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Abstract 

We derive sample allocation formulas that maximize the power of several mediation tests in two-

level group-randomized studies under a linear cost structure and fixed budget. The results 

suggest that the optimal individual sample size is typically smaller than that associated with the 

detection of a main effect and is frequently less than 10 under parameter values commonly seen 

in the literature. However, the optimal sample allocation can be heavily influenced by the group-

to-individual cost ratio, the ratio of the treatment-mediator to mediator-outcome path 

coefficients, and the outcome variance structure. We illustrate these findings with a hypothetical 

group-randomized trial examining a school discipline reform policy and conclude with 

discussion of results.  To encourage utilization of the sample allocation formulas we implement 

them in the R package [masked for blind review] and the [masked for blind review] software.  
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multilevel models 

 



DESIGNING MULTILEVEL MEDIATION STUDIES  2 

 

 

 

Literature has consistently emphasized the advantages of randomized experiments when 

assessing the effects of treatments, interventions, programs, or services of interest 

(e.g.,Raudenbush, 1997; Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007; Shadish, 

Cook, & Campbell, 2002).  When studies involve populations in a hierarchical structure (e.g., 

students in schools) the randomization of individuals is sometimes impractical.  Researchers can 

often mitigate concerns and align study design with theory by assigning entire clusters or groups 

to a treatment condition.  Group-randomized studies designed around extant hierarchical 

structures are often logistically more efficient, ebb ethical concerns, and produce results that 

better generalize to the policy contexts they are intended to inform (Raudenbush, 1997; 

Spybrook & Raudenbush, 2009). 

Determining power, or the probability of detecting a treatment effect when one truly 

exists, in a group-randomized experiment is driven by the sample sizes (at each level), effect 

size, error variance of the treatment effect, outcome variance decomposition, and, if included, 

variance explained by prognostic covariates (e.g., Spybrook, Shi, & Kelcey, 2016; Kelcey & 

Shen, 2016).  Sample size allocation (i.e., the balance between the number of groups and number 

of individuals per group) is an important consideration in power analyses for group-randomized 

studies.  Sample size is a primary driver of statistical power and, unlike many of the other factors 

influencing power, is often within the control of researchers.  When power is a concern, group-

randomized studies typically privilege the number of groups over the number of individuals per 

group because it yields greater gains in efficiency. However, this strategy is practically limited 

by the additional costs incurred  by sampling higher level clusters (Raudenbush, 1997; Kelcey & 

Phelps, 2013; 2014).  Optimizing sample allocation balances these concerns by identifying the 
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most efficient sample of groups and individuals within a limited budget—that is, optimal sample 

allocation focuses on identifying sampling strategies that yield the maximum power for a given 

design and budget (e.g., Kelcey, Phelps, Spybrook, Jones, & Zhang, 2017).   

Group-randomized studies designed to detect the effect a treatment has on an outcome 

(i.e., main or total effect) provide valuable evidence concerning ‘what works’ but there is 

growing recognition of the need to more comprehensively investigate the theory guiding the 

intervention by probing the mechanisms through which the treatment is presumed to work (IES, 

US DoE, NSF, 2013; Raudenbush & Sadoff, 2008; Kelcey, Dong, Spybrook, & Cox, 2017).  The 

prevailing approach to examine these mechanisms is to establish a sequence of structural 

relationships through a mediation analysis (Baron & Kenny, 1986; Imai, Keele, & Tingley, 

2010).  Mediation analyses examine the changes in an outcome produced by exposure to a 

treatment as they operate through an intermediate or mediating variable.  Statistically, mediation 

is assessed using the indirect effect of the treatment on the outcome via a mediator. These 

analyses enable researchers to investigate, for example, how an intervention worked, if it worked 

and differentiate between theory and implementation failure, if it failed.   

 Despite the value of mediation analyses, the utility of group-randomized studies, and the 

practicality of optimal design, sparse literature is available examining the intersection of these 

components (VanderWeele, 2015 ; Hox, Moerbeek, Kluytmans, & van de Schoot, 2014; Kelcey, 

Dong, Spybrook, & Cox, 2017; Kelcey, Dong, Spybrook, & Shen, 2017).  This limitation 

constrains the scope, quality, and efficiency of designs available to researchers for studies of 

multilevel mediation because optimal and general guidelines regarding sample allocation in 

studies of multilevel mediation are entirely unclear and unavailable. To address this problem, we 
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derive optimal sample allocation formulas for group-randomized studies designed to detect 

multilevel mediation.  We investigate mediation in two-level group-randomized studies with a 

group level mediator and an individual level outcome (i.e., 2-2-1 mediation) within a multilevel 

linear path model. Similar to prior literature, we define optimal sample allocation as the mix of 

individual- and group-level sample sizes that maximizes power under a fixed budget and cost 

structure (e.g., Raudenbush, 1997).  In what follows, we outline power formulas to detect 

multilevel mediation effects under three design-centered tests: the Sobel, joint, and Monte Carlo 

confidence interval tests (MC interval test). Next, we derive formulas for optimal sample 

allocation under a linear cost structure framework for group-randomized studies of 2-2-1 

mediation and probe the roles of the governing parameters. We illustrate the application of the 

optimal sample allocation formulas with an example involving a school discipline reform policy 

and conclude with a brief discussion of results and recommendations.       

Multilevel Mediation 

Our analyses examine two-level group randomized designs in which groups are assigned 

to one of two treatment conditions (T).  The multilevel mediation model captures the indirect 

effect of the treatment on an individual-level outcome (Y) as it passes through a group-level 

mediator (M).  Later we extend this model to include individual-level covariates, their group-

level means, and group-level covariates.  We draw on the typical multilevel linear path 

formulation (Krull & MacKinnon, 2001) such that  

Mediator model  (Level 2)    
2

0 |~ (0, )j j j j MM aT N                 (1) 

Outcome model  (Level 1)    
2

0 ~ (0, )ij j ij ij YY e e N          (2a) 



DESIGNING MULTILEVEL MEDIATION STUDIES  5 

 

 

 

         (Level 2)   ' 2

0 00 0 0 |~ (0, )j j j j j YbM c T u u N              (2b) 

 The mediation equation (i.e., Equation 1) represents the treatment-mediator relationship 

and describes variation in the group-level mediator as a function of group-level variables.  We 

use 
jM as the mediator for group j, 

jT as the treatment assignment coded as ±½ with associated 

coefficient a, and 
j as the error term that is assumed to follow an independent normal 

distribution with a mean of zero and variance 2

|M .  The outcome equation (i.e., Equations 2a and 

2b) represents the mediator-outcome relationship such that ijY is the outcome for individual i in 

group j.  The error term for level-1 is represented by 
ije  and is assumed to be normally and 

independently distributed with a mean of zero and variance   
 .  At the group-level, we introduce 

b as the conditional relationship between the mediator and the outcome,
'c as the direct effect of 

the treatment. and 
0 ju as the group-specific random effects that are assumed to follow an 

independent normal distribution with a mean of zero and variance    
 . Like prior literature, we 

assume sequential ignorability and the typical recursive model structure and subsequently extend 

this model structure to condition on covariates (e.g., Allison, 1995). Further, we assume 

variables are fully reliable and caution readers that failing to meet this assumption does 

influence, power, sample size requirements, and accuracy of parameter estimates (Li and 

Beretvas, 2013).  

