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In networked public goods games, an agent’s utility depends on

Networked public goods games model scenarios in which self-interested (1) her” own investment decision, which incurs some cost (in terms

agents decide whether or how much to invest in an action that ben-
efits not only themselves, but also their network neighbors. Exam-
ples include vaccination, security investment, and crime reporting.
While every agent’s utility is increasing in their neighbors’ joint
investment, the specific form can vary widely depending on the
scenario. A principal, such as a policymaker, may wish to induce
large investment from the agents. Besides direct incentives, an im-
portant lever here is the network structure itself: by adding and
removing edges, for example, through community meetings, the
principal can change the nature of the utility functions, resulting
in different, and perhaps socially preferable, equilibrium outcomes.
We initiate an algorithmic study of targeted network modifications
with the goal of inducing equilibria of a particular form. We study
this question for a variety of equilibrium forms (induce all agents
to invest, at least a given set S, exactly a given set S, at least k
agents), and for a variety of utility functions. While we show that
the problem is NP-complete for a number of these scenarios, we
exhibit a broad array of scenarios in which the problem can be
solved in polynomial time by non-trivial reductions to (minimum-
cost) matching problems.

1 INTRODUCTION

Groups of individuals often encounter the following type of sce-
nario. Each member of the group can decide whether or how much
effort (or money) to invest for the common good; everyone in the
group (including the individual) profits from all members’ efforts,
but the individual incurs a cost for the investment. Examples of
such scenarios include decisions whether or not to vaccinate, re-
port crime in a neighborhood, invest in security, chip in on depart-
ment committee work, keep one’s yard representable or sidewalk
shoveled, or purchase a tool that one’s friends or neighbors can
share.

These and many other scenarios are modeled by public goods
games [18, 22]. In many applications, including most of the ones
listed above, the benefits of an individual’s effort are not reaped
by all group members, but only by those with whom the individ-
ual interacts. This naturally motivates the definition of networked
public goods games [3, 4, 9], in which a (given, known) network cap-
tures which individuals will benefit from which other individuals’
efforts.
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of money, time, effort, or risk), and (2) the aggregate investment by
the agent and her neighbors in the network. (Precise definitions of
all concepts are given in Section 2.) While the agent’s utility is
always non-decreasing in the neighbors’ joint investment, the spe-
cific functional form can vary widely. For example, it may suffice to
have a single friend with a useful tool, but lowering crime rates in a
neighborhood may require broad participation in crime reporting.

For practically all public goods scenarios, the equilibria involve
significant underinvestment. That is, significantly fewer agents ex-
pend effort than would lead to a socially optimal outcome, a phe-
nomenon closely related to the so-called “Tragedy of the Com-
mons” and the “Bystander Effect.” This kind of underinvestment
is not only predicted by theory, but typically observed in practice
as well. When the equilibrium outcomes are socially undesirable,
a principal, such as a policymaker, may be interested in changing
the parameters of the game so as to induce equilibrium outcomes
that are better aligned with the social interest. A natural and tra-
ditional approach is to change the cost structure, by rewarding
investment (decreasing investment costs) or punishing failure to
invest (increasing the cost of non-investment). For many of the
scenarios listed above, monetary fines, other types of penalties, or
social pressure implement such rewards or punishments. Gener-
ally, the design of cost or reward structures and rules of encounter
is at the heart of work in mechanism and market design [21].

In graphical games, such as the networked public goods game,
however, there is an additional important parameter that may be
subject to modification: the network structure itself. For example,
to facilitate crime prevention, the principal may organize commu-
nity meetings in particular neighborhoods, increasing the density
of the social network among the community members. The prin-
cipal may also add individual links, for example, by introducing
individuals to one another, or weaken relationships (remove links)
by adding hurdles to specific interactions (e.g., if the public goods
game represents strategic interactions in a criminal organization,
and law enforcement chooses which relationships to monitor).

We initiate an algorithmic study of targeted network structure
modifications in networked public goods games with binary ac-
tions, with the goal of inducing pure strategy Nash equilibria (PSNE)
with desirable properties. We will consider a principal who is aim-
ing for “high investment.” Each edge has a cost for addition/removal,
and to induce a desirable equilibrium of the game, the principal can
add/remove edges from the network, subject to an upper bound on
the total cost.

IFor clarity, we will always refer to agents using female pronouns, and the principal
using male pronouns.
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Naturally, there are different concrete ways of capturing the
goal of “high investment,” and we consider the following four nat-
ural candidate properties which the target equilibrium should sat-
isfy: (1) all agents invest, (2) exactly a given subset S of agents
invest, (3) at least the agents in a given subset S invest, and (4) at
least r agents invest. We study each of these objectives for games
with a variety of utility functions, ranging from general monotone
functions to generalized sigmoid functions, as well as convex and
concave functions. While we show (in Section 3) that the problem
is NP-complete for several of these scenarios, we exhibit (in Sec-
tion 4) a broad array of settings in which it can be solved in poly-
nomial time by non-trivial reductions to minimum-cost matching
problems. The full summary of our main results is presented in
Table 1.

all =S 28 =>r

general hard hard hard hard
sigmoid poly poly hard hard
convex poly poly hard hard
concave poly poly hard hard

Table 1: An overview of our results.

For all entries of the table marked “poly,” our algorithms handle
fully general edge cost structures. On the other hand, all of the
hardness proofs apply already in very restrictive cases, allowing
only one of addition and removal, and either allowing unlimited
changes of the allowed type, or simply restricting the total number
of added/removed edges.

