
Predictor-Corrector Policy Optimization

Ching-An Cheng 1 2 Xinyan Yan 1 Nathan Ratliff 2 Byron Boots 1 2

Abstract

We present a predictor-corrector framework,
called PICCOLO, that can transform a first-order
model-free reinforcement or imitation learning al-
gorithm into a new hybrid method that leverages
predictive models to accelerate policy learning.
The new “PICCOLOed” algorithm optimizes a
policy by recursively repeating two steps: In the
Prediction Step, the learner uses a model to pre-
dict the unseen future gradient and then applies
the predicted estimate to update the policy; in the
Correction Step, the learner runs the updated pol-
icy in the environment, receives the true gradient,
and then corrects the policy using the gradient
error. Unlike previous algorithms, PICCOLO cor-
rects for the mistakes of using imperfect predicted
gradients and hence does not suffer from model
bias. The development of PICCOLO is made
possible by a novel reduction from predictable on-
line learning to adversarial online learning, which
provides a systematic way to modify existing first-
order algorithms to achieve the optimal regret
with respect to predictable information. We show,
in both theory and simulation, that the conver-
gence rate of several first-order model-free algo-
rithms can be improved by PICCOLO.

1. Introduction
Reinforcement learning (RL) has recently solved a number
of challenging problems (Mnih et al., 2013; Duan et al.,
2016; Silver et al., 2018). However, many of these successes
are confined to games and simulated environments, where
a large number of agent-environment interactions can be
cheaply performed. Therefore, they are often unrealistic in
real-word applications (like robotics) where data collection
is an expensive and time-consuming process. Improving
sample efficiency still remains a critical challenge for RL.

1Georgia Tech 2NVIDIA. Correspondence to: Ching-An Cheng
<cacheng@gatech.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Model-based RL methods improve sample efficiency by
leveraging an accurate model that can cheaply simulate in-
teractions to compute policy updates in lieu of real-world
interactions (Tan et al., 2018). A classical example of
pure model-based methods is optimal control (Jacobson
& Mayne, 1970; Todorov & Li, 2005; Deisenroth & Ras-
mussen, 2011; Pan & Theodorou, 2014), which has recently
been extended to model abstract latent dynamics with neural
networks (Silver et al., 2017; Oh et al., 2017). These meth-
ods use a (local) model of the dynamics and cost functions
to predict cost-to-go functions, policy gradients, or promis-
ing improvement direction when updating policies (Levine
& Koltun, 2013; Sun et al., 2018; Anthony et al., 2017).
Another way to use model information is the hybrid DYNA
framework (Sutton, 1991; Sutton et al., 2012), which inter-
leaves model-based and model-free updates, ideally cutting
learning time in half. However, all of these approaches,
while potentially accelerating policy learning, suffer from
a common drawback: when the model is inaccurate, the
performance of the policy can become biased away from
the best achievable in the policy class.

Several strategies have been proposed to remove this perfor-
mance bias. Learning-to-plan attempts to train the planning
process end-to-end (Pascanu et al., 2017; Srinivas et al.,
2018; Amos et al., 2018), so the performance of a given
planning structure is directly optimized. However, these al-
gorithms are still optimized through standard model-free RL
techniques; it is unclear as to whether they are more sample
efficient. In parallel, another class of bias-free algorithms is
control variate methods (Chebotar et al., 2017; Grathwohl
et al., 2018; Papini et al., 2018), which use models to reduce
the variance of sampled gradients to improve convergence.

In this paper, we provide a novel learning framework that
can leverage models to improve sample efficiency while
avoiding performance bias due to modeling errors. Our
approach is built on techniques from online learning (Gor-
don, 1999; Zinkevich, 2003). The use of online learning to
analyze policy optimization was pioneered by Ross et al.
(2011), who proposed to reduce imitation learning (IL) to
adversarial online learning problems. This reduction pro-
vides a framework for performance analysis, leading to
algorithms such as DAGGER (Ross et al., 2011) and AG-
GREVATE (Ross & Bagnell, 2014). However, it was recently
shown that the naı̈ve reduction to adversarial online learning

Predictor-Corrector Policy Optimization

loses information (Cheng & Boots, 2018): in practice, IL is
predictable (Cheng et al., 2019) and can be thought of as a
predictable online learning problem (Rakhlin & Sridharan,
2013a). Based on this insight, Cheng et al. (2019) recently
proposed a two-step algorithm, MOBIL. The authors prove
that, by leveraging predictive models to estimate future gra-
dients, MOBIL can speed up the convergence of IL, without
incurring performance bias due to imperfect models.