Test Statistics and Power 

Our derivations focus on the indirect effect of the treatment on the outcome through the 

mediator as captured by the product of the coefficients (  ) method under maximum likelihood 

estimation (MacKinnon, 2008).  In this section, we introduce three tests to assess the statistical 
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2/Sobel

ab abz ab 

significance of the mediation effect (i.e.,   ): the Sobel test, the joint test, and the MC interval 

test.  These tests represent a range of popular methods and each can be employed in the context 

of study design (i.e., before data have been collected) and analysis (i.e., after data have been 

collected).  We describe each test and methods to calculate power based on the corresponding 

test statistics.   

Sobel Test   

The first test is the asymptotic Sobel test.  This often-employed conventional test of 

mediation effects compares the ratio of the estimated mediation effect to its estimated standard 

error.  When defining the mediation effect as the product of the a and b path coefficients, we 

form the Sobel test statistic as  

         

                  .    (3) 

Here,  is the error variance associated with the mediation effect as estimated by the product 

of the a and b paths.  Prior literature has shown that a good estimate of this error variance can be 

obtained as a function of the individual paths and their individual error variances  

2 2 2 2 2 2 2

ab a b a bb a        .    (4) 

In the literature, the final term that captures the product of the error variance is often dropped 

because it has been shown to be small (i.e., 
2 2 0a b   ).  Thus, the Sobel test statistic for the 

mediation effect is (Sobel, 1982) 

2 2 2 2/Sobel

ab a bz ab b a  
 .     (5)  

When using maximum likelihood to estimate the parameters, the Sobel test statistic has an 

asymptotic normal distribution.  Therefore, the test statistic is compared to a standard normal 

2

ab
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distribution to determine the statistical significance of the mediation effect.  Comparing these test 

statistics to a standard normal distribution allows for inferential testing of the mediated effects.  

Assuming the alternative hypothesis is true, these test statistics follow a non-central distribution 

with the ratios as the non-centrality parameter.  The power of a two-sided test to detect the 

mediation effect is then 

(| | ) 1 ( ) ( )Sobel Sobel Sobel

critical critical criticalP z z z z z z                     (6)  

where  is the normal distribution with zcritical as the chosen critical value (e.g., 1.96) 

corresponding to a nominal type one error rate and 
Sobelz  is the test statistic that compares the 

mediation effect to its respective standard errors.   

 Research indicates that the Sobel test and other applications that use the delta method 

produce accurate variance estimates for mediated effects (Oehlert, 1992).  However, the use of a 

standard normal distribution to draw inferences about the Sobel test statistic can affect the 

accuracy of type one and type two error rates.  It is well-established that the sampling 

distribution of the mediation effect is asymptotically normal but tends to be skewed and kurtotic 

in small sample sizes (Bollen & Stine, 1990; MacKinnon, Lockwood, Hoffman, West, & Sheets, 

2002).  In these cases, referring the Sobel test statistic against a standard normal distribution can 

result in conservative inferences and low power (Hayes & Scharkow, 2013).  We include the 

Sobel test in our analyses despite these issues because of its historical popularity and ease of 

implementation. Next we extend, the joint test of significance and the Monte Carlo confidence 

interval test which address the shortcomings of the Sobel test by avoiding its distributional 

assumptions (MacKinnon et al., 2002; MacKinnon, Lockwood, & Williams, 2004).  
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Joint Test 

The aptly named joint test is constructed by combining separate tests of the individual a 

and b paths (Hayes & Scharkow, 2013).  Using the maximum likelihood estimation for the path 

coefficients outlined above, the statistical test of the treatment-mediator association (i.e., a path) 

is 

        (7) 

and the test of the mediator-outcome association (i.e., b path) is  

        (8) 

The joint test determines the significance of the mediation effect using a simultaneous 

evaluation of inferences from the    and    results.  When both    and    are statistically 

significant the mediation effect is considered statistically significant.  Hayes and Scharkow 

(2013) found the joint test performed similarly to bootstrap methods and had a good balance of 

type one error rates and power.  The joint test does not involve an estimate of the mediation 

effect or an associated standard error and therefore does not directly produce effect sizes or 

confidence intervals (MacKinnon et al., 2002).      

Under the joint test, power to detect a mediated effect is the product of the power to 

detect the a path and the power to detect the b path.  We operationalized the joint test using 

normal distributions and formulate the joint test power functions as follows  

(| | & | | )

(1 ( ) ( ))*(1 ( ) ( ))

a critical b critical

critical a critical a critical b critical b

P z z z z

z z z z z z z z

  

         

     (9) 

with ( )  as the normal cumulative density function and zcritical as the corresponding critical 

value. 

/a az a 

/b bz b 
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Monte Carlo Interval Test   

The MC interval test is a resampling based method that draws random samples of the 

principal paths that constitute the mediation effect with the sampling variability equal to the error 

variance of the path approximations (Preacher and Selig, 2012).  Typically, the MC interval test 

assumes the maximum likelihood estimates of the path coefficients have a multivariate normal 

sampling distribution with means, variances, and covariances based on the maximum likelihood 

estimates (Preacher & Selig, 2012). Given our multilevel linear path model, the MC interval test 

would estimate the mediated effects using 

     

2*
ˆˆ ˆ ,

2*
ˆ ˆˆ ,

ˆ ˆˆ
~ ( , )

ˆ ˆ ˆ

a a b

a b b

aa
MVN

bb

 

 

 
          .

      

(10) 

Here, the product of random draws of   and     are used to create a sampling 

distribution.  This sampling distribution approximates the sampling distribution of the mediation 

effects.  Asymmetric confidence intervals are constructed using predetermined values.  For 

example, selecting values for the mediation effect associated with the 2.5
th

 and 97.5
th

 percentiles 

create a 95% confidence interval for the estimation of the mediation effect.  When these 

confidence intervals exclude the null value (e.g., zero), the mediation effect is considered 

significant.   

The MC interval test offers several advantages over other tests of mediation effects.  

Recent studies have shown its performance is similar to bootstrap based methods (Hayes & 

Scharkow, 2013; Preacher & Selig, 2012) but it is much less computationally intensive because it 

does not require resampling from complete data sets.  Additionally, the MC interval test does not 

make distributional assumptions about the product of path coefficients which allow researchers 
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to avoid the type one error rate issues associated with the Sobel test (Preacher & Selig, 2012). 

Power for the MC interval test is determined by the proportion of asymmetric confidence 

intervals that exclude the null value (Preacher & Selig, 2012).  

Error Variance 

Evident from the aforementioned tests, in order to identify designs that maximize power 

while considering cost, we must track the error variance associated with the mediation effects.  