Related Work: Our work is conceptually connected to three broad
threads in the literature: graphical games, mechanism and mar-
ket design, and network design. Graphical models of games cap-
ture various forms of structure in the players’ utility functions
which limit the scope of utility dependence on other players’ ac-
tions [24]. An important class of these are graphical games, where
aplayer’s utility only depends on the actions of her network neigh-
bors [16]. Networked public goods games are one important ex-
ample of graphical games, with utilities only depending on the
investment choices by a player’s network neighbors [3, 10, 17].
Bramoullé and Kranton [3] studied the effects of network struc-
ture modification on a public goods game. Our results, however,
are novel in several respects. First, they assumed that only a sin-
gle edge is added to the underlying network and studied how the
addition affects welfare. In contrast, we consider addition and dele-
tion of sets of edges, and focus on the algorithmic aspects of the
problem. Moreover, Bramoullé and Kranton only consider strictly
concave utility functions, whereas we study convex, concave, and
general sigmoid utility functions (detailed definitions are in Sec-
tion 2). Galeotti et al. [10] also considered the effects of modifying
the underlying network of a public goods game on equilibrium be-
havior and welfare. However, their analysis is restricted to con-
vex or concave utilities which are degree symmetric (i.e., if two
nodes have the same degree, they must have the same utility func-
tion), involves incomplete information of players about the net-
work, and does not consider the associated algorithmic problem.
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In contrast, we focus on algorithmic questions and allow hetero-
geneous utilities. Yu et al. [29] studied algorithmic aspects of bi-
nary public goods games They showed that in general, checking
the existence of a pure-strategy Nash equilibrim is NP-complete,
and also identified tractable cases based on restrictions of either
the utility functions or the underlying network structure. They
proposed a heuristic to compute approximate equilibria in gen-
eral games. However, they did not consider modifying the network
structure to induce certain Nash equilibria. Grossklags et al. [13]
studied how economic agents invest in security through the lens
of public goods games. The value of the public goods is the over-
all protection level. Each agent has two options: investing in self-
protection, or investing in self-insurance. The former affects the
overall protection level, as well as the loss incurred by the agent,
while the latter only affects the agent’s own loss. They analyzed
the Nash equilibria under five economic settings, which character-
ize different threat models.

Mechanism and market design (e.g., [21]) also aim to change the
parameters of a game to induce equilibrium outcomes favored by
a principal. However, the specific ways in which the game’s pa-
rameters are changed are vastly different; key approaches include
the design of market structure, such as matching market mecha-
nisms [14], payments, as in traditional mechanism design [21], or
the structure of information available to the players [7].

Anoter relevant line of research is network design. An inter-
esting subclass is network design with fair cost-sharing [2]. Net-
work design has also been applied to model security applications.
Hota and Sundaram [15] focused on designing an optimal network
topology that minimizes the expected fraction of attacked nodes,
where the probability of a node being attacked is a function of its
security investment as well as the investments by its neighbors.

The idea of altering a (social) network in order to induce cer-
tain outcomes is present in a number of recent works, for a variety
of different outcomes. Sheldon et al. [23] aim to modify the net-
work so as to maximize the spread of cascades, while [6, 12, 27]
aim to alter the spectral gap of the network to make it more or
less connected. Along similar lines, Bredereck and Elkind [5] con-
sidered the converging state of simple information diffusion dy-
namics, with a specific focus on how the removal of edges can be
used to manipulate the majority opinion in such outcomes. Similar
ideas arise in a recent line of work (e.g., [19, 25] and the references
therein) studying how the outcome of an election can be manipu-
lated by altering network structures. In a sense, the converse prob-
lem is studied by Amelkin and Singh [1], who aim to reduce opin-
ion control by recommending (i.e., adding) links to social network
users. Similar ideas are present in the work of Garimella et al. [11],
who aim to decrease opinion polarization by connecting pairs of in-
dividuals with differing opinions. Sless et al. [26] investigated the
problem of coalition formation through adding links to the under-
lying social network. All of these works share the high-level goal
of inducing (socially) preferable equilibrium behavior, but the spe-
cific optimization goals, and with them the algorithmic approaches,
are vastly different.

An analysis of connections between equilibrium outcomes of
games and network structure was carried out by Bramoullé et al. [4].
They found that the smallest eigenvalue A, of the network’s ad-
jacency matrix is a key quantity for equilibria; recall that spectral
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properties also play a role in several of the other related papers
discussed above. Bramoullé et al. also considered the effects of net-
work structure modification; in particular, they investigated how
the addition of edges affects Apin, which in turn provides a quali-
tative understanding of the effects of edge additions on equilibria.
However, they did not investigate the algorithmic issues involved.
Milchtaich [20] studied equilibrium existence as a function of net-
work topology in weighted network congestion games.

2 MODEL

2.1 Binary Networked Public Goods Game

A binary networked public goods (BNPG) game is characterized by
the following:

(1) A simple, undirected and loop-free graph G = (V, E) whose
nodes V = {1,2,...,n} are the agents/players, and whose
edges E = {(i,j) | i,j € V} represent the interdependencies
among the players’ payoffs.

(2) A binary strategy space {0, 1} for each player i. Choosing
strategy 1 corresponds to investing in a public good, while
choosing 0 captures non-investment. We use x; to denote
the action chosen by player i, and x = (x1,x2, ..., %n) for
the joint pure strategy profile of all players.

(3) For each player i, a non-decreasing utility function U;(x).

