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Abstract: Policy gradient methods have demonstrated success in reinforcement
learning tasks with high-dimensional continuous state and action spaces. But they
are also notoriously sample inefficient, which can be attributed, at least in part,
to the high variance in estimating the gradient of the task objective with Monte
Carlo methods. Previous research has endeavored to contend with this problem
by studying control variates (CVs) that can reduce the variance of estimates with-
out introducing bias, including the early use of baselines, state dependent CVs,
and the more recent state-action dependent CVs. In this work, we analyze the
properties and drawbacks of previous CV techniques and, surprisingly, we find
that these works have overlooked an important fact that Monte Carlo gradient es-
timates are generated by frajectories of states and actions. We show that ignoring
the correlation across the trajectories can result in suboptimal variance reduction,
and we propose a simple fix: a class of trajectory-wise CVs, that can further drive
down the variance. The trajectory-wise CVs can be computed recursively and re-
quire only learning state-action value functions like the previous CVs for policy
gradient. We further prove that the proposed trajectory-wise CVs are optimal for
variance reduction under reasonable assumptions.
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1 Introduction

Policy gradient methods [1-6] are a popular class of model-free reinforcement learning (RL) al-
gorithms. They have many advantages, including simple update rules and convergence guaran-
tees [2, 7-9]. However, basic policy gradient methods, like REINFORCE [1], are also notoriously
sample inefficiency. This can be attributed, at least in part, to the high variance in Monte Carlo
gradient estimates, which stems from both policy stochasticity necessary for exploration as well as
stochastic environmental dynamics. The high variance is further exacerbated as the horizon becomes
longer and the dimension becomes higher. If the variance of gradient estimates can be reduced, then
the learning speed of policy gradient methods can be accelerated [10, 6].

Variance reduction has been studied since early work of policy gradient methods. For example,
function approximators (critics) have been adopted to (partially) replace the Monte Carlo estimates,
which reduces variance but at the expense of bias in the search direction [2, 11-15]. This bias-
variance tradeoff can work well in practice, but can also diverge when not tuned carefully [14, 16, 9].

Another line of research uses the control variate (CV) method from statistics, which can reduce vari-
ance in Monte Carlo methods without introducing bias [2, 17-24]. For policy gradient algorithms,
specialized CV methods have been proposed to take advantage of structures inherent in RL. Espe-
cially, the state dependent CVs (also known as baselines or reward reshaping [17, 19]) have been
thoroughly investigated [18]. Common state dependent CVs are constructed as approximators of
the policy’s value function, which admits update rules based on policy evaluation techniques. Over-
all, state dependent CVs are simple to implement and have been found to be quite effective, but they
can still lead to detrimentally high variance, especially in problems that has a long horizon. This

* Equal contribution.



issue has motivated a recent development of state-action dependent CVs [20-23, 25] that can further
reduce the variance due to randomness in the actions the previous state-only CVs fails to manage.

Considering the decades-long development of CV methods, one might wonder if there is a need
for new policy gradient CV techniques. In this paper, we argue that the past development of CVs
for policy gradients has overlooked an important fact that the Monte Carlo gradient estimates are
generated by rolling out a policy and collecting statistics along a trajectory of states and actions.
Instead the focus has been on sampling pairs of states and actions, ignoring the correlation between
states and actions across time steps. Recently Tucker et al. [23] empirically analyzed the variance
of instantaneous state-action pairs and compared this to the variance correlations across time steps
in multiple simulated robot locomotion tasks. They found that the variance due to long-term trajec-
tories is often larger than the variance due to instantaneous state-action pairs. This finding implies
that there is potential room for improvement.

In this paper, we theoretically analyze the properties of previous CVs, and show that indeed the vari-
ance due to long-term trajectories can have non-negligible effects. Motivated by this observation, we
propose a family of trajectory-wise CVs, called TrajCV, which recursively augments existing CVs
with extra terms to additionally cancel this long-term variance. We show that TrajCV is particularly
effective when the transition dynamics, despite unknown, is close to deterministic. Like existing
CVs, TrajCV requires only approximates of the state-action value function (i.e. Q-function) of a
policy. Therefore, the performance of TrajCV can benefit directly from the development of policy
evaluation techniques. Moreover, we prove that TrajCV is optimal for variance reduction under
reasonable assumptions. These theoretical insights are validated in simulation.

Upon finishing this work we discovered a recent technical report [24] that is motivated similarly and
details exactly the equation (11) that TrajCV uses. Their empirical results on simulated LQG tasks
are encouraging too: TrajCV demonstrated superior performance compared with previous state and
state-action dependent CVs. By contrast, we derive TrajCV following a completely different route,
which brings extra insight into the previous deficiency and suggests natural ways for improvement.
In addition, we analyze other potential trajectory-wise CVs and prove the proposed idea is optimal.

2 Problem Setup and Background

We consider episodic policy optimization in a finite-horizon Markov Decision Process (MDP) [26,
27] with horizon h, state space S, action space .4, instantaneous cost function ¢ : § x A — R, initial
state distribution p;p;¢, and dynamics P.! Given a parameterized stochastic policy class IT the goal
is to search for a policy in II that achieves low accumulated costs averaged over trajectories

J(TF) = E[ ?:1 Ct], where Ct = C(St, At), Sl ~ Pinit » At ~ TS, St+1 ~ Pst7At (1)

where P; , denotes the distribution of the next state after applying action ¢ € A at state s € S,
and 7, denotes the distribution of action at state s € S. Note that Sy and A; are the sampled state
and action at step ¢. For simplicity of writing, we embed the time information into the definition of
state, e.g., ¢(S, A¢) can represent non-stationary functions. The randomness in (1) consists of the
randomness in the start state, policy, and dynamics. In this work, we focus on the case where the
dynamics P and the start state distribution p;,;; are unknown, but the instantaneous cost c is known.

