TMC: Pay-as-you-Go Distributed Communication

Henri Maxime Demoulin
Vincent Liu Boon Thau Loo

Nikos Vasilakis
Linh Thi Xuan Phan

John Sonchack Isaac Pedisich
Jonathan M. Smith

Irene Zhang *

University of Pennsylvania

ABSTRACT

We revisit the gap between what distributed systems need
from the transport layer and what protocols in wide deploy-
ment provide. Such a gap complicates the implementation
of distributed systems and impacts their performance. We
introduce Tunable Multicast Communication (TMC), an ab-
straction that allows developers to easily specialize commu-
nication channels in distributed systems. TMC is presented
as a deployable and extensible user-space library that ex-
poses high-level tunable guarantees. TMC has the potential
of improving the performance of distributed applications
with minimal-to-zero development and deployment effort.

CCS CONCEPTS

+ Networks — Network design principles.

KEYWORDS
Networking, Composability, Configurability

1 INTRODUCTION

For most datacenter distributed systems, the network is a
black box. Expected to occasionally deliver messages from
one end of the datacenter to another, these systems attempt
to make few assumptions about the structure, features, or
properties of the underlying network. The typical abstrac-
tion assumed by most systems is the one provided by TCP:
(1) point-to-point connections, (2) ordered, reliable delivery
of a connection’s bytes implemented over an unreliable net-
work, and (3) no guarantees about the relative behavior of
different connections. When the Internet was designed, these
properties were assumed to be the union of what applica-
tions would reasonably require—any application that did not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APNet ’19, August 17-18, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7635-8/19/08....$15.00
https://doi.org/10.1145/3343180.3343194

15

"Microsoft Research

Transactional
System

Distributed
systems

{ fault
tolerance }

{ consistent
replication }

{ event

artrg il ¢ @

consensus }

{ idempotence }

Application
guarantees

Atomic broadcast | Ordered Unreliable Multicast

Reliability | Replication | Ordering | Correctness

Network
properties

[Congestion Control | Fowconro |

Fig. 1: Exemplary space of communication needs. Distributed systems
provide a set of guarantees which depend on a select subset of network
properties. Most systems today (Cf. Tab. 2) use the network as an over- or
under-featured black box.

require these guarantees should use UDP, which provides
none whatsoever.

Recent work has begun to challenge the wisdom of the
TCP interface, particularly in datacenter networks where
the network is typically easier to control and more reliable
than the wider Internet. Mostly-ordered multicast primitives
(MOMs) [30] have demonstrated the utility of assuming a
more reliable network; ordered, unreliable multicast primi-
tives (OUMs) [24] have demonstrated the power of adding
custom network features; and CoFlows [5] have argued for
an additional communication abstraction for certain types
of application traffic patterns.

In this exploratory work, we argue (perhaps obviously)
that applications can benefit from customizing their trans-
port protocols. Less obviously, we argue that more appli-
cations should use customized transport protocols as TCP
effects are harming their performance in subtle and unex-
pected ways. Our findings show that, for some applications,
adding network guarantees using programmable switches
and NICs can improve performance by orders of magni-
tude, while, for other applications that can tolerate weaker
guarantees, subtracting unnecessary features can provide a
similar benefit—there is no one-size-fits-all network stack
for datacenter applications and networks. Thus, datacenter
communication mechanisms must be configurable, message-
oriented, and multi-node. In addition, this choice should be
easily expressible—in a few lines—and automatically config-
ure the underlining communication infrastructure. We term
this capability Tunable Multicast Communication (TMC).

https://doi.org/10.1145/3343180.3343194

APNet ’19, August 17-18, 2019, Beijing, China

Domain Example Systems

Key-Value Stores
Data Processing
Lambda/Actor
Other

Dynamo, Cassandra, Corfu/Replex, Unispace
MapReduce, Spark, Naiad, Stratosphere, TensorFlow
Orleans, Xenon, Akka.NET, OpenLambda

Acute, J-Orchestra, BreakApp

Tab. 1: TCP-first distributed systems. The use of TCP is the default
“go-to” in virtually all distributed systems, coming from both academia and
industry. It comes as no surprise that the vast majority of “cloud” datacenter
traffic (more than 99.9% [2]) is TCP (Cf.§1).