Our development of the error variances begins with an outline of the error variance associated 

with each path coefficient. Assuming a balanced random assignment of groups to treatment 

conditions the error variance of the a path coefficient associated with the maximum likelihood 

estimator can be reduced to   

 

2

|2

2

4 M

a
n


   .       (11) 

For a two-level random intercept model as presented in the outcome equation (i.e., 

Equation 2ab), the error variance associated with the maximum likelihood estimator of the 

group-level path coefficient b can be reduced to 

2 2

| 12

2

2 |

/Y Y

b

M

n

n

 





             (12) 

where     
  is the conditional group variance and   

  is individual outcome variance, 1n  and 2n  

represent the number of individuals per group and the number of groups, and 2

|M  is the variance 

of the mediator conditional on the treatment (Kelcey, Dong, Spybrook, & Cox, 2017; Kelcey, 

Dong, Spybrook, & Shen, 2017). 
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We adapt the restructured formulas of the error variance of the paths to capture the error 

variance associated with the Sobel test.  For a two-level group-randomized study using the 

multilevel linear path formulation from Equations 1 and 2ab, the error variance under the Sobel 

test for the mediation effect is 

2 2 2

| 1 |2 2 2

2

2 | 2

/ ) 4
( ) ( )

Y Y M

Sobel

M

n
a b

n n

  





  .     (13)

 

The Sobel test statistic under these conditions is then formed by substituting this equation into 

Equation 3. 

Equations 11 and 12 represent the error variance associated with the a path and b path 

separately and therefore the error variance of each component of the joint test.  For a two-level 

group-randomized study using the multilevel linear path formulation from Equations 1 and 2, the 

test statistic using the joint test for the a path is formed by substituting Equation 11 into Equation 

7 and for the b path substituting Equation 12 into Equation 8.   

The MC interval test uses a distribution of products (i.e., a*b*) to estimate the mediation 

effect so the error variance will be asymptotically equal to that of the Sobel test although in finite 

sample sizes it can deviate from the asymptotic approximation.  While power of the MC interval 

test is only moderately approximated by the Sobel test, for the recursive models applied here 

prior research has indicated that the error variance of the product (
2 2 2 2 2 2 2

ab a b a bb a       ) is a 

good approximation of the error variance of the MC interval test (e.g., Kelcey, Dong, Spybrook, 

& Shen, 2017).  

Optimal Sample Allocation 

Studies of Main Effects 
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In group randomized studies the power to detect a main effect increases with greater 

differences between treatment conditions on the outcome variable or through decreased variance 

in the treatment effect.  Examining the variance of the treatment effect helps illuminate the 

relationship between individual sample size (  ), group sample size (  ) and power 

(Raudenbush, 1997; Spybrook, Raudenbush, Liu, Congdon, & Martínez, 2011). Consider an 

unadjusted multilevel outcome model for the main effect 

Outcome model  (Level 1)    
2

0 ~ (0, )ij j ij ij YY e e N          (14a) 

        (Level 2)               2

0 00 0 0 |~ (0, )j j j j Y TcT u u N             (14b) 

with the coefficient c as the main effect, 2

|Y T  as the group-level outcome variance solely 

conditional upon the treatment ( jT ).  Other terms retain a similar meaning from the outcome 

equation presented in Equation 2ab.  Based on this formulation, the variance of the treatment 

effect in a two-level group-randomized study of main effects can be expressed as 

2 2

| 1

2

4( / )
( )

Y T Y n
Var c

n

 
                   (15) 

Researchers typically do not have control over the magnitude of the treatment effect, 

individual-level outcome variance, or group-level outcome variance so manipulating these 

parameters is not a viable means to increase study power.  However, researchers can control 

sample allocation or include prognostic covariates to improve study power.  Increasing    or    

increases power by reducing the Var( ) but with varying effectiveness.  Increasing individual 

level sample size provides diminishing returns in reducing the Var( ) while increasing group 

sample size reduces the Var( ) until the power rate approaches 1.  Sampling a large number of 
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groups is a simple and effective means to achieve adequate power rates but this recommendation 

may be problematic as sampling additional groups can be costly and funding is often limited.  

Application of optimal design principles can identify the number of individuals per group 

and the number of groups that produce the minimum error variance or approximately the 

maximum power within budgetary constraints.  Our analyses consider the conventional linear 

cost formulation (Raudenbush, 1997) such that  

2 2 1 2 1T c n c n n         (16)  

T is the total funds available for a study,    is the sampling cost for each individual,    is 

sampling cost for each group, and each is typically measured in monetary units (e.g., dollars).  

We can now express the variance of the treatment effect with the cost function in Equation 17. 

Var( ) = 
  2

|Y T    
               

 
                                (17)  

Minimizing Equation 17 in terms of    results in an optimal number of individuals to sample 

(  
      

) which is expressed as 

  
      

= 
  

|Y T
 √      .    (18)  

Sampling   
      

 individuals per group minimizes the variance of the treatment effect (i.e., main 

effect) therefore maximizing power under a fixed cost.  This is the most efficient allocation of 

resources—designs that sample more or less individuals in favor of less or more groups will tend 

to be less efficient and yield lower levels of power under the same total cost.  For two-level 

designs, to find the number of groups to sample one substitutes the optimal 1n  value into

2 2 1 1/ ( )n T c c n  . 
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Studies of 2-2-1 Mediation 

In studies of 2-2-1 mediation the power associated with detecting mediation effects also 

depends on individual and group sample size.  Evident from Equations 11 and 12, group sample 

size has a greater influence on power than individual sample size.  The same linear cost 

formulation from Equation 16 is applicable to studies of 2-2-1 mediation (Raudenbush, 1997) 

along with the formulation for group sample size.  Below we derive the optimal sample 

allocation formulas for two-level group-randomized studies that track effects from a group-level 

treatment to an individual-level outcome as they pass through a group-level mediator (i.e., 2-2-1 

mediation) using the Sobel test and joint test. We subsequently evaluate the extent to which the 

optimal sample allocation under the Sobel or joint test serves as an accurate approximation of 

optimal sample allocation when using the MC interval test.  We begin with optimal sample 

allocation formulas when the multilevel path model has no covariates and then extend the 

formulas to accommodate covariates. 

Optimal Sample Allocation without Covariates 

Sobel test 

Despite the known shortcomings of the Sobel test, it is instructive to examine this test 

because it provides closed-form expressions that are simple to maximize/minimize and outlines 

the asymptotic behavior of the estimated mediation effect.  Similar to prior optimal design 

frameworks, we derive optimal sample allocation formulas for the Sobel test by minimizing the 

error variance (Raudenbush, 1997).   