Notation We use uppercases to denote random variables, such as S; and A;, with the exception of
J. We will use subscript ;. ; to denote the set of random variables, i.e. X7 5 = {X1,..., X5}, and

i:; to denote summation (i.e. Cy.p, = ZLI C}). As we will be frequently manipulating conditional
distributions, we adopt the subscript notation below to write conditional expectation and variance.
For Ex |y [f(X,Y)] of some function f, X denotes the random variable where the expectation is de-
fined and Y denotes the conditioned one. Furthermore, for f(X; n,Y), we use E\y [f(X1.N,Y)]
as a shorthand to denote taking the expectation over all other random variables (i.e. X ) condi-
tioned on Y. This subscript notation also applies to variance, which is denoted as Var.

2.1 Policy Gradient Methods: Pros and Cons

The goal of this paper is to improve the learning performance of policy gradient methods [1, 7, 2—
4,13, 5, 6]. These algorithms treat minimizing (1) as a first-order stochastic non-convex optimization
problem, where noisy, unbiased gradient estimates of .J in (1) are used to inform policy search.

"We use one-based indexing throughout the manuscript.



The basic idea is to apply the likelihood-ratio method to derive the gradient of (1). Let us define
Ny := Vlogmg, (At), where V is the derivative with respect to the policy parameters, and define ¢™
as the Q-function of 7; that is, ¢" (S;, A;) = E[Cy.,] where the expectation is generated by taking
A, at S; and then 7 afterwards. Define G := G'1., and G; := N;C}.,. Then it follows [1]

VJ(r) = E[X_, Nig™ (S, Ar)] = E[G], ©)

where the second equality is due to ¢™ (S, A;) = E[C}.]. Eq. (2) is an expectation over trajectories
generated by running 7. Thus, we can treat the random vector G as an unbiased estimate of V.J(7),
which can be computed by executing the policy 7 starting from initial distribution and then recording
the statistics Gy, for t € {1,...,h}. This technique is known as the Monte Carlo estimate, which
samples i.i.d. trajectories from the trajectory distribution in (1) to approximate the expectation.

The policy gradient methods (e.g. REINFORCE [1]) optimize policies based on gradient estimates
constructed using the above idea. They have numerous advantages, such as straightforward update
rules and convergence guarantee [2, 7-9]. But simply using the Monte Carlo estimate G in policy
optimization (i.e. the vanilla implementation of REINFORCE) can result in poor performance due to
excessive variance [13, 14]. Therefore, while ideally one can apply standard first-order optimization
algorithms, such as mirror descent [28], with the random estimate G to optimize policies, this often
is not viable in practice. They would require a tremendous amount of trajectory rollouts in order to
attenuate the high variance, making learning sample inefficient.

The high variance of G is due to the exploration difficulty in RL: in the worst-case, the variance
of GG can grow exponentially in the problem’s horizon [29, 30], as it becomes harder for the policy
to visit meaningful states and get useful update information. Intuitively we can then imagine that
policy optimization progress can be extremely slow, when the gradient estimates are noisy. From an
optimization perspective, variance is detrimental to the convergence rate in stochastic optimization.
For example, the number of iterations for mirror descent to converge to an e-approximate stationary
point is O((Tr (Var[G]) + 1) /€?), increasing as the problem becomes more noisy [10]. Therefore,
if the variance of estimates of (2) can be reduced, the policy gradient methods can be accelerated.

2.2 Variance Reduction and Control Variate

A powerful technique for reducing the variance in the Monte Carlo estimates is the CV method [31,
32]. Leveraging correlation between random estimates, the CV method has formed the backbone
of many state-of-the-art stochastic optimization algorithms [33-35], in particular, practical policy
gradient methods for RL [18] because of the high-variance issue of G discussed in the previous
section. Below, we review the basics of the CV method as well as previous CV techniques designed
for reducing the variance of GG. Without loss of generality, we suppose only one trajectory is sampled
from the MDP to construct the estimate of (2) and study the variance of different single-sample
estimates. We remind that the variance can be always further reduced, when more i.i.d. trajectories
are sampled (i.e. using mini batches).

2.3 Control Variate Method and Difference Estimator

Consider the problem of estimating the expectation E[X], where X is a (possibly multivariate)
random variable. The CV method [31, 32] is a technique for synthesizing unbiased estimates of
E[X] that potentially have lower variance than the naive sample estimate X. It works as follows:
Assume that we have access to another random variable Y, called the CV, whose expectation E[Y]
is cheaper to estimate than E[X]. Then we can devise this new estimate by a linear combination,

X -Q' (Y —E[Y)]), 3)

where () is a properly-shaped matrix. Due to the linearity of expectation, the estimate in (3) is
unbiased. Suppose Y is in the same dimension as X. One can show that the optimal (2 is Q* =
iVar[Y]! (Cov[X,Y] 4+ Cov|Y, X]). When data are too scarce to estimate 2*, € usually set as
the identity, which often works well when Y is positively correlated with X. The resulting estimate
X — (Y —E[Y]) is known as the difference estimator [32] and has variance Var [X — Y|, meaning
that if Y is close to X then the variance becomes smaller. In the following, we concentrate on the
design of difference estimators; we note that designing a good €2 is an orthogonal research direction.