As is standard in the literature on networked public goods [3],

we assume that each player’s utility depends only on (1) her own
investment (for which she incurs a cost), and (2) the joint invest-
ment of herself and her neighbors in the network, which provides
her with a positive externality. Formally, we capture this as follows.
Let Ni(G) ={j | (j, i) € E} be the set of neighbors of i in the graph
(G

G; then, we can define n; x) _ Z].E/V(G) xj to be the number of i’s

neighbors who invest under x. When G, x are clear from the con-
text, we will omit them from this notation. We assume that each
player i’s utility function is of the following form:

Us(x) = Ui, ™) = gilas +ni™) — e (1)

The second term (—c;x;) simply captures the cost that i incurs
from investing herself. Each g; is a non-negative and non-decreasing
function (a standard assumption in the public goods games liter-
ature), capturing the positive externality that i experiences from
her neighbors’ (and her own) investments. In many scenarios, g;
will have additional properties, such as being concave or convex,
and we discuss such properties in Section 2.3. Observe that each
function g; can be represented using O(n) values, so the entire
BNPG game (including the graph structure) can be represented us-
ing O(n?) values.

We are interested in inducing particular pure strategy Nash Equi-
libria of the game by modifying the network structure. Pure strat-
egy Nash Equilibria are defined as follows:

Definition 2.1. In a BNPG game, a pure strategy Nash Equilib-
rium (PSNE) is an action profile x € {0, 1}" satisfying U; (x;, ng.x)) >
Ui(1 - x;, ngx)), or Uj(x;, ngx)) = Ui(1—x;, ngx)) and x; = 1, for ev-
ery player i. Thus, we are assuming that each player in equilibrium
always breaks ties in favor of investing.
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A given BNPG game may have multiple equilibria. We will be
interested in modifying the graph G to ensure that at least one
element of a given set X is a PSNE. For notational convenience,
we interpret X both as a set of strategy vectors x € {0,1}" and as
the subset of investing players S(x) := {i | x; = 1}, whichever is
notationally more convenient. We are interested in the following
classes of PSNE:

all: Every player invests, ie, X = {{1,2,...,n}}.

= S: Exactly a given set S of players invests (and the other play-
ers do not), i.e., X = {S}. All players investing is the special
case S = {1,...,n}.

2 S: At least the set S of players invests; other players may
also invest. Here, X = {T | T 2 S}.

> r: At least r players invest. Here, X = {T | |T| > r}.

In general, even without the ability to modify G, deciding if a
BNPG has an equilibrium in X is NP-hard. This can be seen most
directly with the following example (see also Section 3.2 of [3]):
Each costis¢; = 1, and each g;(z) = 2if z > 1, and g;(0) = 0. Then,
the PSNE are exactly the strategy profiles x in which independent
sets of G invest. Therefore, if X is the set of all profiles in which
at least r players invest (for given r), the problem of deciding if
the game has a PSNE in X is equivalent to the INDEPENDENT SET
problem.

2.2 Network Modifications

The main modeling contribution of our work is to assume that a
principal can modify the network G (subject to a budget) with the
goal of inducing equilibria from a class X. Formally, an input graph
G’ = (V,E’) on the agents is given. Each node pair (i, j) has an
associated cost y(; jy = ¥(,;) = 0. When (i,j) € E’, this is the
cost for removing the edge (i, j) from G’, while for (i,j) ¢ E’, it is
the cost for adding the edge (i, j) to G’. When the principal pro-
duces a graph G = (V,E), the cost of doing s0 is Y ocpap Ye =
2ecE\E' Ye + 2ieeE\E Ye- The principal is given a budget B not to
be exceeded. The goal is to solve the following problem:

Definition 2.2 (Network Design for BNPG). Given a BNPG instance,
edge costs ye, desired PSNE class X, and budget B, find an edge set
E with ) ,cpap Ye < B such that the BNPG game on (V, E) has at
least one PSNE in X.

The general costs y(; ;) admit many natural special cases: by set-
ting y(; j) = oo for (i, ) € E’ (or for (i, j) ¢ E’), we can prohibit the
removal (or addition) of edges. By setting y(; ;) = 0, we can allow
unlimited removal (or addition) of edges. And by setting y(; ;) = 1,
we can simply restrict the number of edges removed/added.

2.3 Utility Functions and Induced Degrees

In the fully general version of the model, the g; can be arbitrary
non-decreasing functions. We will show that at this level of gener-
ality, the Network Design problem is NP-hard for all four classes
of PSNE we consider (Theorem 3.2). In most scenarios, g; will have
additional properties. Among the most common of these are:

Concavity When g; is concave, the returns for additional in-
vestments of neighbors are diminishing. The incentive struc-
tures in binary best-shot games [10] can be captured by con-
cave g;.
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Convexity When g; is convex, the returns for additional in-
vestments of neighbors are increasing.

Sigmoid For many natural scenarios, such as the adoption of

innovations [30], the g; are neither concave nor convex on
their entire domain. Instead, g; begins convex, with increas-
ing returns to more investors, but eventually reaches satu-
ration and diminishing returns.
We call such a function g; a (generalized) sigmoid function?® if
there exists some Z such that g;(z) is convex on {z | z < 2}
and concave on {z | z > Z}. Note that sigmoid functions
subsume both concave functions (with Z = —o0) and convex
functions (with Z = o).

The first useful observation is that we can capture all the rele-
vant information about an agent i’s utility function using the set of
numbers of investing neighbors that would make i invest. We call
such sets investment degree sets, and denote them by D;. When g;
is convex/concave/sigmoid, the investment degree sets have par-
ticularly nice forms, captured by the following lemma:

LEMMA 2.3. For every non-decreasing function g; : [0,n — 1] —
Ry and cost c;, there exists a unique set D; C {0,1,...,n— 1} such
that x; = 1isa best response ton; ifand only ifn; € D;. Furthermore,

(1) When g; is concave, D; is a downward-closed interval.
(2) When g; is convex, D; is an upward-closed interval.
(3) When g; is sigmoid, D; is an interval.

