vi1 satisfies cj , then, by definition, we have vi1 = b1, so the payoff toward action 1 is

11γi1,j

(
11

6

)j
≥ 649

(
11

6

)j
(because γi1,j ≥ 59). On the other hand, the payoff toward action 3 is either

6.1γi2,j

(
11

6

)j−1
≤ 366

(
11

6

)j−1
or 6.1γi2,j

(
11

6

)j
≤ 366

(
11

6

)j
,

(because γi2,j ≤ 60) depending on whether or not vi2 = b2. In either case, it is more profitable to invest in action 1.



If vi2 satisfies cj , then, by definition, we have vi2 = b2 6= b2, so the payoff toward action 3 is

6.1γi2,j

(
11

6

)j−1
≤ 336

(
11

6

)j−1
.

On the other hand, the payoff toward action 1 is either

11γi1,j

(
11

6

)j
≥ 649

(
11

6

)j
or 11γi1,j

(
11

6

)j−1
≥ 649

(
11

6

)j−1
,

depending on whether or not vi1 = b1. So again, in either case, it is more profitable to invest in action 1.
Finally, consider the case where neither variables vi1 nor vi2 satisfy cj , and vi3 does satisfy cj . This is the one place in the

proof where we leverage the difference between the two possible values for γi,j . Since vi1 6= b1 and neither vi1 nor the next
variable vi2 satisfy cj , the payoff toward action 1 is

11γi1,j

(
11

6

)j−1
= 11 · 60

(
11

6

)j−1
= 660

(
11

6

)j−1
.

On the other hand, since vi2 = b2, and the next variable vi3 does satisfy cj , the payoff toward action 3 is

6.1γi2,j

(
11

6

)j
= 6.1 · 59 ·

(
11

6

)j
= 359.9 ·

(
11

6

)j
= 659.816

(
11

6

)j−1
< 660

(
11

6

)j−1
.

So, again, action 1 is the most profitable.
Thus, in all three cases, agent s3,j,1 is incentivized to invest all of its effort into the admissible action 1, concluding the proof

of the forward direction.
For the backward direction, suppose that we have some monotone mechanism

−→
β ∈ R2mn that incentivizes all agents to

invest effort only in desirable actions. Note that monotonicity requires that every β value be nonnegative. We break this proof
up into 3 claims, which show that each of the 3 types of agents function as stated in the “Purpose/Meaning” column of the table.

Claim 1: For all i ∈ [n] and j ∈ [m], the feature coefficients βi,j,T and βi,j,F are not both zero, and differ by a factor of
at least 11

6.05 . It is clear that these two feature values are not both zero, for otherwise agent s1,i,j would be strictly incentivized to
invest all effort into the inadmissible action 7. To prove the second part of the claim, observe that, for agent s1,i,j , the marginal
payoff to investing in the admissible action 1 is 17.05βi,j,T , the marginal payoff to investing in the admissible action 2 is
17.05βi,j,F , and the payoff to investing in the inadmissible action 3 is 11(βi,j,T + βi,j,F ). Since one of the admissible actions
must be a best response for s1,i,j , we know that

17.05βi,j,T ≥ 11(βi,j,T + βi,j,F ) or 17.05βi,j,F ≥ 11(βi,j,T + βi,j,F ).

In other words, we must have

βi,j,T ≥
11

6.05
βi,j,F or βi,j,F ≥

11

6.05
βi,j,T .

This proves Claim 1.
Claim 2: For all i ∈ [n] and j1, j2 ∈ [m], βi,j1,T > βi,j1,F if and only if βi,j2,T > βi,j2,F . By induction, it suffices to

prove that, for each j ∈ [m− 1], βi,j,T > βi,j,F if and only if βi,j+1,T > βi,j+1,F . There are two completely analogous cases,
depending on which admissible action s2,i,j is investing effort into as a best response. We will only discuss the case where they
are investing effort into action 1. Since action 1 must yield a weakly higher marginal payoff than action 7, it must be that one
of βi,j,T or βi,j+1,T is nonzero. But if one of them is nonzero, the other one must clearly be nonzero as well, for otherwise
one of the two inadmissible actions, 3 or 5, is a strictly better response. Thus, by re-scaling