2.4 Common Control Variates for Policy Gradient Methods

The art to various CV methods lies in the design of the correlated random variable Y. The choice is
often domain-dependent, based on how X is generated. When estimating the policy gradient in (2),



many structures (e.g. the Markov property) can be leveraged to design CVs. We discuss properties
of these designs below. Following previous works (e.g. [18, 23]), here we focus on the policy
gradient component G of G given in (2) for simplicity of exposition.>

The most commonly used CVs for policy gradient [1, 17, 18] are state-dependent functions v : S —
R, which leads to the difference estimator

éfs = Gt — (Nt‘/}f — EAt|St [Nt‘/}t]) = Gt — Nt‘/}t; where ‘/}t = E(St), (4)

and the expectation vanishes as E 4,|g, [V V] = ,VE A0, [1] = 0.3 Recently, state-action CVs
q: S x A — R have also been proposed [20-23, 25, 36], in an attempt to reduce more variance
through CVs that better correlate with G;. The state-action CVs yields the difference estimator

GSA =Gy - (Nt@t —Ey,s, [Nt@t]) . where Q; := (S, Ay). &)

Usually v and ¢ are constructed as function approximators of the value function »™ and the Q-
function ¢™ of the current policy 7, respectively, and learned by policy evaluation, e.g., variants of
TD(A) [37], during policy optimization. Therefore, these methods can also be viewed as unbiased
actor-critic approaches. In practice, it has been observed that these CVs indeed accelerate policy
optimization, especially in simulated robot control tasks [20, 21, 23, 25, 36].

3 Why We Need New Control Variates

Given the decades-long development of CVs for policy gradient reviewed above, one might wonder
if there is a need for new CV techniques. If so, what is the additional gain we can potentially have?
To answer this question, let us first analyze the variance of policy gradient component G; and how
the CVs above reduce it. By the law of total variance*, Var[G,] can be decomposed into three terms

Varg,Es, [N:Ci.] + Es, Vara, s, [NiEjs, 4, [Ci:n]] + Es, 4, Vars, a, [NiCp.n], (6)

where the first term is due to the randomness of policy and dynamics before getting to .Sy, the second
term is due to policy randomness alone at step ¢, i.e. selecting A;, and the third term is due to again
both the policy and the dynamics randomness in the future trajectories, i.e. after S; and A;. We can
measure the size of these three terms by their trace and define

Vs, = Tr (Vars,Ejs, [NiCril), Va,s, = Tr (Es, Vara,s, [N:Ejs, 4, [Ceal])
V\St,At =Tr (ESt,Atvar|St,At [Ntct:h]) .

Hence, Tr (Var[G;]) = Vs, +V 4,5, +V|s, 4, . The following theorem shows the size of each term
when the policy is Gaussian, which is commonly the case for problems with continuous actions.
Theorem 3.1. Suppose the policy 7 is Gaussian such that 7g, (A;) = N (A¢|ug(St),ol), where
o is the mean function, and 6 and o > 0 are learnable parameters. Assume the cost function c is
bounded and the Q-function ¢™ (s, a) is analytic in a. Then for small enough o, it holds that

Vs, =O0(h?), Vaus,=0(%), and Visa, =0(%).

(7

Here we focus on the effects due to the problem horizon h and the policy variance o. Theorem 3.1
shows that, when the stochasticity in policy decreases (e.g. when it passes the initial exploration
phase) the terms V 4,5, and Vg, 4, will dominate variance in policy gradients. An intuitive ex-
planation to this effect is that, as the policy becomes more deterministic, it becomes harder to ap-
proximate the derivative through zero-order feedback (i.e. accumulated costs). In particular, one
can expect that Vg, 4, is likely to be larger than V 4,5, when the variation of C'.j, is larger than
the variation of ¢™(S;, Ay) = Ejg, 4,[Ct.n]. After understanding the composition of Var[G], let

us analyze Var[étSA] to see why using Q-function estimates as CVs (in Section 2.4) can reduce the
variance.’ Akin to the derivation of (6), one can show that Var[G$4] can be written as

Varg, Eg,[N:Ci.n] + Eg, Var 4,5, [Nt (Ejs, 4, [Ct:n] — Q) + Es, 4, Vars, 4,[N:C.n]. (8)

2 Without any assumption of the MDP, the variance of G' can be bounded by the variance of G (Ap-
pendix A.3). Tighter bounds can be derived when assumptions on the MDP is made, e.g., faster mixing rate [18].

3State dependent functions naturally include non-stationary constant baselines in our notation.

*The law of total variance: Var[f(X,Y)] = Ex Vary x[f(X,Y)] + VarxEy | x [f(X,Y)] [38].

Discussion on Var [éf} is omitted in that G is subsumed by GSA.



Comparing (6) and (8), we can see that the CVs in the literature have been focusing on reducing
the second term Var 4,|s,. Apparently, from the decomposition (8), the optimal choice of the state-
action CV 7 is the Q-function of the current policy ¢™, because ¢™ (S, A¢) := Ejg, 4,[Ct.n], which
explains why g can be constructed by policy evaluation. When g = ¢™, the effect of Vary, g,
can be completely removed. In practice, ¢ is never perfect (let alone the state-dependent version);
nonetheless, improvement in learning speed has been consistently reported.

However, Theorem 3.1 suggests that Var|s, 4, can be in the similar magnitude as Var 4, 5,, imply-
ing that even when we completely remove the second term Var 4,g,, the variance of the gradient
estimate can still be significant. Indeed, recently Tucker et al. [23] empirically analyzed the three
variance components in (8) in LQG and simulated robot locomotion tasks. They found that the third
term Var|g, 4, is often close to the second term Var 4,s,, and both of them are several orders of
magnitude larger than the first term Varg,. Our Theorem 3.1 supports their finding and implies that
there is a potential for improvement by reducing Var|s, 4,. We discuss exactly how to do this next.