Conversely, for every set D; C {0,1,...,n— 1}, there exists a non-
decreasing function g; : [0,n—1] — Ry and cost ¢; such that x; = 1
is a best response to n; if and only if n; € Dj. Furthermore,

(1) When D; is a downward-closed interval, there exists such a g;
which is concave.

(2) When D; is an upward-closed interval, there exists such a g;
which is convex.

(3) When D; is an interval, there exists such a g; which is sigmoid.

Proor. We write Ag;(z) = gi(z+ 1) —gi(z) for the discrete deriv-
ative. By definition of best responses (recall our tie breaking rule),
aplayer i invests if and only if U;(1, n;) > U;(0, n;), which is equiv-
alent to

Agi(n;) = c;. (2

Thus, letting D; = {z | Agi(z) > c;}, we obtain that x; = 1 is
the best response to z iff z € Dj, proving the first claim. We now
consider the three special cases:

(1) When g; is concave, Ag; is non-increasing. Therefore, when-
ever Agi(z) > ¢;, we also have Agj(z—1) > ¢;, meaning that
D; is downward closed.

(2) When g; is convex, Ag; is non-decreasing. The rest of the
argument is exactly as for the concave case.

(3) When g; is sigmoid, Ag; is non-decreasing on [0, 2] and non-
increasing on [Z,n — 1], with the maximum attained at Z.
Therefore, D; is an interval.

2There are several definitions for the term sigmoid function, requiring various nor-
malizations, smoothness properties, or even specific functional forms (e.g., logistic).
Here, we use the term in the very broad sense.
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For the converse, given a set D;, define a discrete derivative of
Agi(z) = 2if z € D;, and Agi(z) = 0if z ¢ D;. Normalizing
with g;(0) = 0, and setting ¢; = 1, player i will invest iff z € D;.
If D; is an interval, then g; will start out as the constant 0, have
slope 2 over the interval, and then become flat at the end of the
interval. Thus, g; is a sigmoid. If the interval is downward-closed,
then the function is concave; if it is upward-closed, the function is
convex. ]

The characterization of Lemma 2.3 makes precise our intuition
behind considering concave/convex g;. It shows that when g; is
concave, then the fewer neighbors invest, the more i is prone to
invest. On the other hand, when g; is convex, then the more neigh-
bors invest, the more i is prone to invest. The primary benefit of
Lemma 2.3 is that the Network Design problem can now be con-
sidered solely in terms of D; and induced numbers of investing
neighbors, rather than utility functions, simplifying the arguments
below.

Definition 2.4 (Network Design for Degree Sets (NDDS)). The prob-
lem NDDS (P, X) is defined as follows: Given a graph G’ = (V, E’),
investment degree sets D; for all players i consistent with a func-
tion property P (such as convexity, concavity, sigmoid, or general),
edge costs ye, desired PSNE class X, and budget B, find an edge set
E with 3}, cgpapr Ye < B such that there exists a set I € X of invest-
ing players with

W nIleD;  foralliel,

W nIeD;  foralligl.

Here, G = (V, E) is the modified graph.

Because the investment degree sets D; can be efficiently con-
structed from the g; and ¢; and vice versa, an algorithmic solu-
tion or a hardness result for the NDDS (P, X) problem immedi-
ately yields the same result for the corresponding Network Design
problem from Definition 2.2, and vice versa.

3 HARDNESS RESULTS

In this section, we prove the hardness results from Table 1. Hard-
ness arises in different ways for different cases, and we treat them
separately. For all versions, the problem is obviously in NP: a set I
of investing agents forms a polynomial-sized witness, and it is easy
to verify that (1) for each agent in I, investing is a best response,
and (2) I € X.

NDDS (convex/concave, > r). When the goal is to get at least r
agents to invest, NP-hardness follows from the discussion in Sec-
tion 2.1. Even when all edge costs y(; jy = oo, ie., the principal
cannot add or remove any edges, it is NP-hard to decide whether
the BNPG has an equilibrium in which at least r agents invest.

NDDS (concave,2 S). When the goal is to get a superset of a
given set S of agents to invest, it is NP-hard to decide whether a
suitable equilibrium exists. Since concave functions are a special
case of sigmoid functions, this result implies the hardness result
for sigmoid functions as well.

THEOREM 3.1. NDDS(concave, 2 S) is NP-hard.
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Proor. The reduction is from INDEPENDENT SET. Given a graph
H = (Vy, Eg) and an integer k, the problem is to decide if H con-
tains an independent set of size (at least) k, i.e., a set T C Vg such
that no pair in T is connected by an edge. For the reduction, we
add two nodes u, %i. u has an edge to 4 as well as to all nodes in Vp;
no other edges are added to Egy. The degree sets are D, = 0 for
allv e Vg U {a}, Dy ={0,1,...,k},and S = {u}. We set all edge
addition/removal costs to co.

If H has an independent set T of size at least k (without loss of
generality, T is inclusion-wise maximal), then setting I = T U {1}
gives us a superset of S. No v € I has a neighbor in I, so all of them
invest. Each v € Vg \ I has at least one neighbor in I, so none of
them invest. Finally, u has at least k + 1 neighbors in I, so u does
not invest.

Conversely, if a superset I 2 S = {i} invests, then u ¢ I. There-
fore, u must have at least k + 1 neighbors in I; in particular, u has
at least k neighbors in V. Because all of those neighbors are in I,
their degrees within I must be 0, so they must form an independent
set of size at least k. This completes the proof of NP-hardness. 0O

NDDS (general, all). For fully general functions g;, we show that
even the “easiest” goal — getting all agents to invest — is NP-hard.
This immediately implies NP-hardness of the other cases (getting
exactly or at least a subset S or at least r agents to invest), since
their special cases S = V or r = n are hard.