−→
β , it is without loss of generality

to assume that βi,j,T = 6. (We could have chosen any positive constant, but 6 is convenient for avoiding non-integral values
in the argument that follows.) One can check that we must then have βi,j+1,T ∈ [10.5, 12] for otherwise investing in action
3 or action 5 is a strictly better response. So the marginal payoff toward investing in action 1 is at most 4(6 + 12) = 72. On
the other hand, the payoff to investing in the inadmissible action x4 is 11βi,j,F , and the payoff to investing in the inadmissible
action 6 is 6βi,j+1,F . As neither of these can be better responses than investing in the admissible action 1, we derive that
βi,j,F ≤ 72

11 = 6.54 and βi,j+1,F ≤ 72
6 = 12. Since we have already established that βi,j,T = 6 and βi,j+1,T ∈ [10.5, 12], it

follows from Claim 1 that
βi,j,F ≤

6.05

11
βi,j,T < βi,j,T

and
βi,j+1,F ≤

6.05

11
βi,j+1,T < βi,j+1,T .



Thus, we have proved that βi,j,T > βi,j,F if and only if βi,1,T > βi,1,F , as both statements are true; in the analogous case where
s2,i,j invests in the other admissible action 2, we would derive that both statements are false. In both cases, Claim 2 holds.

Claim 3: The following assignment of variables satisfies ϕ:

vi :=

{
T if, for all j ∈ [m], βi,j,T ≥ 11

6.05βi,j,F
F if, for all j ∈ [m], βi,j,F ≥ 11

6.05βi,j,T
.

Note that this is well-defined by Claims 1 and 2, as these are the only two possible cases. To prove the claim, suppose, toward
a contradiction, that some clause cj is not satisfied by this assignment. Suppose that cj prescribes that vik should have value
bk ∈ {T, F}, for at least one k ∈ [3], and that the variables are listed in increasing order of k. Since cj is not satisfied, it means
that vik = bk for all k ∈ [3]. For each vik appearing in cj , if vik = T we have βik,j,T ≥ 11

6.05βik,j,F , and if vik = F we have
βik,j,F ≥ 11

6.05βik,j,T . Thus, in either case, since vik = bk, we know that βik,j,bk ≥
11
6.05βik,j,bk . It then follows that

βi1,j,b1 ≥
6.1

11
· βi2,j,b2

≥ 6.1

11
· 11

6.05
· βi2,j,b2

≥ 6.1

11
· 11

6.05
· 6.1
11
· βi3,j,b3

≥ 6.1

11
· 11

6.05
· 6.1
11
· 11

6.05
· βi3,j,b3

≥ 6.1

11
· 11

6.05
· 6.1
11
· 11

6.05
· 6.1
11
· βi1,j,b1

≥ 6.1

11
· 11

6.05
· 6.1
11
· 11

6.05
· 6.1
11
· 11

6.05
· βi1,j,b1 ,

where the first, third, and fifth inequalities follow from the conditions that s3,j,1, s3,j,2, and s3,j,3 must be incentivized to invest
only in action 1. Therefore,

βi1,j,b1 ≥
(

6.1

6.05

)3

βi1,j,b1 ,

implying that βi1,j,b1 = 0, and hence βi2,j,b2 = 0 as well. But this means that agent s3,j,1 receives a marginal payoff of zero
from investing in action 1, so it would have been better for them to instead invest in the inadmissible action 7, which yields
a strictly positive marginal payoff. We have a contradiction, so it follows that the assignment vi defined above satisfies ϕ,
concluding the proof of the backward direction.

G Algorithms for Problems 6 and 8 with a Constant Number of Features
Proof of Theorem 4.3. To solve Problem 8, recall that, since agents are incentivized to choose the action(s) with the greatest
marginal payoff, we need only ensure that some admissible action is the most profitable. Algorithm 3, which differs from
Algorithm 1 only on lines 1 and 5, solves this problem. Since Problem 6 is a special case of Problem 8, we thus have an
algorithm for Problem 6 as well.