4 Trajectory-wise Control Variates

We propose a new family of trajectory-wise CVs, called TrajCV, that improves upon existing state
or state-action CV techniques by tackling additionally Varg, a,, the variance due to randomness
in trajectory after step t (cf. Section 3). While this idea sounds intuitively pleasing, a technical chal-
lenge immediately arises. Recall in designing CVs, we need to know the expectation of the proposed
CV function over the randomness that we wish to reduce (see (3)). In this case, suppose we propose
a CV ¢(S;..n, At..n), we would need to know its conditional expectation Eig, 4,[¢(St.n, At..n)]-
This need makes reducing Var|g, 4, fundamentally different from reducing Var 4, s, , the latter of
which has been the main focus in the literature: Because the dynamics P is unknown, we do not
have access to the distribution of trajectories after step ¢ and therefore cannot compute Eg, 4,; by
contrast, reducing Var 4, s, only requires knowing the policy 7.

At first glance this seems like an impossible quest. But we will show that by a clever divide-and-
conquer trick, an unbiased CV can actually be devised to reduce the variance Var| S;,4,- The main
idea is to /) decompose Var|g, 4, through repeatedly invoking the law of total variance and then 2)
attack the terms that are amenable to reduction using CVs. As expected, the future variance cannot
be completely removed, because of the unknown dynamics. But we should be able to reduce the
randomness due to known distributions, namely, the future uses of policy .

4.1 A Divide-and-Conquer Strategy

Before giving the details, let us first elucidate our idea using a toy problem. Consider estimating
E [f(X;.5)], the expectation of a function f of 5 random variables. We can apply the law of total
variance repeatedly, in the order indicated by the subscript, and decompose the variance into

Var [f(X15)] = 22:1 EXL.kflvaerlxl..k—lEXk-f—l_.n‘Xl__k[f(Xl--5)] 9)

For example, suppose we wish to reduce Varx,|x, , we simply need to consider a CV in the
form ¢ (X;.3), which does not depends on random variables with larger indices. With the differ-
ence estimator f(X1.5) — ¢ (X1..3) + Ex,|x, ,[# (X1.3)], the variance Varx, x, , changes into
Ex, ,Vary, x, ,[Ex, ;x, [f(X1.5)] — ¢(X1.3)]. Apparently when g is optimally chosen as
¢*(X1.3) = Ex, ,|x, ,[f(X1.5)], this term vanishes.

Fact1 A key of designing CVs by the recursive decomposition above is that the inclusion of the
extra term, e.g. ¢ (X1.3) — Ex,|x, , [¢(X1..3)], in the difference estimator only affects a single
component Vary,|x, , in the total variance, without influencing the other terms. This separation
property hence allows for a divide-and-conquer strategy: we can design CVs for each term separately
and then combine them; the reduction on each term will add up and reduce the total variance.

Fact 2 There is still one missing piece before we can adopt the above idea to design CVs for
estimating policy gradients: the ordering of random variables. In the example above, we need to
know Ex,|x, , [¢(X1.3)] to compute the difference estimator. Namely, it implicitly assumes the
knowledge about p(X35|X;. 2), which may or may not be accessible. Suppose p(X3|X; 2) is not
available but p(X3| X4 5) is. We can consider instead invoking the law of total variance in a different
order, e.g. X4y — X5 — X3 — X; — Xo, and utilize the information p(X3|X4. 5) to construct
a difference estimator to reduce Vary, x, ,. Therefore, the design of CVs hinges also on the
information available. Recall that we only know about the policy but not the dynamics in RL.
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Figure 1: Comparison of state-action CV and TrajCV

Figure 2: An illustration of the effects of state-action CV (5) and TrajCV (11). One row corresponds
to one policy component GG; := N;C}.p, and thick borders indicate the random variables of which
G is a function. State-action CV reduces the variance due to the random variables in red, whereas
TrajCV additionally affect the variance stemming from the random variables in green.

4.2 Design of TrajCV

After fleshing out the idea in the example above, we are now ready to present TrajCVs for policy
gradient. Again we will focus on the component G, for transparency. Recall that G; is a function of
S;..n and A, j. Given the information we know about these random variables (i.e. the policy) and
the Markovian structure in MDP, a natural ordering of them for applying law of total variance is

St = Ay — Spp1 = App1 — - — S — Ay (10)

Suppose now we want to reduce Vary, s, , a, ,_, for some k > ¢. Based on Section 4.1, we
may consider a CV in the form ¢¢(S;. x, As. 1), whose the optimal choice is ¢} (S¢. k, At k) =
Eis, .4, [NtCen] = Ny (Ct:kfl + E\St”k,At”k[Ck:h]) = Nt (Crk—1 + q7(Sk, Ag)), where the
last equality is due to the Markovian structure and the definition of ¢™. This suggests practically we
canuse ¢y (S g, At k) := Ne(Crr—1 + Qk), where Q, := q(Sk, Ax) and § = ¢™ as was in (5).

In other words, we showed that finding the optimal CV for reducing variance in policy gradient can
be reduced to learning a good Q-function estimate; this enables us to take advantage of existing pol-
icy evaluation algorithms. Now we combine® {¢;(S;. , At“k)}’,}::t to build the CV for G;. Because
these terms do not interfere with each other (cf. Section 4.1), we can simply add them together into

ZZ:t &¢(St. .1, At ;) as the TrajCV. Equivalently, we have devised a difference estimator:
GI™ = Gy — S0, (0e(Sers Aek) — Eagis, woae o [06(Seres Ar 1))
= Gi = Yy (NiQk — By, [N:Qi)) (an

Comparing TrajCV in (11) and state-action CV in (4), we see that the state-action CV only contains
the first term in the summation of TrajCV.” The remaining terms with k¥ > ¢ can be viewed as

multiplying N; with estimates of future advantage functions: i.e., we have NV, @ k—Ea, s, [Nt@k] =