THEOREM 3.2. NDDS(general, all) is NP-hard.

Proor. We prove NP-hardness by a reduction from the VERTEX
Cover (VC) problem. In an instance of VC, we are given a graph
H = (Vy,Ep) and a positive integer k, and asked if H has a vertex
cover of size at most k, i.e., a subset S C Vi of at most k nodes such
that each edge e € Ep has at least one endpoint in S. From H, k, we
construct an instance of NDDS (general, all), consisting of a graph
G’ = (V,E’), investment degree sets D; for each node i € V, costs
¥(i,j) for edge addition/removal, and a budget B.

The set of nodes V consists of Vi, one vertex u, for each edge
e € Eg, and one additional vertex w. The edges E’ are as follows:

e w is connected to all nodes in V.
o There is an edge between v and u, if and only if v is an
endpoint of e in H.

Let dg7(v) be the degree of v in H. We define the investment degree
sets for the agents as follows:

e For every v € Vi, we let D, = {0,dg(v) + 1}

e For every ue, we let Dy, = {1,2}.

e D, ={0,1,...,k}.
Finally, we set the costs y, = 0 for e € E’, and Y, j) = for (i,)) ¢
E’. The budget is B = 1 (or really any non-negative number). Thus,
the principal can remove as many edges as he wants, but cannot
add any edges. This completes the reduction, which obviously runs
in polynomial time.

First, assume that H has a vertex cover of size at most k. We
show that there is a way to remove edges from E’ such that each
player i’s degree ends up in D;. Let S be the vertex cover of H. Let
E C E’ be the set of all edges not incident on Vg \ S. Then, w
is only incident on edges whose other endpoint is in S, so it has
degree at most k. Each node v € Vg \ S has all its edges removed,

AAMAS’20, May 2020, Auckland, New Zealand

so its degree is 0. Each node v € S is connected to dg(v) nodes
corresponding to the dy(v) edges incident on v in H, plus its one
edge to w, so its degree is dgy(v) + 1. Finally, because S is a vertex
cover, each node u, is incident on at least one node v € S, so its
degree is 1 or 2. Thus, we have shown that each node i € V has
degree in D;.

For the converse direction, assume that there is a set E C E’ of
edges such that in G = (V, E), each node i has degree in D;. Let
S = {v € Vg | (w,v) € E} be the set of vertices whose edge to
w is kept. Because the degree of w is in D, we get that [S| < k.
For each node v € Vg \ S, at least the edge to w was removed,
so its degree cannot be d(v) + 1. Therefore, its degree must be
0, so E cannot contain any edges incident on any v € Vg \ S. For
each node v € S, at least the edge to w was retained, so its degree
cannot be 0. Therefore, its degree must be dy(v) + 1, so E must
contain all edges incident on all v € S. Finally, because each node
ue has degree in {1,2} in (V, E), each must have a neighbor in S.
In other words, each edge e € Ey has at least one endpoint in S.
This proves that S is a vertex cover of H. O

NDDS (convex, 2 S). Finally, we show that NDDS (convex, 2 S)
is NP-hard. In contrast with the proof of Theorem 3.2, the hard-
ness result for convex functions has to use edge costs other than
0 and oco. The reason is that for convex sets, higher degrees are
always preferable. Consequently, a principal will never remove
edges (even if they are free to remove). On the other hand, if edge
additions are free, the principal’s optimal strategy is clearly to make
G the complete graph. Either this will induce all nodes in S to in-
vest, or no graph G will.

THEOREM 3.3. The problem NDDS (convex, 2 S) is NP-hard, even
when y(; jy =1 forall (i, j) ¢ E’, and ye = 0 for alle € E’.

ProOF. We prove NP-hardness by a reduction from the k-CLIQUE
problem. In an instance of k-CLIQUE, we are given a graph H =
(V,Ep) and a positive integer k, and asked if H has a clique of
size at least k, i.e., a subset S C Vi of at least k nodes such that
(u,v) € E for all u,v € S,u # v. From H, k, we construct an in-
stance of NDDS (convex, 2 S), consisting of a graph G' = (V,E’),
investment degree sets D; for each node i € V, costs y; ;) for edge
addition/removal, and a budget B.

The graph G’ consists of H, with a node-disjoint clique on nk
nodes added. We call the set of new nodes V', and write V=V’ U
Vg . Thus, the new graph has nk + n nodes. The investment degree
of every node i is D; = {nk+k—1,...,nk+n}. The cost of adding
any non-existing edge (i, j) is y(; j) = 1, and the cost for removing
any existing edge e is ye = 0. The budget is B = nk?. Notice that
the D; by Lemma 2.3 indeed correspond to convex functions g;.
Finally, the goal is to get a superset of V' to invest.

First, assume that H has a clique S of k nodes. Let E consist of all
edges of G/, plus a complete bipartite graph between V” and S. This
added bipartite graph contains kn -k = k?n edges, so it satisfies the
budget constraint. It is now immediate that each node in V’ US has
degree at least nk + k — 1. The nodes in Vg \ S have degree at most
n— 1. As a result, setting I = V’ U S satisfies Definition 2.4.

Conversely, let E be a set of edges with |[E\E’| < nk? andI C V'
a set of vertices such that in the graph (V, E), each node v € I has
at least nk + k — 1 neighbors in I, and each node v ¢ I has at most
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nk + k — 2 neighbors in I. First, because each node v € V' started
out with degree nk — 1 and has at least nk + k — 1 neighbors in I,
E \ E’ must contain at least k incident edges for each such v. And
because E’ already contained a clique on V', these edges must be
between V’ and Vg, so none of them are incident on two nodes
of V’. Therefore, E \ E’ contains exactly k incident edges on each
veV.