Algorithm 3: An algorithm for Problem 8.
Input: An instance of the evaluation problem with admissible actions A ⊆ [m]
Output: A linear mechanism β that incentivizes a maximum number of agents to invest effort only in admissible actions

1 R ← arrangement of all hyperplanes for constraints h(k, j1, j2) for all k ∈ [`], j1 ∈ A, and j2 ∈ [m];
2 max← −1;
3 for each cell C ∈ R do
4 β′ ← any point in C;
5 numIncentivized← |{sk ∈ S | some action in A yields the (weakly) greatest marginal payoff for sk under β′}|;
6 if numIncentivized > max then
7 max← numIncentivized;
8 β ← β′;
9 end

10 end
11 return β;



H Superiority of Nonlinear Mechanisms with a Constant Number of Features
Example 2.2 showed that the best nonlinear mechanisms can perform arbitrarily better than the best linear mechanisms. Here
we give another example of this phenomenon, only this time, our construction uses only 2 features.
Example H.1. For any positive integer n, let Gn be the graph with vertex set [2n + 1], and an edge from i to j if and only if
i is even and |j − i| = 1. Then apply the reduction in the proof of Theorem 3.4 (see Appendix E), and consider the evaluation
problem restricted to only the set of n even-numbered agents. SinceGn has no cycles, the induced subgraph ofGn generated by
the even-numbered vertices has no cycles as well, so it follows from Theorem 3.1 that it is possible to incentivize all n agents to
invest only in the admissible action using a monotone mechanism. However, we claim that at most 1 agent can be incentivized
to invest only in the admissible action using a linear mechanism.

To see this, take any nontrivial linear mechanism β ∈ R2
≥0, and let θ ∈ [0, π2 ] be the angle that β makes with the x-axis

(which is identified with feature F1). Without loss of generality we can assume that β is a unit vector. Suppose some arbitrary
agent k ∈ [2n + 1] (where k is even) is incentivized to invest only in the admissible action. Then the marginal payoff toward
the admissible action, which is (

cos
πk

4(n+ 1)
, sin

πk

4(n+ 1)

)
· β,

must be greater than the marginal payoffs toward the two inadmissible actions, which are

(1 + ε)

(
cos

π(k − 1)

4(n+ 1)
, sin

π(k − 1)

4(n+ 1)

)
· β and (1 + ε)

(
cos

π(k + 1)

4(n+ 1)
, sin

π(k + 1)

4(n+ 1)

)
· β.

We can drop the (1 + ε) terms, obtaining(
cos

πk

4(n+ 1)
, sin

πk

4(n+ 1)

)
· β ≥

(
cos

π(k − 1)

4(n+ 1)
, sin

π(k − 1)

4(n+ 1)

)
· β =⇒ cos

∣∣∣∣θ − πk

4(n+ 1)

∣∣∣∣ ≥ cos

∣∣∣∣θ − π(k − 1)

4(n+ 1)

∣∣∣∣ ,(
cos

πk

4(n+ 1)
, sin

πk

4(n+ 1)

)
· β ≥

(
cos

π(k + 1)

4(n+ 1)
, sin

π(k + 1)

4(n+ 1)

)
· β =⇒ cos

∣∣∣∣θ − πk

4(n+ 1)

∣∣∣∣ ≥ cos

∣∣∣∣θ − π(k + 1)

4(n+ 1)

∣∣∣∣ .
Here we are using the fact that all vectors are unit vectors, so the dot products are equal to the cosines of the angles between
them.

The first condition implies that θ is closer to the angle πk
4(n+1) than the angle π(k−1)

4(n+1) , so it follows that

θ ≥
π(k − 1

2 )

4(n+ 1)
.

The second condition implies that θ is also closer to the angle πk
4(n+1) than the angle π(k+1)

4(n+1) , so it follows that

θ ≤
π(k + 1

2 )

4(n+ 1)
.

Thus, for agent k to be incentivized to invest only in the admissible action, we must have

θ ∈
[
π(k − 1

2 )

4(n+ 1)
,
π(k + 1

2 )

4(n+ 1)

]
.

These intervals do not overlap for values of k that differ by at least 2 (recall we are only considering the even-numbered agents),
so we conclude that it is not possible to incentivize more than one agent with a linear mechanism.

I Extension of Algorithms: Concave Effort Conversion Functions
Kleinberg and Raghavan (2019) consider a slightly more general form of the evaluation problem than we do. They define
F k(xk)i = fki (

∑
j α

k
j,ix

k
j ), where fki is a concave, strictly increasing function. In this setting, the model we have considered

is the special case in which each fki is the identity function. While all of our hardness results also hold for the more general
model, our algorithms do not immediately generalize. Recall that we presented algorithms for 6 of the 8 problem variants; here
we consider which of them generalize to the setting of concave effort conversion functions.