Towards this goal we introduce 1ibTMC, a prototype of
TMC as a user-space library. The 1ibTMC library lets devel-
opers define channels with custom features using simple,
high-level configurations. Under the hood, 1ibTMC realizes
a configuration by composing channel primitives that im-
plement the features individually. These primitives can be
implemented in user-space (as done in the current prototype)
to support deployment without any changes to application
logic, language runtimes, operating systems, or the underly-
ing network. In future work, specialized primitives could be
implemented to leverage emerging technologies, such as pro-
grammable network fabrics [24], for improved performance.

In summary, this paper motivates communication (re-)con-
figurability as a first-class concern for distributed systems in
today’s networks. It (i) identifies that the need for specialized
communication channels in distributed systems is real and
pressing (Sec. 2); (ii) sketches a deployable and extensible
solution (Sec. 3); and (iii) discusses its potential benefits and
limitations (Sec. 3.4).

2 MOTIVATION

This section motivates customized network stacks for dat-
acenter applications. We focus on three features that TMC
supports: multicast, message ordering, and replication. We
highlight the mismatch between distributed system needs
and what TCP or UDP provide (summarized in Tab. 2).

State machine synchronization: Many distributed sys-
tems need to maintain consistent replicated state across

many nodes, e.g., for configuration [15] or routing databases [20].

Assuming their application code is deterministic, nodes can
maintain consistency using algorithms such as Paxos [21].
Those algorithms’ performance is largely dependent on the

Tab. 2: Abstraction mismatch Channel features needed by distributed
systems, compared with those provided by TCP and UDP (Cf.§2).

Distributed system task Transport
State Distributed Replicated
synchronization messaging computation | TCP UDP
Multicast X
Ordering (partial) X X
Reliability X X

16

Demoulin and Vasilakis, et al.

underlying network, and the amount of round trips they
have to make to reach consensus. Lower overheads can be ob-
tained when messages use a replicated communication chan-
nel with total ordering (either guaranteed [24] or likely [22]).

Neither TCP nor UDP provide ordering to a group of des-
tinations. As a result, several recent works have proposed
to make group ordering a network primitive [24, 30], even
porting stronger versions—namely, atomic broadcast— in the
network as well [18]. Additionally, TCP adds overhead to
ensure point-to-point reliability. For state synchronization,
this can be a waste because point-to-point reliability is not a
required channel feature.

To demonstrate those points, we study the case of TAPIR [44],
a distributed transaction system that guarantees strong con-
sistency across transactions. TAPIR builds upon an incon-
sistent replication protocol (IR) to provide its guarantees.
To reach consensus, TAPIR requires at least f + 1 match-
ing answers from the storage replicas. A “reliable transac-
tion”, as understood by TAPIR, is one in which sending a
message results in a new entry in the replica’s log. Point-
to-point reliability in itself does not provide such guarantee.
Figure 2 presents the transaction throughput of TAPIR-KV,
a key-value store built on top of TAPIR, when the network
is experiencing packet losses. We configure the system with
a single shard made of three replicas, and run a workload
made of 50% GET operations, and 50% PUT.

This experiment is telling: for the baseline, removing non
required features such as reliability yields about 50% better
throughput. Adding the right feature, replication (through
IP multicast), adds another 13% to this gain.

We might assume that point-to-point reliability, as pro-
vided by TCP, would benefit us when the network experi-
ences packet loss. However, when we induce packet loss into
the network, TCP’s performance is still worse than its less
featured counterparts. This is due to the tight coupling be-
tween reliability and congestion control in TCP: as packets
get dropped, congestion windows decrease and allow for less
packets to be sent over the wire.

This small experiment supports our motivation to design
a new abstraction for distributed systems, where the right
network properties can be combined in a way that benefits
the application.