Substituting the linear cost formulation of    into Equation 13, we re-express the error 

variance of the Sobel test statistic as 
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2 2 2

| 1 |2 2 2

2

2 1 1 | 2 1 1

( / ) 4
( ) ( )
( / ( )) ( / ( ))

Y Y M

Sobel

M

n
a b

T c c n T c c n

  





 

 
           (19)  

Minimizing the error variance of the Sobel test with respect to     by taking the first derivative 

yields 

2 2 2 2 2 2 2
1 | 1 | 12 2 1 1

2 2 2

1 | | 1

4 ( / ) ( )M Y Y Y
Sobel

M M

b c a c n a c c n

n T T T n

   


 

 
  


        (20)  

Solving for    provides the optimal sample allocation (  
   

) for a two-level group-randomized 

study designed to detect 2-2-1 mediation under the Sobel test  

2 2

2
1 2 4 2 2

1 | |

( )
4

opt Y

M Y

c a
n

c b a



 



    

              (21) 

In Equation 21, we formulated the optimal individual sample size for the Sobel test using 

group- and individual-level variance terms for the mediator and outcome.  It is also possible to 

express these variance terms as a function of the path coefficients (i.e., a, b, c’).  When the 

mediator and outcome are standardized to have variances of one, we can express the individual-

level outcome variance as  
2 1Y    where ρ is the intraclass correlation coefficient of the 

outcome, the conditional group-level variance of the mediator as (Kelcey, Dong, Spybrook, & 

Cox, 2017) 

2
2

| 1
4

M

a
                          (22)  

and the conditional group-level variance of the outcome as 

2 2 2
2

|

( ')
(1 ( (1 )))

4 4
Y

ab c b a
 

 


                          (23)  
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Replacing the variance terms, we can now express the optimal individual sample size for 

the Sobel test in terms of path coefficients as  

2

2
1 2 2 2

2 2 2 21

(1 )
( )

( ')
4 (1 ) ( (1 ))

4 4 4

opt c a
n

a ab c ac
b a b









    

.                  (24)  

Substituting the   
   

 produced by Equation 21 or 24 into the formulation for group sample size 

provides the optimal number of groups to sample.  Utilizing this sample allocation provides the 

researcher with an optimally designed study under the Sobel test.  

The optimal individual sample size formulas for the Sobel test indicate cost structure, 

variance structure, path coefficients, and intraclass correlation influence the size of   
   

.  First, 

higher group to individual cost ratios inflate optimal individual sample size.  As the cost ratio 

increases (i.e., when groups are much more expensive than individuals) it becomes more 

efficient to increase the number of individuals sampled within groups.  This influential 

relationship is also observable in two-level group randomized studies of main effects.   

Second, higher group-level conditional variance in the outcome (i.e.,    
 )  reduces the 

optimal individual sample size while individual-level variance inflates it.  This relationship is 

also true for optimal individual sample size in studies of main effects.  When there is greater 

variance at level-one more individuals are sampled and when there is greater variance at level-

two more groups are sampled. Lastly, the influence of specific path coefficients and intraclass 

correlation coefficient can be seen in Equation 21.  Increasing the a coefficient, the group-level 

relationship, results in greater   
   

 values while increases in the b coefficient result in smaller 

  
   

 values.  Stronger relationships at level-two (e.g., a) require fewer groups to detect an effect 
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while stronger relationships at level-one (e.g., b) requires fewer individuals to detect an effect.  

Increasing intraclass correlation coefficients degrade the value of individuals sampled within a 

group so higher intraclass correlation leads to reductions in the optimal individual sample size.  

As we shall see with the example cost structures below, a rough and fallible rule of 

thumb regarding the optimal individual-level sample size under the Sobel test in group-

randomized studies of 2-2-1 mediation is that it will typically be less than 10 with small     path 

coefficient ratios (i.e.,        ) and small cost ratios (i.e.,          ).  As     or       

increases, the optimal individual sample size can exceed 10 but almost never exceeds 30. 

Joint Test   

Next, we considered optimal sample allocation when using the joint test in a group-

randomized study of 2-2-1 mediation.  Because the joint test is comprised of two separate sub-

tests concerning the a and b paths, we cannot indirectly maximize power by maximizing the 

product of the test statistics or minimizing the error variances. As a result, we must directly 

maximize power to identify optimal sample allocations.   

  Using the linear cost formulation of    we can express the tests of the a and b paths as 

2

|

2 1 1

4
/

/ ( )

M

az a
T c c n





      (25)  

and 

2 2

| 1

2

| 2 1 1

/
/

( / ( ))

Y Y

b

M

n
z b

T c c n

 







.                    (26)  

Substituting these terms into the joint test power function (i.e., Equation 9) and taking its 

derivative relative to    gives  

 



DESIGNING MULTILEVEL MEDIATION STUDIES  18 

 

 

 

2 22 2
2 21 12 1 1 2 1 1

2 2 2 2

2 1 1 | 1 2 1 1 | 1

3 3

1

2

1 |

( ) ( )1 1
exp[ ( ) ]( ) exp[ ( ) ]( )

5 2 5 2
( )

exp[
1 1 10(1 ( ) ( ) (
2 22 2

b bY Y
critical b critical b

M M

b b

M
critical a critical a

c cc c n c c nb b
z z z z

c c n T n c c n T n

n

a
c

z z z z
erfc erfc

  

 

 



 
      

 
  




  

   

2 2 2

1 |

3 3

1 1
( ) ] exp[ ( ) ]

2 10 2 )
/ 8 / 8

1 1
(1 ( ) ( ))

2 22 2

critical a M critical a

a a

critical b critical b

a
z z c z z

T T

z z z z
erfc erfc



 

   



  
 

  (27)  

where erfc() is the complementary error function.  While there is no simple closed-form analytic 

solution that identifies the optimal sample allocation as in the case of the Sobel test, we can 

identify the optimal sample allocation for a given cost structure by finding the root of this 

derivative using numerical methods. Although the resulting derivative and its solution appears 

cumbersome, finding its root and the optimal sample size is quite straightforward when 

implemented in software.  

Just like with the Sobel test, it is possible to restructure the joint test optimal sample 

allocation equations in terms of the path coefficients (i.e., a, b, c’).  For the joint test, we found  

2

2 1 1

4(1 ( 4))
/

/ ( )
a

a
z a

T c c n

 



      (28)  

for the a path and for the test of the b path we found  

2 2
2

1

2
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.               (29)  

The solution to the optimal sample allocation in terms of the path coefficients is then possible by 

substituting the path formulations of the variance terms into the   
   

 formula for the joint test 

found in Equation 27.   
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 The formula for   
   

 under the joint test has two general components that balance 

maximizing    and   .  Each component is an addend made up of the product of parts 

representing the power functions for the a and b paths.  The complementary error function 

(    ) is utilized in the second part of each addend to determine probabilities related to statistics 

(e.g., az  and bz ) falling inside and outside of critical regions (e.g., criticalz ).  In the first 

component, the parts representing the power function of the b path is divided by the variance of 

the b path and multiplied by parts representing the power function of the a path.  Conversely, the 

second component consists of parts representing the power function of the a path divided by the 

variance of the a path multiplied by the parts representing the power function of the b path.  The 

simultaneous consideration of a and b power and variance components demonstrates the formula 

balancing each test when determining the optimal individual sample size.  However, the b path 

component is weighted more heavily (i.e., factor of b/5 verse a/10) indicating increases in the b 

path inflate optimal individual sample size for the joint test more quickly than increases in the a 

path.   