N,(Qr — E Ap|S [Qx]). Appealing to law of total variance, Var[G; "] can be decomposed into
Vars,Ejs, [NiCen] + Es, Var a, s, [Ne(Ejs, 4, [Cen] — Qu)] + (12)
due to St due to Ay

h h

Z EskvAkvarSkJrl [Sk>Ak [NtE\SkJrl [Ck:h]] + Z ESk+1varAk+1 [Skt1 [NV (E\Sk+1«Ak+1 [Chin] — Qrt1)]
k=t k=t

due to dynamics randomness after step ¢ due to policy randomness after step ¢

where we further decompose the effect of Varg, 4, in the second line into the randomness in
dynamics and actions, respectively. Therefore, suppose the underlying dynamics is deterministic
(ie. Varg, |s, a, vanishes), and ¢ = ¢”, then using TrajCV (11) would completely remove
Var,, s, and Var(g, 4,, the latter of which previous CVs (4) and (5) cannot affect. In Fig. 1,
we visualize effects of TrajCV and state-action CV on each policy gradient component G;. State-
action CV only influences the diagonal terms, while TrajCV is able to affect the full upper-triangle

SWhen k = t, the CV is the same as state-action CV in (5), i.e. we define @e(Se, Ae) = Nt@t.
"For brevity, we use CV to mean the difference estimator of that CV when there is no confusion.



parts. Note that in implementation of TrajCV for G1.,, we only need to compute quantities @t,
E4,s,1Q¢] and E4, |5, [N:Q;] along a trajectory (done in O(h) linear time) and they can be used to

compute {G; "™}, in (11). In addition, we remark that when §(s,a) = 0(s), TrajCV reduces to
the state-dependent CVs. We provide an example implementation of TrajCV in Appendix B.

4.3 The Natural Ordering in (10) is Optimal

Recall in Section 4.1 we mentioned that the admissible ordering of random variables used in invok-
ing the law of total variance depends on the information available. Here we show that the chosen
ordering (10) is indeed the best ordering to adopt, as we only know the policy, not the dynamics.

We compare (10) against other potential orderings constructed by reparameterizing the policy such
that its randomness in action becomes independent of the input state. We suppose the policy 7 € 11
can be reparameterized by a function w : S X R — A and a distribution pg, so that for all s € S,
w(s, R) and 74 are equal. This is not a restricted assumption, which applies to, e.g., policies based
on Gaussian [1, 5, 39] and Boltzmann [40, 2] distributions.

Reparameterization makes designing a larger family of TrajCVs possible. Because the component
Gt becomes a function of Ry ; and S;._j, the ordering the random variables in applying the law of
total variance now can have many possibilities. In one extreme case, the randomness of actions can
be ordered before states (except S;) as

St —> Ry — -+ = Ry = Sey1 — - — S, (13)

leading to a CV that’s a function of ;. ; bearing the optimal choice Eg, i1nlRe n,Se [N:C}.p]. Note
that Eg, w1.n|ReonSe [N:C}.;] is a function that inputs the observable action randomness Ry, not
the randomness of the unknown dynamics. Therefore, it can be approximated, e.g., if we have a
biased simulator of the dynamics.® One might ask, given all possible orderings of random variables,
which ordering we should pick to design the CV. Interestingly, to this question, the most natural one
and the optimal one coincide. The proof is deferred to Appendix A.

Theorem 4.1. Suppose that policy specified by w and pr is known, but the dynamics P is unknown.
Assume the optimal CV of a given ordering of random variables S;, j, and Ry, ; can be obtained.
Then the optimal ordering that minimizes the residue variance is the natural ordering in (10) .

Theorem 4.1 tells us that if the optimal CVs are attainable (i.e. we can compute the Q-function
exactly), then the natural ordering is optimal. However, we also remark that using this exact Q-
function in the actor-critic rule can actually compute a gradient estimate that does not depend on any
future randomness, which is better than using any of the CV techniques above as they yield noisy
gradient estimates that always depend on unobservable randomness due to the stochastic dynamics.
However, in practice, we can get neither the exact Q-function, nor the optimal CV of the other
orderings. Consequently, further trade-off between bias and variance should be considered, which
can have large effects in practice. For example, when using a biased Q-function estimate, it may be
good to start with the the biased actor-critic gradient and then gradually switching to the unbiased
TrajCV gradient as the step size decays. But considering the imperfection of the Q-function estimate,
we may also want to use other ordering instead of the natural one used in TrajCV. If the dynamics
is relatively accurate and the computing resources for simulation are abundant, then although the
residue is higher, the ordering (13) could actually be superior. The purpose of this paper is to provide
new insights into these different choices, but we leave further discussion on the bias-variance trade-
off as an interesting practical question to pursue in future work. In the experiment section later, we
will focus on the natural ordering (10).

S Experimental Results and Discussion

Although the focus of this paper is the theoretical insights, we illustrate our results with simulation
of learning neural network policies to solve the CartPole balancing task in OpenAl Gym [41] pow-
ered by DART physics engine [42]. The policies are optimized using natural gradient descent [3].
Below we report in rewards, negative of costs, which is the natural performance measure provided
in OpenAl Gym. The details of setup and implementation are provided in Appendix C.

8We sample all the action randomness R, first, execute the policy 7 in simulation with fixed randomness
Ry, and then collect the statistics N;C'.p.
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Figure 3: Components of Tr (Var[G,]), for t = 100, evaluated at policies generated under the
“upper bound” setting. o denotes the initial value of policy variance (defined in Theorem 3.1). The
z-axis denotes the iteration number, and the y-axis is in log scale. The two vertical dashed lines
mark the boundaries of iterations where the expected accumulated rewards is between 50 and 900.
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Figure 4: Results of naive Monte Carlo estimate, state CV, state-action CV, and TrajCV on CartPole
problems with horizon & = 1000, 2000, 4000, where 5 trajectories are collected in each iteration.
(MC) in the legend indicates that E 4, g, in state-action CV and TrajCV is approximated by 1000
samples. “Upper bound” emulates the results of noiseless estimates with 100,000 samples per
iteration.” The z- and y-axes are iteration number and accumulated rewards, respectively. The
median of 8 random seeds is plotted, and the shaded area accounts for 25% percentile.