Distributed messaging: Publish—subscribe (pub/sub) mes-
saging systems are a core component of distributed sys-
tems, including stream/batch processors, load balancers, and
more [9]. Nodes subscribe and publish messages to topics.
Each published message is transmitted to every subscribed
node. In many systems that use pub/sub, nodes are loosely

TMC: Pay-as-you-Go Distributed Communication

protocol
. TCP
s UDP
mm MC

3000 4

N
u
=3
S

20004

1500 4

Transactions per second

-
o
S
S}

u
=3
S

0 0.25 0.5 1
Drop rate(%)

Fig. 2: Throughput comparison. TAPIR-KV transaction throughput for
three replicas. Packets are dropped in the network at .25%, .5% and 1% rate.
All hardware offload features were disabled during this experiment.

coupled. Subscriber nodes, such as analytics engines aggre-
gating statistics from a set of endpoints [4, 27], need to re-
ceive all the messages published to a channel, but are indif-
ferent to their ordering. These scenarios require a channel
with multicast and reliability, but not ordering, would it be
point-to-point or at the group level.

Neither TCP nor UDP provide reliable multicast. Today,
many systems implement it at the application layer, on top
of TCP, with point-to-point connections between the source
and every destination. This adds complexity and reduces
performance, from opening and maintaining stateful connec-
tions, duplicating messages, and traversing TCP stacks [35].

Replicated computation: Many distributed systems repli-
cate state machines across multiple servers, e.g., for fault-
tolerant services [36] or distributed simulations [29]. In these
systems, participants broadcast events containing enough
information for all recipients to integrate the sender’s ac-
tion to their state machine. For correctness, events must be
replayed in order, and cannot be lost. Thus, this class of dis-
tributed systems needs all three channel features: multicast,
reliability, and group ordering.

As described in the prior example, TCP channels do not
provide all of these features, forcing complex application
layer protocols and reducing performance. There is an ad-
ditional TCP-related performance issue for these systems:
latency, which is greatly increased at the tail by TCP’s packet
retransmission feature. Many services that replicate com-
putation are not only fault-tolerant, but also latency sensi-
tive [8]. in practice, systems mitigate the latency of packet
retransmissions with custom network protocols, for example
that transmit every datagram multiple times to reduce the
probability of loss [12].

Conclusion: The systems described above motivate the
need for communication channels that selectively support

17

APNet ’19, August 17-18, 2019, Beijing, China

Host A Host B

Application Application
TMC channel ‘ TMC channel TMC channel TMC channel
C [[S)
[} . {
g E| Ordering, Group
Z €| Reliability, | |ordering [

Correctness

®&&

OUM
FC =

001

Network| NIC

ow

Fig. 3: TMC design with channel examples. Applications declare their
requirements using a manifest of properties. 1ibTMC composes and opti-
mizes them, exploiting both local hardware and network capabilities. In
this example, host B’s network interface is not able to compute checksums
(EC), so 1ibTMC implements it in software.

multicast, ordering, and reliability. But, as Tab. 3 illustrates,
they only scratch the surface of possible channel features
a group of applications might need. In fact, diverse needs
may arise even within a single application: recent propos-
als [14, 41, 42] advocate for mixed consistency, replication,
and indexing guarantees at object-granularity.

3 TMC DESIGN

This section introduces the design and semantics of 1ibTMC,
our TMC prototype. 1ibTMC is a flexible library for custom
transport channels in distributed systems. It meets diverse
application needs by mapping channel features, e.g., ordering
and reliability, to a library of channel primitives. Nodes in a
distributed system select, and pay for, only the features that
they need. A TMC runtime, implemented at the application
layer for simple deployment, composes and optimizes the
appropriate channel primitives to realize node-level objec-
tives.

Figure 3 depicts TMC’s design through the example of an
application using two communication channels. The first
guarantees reliable delivery of messages, their (point-to-
point) ordering, and payload error detection. The second
guarantees group ordering of messages, without reliability.

1ibTMC’s runtime acts as a compiler that composes a set
of actions that should be done given the input properties.
It decides whether to have actions performed in software
or in hardware based on properties available locally and in
the network. These properties can either be declared in a
configuration file by the network operator, as done in the
current prototype, or automatically learned by 1ibTMC, as we
plan to investigate in future work. For example, as depicted
in figure 3, if host A’s NIC can verify packet’s checksums in
hardware, the runtime will make use of this capability by
configuring channels to offload error checking to the NIC. If

APNet ’19, August 17-18, 2019, Beijing, China

from 1ibTMC import Channel

1

2

3. ¢ = Channel({

4, 'id': '2pPC',

5. 'group': '239.0.0.2',

6 'group ordering': True,

7.0

8

9. c.send(handshake_msg, {'reliability' : True})

10. c.update({'error checking': True})
11. c.send(beacon_msg)

Listing 1: 1ibTMC Example. The developer imports (1), configures (3-7),
and uses (9-11) 11bTMC to send messages of varying requirements (Cf.§3.1).

not, as is the case for host B, the runtime configures the chan-
nel to perform this stage in software. Likewise, 1ibTMC also
integrates the semantic knobs from more complex primitives
offered by the network, such as OUM [24].