The factors that influence optimal individual sample size under the joint test are similar to 

the factors that influence optimal individual sample size under the Sobel test.  In the formulation 

above for determining the optimal individual sample size under the joint test, we see familiar 

factors such as  ,  ,   ,   ,    
 ,   

 , and    
 .  Under most conditions, the roles of these factors in 

shaping the optimal individual sample size for the joint test parallel their roles for the Sobel test 

and MC interval test.  We detail exceptions in a subsequent section.  Our general guidelines 

regarding the size of the optimal individual sample under the Sobel test also apply to individual 

sample size for the joint test with the exception that at larger cost ratios (e.g.,           ) and 
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when      , the optimal individual sample size for the joint test tends to be somewhat smaller 

than optimal individual sample size under the Sobel test.  Again, we caution readers with regard 

to over applying these fallible rules of thumb.               

Monte Carlo Interval Test 

Because the MC interval test is a resampling-based test that cannot be easily captured 

through closed-form expressions, we draw on closed-form asymptotic approximations of the 

sampling variance of the mediation effect to track its optimal sampling strategies. As previously 

noted, asymptotic approximations to the error variance (but not the sampling distribution) of the 

product of two random variables performs quite well even in moderate sample sizes (e.g., 

(Kelcey, Dong, Spybrook, & Cox, 2017). For this reason, the MC interval test and the Sobel test 

should have asymptotically equivalent optimal sample allocations.  For example, when T=1000, 

    ,      , a=.5, b=.3,      , and      , the Sobel test   
   

     and so we expect the 

corresponding optimal    for the MC interval test to be about 2.4.  The Sobel error variance and 

the Monte Carlo error variance under this example are plotted in Figure 1.  Evident from this 

figure, the empirical optimal    for the MC interval test aligned well with the Sobel optimal   .   

To assess this correspondence more generally, we conducted a simulation study assessing 

the quality of the Sobel optimal sample allocation formula in approximating the optimal sample 

allocation for the MC interval test. Our simulation study probes the magnitude of the differences 

between optimal sample allocation based on the Sobel test formulas and the true optimal sample 

allocation for the MC interval test.  Before considering the full simulation and results, Figure 2 

presents MC interval test power as a function of individual sample size.  The    value that aligns 

with the maximum possible power using the MC interval test (i.e., true optimal sample 
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allocation) and the   
   

 suggested by the Sobel test formulas are marked to provide an illustrated 

example of the differences under investigation by the simulation.  Figure 2 clearly shows true 

and recommended optimal individual sample sizes diverge as the cost ratio increases indicating 

some inaccuracies in the optimal sample allocation for the MC interval test if using the Sobel 

formulas.   

However, it is important to consider the consequences to power rates not just the 

differences between true and recommended optimal individual sample sizes.  For example, the 

first curve (a) in Figure 2 indicates no difference in the individual sample size that aligns with 

maximum power for the MC interval test and the individual sample size suggested by the Sobel 

test optimal sample allocation formulas.  In this case, there is no loss in power if we use the 

Sobel formulas to determine optimal sample allocation for the MC interval test.  The second 

curve (b) indicates a small difference between recommended individual sample size and true 

optimal sample size but only a minor loss of power. The final two curves (c and d) indicate 

greater differences between the recommended and true optimal individual sample sizes but the 

power curves are relatively flat resulting in only a minor loss in power when using the Sobel 

formulations.    

The purpose of our simulation was to identify the empirical individual sample size that 

maximized power under the MC interval test and compare it to the optimal individual sample 

size suggested by the Sobel formulations.  We aimed to substantiate our theoretical derivations 

and provide an initial assessment of the precision of this theory under practical sample sizes and 

common parameter specifications. Because our Sobel-based formulas for optimal sampling 

indicated that the magnitude of the a path, b path, and their ratio influenced optimal sample size, 
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we considered three different values for     to cover a range of mediation effects: when the a 

path was greater than, less than and equal to the b path.  Cost ratio can vary greatly depending on 

the substantive context of the study.  For example, compared to collecting group-level data, 

collecting individual-level data may require time intensive processes that are expensive.  In our 

simulations, we held individual costs at      and varied such that                 .  This 

range of       ratios represents a range of substantive studies in which the group and individual 

costs vary widely.  Total cost was set to 100 times the cost of each group (       ).  Finally, 

we set        to represent a small direct effect and indicate partial mediation and the 

unconditional intraclass correlation coefficient to       based on previous investigations 

(Hedges and Hedberg, 2007).  For each condition, the MC interval test was repeated 100 times 

using 1000 draws per test (see Table 1). 

We found some (ultimately) minor discrepancies between the Sobel formula implied 

optimal individual sample size and individual sample size that aligned with greatest achievable 

power for the MC interval test. These differences occurred at higher cost ratios and were more 

pronounced when the path coefficient ratio was small.  For example, in the conditions presented 

in the final panel of Figure 2 maximum power with MC interval test was achieved using       

but the optimal sample allocation suggested by the Sobel formulas was   
   

  .  Fortunately, 

the loss in power corresponding to differences in recommended individual sample sizes was 

consistently negligible (i.e.,    ) even when recommended and true optimal sample sizes 

differed substantially.  Differences in the power rates did increase as the cost ratio increased and 

tended to be greatest when      . Even under these conditions, differences between 
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maximum power and power using the optimal sample allocation from the Sobel formulas 

remained around   .   

This evidence suggests that the Sobel formulas for optimal sample allocation often 

provided a reasonably good approximation for sample allocation that maximizes power under the 

MC interval test in group-randomized studies of 2-2-1 mediation.  We conclude that it will 

typically be appropriate for researchers to use the same formulas and process described for the 

Sobel test to approximate the optimal sample allocation for a group-randomized study of 2-2-1 

mediation when using the MC interval test.  However, the consistent quality of this 

approximation needs more future assessment.  Because we apply the optimal sample allocation 

formulas for the Sobel test to the MC interval test, the guidelines regarding typical optimal 

individual sample sizes and principal path formulations are the same for the Sobel test and MC 

interval test. 

Influences and Implications 

Cost Ratio 

We next examined the absolute and relative influence of the cost ratio on optimal 

individual sample size in two-level group-randomized studies probing main and mediation 

effects under a variety of conditions.  Subsequently, we considered the consequences to power as 

study designs deviated from the optimal individual sample size.  These investigations allowed us 

to better understand the behavior of optimal sampling because they outline how the optimal 

individual sample size changes as a function of the cost ratio and the rates with which sub-

optimal sampling undermines statistical power.   
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In an absolute sense, the results indicated that optimal individual sample size for studies 

of main and mediation universally increased as the cost ratio increased. The results in Table 2 

provide examples of this relationship across a variety of conditions. For instance, when a=.5, 

b=.3,      , and      , the MC interval test and Sobel test have an optimal individual sample 

size of            when the cost ratio is                respectively.  

In a relative sense, the results suggested that regardless of cost structure, the optimal 

individual-level sample size for mediation effects will typically be less than that of main effects. 