First, in Fig. 3, we corroborate the theoretical findings in Theorem 3.1 by empirically evaluating the
components of Tr (Var[G;]) during learning at ¢ = 100. We observe that the learning process on
CartPole can be partitioned into three stages (as delineated by the dashed vertical lines in Fig. 3):
1) the initial exploration, where the policy performs very poorly and improves slowly, 2) the rapid
improvement, where the policy performance increases steeply, and 3) the near convergence, where
the policy reaches and stays at the peak performance. In the rapid improvement stage, due to the
variance in the accumulated reward, Vg, 4, is large, close to V4,5, and about 10 times of Vg, as
predicted by Theorem 3.1. Later on, when the policy is about to converge, Vg, 4, drops because
the performance becomes more consistent among trajectories especially for the case with small 0.

Next, in Fig. 4, we compare naive Monte Carlo estimate (2), state-dependent CV (4), state-action
CV (5), and TrajCV (11). We realized all algorithms with the same implementation of an on-policy
value function approximator to facilitate a fair comparison; for the state-action CV and TrajCV, we
used a Q-function estimate based on a biased physics simulator and the mentioned value function
approximator. Overall, when more information is used to design the CVs (from state only, state-
action, and then trajectory-wise) the convergence speed improves. In particular, as the problem
horizon becomes longer, the gap becomes larger: the reward feedback becomes sparser, so the
variance due to long-term trajectory starts to dominate, as shown in Fig. 4c. In Appendix C, we
provide further results of CVs based on other choices of Q-function approximators.

These preliminary experimental results support the theoretical insights provided in Section 3 and
Section 4, suggesting the importance of considering long-term effects in designing CVs, especially
for problems with a long horizon. The fix turns out to be quite simple: just padding additional terms
(cf. (11)) onto the existing CVs, which can be done using Q-function approximators available in
existing CVs without new information. Interestingly we prove this simple idea is optimal. Important
future work includes considering the different bias and variance trade-off discussed in Section 4.3.

“For the usual learners, the number of samples collected per iteration is often less than 5h, and much less at
the start of learning, because of early termination when the agent fails.
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Appendix

A Missing Proofs

A.1 Proof for Theorem 4.1

To understand how the ordering matters, we consider a toy example of estimating Ex y[f(X,Y)]
of some function f of two random variables X and Y. We prove a basic lemma.

Lemma A.1. If X and Y are independent, then
VarxEy [f(X,Y)] < EyVarx [f(X,Y)] (14)

Proof. This can be proved by Jensen’s inequality.

VarxEy [f] = Ex (Ey [f — Ex [f]])? < ExEy [(f —Exy [f]ﬂ = Ey Varx [f(X,Y)]
O

Suppose we want to reduce the variance of estimating Ex y [f(X,Y")] with some CV ¢(X,Y) but
only knowing the distribution P(X), not P(Y'). Lemma A.1 tells us that in decomposing the total
variance of f(X,Y) to design this CV (cf. Section 2.3) we should take the decomposition

VaI'yEX [f(X, Y)] +EyVaI‘X [f(X, Y)] (15)
instead of the decomposition
VaI'XEy [f(X, Y)] + EXVary [f(X, Y)] (16)

In other words, we should take the ordering ¥ — X, instead of X — Y, when invoking the
law of total variance. The reason is that after choosing the optimal CV for each case to reduce the
variance due to X (the information that we have access to), we are left with Vary Ex [f(X,Y)] and
ExVary [f(X,Y)], respectively, for Y — X and X — Y. By Lemma A.1, we see the Y — X
has a smaller residue in variance. In other words, when we only have partial information about the
distribution, we should arrange the random variables whose distribution we know to the latter stage
of the ordering, so that the CV we design can leverage the sampled observations to compensate for
the lack of prior.

We use this idea to prove the natural ordering (10) in optimal. In analogy of X and Y, we have
the action randomness whose distribution is known (i.e. the policy) and the dynamics randomness,
whose distribution is unknown.

The potential orderings we consider come from first reparameterizing the policy and then ordering
the independent random variables R; (cf. Section 4.3). The Bayes networks of the MDP with
and without policy reparameterization are depicted in Fig. 5, based on which we draw conditional
independent relations later in the proof. We note that the CV is determined by the ordering, not due
to reparameterization. For the natural ordering,

St*)At*)St—Q—l%At—&-l‘)"")Sh%Ah, (10)
it gives the same control variate of the ordering below based on reparameterization

St = Ry — Siy1 = Riy1 — -+ — Sp — Ry, a7
Suppose that given an ordering, we can compute its optimal CV. We define the variance left after

applying that optimal CV associated with the ordering, the residue of that ordering. We will show
that the residue is minimized at the natural ordering.