TMC allows the integration of several specialized conges-
tion control mechanisms [2, 19]. Congestion and flow control
are components of all the channels, but their modus operandi
is dependent on the other features with which they are collo-
cated. In our example (fig 3), the application is set to run on a
private cluster whose competing traffic is known and under
control. For this reason, the runtime sets up a lightweight
flow control scheduling policy that operates before messages
are dispatched to the NIC.

3.1 1libTMC API

Channels allow sending and receiving messages, with a
simple, POSIX-influenced interface—essentially, send and
receive methods. They are configured programmatically
via manifests, declarative runtime configuration objects ex-
pressed using a domain-specific language embedded in the
source language. Manifests can apply to a single message
or the entire communication. By controlling automated gen-
eration of channel parameters, manifests allow developers
to tune several communication trade-offs without requiring
manual development.

Internally, the 1ibTMC runtime maintains state associated
with each channel. When a node joins a channel, 1ibTMC
associates the node with that channel. Other information
includes acknowledgment and ordering metadata, as well
as various statistics related to its usage—such as latency
information and loss ratios.

We illustrate 1ibTMC’s API with the example code snippet
in listing 1. The snippet is written using Python bindings.
The developer first imports the 1ibTMC library (line 1) which
exposes a Channel constructor in the current scope. It then
calls the constructor by passing a manifest that declares the
channel properties (lines 3-7) which returns the object used
to send and receive messages. The channel is required to pro-
vide group ordering to messages (line 6). For the first message

18

Demoulin and Vasilakis, et al.

(line 9), the semantics of which is application-specific, the
developer configures reliable delivery. For the rest of the mes-
sages, the desired semantics is ensuring payload checksum
verification, expressed by permanently updating the channel
manifest (line 10).

3.2 Channel Configuration

Table 3 lists preliminary network features supported by
1ibTMC. These (and other) features are available as plug-
gable modules (Sec. 3.3). We provide more details for a select
subset below.

Multicast: At a minimum, a TMC channel can target mul-
tiple nodes. Every node in the group effectively targets all
other nodes in the group when sending messages. TMC im-
plements naming and filtering mechanisms for flexible group
management at the application-layer. Specifically, message
properties can target a named subset or a fraction of end-
points in a group, such that an application can treat individ-
ual endpoints as they would with point-to-point connections,
while still reasoning about a group of nodes in general.

Point-to-point ordering: TMC channels are ordered if all
messages sent by one node are read by receivers in the same
order as they were sent. When a node joins a channel, a local
base sequence number (epoch) is randomly generated, and
is then used to identify messages sent by the node through
the channel. The process is enforced by the 1ibTMC runtime,
which stamps sent messages and drops those received with
a sequence number smaller than the latest received.

Reliable Delivery: 1ibTMC’s reliable channels allow appli-
cations to ensure delivery of messages through acknowledg-
ments to either all or a subset of the channel’s members.
The channel can be configured such that acknowledgments
are expected from a subset of hosts designated by name,
or a fraction of the channel’s members. The base reliability
mechanism is composable with flow and congestion con-
trol to pace messages retransmission. The library supports
sending windows for channels, similarly to TCP, so that mul-
tiple non-acknowledged packets can be in-flight at the same
time. In addition, it drops all duplicate packets and handles
lost ACK messages by re-acknowledging duplicate packets
retransmitted by the sender.

3.3 Ongoing Work

Currently, there are several features of 1ibTMC that are works
in progress. 1ibTMC needs to facilitate extensibility beyond
the “built-in” presets, acceleration based on features provided
by the underlying network, integration of application con-
textual knowledge, and easy retrofit into existing codebases.

Extensibility: 11bTMC should have the ability to be extended
with capabilities that were not anticipated by its designers. To

TMC: Pay-as-you-Go Distributed Communication

APNet ’19, August 17-18, 2019, Beijing, China

Tab. 3: 1ibTMC channel features. Network features each come with a fundamental trade-off between guarantees and speed (Cf.§3.2).