However, under the Sobel or MC interval test, increases in the cost ratio result in increases in the 

optimal individual-level sample size at roughly the same rate for main and mediation effects. For 

example, with an intraclass correlation coefficient of 0.1, going from a cost ratio of 5/1 to 100/1 

increases the optimal individual sample size by a factor of about four for the main effect (i.e., 

  
   

 goes from 7 to 30) and about five for the mediation effects (i.e.,   
   

 goes from 3 to 15; 

Table 2). This multiplicative similarity does not appear to apply as much to the joint test. Under 

the same example, the optimal individual sample size for the joint test increases only by a factor 

of about two (i.e.,   
   

 goes from 3 to 7).    

The results also suggested that the influence of the cost ratio on optimal sample allocation 

was moderated by the intraclass correlation coefficient—the optimal number of individuals was 

reduced as it increased.  The major exception to this pattern occurred under the joint test with a 

high cost ratio.  Under these conditions increasing intraclass correlation led to increases in the 

optimal individual sample size.   

Comparison with main effects. The optimal individual sample size for studies of main 

effects tended to be greater than the optimal individual sample size for comparable studies of 
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mediation effects.  This was true across cost ratios but was influenced by path coefficient values.  

With large path coefficient ratios (i.e.,    ) the differences between optimal individual sample 

size for studies of main and mediated effects was minimal.  As the path coefficient ratio 

approached one optimal individual sample sizes in studies of mediation effects decreased causing 

greater differences between studies of main and mediated effects.   

Differences across tests. The relationship between optimal individual sample size and 

the cost ratio was more complex when comparing the mediation tests.  Optimal individual 

sample sizes were similar across mediation tests at lower cost ratios.  However, at larger cost 

ratios optimal individual sample sizes differed among mediation tests depending on the path 

coefficient ratio.  Compared to the Sobel and MC interval tests, the joint test had larger optimal 

individual sample sizes when the path coefficient ratio was large and smaller optimal individual 

sample sizes when the path coefficient ratio was small. It should be noted that increasing 

intraclass correlation values reduced this disparity.   

Deviating from Optimal Design 

Next, we considered the consequences of deviating from the optimal individual sample 

size in two-level group-randomized studies of 2-2-1 mediation and similar studies of main 

effects.  Lower cost ratios increased the rate at which power depreciated as sample allocation 

deviated from the optimal individual sample size.  This is true for studies of main and mediated 

effects but the influence of cost ratio on power loss was much more pronounced in studies of 

mediation effects.  Figure 3 shows power rates by individual sample size for a study of main 

effects and a study of mediation effects using the Sobel, joint, and MC interval test at different 

cost ratios.  In studies of mediation effects with large cost ratios power depreciated slowly as 
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sample allocation deviated from optimal values.  This resulted in large but practically 

insignificant differences in optimal individual sample sizes between mediation tests when the 

cost ratio was large.  For example, when          , the optimal sample of individuals for the 

Sobel test was eight but only 3 for the joint test.  However, under those same conditions power 

rates were nearly identical for each test using individual sample sizes anywhere between 3 and 

30.  Under a large cost ratio, the importance of optimal individual sample size is greatly reduced 

because deviations have little influence on power.  The converse is true under a small cost ratio 

as slight deviations from the optimal individual sample size greatly reduce power rates in studies 

of mediation effects.  The range of individual sample sizes that had little influence on power 

under the large cost ratio (i.e., individual sample sizes from 3 to 30) cut power rates in half under 

a small cost ratio.  For example, with a small cost ratio and similar conditions as the above 

example power rates were     when       but when       power rates were    .   

Now consider the study of main effects in the middle example of Figure 3 (i.e., cost ratio 

of 10/1), power rates were     when    ranged from 5 to 20 reflecting only a minor loss of 

power as sample allocation deviated from optimal.  For a similar study of 2-2-1 mediation using 

the joint test or MC interval test, power rates ranged from    . to     across an equivalent 

range of individual sample sizes reflecting the greater consequences of deviating from optimal 

sample allocation in studies of mediation effects.   

The Sobel test, joint test, and MC interval test vary in sensitivity to detect the mediation 

effect and therefore power rates varied (as expected based on previous literature) but power loss 

as study designs moved away from optimal sample allocation was fairly uniform across the tests.  

For example, in Figure 3 the joint test and MC interval test maintain their power advantage over 
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the Sobel test as study designs moved away from optimal sample allocation although the 

advantage does diminish at lower cost ratios.     

A hypothetical study with a small cost ratio best demonstrates the consequences of 

deviating from optimal sample allocation.  Figure 4 presents power rates by individual sample 

size with a cost ratio of    . Under these conditions optimal individual sample size was small.  

For the study of main effects (i.e.,   
   

  ) and for the study of mediation effects using the 

Sobel, joint, or MC interval test (i.e.,   
   

  ).  Power rates      were achieved across all 

the studies and using any mediation test under an optimal design.  The joint test and MC interval 

test were especially well powered (i.e., power rate     ) but increasing individual sample 

sizes from 2 to anything     resulted in an underpowered study.  In group randomized studies 

the group often includes many individuals (e.g., students in classrooms, teachers in schools) so 

researchers can be tempted to sample more individuals per group than necessary under the false 

notion it will increase power.   This reasoning is dangerous to study sensitivity but especially so 

when the cost ratio is small.  Under the example conditions described here, a large individual 

sample size (i.e.,      ) resulted in power rates under 50% for each mediation test. 

To summarize, high cost ratios caused divergent optimal individual sample sizes across 

mediation tests but these differences were not practically significant.  At small cost ratios, there 

were smaller differences in optimal individual sample sizes across mediation tests but these 

differences had a great deal of practical significance.  Deviating slightly from the optimal 

individual sample size when the cost ratio was small resulted in a significant loss of power. It is 

crucial to utilize optimal sample allocation in studies of 2-2-1 mediation with small cost ratios to 

prevent significant power loss but deviating from optimal sample allocation with a higher cost 
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ratio is less detrimental to power.  This was also true for studies of main effects but the influence 

of cost ratio on power depreciation as sample allocation deviated from optimal values was less 

pronounced.  