Given these theoretical advances in IL, it is natural to ask
if similar ideas can be extended to RL. In this paper, we
show that RL can also be formulated as a predictable online
learning problem, and we propose a novel first-order learn-
ing framework, PICCOLO (PredICtor-COrrector poLicy
Optimization), for general predictable online learning prob-
lems. PICCOLO is a meta-algorithm: it takes a standard
online learning algorithm designed for adversarial problems
(e.g. ADAGRAD (Duchi et al., 2011)) as input and returns
a new hybrid algorithm that can use model information to
accelerate convergence. This new “PICCOLOed” algorithm
optimizes the policy by alternating between Prediction and
Correction steps. In the Prediction Step, the learner uses a
predictive model to estimate the gradient of the next loss
function and then uses it to update the policy; in the Cor-
rection Step, the learner executes the updated policy in the
environment, receives the true gradient , and then corrects
the policy using the gradient error. We note that PICCOLO
is orthogonal to control variate methods; it can still improve
learning even in the noise-free setting (see Section 5.2).

Theoretically, we prove that PICCOLO can improve the
convergence rate of any base algorithm that can be written
as mirror descent (Beck & Teboulle, 2003) or Follow-the-
Regularized-Leader (FTRL) (McMahan & Streeter, 2010).
This family of algorithms is rich and covers most first-order
algorithms used in RL and IL (Cheng et al., 2018). And,
importantly, we show that PICCOLO does not suffer from
performance bias due to model error, unlike previous model-
based approaches. To validate the theory, we “PICCOLO”
multiple algorithms in simulation. The experimental results
show that the PICCOLOed versions consistently surpass the
base algorithm and are robust to model errors.

The design of PICCOLO is made possible by a novel re-
duction that converts a given predictable online learning
problem into a new adversarial problem, so that standard
online learning algorithms can be applied optimally without
referring to specialized algorithms. We show that PICCOLO
includes and generalizes many existing algorithms, e.g.,
MOBIL, mirror-prox (Juditsky et al., 2011), and optimistic
mirror descent (Rakhlin & Sridharan, 2013a) (Appendix A).
Thus, we can treat PICCOLO as an automatic process for
designing new algorithms that safely leverages imperfect
predictive models (such as off-policy gradients or gradients
simulated through dynamics models) to speed up learning.

2. Problem Definition
We consider solving policy optimization problems: given
state and action spaces S and A, and a parametric policy
class Π, we desire a stationary policy π ∈ Π that solves

min
π∈Π

J(π), J(π) := E(s,t)∼dπEa∼πs [ct(s, a)] (1)

where ct(s, a) is the instantaneous cost at time t of state
s ∈ S and a ∈ A, πs is the distribution of a at state s un-
der policy π, and dπ is a generalized stationary distribution
of states generated by running policy π in a Markov deci-
sion process (MDP); the notation Ea∼πs denotes evaluation
when π is deterministic. The use of dπ in (1) abstracts dif-
ferent discrete-time RL/IL problems into a common setup.
For example, an infinite-horizon γ-discounted problem with
time-invariant cost c can be modeled by setting ct = c and
dπ(s, t) = (1 − γ)γtdπ,t(s), where dπ,t is the state distri-
bution visited by policy π at time t starting from some fixed
but unknown initial state distribution.

For convenience, we will usually omit the random variable
in expectation notation (e.g. we will write (1) as EdπEπ [c]).
For a policy π, we overload the notation π to also denote
its parameter, and write Qπ,t and Vπ,t := Eπ[Qπ,t] as its
Q-function and value function at time t, respectively.