Feature Fundamental trade-off

Examples use cases

Multicast
Point-to-point ordering
Group ordering
Reliability

Pacing

Flow control
Congestion control
Synchronicity
Duplexity

Trade fine grained control over one-to-one traffic for scalable one-to-many properties
Trade latency for providing a guarantee to the application

Trade latency for providing a guarantee to the application

Trade bandwidth usage and inter-message delay for tolerance to network losses
Trade latency for throughput, bandwidth, and reduced network and CPU usage
Trade latency and availability for less packet drops

Trade latency for intermediate devices availability

Trade simplicity in application logic for liveliness

Simplex, half and full duplex offer varying degrees of channel complexity

Consensus, Gossip
Zookeeper Atomic broadcast
Distr. transactions

TLS handshake, Distr. locks
Playout delay buffers
Message scheduling
Message scheduling

Event driven APIs
Publish/subscribe systems

solve this, 1ibTMC provides a module manager, 1ibTMC_MM,
that enables the integration of new primitive implementa-
tions. Such implementations are provided through a verified
repository and, at times, expose a handful of high-level pa-
rameters with their default values. Examples include differ-
ent congestion control algorithms and ordering guarantees.

Hardware Acceleration: 1ibTMC’s prototype comes with
portable user-space implementations of its features, but should
leverage hardware acceleration in the network when avail-
able. We envision a solution where programmable hardware
elements, e.g., smartNICs [33] or switches [37], run line-rate
implementations of most channel primitives [11, 24]. Au-
thorized servers will pre-reserve capacity on these elements
via an extended control-plane interface along the lines of
participatory networking [10]. At runtime, 1ibTMC will tag
packets that need to be processed by the line-rate primitives
and the network will route them through the appropriate
elements.

Application-guided decisions: an important design goal
for TMC is to let applications hint the network stack about
how certain decisions should be done. For instance, the appli-
cation knows how important the delivery of certain messages
really is: informing the network stack that a set of non ac-
knowledged messages can be forgotten allows for optimized
resource management. Similarly, an application can share
load related information with the network stack, such as the
occupancy of a local event queue, to influence flow control
decisions (a principle whose benefits have been exploited in
recent work [28]). As this paper and several of the works
we build upon have shown, the data center is an ideal envi-
ronment for such co-design, which can yield thousand-fold
performance improvements [18, 24].

Retrofit: To simplify deployment, 1ibTMC should require
minimal-to-zero changes to the code of legacy applications.
Using a combination of automated source rewriting, name re-
binding, and runtime reflection, a transformation subsystem

19

can rewire connections to their TMC equivalents—requiring
only the manifest that specifies desired channel properties.

3.4 Discussion

This paper introduces TMC early in the project life-cycle,
and is intended to sparkle discussion with the community.
From our experience, the most controversial aspect of
this work is the decision to supply developers with more
knobs. There are two possible criticisms here: (i) develop-
ers do not need more knobs, as they increase the risk of
getting things wrong; (ii) whoever needs true specializa-
tion can build it from scratch. The former misses the point:
distributed-system trade-offs dwarf the ones of centralized
systems, and thus developers are forced to implement spe-
cialization from scratch, a process that is more error-prone
than expressing high-level annotations. But this concern is
precisely the reason why we went for understandable high-
level properties (e.g., “ordering”) rather than bare protocol
building blocks (e.g., “ACKS”). As for the latter, the few com-
panies with unlimited engineering resources will still benefit
from TMC, but long-term they may be better off handcrafting
specialized protocol stacks from scratch. This work targets
everyone else, from the vast majority of developers not work-
ing for these select few companies, to researchers in the field
of distributed systems (like us), to designers of novel network
protocols (who can expose their work as a TMC module).

4 RELATED WORK

Prior work on communication specialization can be grouped
into network stack (re)configurability, protocol specializa-
tion, and kernel bypassing.

Configurability: Our work can be viewed as revisiting the
need for modular, configurable stacks [6, 16, 38]. For example,
x-Kernel [16] exposed network services as coarsely compos-
able protocol objects. Horus [38] extended the idea into the
distributed setting, and P2 [6] introduced reconfiguration
patterns (e.g., network function reordering and replacement).