The proof consists of two steps.
1. We show that when dynamics is the MDP is unknown, an ordering is feasible to implement,
if and only if, Ry, appears before Si41.p forallt < k < h. Thatis, a feasible ordering must

be causal at least in actions: the action randomness that causes a state must be arranged
before that state in the ordering. We prove this by contradiction. Assume otherwise .S, is

11



(a) before policy reparameterization (b) after policy reparameterization

Figure 5: Bayes networks for the random variables in G; (2), before and after reparameterization.
After policy is reparameterized, action Ay, is decided by state Sj and action randomness Ry;.

the first state before Ry, satisfying v > k. We see that R, and S, are dependent, if none
of the variables in Si41 , is given. This observation can been inferred from the Bayes
network that connect these random variables (Fig. 5b), i.e. the path from R; to .S, is not
blocked unless any of Sy1. ., is observed [43]. Therefore, if we have an ordering that
is violates the causality property defined above, the expectation over Ry, required to define
the difference estimator becomes intractable to compute, because the dynamics is unknown.
This creates a contradiction.

2. We show that any feasible ordering can be transformed into the natural ordering in (10)
using operations that do not increase the variance residue. We consider the following two
operations

(a) Suppose, in an ordering, there is S, — S,, v > u, then we can exchange them without
affecting variance residue.

(b) Suppose, in a feasible ordering, there is S, — Ry — S, with v > v and k # u,v.
Because this is a feasible ordering, we have £ 4+ 1 < u < v. This means that we can
also move Ry, after S,,. This change would not increase variance residue, because of
the discussion after Lemma A.1. Then we change exchange the order of .S, and S,
too using the first operation.

By using these two operations repeatedly, we can make all the states ordered by their sub-
scripts, without increasing the residue. Finally, we can move Ry to just right after Sy
without increasing residue using Lemma A.1 again. Thus, we arrive at the natural ordering
in (17), which is the same as (10). In other words, the natural ordering is the optimal one
among all feasible CVs that we can implement, which concludes the proof.

A.2 Proof of Theorem 3.1

Let d 4 denote the dimension of 4. Suppose d 4 is finite. To bound these variance terms, we derive
some intermediate bounds. First, by the Gaussian assumption,

d —1
s, (40) = (2r0) % exp (37 e~ uo(S))

we see that

N; = Vinw(4,]S) = {VQ an(At|5t)} _ {jvﬂe(st)(flt - ug(St))}

Vo Inm(A¢|Se) oz | Ae — po(Se)|)* — 94
Therefore, for o small enough, || N¢| = O(%&A‘)).

Second, by the assumption on boundedness of C, we have Cy.;, = O(h) and Q; = ¢™ (S, A¢) =
O(h). We use these equalities to bound Eg, [N;Cy.;]. We observe that the identity that

E|St [Ntctih] = VEAHS} [qﬂ-(Stv At)]

Under the assumption that ¢” is analytic, ¢g" can be written in terms of an infinite sum of poly-
nomials, i.e. ¢" (S, A;) = polyg, (As), where the subscript remarks that these coefficients in the
polynomial depends on S;.
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Now we are ready to bound Vs,, V 4,|5,, and Vg, 4,. We recall that the expectation of polynomials
over a Gaussian distribution depends only polynomially on the Gaussian’s variance o, with an order
no less than 1. Therefore, for o small enough, we have || VE 4, s, [¢" (S, A¢)]|| = O(h) independent
of o, which implies that

Vs, = Tr (Varg, [E|s, [N:Cip]]) = o(h?)

t

We can apply the same observation on the Gaussian expectation of polynomials and derive, for o
small enough,

VAt\St =Tr (Est [VarAt\St [Nt (E|St;At [Ctﬁh])]])

= Tr (Es, [Var, s, [Nig"(Si, A))]]) = O <h2>

ot

Similarly we can show

h2
Vis,,a, = Tr (Bs, 4, [Varys, 4, [NiCp]]) = O ()
This concludes the proof.

A.3 Bound for Variance of Policy Gradient

The variance of the policy gradient Var[G] can be bounded by the variance of policy gradient
components {Var[G;]}~,. Appealing to the formula for the variance of the sum of two random
variables

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y],
linearity of covariance
Cov[X,Y + Z] = Cov[X,Y] + Cov[X, Z]
and Cauchy -Schwartz inequality
Cov[X,Y]| < Var[X] + Var[Y],
we can derive the following:

Var|[G] = Var [G1.1]
= Var [Gﬂ + Var [Gg:h] + COV[Gl7 Gg;h]

h
= Var[G4] + Z Cov|[G1,Gy] + Var [G2.4)

t=2
h h
= ZVar[Gt} + Z Z Cov|[G,, G,
t=1 u=1v=u+1
h R h
<Y Var[G]+ Y > (Var[G,] + Var|G,])
t=1 u=1v=u+1
h
=hY Var[G]
t=1

B Algorithm Example

Algorithm 1 specifies an instance of TrajCV, where Monte Carlo samples from a cheaper model

simulator is used to approximate E 4, g, [@t] (Line 8) and E 4, s, [Nt@t] (Line 9). We discuss some
other ways for approximation Appendix C.

In practice, the policy that’s used for data collection may be different from the policy with respect to
which the policy gradient is computed, e.g., when a whitening normalizer of the inputs to policy is

13
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Algorithm 1: Policy gradient estimate with TrajCV

Input: policy T, single trajectory by running 7: {s;, a¢, ¢; }1_, value function estimate v,
deterministic dynamics estimate d, number of action samples [

Output: policy gradient estimate

fort < 1tohdo // collect statistics

Gt < 0(d(se,ar)) + c(se,ar)

ng < Vlogms, (ar)

fori < 1toIdo // Monte Carlo samples
Sample a} ~ 7,
@ = v(d(st, a7)) + c(s1, a)
n <« Vg, (a})

=iA I
]:?[Qt]/f_ % Z’L:l a’:
| EINQ « 7 Xinmid;
fort < 1to hdo // compute difference estimators
G{™  nycpn — (nt@ - E[NtQt]> —ny Zzzt (Z]\k - E[Qt]) (11)
vai . ATraj
Gmral <—~G13hJ
return G'?)

updated after data collection or when off-policy samples are utilized. Here we derive a TrajCV that
TSy (At )
7, (Ad)
weights, and define W,_,;, := sza Wi for b > a and W,_,;, = 1 for b < a, akin to : representing
summation. Then we can write

takes this into account. Let 7% be the data collection policy and W; :=

be the importance

h
E, [G]=E, ,[G:Wisn] =E, , |G:Win =Y Wi (WthQk —Edpnns, [NtQk})]
k=t

Note that this TrajCV is unbiased, and when ¢ = ¢”, variance due to actions vanishes.