3. IL and RL as Predictable Online Learning
We study policy optimization through the lens of online
learning (Hazan et al., 2016), by treating a policy optimiza-
tion algorithm as the learner in online learning and each
intermediate policy that it produces as an online decision.
This identification recasts the iterative process of policy op-
timization into a standard online learning setup: in round n,
the learner plays a decision πn ∈ Π, a per-round loss ln is
then selected, and finally some information of ln is revealed
to the leaner for making the next decision. We note that the
“rounds” considered here are the number of episodes that
an algorithm interacts with the (unknown) MDP environ-
ment to obtain new information, not the time steps in the
MDP. And we will suppose the learner receives an unbiased
stochastic approximation l̃n of ln as feedback.

We show that, when the per-round losses {ln} are properly
selected, the policy performance {J(πn)} in IL and RL can
be upper bounded in terms the N -round weighted regret

RegretN (l) :=
N∑
n=1

wnln(πn)−min
π∈Π

N∑
n=1

wnln(π) (2)

and an expressiveness measure of the policy class Π

εΠ,N (l) := 1
w1:N

minπ∈Π

∑N
n=1 wnln(π) (3)

where wn > 0 and w1:n :=
∑n
m=1 wm. Moreover, we

show that these online learning problems are predictable:

Predictor-Corrector Policy Optimization

that is, the per-round losses are not completely adversarial
but can be estimated from past information. We will use
these ideas to design PICCOLO in the next section.

3.1. IL as Online Learning

We start by reviewing the classical online learning approach
to IL (online IL for short) (Ross et al., 2011) to highlight
some key ideas. IL leverages domain knowledge about a
policy optimization problem through expert demonstrations.
Online IL, in particular, optimizes policies by letting the
learner π query the expert π? for desired actions, so that
a policy can be quickly trained to perform as well as the
expert. At its heart, online IL is based on the following
lemma, which relates the performance between π and π?.

Lemma 1. (Kakade & Langford, 2002) Let π and π′ be
two policies andAπ′,t(s, a) := Qπ′,t(s, a)−Vπ′,t(s). Then
J(π) = J(π′) + EdπEπ[Aπ′].

Given the equality in Lemma 1, the performance difference
between π and π? can then be upper-bounded as

J(π)−J(π?)=EdπEπ[Aπ?] ≤ Cπ?E(s,t)∼dπ [Dt(π
?
s ||πs)]

for some positive constant Cπ? and function Dt, which is
often derived from statistical distances such as KL diver-
gence (Cheng et al., 2018). When Aπ∗,t is available, we
can also set Dt(π

?
s ||πs) = Ea∼πs [Aπ?,t(s, a)], as in value

aggregation (AGGREVATE) (Ross & Bagnell, 2014).

Without loss of generality, let us suppose Dt(π
?
s ||πs) =

Ea∼πs [c̄t(s, a)] for some c̄t. Online IL converts policy opti-
mization into online learning with per-round loss

ln(π) := EdπnEπ[c̄]. (4)

By the inequality above, it holds that J(πn) − J(π?) ≤
Cπ? ln(πn) for every n, establishing the reduction below.

Lemma 2. (Cheng et al., 2019) For ln defined in (4),
E
[∑N

n=1
wnJ(πn)
w1:N

]
≤ J(π?) + Cπ?E

[
εΠ,N (l) +

RegretN (l̃)

w1:N

]
,

where the expectation is due to sampling l̃n.

That is, when a no-regret algorithm is used, the performance
concentrates toward J(π?) + Cπ?E[εΠ,N (l)].

3.2. RL as Online Learning

Can we also formulate RL as online learning? Here we
propose a new perspective on RL using Lemma 1. Given a
policy πn in round n, we define a per-round loss

ln(π) := EdπnEπ[Aπn−1]. (5)

which describes how well a policy π performs relative to
the previous policy πn−1 under the state distribution of πn.
By Lemma 1, for ln defined in (5), ln(πn) = J(πn) −

J(πn−1) for every n, similar to the pointwise inequality of
ln that Lemma 2 is based on. With this observation, we
derive the reduction below (proved in Appendix B).

Lemma 3. Suppose wn+k

wn
≤ wm+k

wm
, for all n ≥ m ≥ 1

and k ≥ 0. For (5) and any π0, E[
∑N
n=1

wnJ(πn)
w1:N

] ≤
J(π0)+

∑N
n=1

wN−n+1

w1:N
E[Regretn(l̃)+w1:nεΠ,n(l)], where

the expectation is due to sampling l̃n.