Here we leverage prior work on runtime transformations [39, 40].

APNet ’19, August 17-18, 2019, Beijing, China

These works modularize network stacks into fine-grained
building blocks and expose them for synthesis from within
the application. With TMC, developers specify intuitive, high-
level properties which the system translates into end-to-end
guarantees. Moreover, TMC properties can be specified at
the level of individual messages within applications, rather
than entire network stacks.

Protocol Specialization: Several proposals change the se-
mantics or implementation of transport protocols according
to application needs [1, 3, 13, 17, 19, 23]. Examples include
group reliability [3, 32], adaptive changes to TCP’s send
buffer size [13], and congestion window sharing [17]. These
recognize the mismatch between a couple of transport con-
figurations and the space of possible application needs, but
offer more “point” solutions. TMC’s goal is a fundamentally
different framing of the problem—the need for an application-
tunable abstraction that eases the testing, integration and
adoption of novel “point” solutions as pluggable components.

Kernel Bypassing: Operating system kernel bypassing and
user-space network processing shares our goal of improving
application control [7, 31, 34, 43]—in the limit, the entire
network stack can be specialized for the application [25,
26]. Those techniques are fundamentally orthogonal (and
complementary) to TMC and can be used to further reduce
the performance costs for distributed applications (Sec. 3.3).

5 CONCLUSION

Distributed systems are inherently communicating systems.
Developers pay too much by not being able to specialize
communication in distributed applications—most notably,
in terms of development and performance costs. This paper
proposes a new abstraction, Tunable Multicast Communi-
cation (TMC), that allows developers to easily specify the
channel features that best match their needs. Using TMC,
they can compose features at the granularity of messages
by providing high-level, semantic guidelines. The design al-
lows extensibility beyond the “built-in” presets and further
acceleration based on network capabilities. Our prototype
implementation, 1ibTMC, is in progress.

ACKNOWLEDGMENTS

We would like to thank André DeHon, Ben Karel, and the anonymous
reviewers for their helpful feedback. This research was funded in part
by NSF grants CNS-1703936, CNS-1750158, CNS-1513687, CNS-1845749
and CNS-1513679; DARPA contracts HR0011-16-C-0056 and HR0011-17-C-
0047; and ONR N00014-18-1-2557. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF, DARPA or ONR.

REFERENCES

[1] [n.d.]. SPDY: An Experimental Protocol for a Faster Web. http://www.
chromium.org/spdy/spdy-whitepaper.

20

Demoulin and Vasilakis, et al.

[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference (SIGCOMM °10). ACM, New York, NY, USA,
63-74. https://doi.org/10.1145/1851182.1851192
T. Bova and T. Krivoruchka. [n.d.]. RELIABLE UDP PROTOCOL.
https://tools.ietf.org/html/draft-ietf- sigtran-reliable-udp-00/.
Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink: Stream and
Batch Processing in a Single Engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36, 4 (2015).
Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: a networking
abstraction for cluster applications.. In HotNets. 31-36.
Tyson Condie, Joseph M Hellerstein, Petros Maniatis, and Sean
Rheaand Timothy Roscoe. 2005. Finally, a use for componentized
transport protocols. In HotNets IV, Vol. 13.
[7] RDMA Consortium. October 2002. An RDMA Protocol Specification.
http://rdmaconsortium.org/.
[8] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74-80. https://doi.org/10.1145/2408776.2408794
[9] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. 2003. The Many Faces of Publish/Subscribe. ACM
Comput. Surv. 35, 2 (June 2003), 114-131. https://doi.org/10.1145/
857076.857078
Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and
Shriram Krishnamurthi. 2013. Participatory Networking: An API for
Application Control of SDNs. SIGCOMM Comput. Commun. Rev. 43, 4
(Aug. 2013), 327-338. https://doi.org/10.1145/2534169.2486003
Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth
Prabhu, Nik Sultana, Latha Kant, Anthony J McAuley, Alexander
Poylisher, André DeHon, and Boon Thau Loo. 2018. In-network Com-
puting to the Rescue of Faulty Links. In Proceedings of the 2018 Morning
Workshop on In-Network Computing (NetCompute '18). ACM, New York,
NY, USA, 1-6. https://doi.org/10.1145/3229591.3229595
Glenn Fiedler. 2014. Deterministic Lockstep. https://gafferongames.
com/post/deterministic_lockstep/.
Ashvin Goel, Charles Krasic, and Jonathan Walpole. 2008. Low-
latency Adaptive Streaming over TCP. ACM Trans. Multimedia Com-
put. Commun. Appl. 4, 3, Article 20 (Sept. 2008), 20 pages. https:
//doi.org/10.1145/1386109.1386113
Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
2016. Incremental Consistency Guarantees for Replicated Objects.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley,
CA, USA, 169-184. http://dl.acm.org/citation.cfm?id=3026877.3026891
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIXATC’10). USENIX Association, Berkeley, CA, USA,
11-11. http://dl.acm.org/citation.cfm?id=1855840.1855851
Norman C Hutchinson and Larry L Peterson. 1991. The x-kernel: An
architecture for implementing network protocols. IEEE Transactions
on Software engineering 17, 1 (1991), 64-76.
Safiqul Islam and Michael Welzl. 2016. Start Me Up: Determining and
Sharing TCP’s Initial Congestion Window. In Proceedings of the 2016
Applied Networking Research Workshop (ANRW ’16). ACM, New York,
NY, USA, 52-54. https://doi.org/10.1145/2959424.2959440
Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a Box: Inexpensive Coordination in Hardware. In Pro-
ceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation (NSDI’16). USENIX Association, Berkeley, CA, USA,
425-438. http://dl.acm.org/citation.cfm?id=2930611.2930639