Optimal Sample Allocation with Covariates 

The inclusion of covariates has been shown to be an excellent strategy to increase the 

precision of group-randomized studies of main effects (e.g., Bloom, Richburg-Hayes, & Black, 

2007) and mediated effects (e.g., Kelcey, Dong, Spybrook, & Shen, 2017).  Covariates can 

explain variation in the outcome and/or mediator and potentially increase the precision of 

estimates (Kelcey, Dong, Spybrook, & Cox, 2017).   For example, variables representing past 

academic achievement when the outcome is academic achievement serve as popular prognostic 

covariates in educational research (e.g., Hedges and Hedburg, 2007).  Further, in the context of 

mediation, random assignment of the treatment but not the mediator introduces the possibility of 

confounding in the mediator-outcome relationship (i.e., violations of the sequential ignorability 

assumption). For this reason, inclusion of covariates in the outcome model will almost always be 

required to obtain an unbiased estimate of the mediator-outcome relationship.  The formulations 

below include the same set of covariates in both the mediator and outcome model to best address 

the sequential ignorability assumption and improve the precision of both the mediator and 

outcome estimates but matching sets of covariates are not required.  To allow for these 

advantages, we extended our optimal sample allocation formulas to designs that include 

covariates.  Below we augment our models to include individual-level covariates (X), their 

group-level means ( X ), and group-level covariates (W) in our multilevel linear path model from 

Equations 1 and 2ab such that 
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 In the mediation equation (i.e., Equation 30) we add Wlj as group-level covariates, with 

   as the corresponding path coefficients, 
kjX as group-level aggregates of individual-level 

covariates, with    as the corresponding path coefficients, and 
j as the error term that is 

assumed to be normally distributed with a mean of zero and variance    
 .  In the outcome 

equation (i.e., Equation 31ab) we add 
kijX  for individual-level covariates with coefficients k .  

Here we use group-mean centering for the individual-level covariates because it is common in 

the literature and can aid in the interpretability of effects (e.g., Pituch & Stapleton, 2012; Zhang, 

Zyphur, & Preacher, 2009). We would arrive at equivalent results if using grand-mean centering 

or not centering at all with our random intercept models (Enders & Tofighi, 2007; Kreft, de 

Leeuw, & Aiken, 1995).  The individual-level error term is represented by 
ije  and is assumed to 

be normally distributed with a mean of zero and variance    
 .  At the group-level, we introduce 

. and λ as the respective path coefficients for group-level covariates and individual aggregated 

covariates, and 
0 ju as the group-specific random effects that are assumed to be normally 

distributed with a mean of zero and variance    
 .  Under this new formulation    

  is conditional 

on    and now Wlj and 
kjX ,    

  is conditional on 
kijX  and    

  is conditional on    and    and now 
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Wlj  and 
kjX .  We employ cluster means rather than a latent mean model for group-level 

covariates (e.g., 
kjX ) because of the larger sample sizes typically required for latent mean 

models.  However, the use of cluster means can introduce unreliability into the mediator and 

outcome models.  Adding unreliability into these models can bias sample size and power 

recommendations. 

Following, Kelcey, Dong, Spybrook, and Shen (2017), and assuming the outcome and 

mediator are standardized to have a variance of one, the new conditional variance terms can be 

expressed as 

2

2 2
2 2 2 2
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    (32)  

for the group-level variance term associated with the outcome (e.g., Y) where 2

2
L

Z
Y

R represents the 

variance explained in the outcome at the group level by covariates in the vector  ⃑  (e.g, W and  ̅  

and 2

Z
M

R represents the variance explained in the mediator at the group level by covariates in the 

vector  ⃑  (e.g, W and  ̅ .  For the individual-level variance term associated with the outcome, 

1
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where 1

2
LY

R represents the variance explained in the outcome at the individual-level by covariates 

in the vector  ⃑  (e.g, X .  Finally, when the mediator is standardized to have an unconditional 

variance of one (
2 1M  ), the variance term associated with the mediator can be expressed as 
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| 1 ( / 4)
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MM aR   .    (34)  



DESIGNING MULTILEVEL MEDIATION STUDIES  31 

 

 

 

To extend the optimal sample allocation formulas to group-randomized studies of 2-2-1 

mediation that include covariates we simply substitute the new conditional variance terms in the 

previously presented   
   

 formulas.   

Illustration 

Consider a hypothetical group-randomized trial in which entire schools adopt a new 

reform based student discipline policy aimed at reducing student discipline referrals (e.g. Osher, 

Bear, Sprague & Doyle, 2010).  General reductions in student discipline may have unintended 

negative consequences (e.g., Eden, 2017) so it is important to understand the mechanisms 

through which the discipline policy is working. There are strong connections between school 

climate and student behavior (Hoffman, Hutchinson, and Reiss; 2009) so school climate serves 

as an important mediator between the discipline policy and student discipline outcomes.  This is 

an example of 2-2-1 mediation with the school-level treatment, school discipline policy, 

influencing the school-level mediator, school climate, which in turn affects the student-level 

outcome, student discipline referrals.  While we employ a hypothetical example to easily 

highlight and manipulate key factors in optimal design for 2-2-1 mediation, group-randomized 

designs aimed at 2-2-1 mediation have been shown to be plausible for educational research 

(Kelcey, Dong, Spybrook, & Shen, 2017). These studies have included the examination of 

teacher professional development, implementation, and student science outcomes (e.g., 

Desimone & Hill, 2017), and teacher professional development, classroom quality, and student 

literacy outcomes (e.g., Yoshikawa et al., 2015).   

We assume a common cost structure (e.g., Raudenbush, 1997) with a simple total budget 

of T=5000 monetary units and an initial ratio of cost per school to cost per student of       
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  .  We assume a partially mediated relationship between the student discipline policy, school 

climate, and student discipline outcomes such that       , because few studies have shown 

complete mediation.  We further assume that student discipline outcomes within a school are 

correlated around       and that researchers anticipate that the policy change will have a 

strong influence on school climate but a smaller effect on the more distal student outcome such 

that        and      . We caution that the parameter values used here are meant to be 

illustrative only. Applications of the optimal design framework should consult previous 

empirical studies specific to the substantive area under investigation to outline plausible values.  

Figure 5 presents power rates for each test and a matching study of the main effect as a function 

of individual sample size.    

To determine the optimal design of this study we first find the optimal number of 

students per school to sample.  Under the Sobel test and MC interval test the optimal number of 

students per school to sample is   
   

     (see Equation 24); using the joint test results in   

  
   

    (see Equation 27).  Using the optimal individual sample sizes (i.e.,   
   

    for the 

Sobel and MC interval test and   
   

    for the joint test), we determine the optimal number of 

schools to sample (i.e., 198 schools under the Sobel and MC interval test and 181 schools under 

the joint test). The sample of schools was rounded down to ensure we stayed within budget.  

These results indicate that under the Sobel or MC interval test, sampling 10 students per school 

and 198 total schools is the most efficient design given our budget constraints while under the 

joint test the most efficient sample allocation is 13 students and 181 schools.  Under these same 

conditions a group-randomized study of the main effect between school discipline policy and 
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student discipline outcomes has an optimal sample allocation of 12 students per school and 188 

schools.  