Let S be the set of neighbors of V” in Vy. First, |S| > k, because
each node v € V' is adjacent to k nodes in V. Next, we claim that
I = V' US. First, all nodes in S must be in I. The reason is that each
v € V’ has degree exactly nk + k — 1, so if even one of its neighbors
were not in I, it couldn’t have the required nk + k — 1 neighbors
in I. Second, no node in Vg \ S can be in I, because its degree is at
mostn—1<nk+k-1.

For every node v € S, let k(v) be the number of neighbors of v in
SUV’ in the graph G = (V, E). Because S C I, we can lower-bound
k(v) = nk+k—1.0n the other hand, ¥, cs ko < |S]-(|S| —1) +nk?,
and because the minimum k,, is at most the average, we get that
nk+k—1 < minges ko < (|S|]-1)+ 'llTkr.Rearranging this inequality
gives us that |S|(nk + k — |S|) < nk?. The left-hand side is a strictly
concave function of |S|, and therefore attains its minimum at one
of its endpoints |S| € {k,n}. At |S| = k, the inequality holds with
equality, while at |S| = n, it is violated. Therefore, |S| = k is the
only feasible solution of the inequality. Because each v € S only
has nk neighbors in V’, and none of its neighbors in Vg7 \ S are in
I, each v € S must have k — 1 neighbors in S. In other words, S is
a clique of size k in H. O

4 TRACTABLE CASES

In this section, we give polynomial-time algorithms for the cor-
responding cases in Table 1. At the core of our algorithms lies a
construction for the NDDS (sigmoid, all) problem, which is based
on a reduction to the MINIMUM-COST PERFECT MATCHING prob-
lem. This reduction is a significant generalization of Tutte’s reduc-
tion for finding a subgraph with a given degree sequence. The PEr-
FECT MATCHING problem is polynomial-time solvable by utilizing
the Blossom Algorithm proposed by Edmonds [8]. The remaining
cases are either special cases of NDDS (sigmoid, all), or can be re-
duced to NDDS (sigmoid, all) fairly directly.

4.1 Tractability of NDDS (sigmoid, all)

Consider an instance of NDDS (sigmoid, all), consisting of a graph
G’ = (V,E’), investment degree sets D;, costs y(; ;) for edge addi-
tion/removal, and a budget B. The principal wants to modify G’ to
G = (V,E) (at total cost at most B), such that all agents invest in a
PSNE of the corresponding game. We construct an instance of the
weighted perfect matching problem on a graph H = (Vig, Efy) and
show that the principal has a graph modification of cost at most B
available iff G has a perfect matching of total cost at most B. Our
construction generalizes Tutte [28]. We begin by describing Tutte’s
construction, and then present our generalization.

Tutte’s reduction applies to the special case when edges can
only be removed, and furthermore, each investment degree set
Dy, = {dy} is a singleton, called the desired degree of v. Each node
v must have exactly Ady, := dg/(v) — dy, of its edges removed. To
encode this, Tutte’s construction adds a node set X, of Ad, nodes
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x;’j,j =1,...,Ad,. Furthermore, it adds two nodes Ye. v Yeu for
every edge e = (u,v). These two nodes are connected to each other,
and to all nodes in their respective sets X, X;,. It is clear that the
construction takes polynomial time. Any perfect matching has to
match all of the nodes in each X, capturing exactly the edges in-
cident on v to be deleted. Because for each edge e = (u,v), both
Ye.» and y, , must be matched, either they are matched to each
other (encoding that the edge is not deleted), or they must both be
matched with nodes from the corresponding X7, and X, sets. It is
now straightforward that the new graph has a perfect matching
iff the desired degree sequence can be obtained by edge removals.
Edge removal costs can be assigned to the edges between X and
the y; ,,.

Because the addition of edges corresponds to the removal of
edges in the complement graph, a practically identical construc-
tion can be used directly if the goal is only to add, rather than
remove edges. However, in NDDS (sigmoid, all), the principal can
both add and remove edges. Furthermore, the investment degree
sets D; can be intervals containing multiple values. This necessi-
tates significant extensions to Tutte’s construction.

We now describe our generalized construction, where a graph
H = (Vy, Egy) is constructed from G’. For every agent i € V, the de-
gree in G’ is d/ (i), and the degree set is D; = {L;, ..., R;}, where
L; (resp., R;) is the minimum (resp., maximum) of D;. If any set
D; is empty, then the instance clearly has no solution, and this is
easy to diagnose. From now on, we assume that D; # 0 for all i.
At the core of the construction is the union of the Tutte construc-
tion for both additions and removals of edges. Thus, for each edge
e = (i,i’) € E’ (a candidate for removal), we add two nodes Ye.i
and Yo ir with an edge between them; similarly for each node pair
e’ = (i,i’) ¢ E’ (a candidate for addition), we add two nodes y:,’i
and y:,’  with an edge between them.