C Experiment Details

C.1 Setup

In CartPole, the reward function is the indicator function that equals to one when the pole is close
to being upright and zero otherwise. This is a delayed reward problem in that the effective reward
signal is revealed only when the task terminates prematurely before reaching the horizon, i.e. when
the pole deviates from being upright. The start state is perturbed from being vertical and still by
an offset uniformly sampled from [—0.01,0.01]%s, and the dynamics is deterministic.!® The action
space is continuous and Gaussian policies are considered in the experiments. The policy’s mean
function is a neural network with one hidden layers of 32 units and tanh activation, and a linear
output layer. To be robust to outliers in data collection, the policy is optimized by natural gradient
descent [3] with a KL-divergence safe guard on the policy change, such that a policy would change
no more than 0.1 in the KL divergence averaged over the empirical state distribution on the data
collected in each iteration.

C.2 Construction of Q-function Approximators

To facilitate a fair comparison across different CV techniques, we build all the CVs based on a an
on-policy value function approximator v, which is a neural network with two hidden layers of 64
units each and tanh activation, and a linear output layer. In each iteration, we sample abundant
data (50, 000 state-action pairs) from a biased dynamics simulator (which is obtained by perturbing

1°Symbol ds denotes the dimension of S.
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Figure 6: The exact same settings as Fig. 4 except that the state-action CV and TrajCV are given by
E(d’ﬁ) and ZﬂdiﬁqGN) (Fig. 6a), and Z]\(”“’) and Z]\(””"GN) (Fig. 6b).

each underlying physical parameter relatively by 10%), and then fit ¥ to these biased Monte-Carlo
estimates with a quadratic loss using ADAM (stepsize 0.001; 81 = 0.9 and S5 = 0.999) for 1,024
batches with batchsize 128. The reason for using a biased dynamics simulator in lieu of the on-policy
data from the real environment is that we only sample 5 trajectories per iteration, which amount to
around 100 data points in the early iterations and can be too scarce to build a reasonable function
approximator.

As mentioned, all the CVs are built using the above policy evaluation technique. (Different methods
learn its own value function approximator on-the-fly along the progress of policy optimization.) For
the state-dependent CV, the usage of v is straightforward. For state-action CV and TrajCV, we use v
to further construct the needed Q-function approximator ¢. This is done as follows: First, we further
train a deterministic function d that maps the current state and action to next state using the same data
collected from the true environment that are used for computing the policy gradient estimates. As
policy optimization progresses, we aggregate the data from the past rounds to iteratively build this
dynamics model (which is another neural network with two hidden layers of 64 units each and tanh
activation and a linear output layer). This is done by updating it after the policy gradient step in each
iteration to remove undesirable correlations. Next, we use the above value function approximator v

and the dynamics approximator d to define a natural Q-function approximator g™ (s, a) = ¢(s,a)+

6(&\(5, a)). Based on this basic ¢%™, we explore several options of Q-function approximator for
defining the state-action CV and TrajCV:

1. Monte Carlo (MC) : ¢%"(s,a). We use many samples of actions (1,000 in the experi-
ments) to approximate E 4, |, [Zj(dy“)(St, At)} . To reduce variance, we use the same action
randomness for different steps, i.e. using the same 1,000 i.i.d. samples from pg (defined
in Section 4.3) in the evaluation for E 4, 5, with different ¢.

2. We also consider various Q-function approximators that are quadratic in action, so that
E 4,5, can be evaluated in closed-form. They are derived by different linearizations of the
Q-function approximator ¢ as shown below.

@) ¢V (s,a) = c(s,a) +0(5") + (a —m) T V,,d(s,m)Vi(5),
(b) ~(next-GN) ( ) — 7(next) (57 a) + %(aim)—rvm&\(
(©) 9N (s,a) =0(s)+(a—m) T V,,(c(s,m)+0(5
(@ GO (s,0) =7 (s5,0) + 3o~ ) Vol

~

YW20(5" )V nd(s,m) T (a —m),
m),

where m = pp(s) is the mean of the Gaussian policy, 5 c/l\( and “GN” stands for
Gauss-Newton. We assume c(s, a) is quadratic in a for g"*V and g("ex-6N),

TV,.d(s,

Note to Practitioners We emphasize that constructing a Q-function approximator indirectly
through a dynamics model and a value function approximator is not ideal for practical purposes.
This approach would combine errors from two sources and can have worse performance than directly
estimating a Q-function, e.g., through (simulated) Monte Carlo samples. However, we adopted this
formulation to make the results of different CVs more comparable, removing the bias due to differ-
ent value function approximators and evaluation techniques. While this construct is sufficient for
the purpose of comparing theoretical properties here, we do remind that this scheme does not scale
well to general high-dimensional problems.

15



C.3 Extra Experimental Results

The performance of different CVs using MC for approximating E 4,|s, is reported in Fig. 4. We
provide the experimental results of these quadratic Q-function approximators in Fig. 6, where the
setup is the same those in Fig. 4.

Finally, we note that because the recent technical report [24] essentially proposed the same equa-
tion (11) that TrajCV uses. We invite the readers to refer to their encouraging empirical results on
simulated LQG tasks too.
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