3.2.1. INTERPRETATIONS

Lemma 3 is a policy improvement lemma, which shows
that when the learning algorithm is no-regret, the policy
sequence improves on-average from the initial reference
policy π0 that defines l1. This is attributed to an important
property of the definition in (5) that minπ∈Π ln(π) ≤ 0. To
see this, suppose E[εΠ,n(l)] ≤ −Ω(1) (i.e. there is a policy
that is better than all previous n policies); this is true for
small n or when the policy sequence is concentrated. Under
this assumption, if wn = 1 and Regretn(l̃) ≤ O(

√
n), then

the average performance improves roughly NE[εΠ,N (l)]
away from J(π0).

While it is unrealistic to expect E[εΠ,n(l)] ≤ 0 for large n,
we can still use Lemma 3 to comprehend global properties
of policy improvement, for two reasons. First, the inequality
in Lemma 3 holds for any interval of the policy sequence.
Second, as we show in Appendix B, the Lemma 3 also
applies to dynamic regret (Zinkevich, 2003), with respect
to which E[εΠ,n(l)] is always negative. Therefore, if an
algorithm is strongly-adaptive (Daniely et al., 2015) (i.e.
it is no-regret for any interval) or has sublinear dynamic
regret (Jadbabaie et al., 2015), then its generated policy
sequence will strictly, non-asymptotically improve. In other
words, for algorithms with a stronger notion of convergence,
Lemma 3 describes the global improvement rate.

3.2.2. CONNECTIONS

The choice of per-round loss in (5) has an interesting re-
lationship to both actor-critic in RL (Konda & Tsitsiklis,
2000) and AGGREVATE in IL (Ross & Bagnell, 2014).

Relationship to Actor-Critic Although actor-critic meth-
ods, theoretically, use Edπn (∇Eπ)[Aπn]|π=πn to update
policy πn, in practice, they use Edπn (∇Eπ)[Aπn−1]|π=πn ,
because the advantage/value function estimate in round n
is updated after the policy update in order to prevent bias
due to over-fitting on finite samples (Sutton & Barto, 1998).
This practical gradient is exactly∇l̃n(πn), the sampled gra-
dient of (5). Therefore, Lemma 3 explains the properties of
these practical modifications.

Relationship to Value Aggregation AGGREVATE (Ross
& Bagnell, 2014) can be viewed as taking a policy im-
provement step from some reference policy: e.g., with the

Predictor-Corrector Policy Optimization

per-round loss EdπnEπ[Aπ?], it improves one step from π∗.
Realizing this one step improvement in AGGREVATE, how-
ever, requires solving multiple rounds of online learning, as
it effectively solves an equilibrium point problem (Cheng
& Boots, 2018). Therefore, while ideally one can solve
multiple AGGREVATE problems (one for each policy im-
provement step) to optimize policies, computationally this
can be very challenging. Minimizing the loss in (5) can be
viewed as an approximate policy improvement step in the
AGGREVATE style. Rather than waiting until convergence
in each AGGREVATE policy improvement step, it performs
only a single policy update and then switches to the next
AGGREVATE problem with a new reference policy (i.e. the
latest policy πn−1). This connection is particularly tight-
ened if we choose π0 = π? and the bound in Lemma 3
becomes relative to J(π?).

3.3. Predictability

An important property of the above online learning problems
is that they are not completely adversarial, as pointed out
by Cheng & Boots (2018) for IL. This can be seen from the
definitions of ln in (4) and (5), respectively. For example,
suppose the cost ct in the original RL problem (1) is known;
then the information unknown before playing the decision
πn in the environment is only the state distribution dπn .
Therefore, the per-round loss cannot be truly adversarial,
as the same dynamics and cost functions are used across
different rounds. That is, in an idealized case where the true
dynamics and cost functions are exactly known, using the
policy returned from a model-based RL algorithm would
incur zero regret, since only the interactions with the real
MDP environment, not the model, counts as rounds. We
will exploit this property to design PICCOLO.

4. Predictor-Corrector Learning
We showed that the performance of RL and IL can be
bounded by the regret of properly constructed predictable
online learning problems. These results provide a foun-
dation for designing policy optimization algorithms: effi-
cient learning algorithms for policy optimization can be
constructed from powerful online learning algorithms that
achieve small regret. This perspective explains why com-
mon methods (e.g. mirror descent) based on gradients of (4)
and (5) work well in IL and RL. However, the predictable
nature of policy optimization problems suggests that directly
applying these standard online learning algorithms designed
for adversarial settings is suboptimal. The predictable infor-
mation must be considered to achieve optimal convergence.