Next, we describe the node gadget for anode i. An illustrative ex-
ample is shown in Figure 1. We add a set Xi+ of min(R;, n—dg(i)—1)
nodes xz j (blue nodes in Figure 1), corresponding to additions of
edges, and a set X; of min(n—L;~1,dg(i)) nodes X; (green nodes
in Figure 1), corresponding to edge removals. These are hard up-
per bounds on the number of possible edge additions/removals: for
|X;F|, the first term arises because even if all existing edges were
deleted, no more than R; new edges can be safely added; the sec-
ond term is because there are only n — dg/(i) — 1 potential edges
for addition. The justification is similar for |X[|. As in Tutte’s con-
struction, we add an edge between each node xz . and each y:,’ i
Similarly, we add an edge between each node x; ] and each y ;.
Finally, we add a complete bipartite graph between X; and X}

As in Tutte’s construction, including an edge between x;: ]
y:,’i in a matching corresponds to adding the edge e’ (increasing

and
the degree of i), and including the edge (x; i+ g, ;) corresponds to
removing the edge e, decreasing the degree of i. Because no other
edges are incident on y:, i Yg o for any edge e = (i, i), either
Yy, ; is matched with Y, s OF both are matched with nodes from
2 N e " —
X; (resp., X,); similarly for the y; ; nodes. The complete bipartite
graph between X, and X} allows us to encode that adding one
fewer edge and removing one fewer edge has the same effect on
i’s degree as adding and removing one more edge.
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Figure 1: Example to illustrate our generalized construction.
Right: the subgraph H(i) associated with i.

We now expand the gadget to encode the set D;. The intuition
for the generalized gadget is the following: if k; nodes in X are
matched with nodes y:,’l., and ki_ nodes in Xi_ are matched with
nodes y, ;, then the new degree of i is dg/ (i) + k;’ —k; . We want to
force this number to be in D; = [L;, R;] for every perfect matching.
If we let 12;“ = |Xl+| - k;’ and 121_ = |X;| — k; be the number of
nodes in Xi+’ X7 that are matched differently (i.e., not with y:, i
y;i), then the necessary/sufficient condition can be expressed as
ki —kf € [Li = (dor () + X1 = X7 ). Ri = (dr (D) + X = 1X; D]
Furthermore, notice that our gadget will only need to work if at
least one of l%l_, ];1+ is 0, since the complete bipartite graph between
X7, X 1+ can always be used to ensure this condition.

Let o; = dg (i) + |Xi+| = |X;|. A case distinction on the possible
cases of the minimum in the definitions of | X 1+ |, 1X; | shows that
we always have L; < o; < R;. Therefore, L; — 0; < 0 < R; — 0j.
We generate two more node sets Z?’, Zi_ . Z?’ consists of o — L;
nodes z?:j, and Z; consists of R; —0; nodes Zi_,j‘ There is a complete
bipartite graph between Z; and X", as well as between Z; and X .
In addition, there is a complete graph on the union of all of the Z;
and Zi_’ for all i. If the total number of nodes in the construction is
odd, then we add one more node z and connect it to all nodes in all
of the Z; and Z; . The ZZ 27 are there to match any otherwise
unmatched nodes x;: i x; .. Whichever ones of them are not needed
can be matched with each other and with 2.

Finally, for every edge e = (i,i") € G’, we assign a cost of y. /2
to the edges (x; " y;i) and (xl._,’j, y;i,) (for all j); similarly, for ev-
ery edge e/ = (i,i’) ¢ G’, we assign a cost of y,//2 to the edges
(x;:j, y:,’l.) and (x;i’j, y:,’i,) (for all j). All other edges have cost 0.
The cost bound for the perfect matching is the given budget B. The
correctness of this reduction is captured by the following theorem:

THEOREM 4.1. The graph H has a perfect matching of total cost
at most B if and only if there is an edge modification E of the input
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Left: An example graph where dg/ (i) = 2, D; ={4,5,6}, and n = 10;

graph G’ such that in (V,E), the degrees of all nodes i are in their
respective investment sets Dj.

Proor. First, we assume that there is an edge set E C VXV such
that Y .cprag Ye < B, and in the graph G = (V,E), every node i
has degree dg(i) € D;. We define a perfect matching M in H.

For edges e = (i,i’) € E N E’, the matching includes the edge
(y;i, y;i,); similarly, for edges e’ = (i,i’) ¢ E, e’ ¢ E’, it contains
the edge (y:,’l., y:,’l.,).

Now focus on one node i. Let ki, k; be the numbers of edges
that were added to (resp., removed from) i, i.e., the numbers of
edges incident on i in E\ E’ and E’ \ E. Letef, ..., el’C.+ be an enu-

meration of the added edges (in arbitrary order), and ey, . . ., ex- an

enumeration of the removed edges in arbitrary order. For each e]’.,
the matching M includes the edge (x;r : y:, l.); similarly, for each
el

L

ej, M includes the edge (x] ;, ye_‘j’ ;)- Doing this for all i ensures that

all nodes y:, i» Up,; are matched, and the total cost of all edges is
exactly 3, ¢ };/ AE Ye < B.This cost will not change by the inclusion
of later edges, since they all have cost 0.

Next, let m; := min(|Xi+|—kg', |X;|=k; ). Notice that m; > 0, be-
cause our definition of | X 1+ |, |X7| ensured that no edge set E with
dg(i) € D; could add/remove more than |X;r| (resp., |X;|) edges.
We next add a perfect matching of m; edges (xz Kt x; k- +j) for
j =1,...,m;. At this point, at least one of the sets Xi+, X; is com-
pletely matched. For the remaining description, assume that X" is
fully matched — the other case is symmetric. Now, there are

X =k —mi <X - 1X7 |+ (k7 — k)
(oi —do (D)) + (k; — k)
oi —dg(i)

unmatched nodes in X;’. Because dg(i) € Dj, it must satisfy

dg(i) = Lj; therefore, because Z;r contains o; — L; > o3 — dg(i)
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nodes, it has enough nodes to perfectly match the remaining nodes
of X} — we add such a perfect matching. Finally, we add a perfect
matching on the unmatched nodes of all Z;r , Z; (and 2) — this
is possible, because H contains a complete graph on these nodes,
the total number of nodes in H is even, and the number of nodes
matched so far is (by definition of a matching) even. Thus, we have
shown that H contains a perfect matching of the desired cost.