3

—_

[4

flaav)

[5

—

(6

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
https://doi.org/10.1145/1851182.1851192
https://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00/
http://rdmaconsortium.org/
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/2534169.2486003
https://doi.org/10.1145/3229591.3229595
https://gafferongames.com/post/deterministic_lockstep/
https://gafferongames.com/post/deterministic_lockstep/
https://doi.org/10.1145/1386109.1386113
https://doi.org/10.1145/1386109.1386113
http://dl.acm.org/citation.cfm?id=3026877.3026891
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/2959424.2959440
http://dl.acm.org/citation.cfm?id=2930611.2930639

TMC: Pay-as-you-Go Distributed Communication

(19]

[20]

[21

—

[22

—

(23]

[24]

[25

[

26

—

[27

—

[28

—

[29

—

(30]

Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP:
Congestion control without reliability. In ACM SIGCOMM Computer
Communication Review, Vol. 36. ACM, 27-38.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. 2010. Onix: A Distributed Control
Platform for Large-scale Production Networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI'10). USENIX Association, Berkeley, CA, USA, 351-364. http:
//dl.acm.org/citation.cfm?id=1924943.1924968

Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133-169. https://doi.org/10.1145/279227.279229
Leslie Lamport. 2006. Fast Paxos. Distrib. Comput. 19, 2 (Oct. 2006),
79-103. https://doi.org/10.1007/s00446-006-0005-x

Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, lan Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:
Design and Internet-Scale Deployment. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). ACM, New York, NY, USA, 183-196. https://doi.org/10.1145/
3098822.3098842

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus
with Network Ordering. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’'16). USENIX
Association, Berkeley, CA, USA, 467-483. http://dl.acm.org/citation.
cfm?id=3026877.3026914

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2007. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 461-472. https:
//doi.org/10.1145/2451116.2451167

Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network
Stack Specialization for Performance. In Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA,
175-186. https://doi.org/10.1145/2619239.2626311

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-Directed Hardware Design for
Network Performance Monitoring. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SSIGCOMM °17).
ACM, New York, NY, USA, 85-98. https://doi.org/10.1145/3098822.
3098829

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(NSDI'19). USENIX Association, Berkeley, CA, USA, 361-377. http:
//dl.acm.org/citation.cfm?id=3323234.3323265

Stefan Poledna. 1996. Fault-Tolerant Real-Time Systems: The Problem
of Replica Determinism. Kluwer Academic Publishers, Norwell, MA,
USA.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. 2015. Designing Distributed Systems Using Approx-
imate Synchrony in Data Center Networks. In Proceedings of the
12th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’15). USENIX Association, Berkeley, CA, USA, 43-57.
http://dl.acm.org/citation.cfm?id=2789770.2789774

21

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

APNet ’19, August 17-18, 2019, Beijing, China

Ian Pratt and Keir Fraser. 2001. Arsenic: A user-accessible gigabit
ethernet interface. In Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Society (Cat. No. 01CH37213),
Vol. 1. IEEE, 67-76.