One way to include predictable information is to develop
specialized two-step algorithms based on, e.g., mirror-prox
or FTRL-prediction (Juditsky et al., 2011; Rakhlin & Srid-
haran, 2013a; Ho-Nguyen & Kılınç-Karzan, 2018). For IL,

MOBIL was recently proposed (Cheng et al., 2019), which
updates policies by approximate Be-the-Leader (Kalai &
Vempala, 2005) and provably achieves faster convergence
than previous methods. However, these two-step algorithms
often have obscure and non-sequential update rules, and
their adaptive and accelerated versions are less accessi-
ble (Diakonikolas & Orecchia, 2017). This can make it
difficult to implement and tune them in practice.

Here we take an alternative, reduction-based approach. We
present PICCOLO, a general first-order framework for solv-
ing predictable online learning problems. PICCOLO is a
meta-algorithm that turns a base algorithm designed for ad-
versarial problems into a new algorithm that can leverage the
predictable information to achieve better performance. As a
result, we can adopt sophisticated first-order adaptive algo-
rithms to optimally learn policies, without reinventing the
wheel. Specifically, given any first-order base algorithm be-
longing to the family of (adaptive) mirror descent and FTRL
algorithms, we show how one can “PICCOLO it” to achieve
a faster convergence rate without introducing additional per-
formance bias due to prediction errors. Most first-order
policy optimization algorithms belong to this family (Cheng
et al., 2018), so we can PICCOLO these model-free algo-
rithms into new hybrid algorithms that can robustly use
(imperfect) predictive models, such as off-policy gradients
and simulated gradients, to improve policy learning.

4.1. The PICCOLO Idea

The design of PICCOLO is based on the observation that an
N -round predictable online learning problem can be written
as a new adversarial problems with 2N rounds. To see this,
let {ln}Nn=1 be the original predictable loss sequence. Sup-
pose, before observing ln, we have access to a model loss l̂n
that contains the predictable information of ln. Define δn =
ln − l̂n. We can then write the accumulated loss (which re-
gret concerns) as

∑N
n=1 ln(πn) =

∑N
n=1 l̂n(πn) + δn(πn).

That is, we can view the predictable problem with {ln}Nn=1

as a new adversarial online learning problem with a loss
sequence l̂1, δ1, l̂2, δ2, . . . , l̂N , δN .

The idea of PICCOLO is to apply standard online learn-
ing algorithms designed for adversarial settings to this new
2N -round problem. This would create a new set of deci-
sion variables {π̂n}Nn=1, in which π̂n denotes the decision
made before seeing l̂n, and leads to the following sequence
π1, δ1, π̂2, l̂2, π2, δ2, . . . (in which we define δ1 = l1). We
show that when the base algorithm is optimal in adversarial
settings, this simple strategy results in a decision sequence
{πn}Nn=1 whose regret with respect to {ln}Nn=1 is optimal,
just as those specialized two-step algorithms (Juditsky et al.,
2011; Rakhlin & Sridharan, 2013a; Ho-Nguyen & Kılınç-
Karzan, 2018). In Appendix A, we show PICCOLO unifies
and generalize these two-step algorithms to be adaptive.

Predictor-Corrector Policy Optimization

4.2. The Meta Algorithm PICCOLO

We provide details to realize this reduction. We suppose, in
round n, the model loss is given as l̂n(π) = 〈ĝn, π〉 for some
vector ĝn, and stochastic first-order feedback gn = ∇l̃n(πn)
from ln is received. Though this linear form of model loss
seems restrictive, later in Section 4.2.3 we will show that it
is sufficient to represent predictable information.

4.2.1. BASE ALGORITHMS

We first give a single description of different base algorithms
for the formal definition of the reduction steps. Here we
limit our discussions to mirror descent and postpone the
FTRL case to Appendix C. We assume that Π is a convex
compact subset in some normed space with norm ‖ · ‖, and
we use BR(π||π′) = R(π)−R(π′)−〈∇R(π′), π − π′〉 to
denote a Bregman divergence generated by a strictly convex
function R, called the distance generator.