For the converse direction, we assume that H contains a perfect
matching M of cost at most B. Define edge sets E* = {¢’ = (i, ) ¢
E' | (57 oyl ) & My and B = (e = (i.)) € ' | (5] vy ;) & M},
That is, E* consists of the edges for which addition was encoded
in the Tutte reduction part, and E~ of the edges for which removal
was encoded in the Tutte reduction part. Let E = E/ UEY \ E™.
Because M is a perfect matching, it must include edges of the form
(x;:j, y:,’l.), (x;r,’j, y:,’i,) for all edges e’ = (i,i’) € E*, and edges
of the form (x;j, y;i), (xi_,’j, y;i,) for all edges e = (i,i’) € E". In
particular, the total cost of EAE’ is exactly B.

It remains to show that in the graph G = (V, E), each node i has
degree dg(i) € D;. Let k] be the number of edges in E* incident
on i, and ki_ the number of edges in E™ incident on i. Then, be-
cause the y:,’i for e’ € ET are not matched to y:,’ i they must be
matched to some x;:j; similarly, the y;i for e € E~ are matched to
some x; . In particular, this means that k;’ < |X;r |, k; < |IX;|. Fur-
thermore, because X" and X; are completely matched, and they
can only be matched with each other and y:,’l. and Zi+ (y; HOrZ7,
respectively), we infer that (|Xl+| - k:’) -(X;1-k;) < oi—L;jand
(IX;1=k7) - (|Xl+| - kl+) < R; — o;. Substituting the definition of
oi, these inequalities rearrange to L; < dg/(i) + k;’ -k =dg(i)
and R; > dg/(i) + k;’ - k; = dg(i). Thus, we have shown that
dg(i) € [Li, Ri], so the degree constraint for i is met. Since this
holds for all i, the proofis complete. O

The reduction clearly runs in polynomial time (and is in fact
fairly straightforward), and the Minimum-Cost Perfect Matching
problem is known to be solvable in polynomial time [8]. Thus, we
obtain a polynomial-time algorithm for the NDDS (sigmoid, all)
problem, as claimed. Because convex and concave functions are
special cases of sigmoid functions, NDDS (convex/concave, all) are
also polynomial-time solvable.

4.2 Tractability of NDDS (sigmoid, = 5)

Finally, we leverage the algorithm from Section 4.1 for the more
general problem NDDS (sigmoid, = S).

Consider a hypothetical solution G = (V, E). Then, for every
node i ¢ S, we must have |Ni(G) N S| ¢ D;. Edges between node
pairs i,i’ ¢ S do not matter. Similarly, because exactly the nodes of
S are supposed to invest, for the purpose of investment decisions
ofnodes i € S, edges to nodes not in S do not matter. Thus, as a first
step, an algorithm can add/remove edges between S and V' \ S of
minimum total cost to ensure that | V. i(G) NS| ¢ D; foralli ¢ S. This
can be accomplished easily node by node: when considering node i,
either the principal will add R; + 1—dg (i) edges or remove dg (i) —
(L; — 1) edges. In both cases, the minimum-cost edges incident on
i will be chosen. If these additions/removals exceed the budget B,
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then no solution is possible. Otherwise, they will be performed,
and the budget updated to the remaining budget.

After the removal of these edges, the agents in V' \ S are irrele-
vant; the sole goal is to alter the edges within S at minimum cost
to meet the degree constraints. This is an instance of the prob-
lem NDDS (sigmoid, all) on the induced graph G’[S], which can be
solved using the algorithm from Section 4.1. Thus, we have proved
the following theorem:

THEOREM 4.2. The problem NDDS (sigmoid, = S) is polynomial-
time solvable.

Again, since convex and concave functions are special cases of
sigmoid functions, the tractability of NDDS (convex/concave, = S)
follows from Theorem 4.2.

5 CONCLUSION

The problem of modifying elements of a game structure to achieve
desired outcomes has a long history and interest in both econom-
ics and computing, with mechanism design the classic variation. In
mechanism design, a key design parameter is the payment scheme
for the players. The somewhat more recent literature on market
design is often focused on settings where payments are infeasi-
ble, and aims to design market structure, such as the rules of the
matching markets. An even more recent thread considers the prob-
lem of designing signals that modify information available to the
players, thereby inducing particular desirable outcomes. We sug-
gest considering a fourth element of the game in settings where
strategic dependencies among players are mediated by a network:
the design of the network structure. Such design decisions are com-
monly inherently constrained by an already existing network, and
we specifically consider the simplest and most natural design ac-
tion: adding and removing links. Additionally, to elucidate both
the process and the associated algorithmic mechanics, we further
delve deeply into a study of network design for networked pub-
lic goods games, with the goal of inducing desired pure strategy
equilibrium outcomes. The significance of our work is thus both in
proposing a novel framework for designing the rules of encounter
specific to networked game theoretic scenarios, and elucidating
the algorithmic complexity of this problem in the particular con-
text of networked public goods games.

Our work provides an initial step, but leaves open a number of
research questions. First, our focus on adding and removing edges
with an additive addition/removal cost clearly limits the scope of
applicability. In general, one would encounter numerous compli-
cations. For example, if the means for adding edges is through the
design of events, then the cost would be incurred for adding a col-
lection of edges (i.e., organizing an event), rather than adding each
edge independently. Indeed, one could consider a broad space of
reasonable cost functions that generalize additivity, such as sub-
modular costs. Second, the problem of inducing equilibria through
network modifications is interesting far more broadly than just net-
worked public goods games. For example, such network design is-
sues arise in congestion games. Third, we only considered the issue
of inducing pure strategy Nash equilibria. It is, of course, natural
to study other equilibrium concepts, such as mixed-strategy equi-
libria and correlated equilibria.
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