Dave Presotto and Phil Winterbottom. 1995. The IL protocol. AT&T
ell Laboratories, Murray Hill, NJ (1995), 277-282.

Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfigurable
fabric for accelerating large-scale datacenter services. ACM SIGARCH
Computer Architecture News 42, 3 (2014), 13-24.

Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,
9-9. http://dl.acm.org/citation.cfm?id=2342821.2342830

Luigi Rizzo. 2012. Revisiting Network I/O APIs: The Netmap Frame-
work. Queue 10, 1, Article 30 (Jan. 2012), 10 pages. https://doi.org/10.
1145/2090147.2103536

Fred B. Schneider. 1993. Distributed Systems (2Nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, Chapter
Replication Management Using the State-machine Approach, 169-197.
http://dl.acm.org/citation.cfm?id=302430.302437

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. 2016. Packet Transactions: High-Level Pro-
gramming for Line-Rate Switches. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
15-28. https://doi.org/10.1145/2934872.2934900

Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. 1996.
Horus: A Flexible Group Communication System. Commun. ACM 39,
4 (April 1996), 76-83. https://doi.org/10.1145/227210.227229

Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André
DeHon, and Jonathan M. Smith. 2019. Ignis: Scaling Distribution-
Oblivious Systems with Light-Touch Distribution. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2019). ACM, New York, NY, USA, 1010-1026.
https://doi.org/10.1145/3314221.3314586

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André
DeHon, and Jonathan M. Smith. 2018. BreakApp: Automated, Flexi-
ble Application Compartmentalization. In Networked and Distributed
Systems Security (NDSS’18). https://doi.org/10.14722/ndss.2018.23131
Nikos Vasilakis, Yash Palkhiwala, and Jonathan M. Smith. 2017. Query-
efficient Partitions for Dynamic Data. In Proceedings of the 8th Asia-
Pacific Workshop on Systems (APSys ’17). ACM, New York, NY, USA,
Article 23, 8 pages. https://doi.org/10.1145/3124680.3124744
Dimitrios Vasilas, Marc Shapiro, and Bradley King. 2018. A Modular
Design for Geo-distributed Querying: Work in Progress Report. In
Proceedings of the 5th Workshop on the Principles and Practice of Con-
sistency for Distributed Data (PaPoC ’18). ACM, New York, NY, USA,
Article 4, 4 pages. https://doi.org/10.1145/3194261.3194265

T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: A User-
level Network Interface for Parallel and Distributed Computing. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles (SOSP °95). ACM, New York, NY, USA, 40-53. https://doi.
org/10.1145/224056.224061

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-
murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions
with Inconsistent Replication. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP °15). ACM, New York, NY, USA,
263-278. https://doi.org/10.1145/2815400.2815404

http://dl.acm.org/citation.cfm?id=1924943.1924968
http://dl.acm.org/citation.cfm?id=1924943.1924968
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
http://dl.acm.org/citation.cfm?id=3026877.3026914
http://dl.acm.org/citation.cfm?id=3026877.3026914
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/3098822.3098829
http://dl.acm.org/citation.cfm?id=3323234.3323265
http://dl.acm.org/citation.cfm?id=3323234.3323265
http://dl.acm.org/citation.cfm?id=2789770.2789774
http://dl.acm.org/citation.cfm?id=2342821.2342830
https://doi.org/10.1145/2090147.2103536
https://doi.org/10.1145/2090147.2103536
http://dl.acm.org/citation.cfm?id=302430.302437
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/227210.227229
https://doi.org/10.1145/3314221.3314586
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3124680.3124744
https://doi.org/10.1145/3194261.3194265
https://doi.org/10.1145/224056.224061
https://doi.org/10.1145/224056.224061
https://doi.org/10.1145/2815400.2815404

	Abstract
	1 Introduction
	2 Motivation
	3 TMC Design
	3.1 libTMC API
	3.2 Channel Configuration
	3.3 Ongoing Work
	3.4 Discussion

	4 Related Work
	5 Conclusion
	References