In this example, there are only minor differences between the mediation tests in terms of 

optimal sample allocation but significant differences in power.  The differences in the heights of 

the power curves in Figure 5 illustrates these well-established differences in test sensitivity (e.g., 

MacKinnon et al., 2002; Preacher & Selig, 2012).  The power rate for the Sobel test was      

while the joint and MC interval tests had power rates of     .  Prior research suggests that the 

MC interval test or the joint test should be preferred because they avoid the distributional issues 

of the Sobel test  (Hayes & Scharkow, 2013).  The corresponding study of the main effect had a 

similar optimal sample allocation as the study focused on the mediated effect and a power rate of 

    .  This suggests a similar sampling allocation in our hypothetical example provides an 

efficient and adequately powered study of both the main and mediated effects.  Adequate power 

rates were achieved under the MC interval test with an optimal sample of 10 students in 198 

schools and under the joint test with an optimal sample of 13 students in 181 schools.  As a 

comparison, a researcher using approximately the same total sample size but a convenient 

sample of 100 students and 20 schools would be well within budget but severely underpowered 

using any of the three tests; the power rate for the Sobel test would be     , the MC interval test 

would achieve power rates of     , and power rates for the joint would be      . Changes in 

design, data collection, or data accessibility can change the group to individual cost ratio and this 

can have a large influence on optimal sample allocation.  Consider the example study with a new 

group to individual cost ratio of 10, it is still best if we utilize the MC interval test or joint test 

but adequate power is now achieved using the Sobel test.  The optimal design when using the 
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MC interval test includes a sample of eight students per school and 272 schools while under the 

joint test the optimal sample allocation is 10 students in 245 schools. Under these conditions, 

results indicate that we can still achieve power rates above .80 when sampling more than 30 

students per school.  Under the new cost ratio   
   

 values decrease while   
   

 increases.  Power 

decreases at a greater rate as we deviate from optimal sample allocation but with a fixed budget 

of T=5000 monetary units we achieve high power rates. In other words, we have more excess 

power to lose before it becomes practically significant. 

Discussion 

There has been a growing recognition of the need to supplement main effects 

investigations by probing the mechanisms through which interventions are presumed to work. 

However, unlike the literature base outlining design strategies for planning efficient and effective 

studies of main effects, literature on strategies for planning studies of mediation is very limited.  

To address one aspect of this gap, we extended optimal sample allocation to group-randomized 

studies of 2-2-1 mediation.  Using a multilevel path formulation, we derived the optimal sample 

allocation formulas for the Sobel and joint test and demonstrated that the optimal sample 

allocation formulas for the Sobel test approximate optimal sample allocation under the MC 

interval test.  Probing these formulas revealed the roles of governing parameters, typical sizes for 

optimal individual sample size, and the consequences of deviating from the optimal design.     

We have implemented the optimal sample allocation formulas in the freely available R 

package [masked for blind review] and the [masked for blind review] software available at 

www.[masked for blind review] along with supplementary documents to encourage use among 

applied researchers.  A substantial body of research has been developed for optimal sample 
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allocation in group-randomized studies of main effects (e.g., Hedges & Borenstein, 2014; 

Konstantopoulos, 2009; Raudenbush, 1997).  Our extension of this work for studies of mediation 

provides applied researchers the methodological tools to incorporate the practical concern of cost 

into their study design.  Closing this gap improves the quality and efficiency of designs available 

to researchers for the study of multilevel mediation.       

 Results from probing the formulas indicated that the optimal schemes for 2-2-1 mediation 

are governed by five primary parameters: (a) the intraclass correlation coefficient of the 

outcome, (b) the magnitude of the treatment-mediator path coefficient (a), (c) the magnitude of 

the mediator-outcome path coefficient (b), (d) the magnitude of the direct treatment-outcome 

path coefficient (c’), (e) and the sampling cost structure (c1 and c2).  Both the intraclass 

correlation coefficient and sampling cost structure are also key parameters for determining 

optimal sample allocation for studies of main effects (Raudenbush, 1997).  Here, the increased 

complexity of determining optimal sample allocation for mediated effects becomes abundantly 

clear.  The magnitude of the a, b, and c’ coefficients are now necessary for determining the 

optimal sample allocation.  Furthermore, applied researchers must select among a variety of tests 

to determine the significance of the mediated effect and this selection not only influences the 

optimal sample allocation but the relationship between other parameters and the optimal sample 

allocation. 

For the applied researcher, it becomes more difficult to accurately determine optimal 

sample allocation due to the involvement of these additional influences.  For these study designs 

it is imperative to have a robust theoretical and empirical literature base to provide a foundation 

for the parameter estimates used in determining optimal sample allocation.  The additional 
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complexity and difficulty of determining optimal sample allocation in group-randomized studies 

of 2-2-1 mediation must not deter researchers from taking on the task as deviations from optimal 

design in these studies are more detrimental to study efficiency than similar studies of main 

effects, especially with small group to individual cost ratios.  While determining optimal sample 

allocation in these designs is complex it is also crucial to planning an appropriately powered and 

efficient study.        

 Results from the application of the formulas suggested that the optimal individual sample 

size in these types of studies tends to be smaller than that of main effects—less than 10 under 

many common design parameter values and typically less than 30 under less common values. 

We caution readers that these rules of thumb are fallible and optimal sampling is influenced 

greatly by the factors detailed above (e.g., cost ratio, intraclass correlation, and path 

coefficients).  We again emphasize the need for readers to carefully identify appropriate study-

specific design parameter values and thoughtfully consider how they may influence optimal 

individual sample size. 

 Based on these rules of thumb and other results there are likely to be difference between 

optimal sampling for the main and mediated effects. Investigations of multilevel mediation are 

often conducted in conjunction with studies of main effects leading to the possibility of 

conflicting optimal sample allocations within a single design. In these cases, applied researchers 

must balance the considerations from optimal sample allocation for main and mediated effects.  

While these decisions may often involve study specific considerations, our results provide some 

guidance on balancing conflicting optimal sample allocations by outlining the potential loss of 

power for mediation effects associated with sub-optimal sampling. Future research, however, 
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should more explicitly consider the balance between optimal sampling for the main and 

mediation effects as well as identifying sampling strategies that are jointly or globally optimal.   

Our investigation also provides an initial assessment regarding the relative efficiency of 

sub-optimal designs and their robustness to inaccurate parameter estimates.  Even in well 

researched substantive areas, applied researchers are unlikely to perfectly specify the parameter 

values necessary for optimal design of a group-randomized study of 2-2-1 mediation (e.g., cost 

ratio, intraclass correlation, and path coefficients). For these reasons, it is important that future 

work further examines the relative efficiency of sub-optimal designs and the sensitivity of 

optimal sampling plans to incorrect initial parameter estimates (e.g., Korendijk, Moerbeek, & 

Maas, 2010).  For example,    

One practical limitation of our results is that with some parameter combinations the 

optimal individual sample size can be quite small—for instance, several example scenarios 

recommended optimal sampling schemes of only one, two, or three individuals per group (see 

Table 2). In these situations, researchers should use caution because missing data could quickly 

undermine design efficacy. It may be prudent to consider sampling additional individuals when 

attrition is likely or the parameter estimation technique warrants.    

Here and in general, optimal sampling strategies are intended as a theoretical guide to 

sampling—researchers must balance theoretical optimums with practical constraints. For 

example, we again caution that our assumption of fully reliable measures of the outcome and 

mediator may be untenable in some educational research contexts and that failing to meet this 

assumption influences, power, sample size requirements, and the accuracy of parameter 
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estimates.  The resulting choice of individual sample size for a given study should be a study-

specific balance of these considerations.            
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