Mirror descent updates decisions based on proximal maps.
In round n, given direction gn and weight wn, it executes

πn+1 = arg minπ∈Π 〈wngn, π〉+BRn(π||πn) (6)

where Rn is a strongly convex function; (6) reduces to
gradient descent with step size ηn when Rn(·) = 1

2ηn
‖ · ‖2.

More precisely, (6) is composed of two steps: 1) the update
of the distance generator to Rn, and 2) the update of the
decision to πn+1; different mirror descent algorithms differ
in how the regularization is selected and adapted.

PICCOLO explicitly treats a base algorithm as the composi-
tion of two basic operations (this applies also to FTRL)

Hn = adapt(hn, Hn−1, gn, wn)

hn+1 = update(hn, Hn, gn, wn)
(7)

so that later it can recompose them to generate the new algo-
rithm. For generality, we use h and H to denote the abstract
representations of the decision variable and the regulariza-
tion, respectively. In mirror descent, h is exactly the deci-
sion variable, H is the distance generator, and we can write
update(h,H, g, w) = arg minπ′∈Π 〈wg, π′〉+BH(π′||h).
The operation adapt denotes the algorithm-specific scheme
for the regularization update (e.g. changing the step size),
which in general updates the size of regularization to grow
slowly and inversely proportional to the norm of gn.

4.2.2. THE PICCOLOED ALGORITHM

PICCOLO generates decisions by applying a given base al-
gorithm in (7) to the new problem with losses δ1, l̂2, δ2,
This is accomplished by recomposing the basic operations
in (7) into the Prediction and the Correction Steps:

hn = update(ĥn, Hn−1, ĝn, wn) [Prediction]

Hn = adapt(hn, Hn−1, en, wn)

ĥn+1 = update(hn, Hn, en, wn)
[Correction]

where ĥn is the abstract representation of π̂n, and en = gn−
ĝn is the error direction. We can see that the Prediction and
Correction Steps are exactly the update rules resulting from
applying (7) to the new adversarial problem, except that only
hn is updated in the Prediction Step, not the regularization
(i.e. the step size). This asymmetry design is important for
achieving optimal regret, because in the end we care only
about the regret of {πn} on the original loss sequence {ln}.

In round n, the “PICCOLOed” algorithm first performs the
Prediction Step using ĝn to generate the learner’s decision
(i.e. πn) and runs this new policy in the environment to
get the true gradient gn. Using this feedback, the algorithm
performs the Correction Step to amend the bias of using ĝn.
This is done by first adapting the regularization to Hn and
then updating πn to π̂n+1 along the error en = gn − ĝn.

4.2.3. MODEL LOSSES AND PREDICTIVE MODELS

The Prediction Step of PICCOLO relies on the vector ĝn to
approximate the future gradient gn. Here we discuss differ-
ent ways to specify ĝn based on the concept of predictive
models (Cheng et al., 2019). A predictive model Φn is a
first-order oracle such that Φn(·) approximates ∇ln(·). In
practice, a predictive model can be a simulator with an (on-
line learned) dynamics model (Tan et al., 2018; Deisenroth
& Rasmussen, 2011), or a neural network trained to predict
the required gradients (Silver et al., 2017; Oh et al., 2017).
An even simpler heuristic is to construct predictive models
by off-policy gradients Φn(·) =

∑n−1
m=n−K ∇l̃m(·) where

K is the buffer size.

In general, we wish to set ĝn to be close to gn, as we will
later show in Section 5 that the convergence rate of PIC-
COLO depends on their distance. However, even when we
have perfect predictive models, this is still a non-trivial task.
We face a chicken-or-the-egg problem: gn depends on πn,
which in turn depends on ĝn from the Prediction Step.