I.1 Problem 1
Recall that Problem 1 reduces to testing the feasibility of 2n separate linear programs with a mixture of strict and weak
inequalities. (see Appendix B). Each feasible set has the form

{x1 ∈ X | aj · x > bj and F s1(x1) ≥ F s2(x2)}



Algorithm 4: An algorithm for Problem 7 where the effort conversion functions are concave and strictly increasing.
Input: An instance of the evaluation problem with a single admissible profile x∗
Output: A linear mechanism β that incentivizes a maximum number of agents to invest effort according to x∗

1 R ← arrangement of all hyperplanes defining Lk(x∗) for all k ∈ [`];
2 max← −1;
3 for each cell C ∈ R do
4 β′ ← any point in C;
5 numIncentivized← |{k ∈ [`] | β′ ∈ Lk(x∗)}|;
6 if numIncentivized > max then
7 max← numIncentivized;
8 β ← β′;
9 end

10 end
11 return β;

(the weak inequality may also be a strict one; our argument works for that case as well). With concave effort conversion
functions, the only potential worry is that the condition F s1(x1) ≥ F s2(x2) may no longer be expressible as a set of linear
constraints. However, it turns out that it still is. Formally, these constraints are that, for all i ∈ [n],

f1i

∑
j

α1
j,ix

1
j

 ≥ f2i
∑

j

α2
j,ix

2
j


(we are using only agent indices 1 and 2 above to avoid excessive subscripts, and to keep consistent with Appendix B, but the
equation has the same form different indices k, k′, etc.). Since the fact that each f1i function is increasing implies that it is
invertible, we can rewrite this as ∑

j

α1
j,ix

1
j ≥ (f1i )

−1

f2i
∑

j

α2
j,ix

2
j


which is a linear constraint on the x1j variables since the RHS is a constant. Thus, we can use the exact same technique to solve
Problem 1.

I.2 Problem 2
The algorithm for Problem 2 does not immediately extend to the setting of concave effort conversion functions, since there
is no clear way to compute the predicate on line 9 of Algorithm 2 in polynomial time, even when n is constant. The main
obstacle is that the two sets in Equation 4 (see Appendix C.1) are no longer polytopes, so we cannot construct an arrangement
of hyperplanes and enumerate all cells. For suitably nice effort conversion functions, however, it may still be possible, since
arrangements can be computed for more general hypersurfaces (Goodman and O’Rourke 1997). This is really a computational
geometry question, and the authors suspect that it should still be possible to compute this predicate in polynomial time for most
effort conversion functions that one would encounter in practice.

I.3 Problem 5
For linear effort conversion functions, this problem reduced to testing the feasibility of a linear program, with explicit linear
constraints h(k, j1, j2) (see the proof of Theorem 4.1). While we can’t use the same linear program with more general effort
conversion functions, we can use a different linear program coming from the main result of Kleinberg and Raghavan. They prove
that, even under their more general model of concave effort conversion functions, the set of linear mechanisms incentivizing
profile x∗ for a given agent k is still a polytope, Lk(x∗), bounded by polynomially-many linear constraints. Therefore, Problem
5 still reduces to testing the feasibility of a linear program (namely, the intersection of all Lk(x∗) for k ∈ [`]), so we can still
solve it in polynomial time.

I.4 Problem 7
This algorithm extends in the same way that our algorithm for Problem 5 does. We just need to find a point of common
intersection in a maximum number of Lk(x∗) polytopes. Algorithm 4, which differs from Algorithms 1 and 3 only on lines 1
and 5 (and is equivalent to Algorithm 1 when the effort conversion functions are linear), solves this problem in polynomial time
for constant n.



I.5 Problems 6 and 8
Our algorithms for these two problems rely crucially on the fact that we can assume without loss of generality that the agents
will invest their entire budgets into one action (namely, one of the actions with the greatest marginal payoff). Unfortunately,
with more general concave effort conversion functions, we cannot analyze best responses purely in terms of marginal payoffs,
so this fact no longer holds. Therefore, in their present forms, our algorithms for Problems 6 and 8 do not extend.

One possible way to get around this would be to sample polynomially-many profiles x∗1, x
∗
2, . . . , x

∗
q supported by the admis-

sible actions, and use an arrangement-based algorithm similar to Algorithms 1 and 3 to search for a β contained in
⋃q
i=1 Lk(x∗i )

for a maximum number of indices k. It is uncertain what guarantees could be said for such an algorithm.