Cheng et al. (2019) show one effective heuristic is to set
ĝn = Φn(π̂n), because we may treat π̂n as an estimate of
πn. However, due to the mismatch between π̂n and πn, this
simple approach has errors even when the predictive model
is perfect. To better leverage a given predictive model, we
propose to solve for ĝn and πn simultaneously. That is, we
wish to solve a fixed-point problem, finding hn such that

hn = update(ĥn, Hn−1,Φn(πn(hn)), wn) (8)

The exact formulation of the fixed-point problem depends
on the class of base algorithms. For mirror descent, it is
a variational inequality: find πn ∈ Π such that ∀π ∈ Π,
〈Φn(πn) +∇Rn−1(πn)−∇Rn−1(π̂n), π − πn〉 ≥ 0. In
a special case when Φn = ∇fn for some function fn, the
above variational inequality is equivalent to finding a sta-
tionary point of the optimization problem minπ∈Π fn(π) +
BRn−1(π||π̂n). In other words, one way to implement the

Predictor-Corrector Policy Optimization

Algorithm 1 PICCOLO
Input: policy π1, cost sequence {ψn}, regularization H0, model

Φ1, iteration N , exponent p
Output: π̄N
1: Set π̂1 = π1 and weights wn = np

2: Sample integer K ∈ [1, N] with P (K = n) ∝ wn
3: for n = 1 . . .K − 1† do
4: πn, ĝn = PredictionStep(π̂n,Φn, Hn−1, wn)
5: Dn, gn = DataCollection(πn)
6: Hn, π̂n+1 = CorrectionStep(πn, en, Hn−1, wn),

where en = gn − ĝn.
7: Φn+1 = ModelUpdate(Φn,D), where D = D

⋃
Dn.

8: end for
9: Set π̄N = πK−1

Prediction Step is to solve the above minimization problem
for πn and use∇fn(πn) as the effective prediction ĝn.

4.3. Summary: Why Does PICCOLO Work?

We provide a summary of the full algorithm for policy op-
timization in Algorithm 1. We see that PICCOLO uses
the predicted gradient to take an extra step to accelerate
learning, and, meanwhile, to prevent the error accumulation,
it adaptively adjusts the step size (i.e. the regularization)
based on the prediction error and corrects for the bias on the
policy right away. To gain some intuition, let us consider
ADAGRAD (Duchi et al., 2011) as a base algorithm1:

Gn = Gn−1 + diag(wngn � wngn)

πn+1 = arg min
π∈Π

〈wngn, π〉+
1

2η
(π − πn)>G1/2

n (π − πn)

where G0 = εI and η, ε > 0, and � denotes element-
wise multiplication. This update has an adapt operation as
adapt(h,H, g, w) = G + diag(wg � wg) which updates
the Bregman divergence based on the gradient size.

PICCOLO transforms ADAGRAD into a new algorithm. In
the Prediction Step, it performs

πn = arg min
π∈Π

〈wnĝn, π〉+
1

2η
(π − πn−1)>G

1/2
n−1(π − πn−1)

In the Correction Step, it performs

Gn = Gn−1 + diag(wnen � wnen)

π̂n+1 = arg min
π∈Π

〈wnen, π〉+
1

2η
(π − π̂n)>G1/2

n (π − π̂n)

We see that the PICCOLO-ADAGRAD updates Gn propor-
tional to the prediction error en instead of gn. It takes larger
steps when models are accurate, and decreases the step
size once the prediction deviates. As a result, PICCOLO
is robust to model quality: it accelerates learning when the
model is informative, and prevents inaccurate (potentially
adversarial) models from hurting the policy. We will further
demonstrate this in theory and in the experiments.

1We provide another example in Appendix E.
†Here we assume project is automatically performed inside

PredictionStep and CorrectionStep.

5. Theoretical Analysis
In this section, we show that PICCOLO has two major
benefits over previous approaches: 1) it accelerates policy
learning when the models predict the required gradient well
on average; and 2) it does not bias the performance of the
policy, even when the prediction is incorrect.

To analyze PICCOLO, we introduce an assumption to quan-
tify the adapt operator of a base algorithm.

Assumption 1. adapt chooses a regularization sequence
such that, for some MN = o(w1:N), ‖H0‖R +∑N
n=1 ‖Hn−Hn−1‖R ≤MN for some norm ‖ · ‖R which

measures the size of regularization.

This assumption, which requires the regularization to in-
crease slower than the growth of w1:N , is satisfied by most
reasonably-designed base algorithms. For example, in a
uniformly weighted problem, gradient descent with a de-
caying step size O(1√

n
) has MN = O(

√
N). In general,

for stochastic problems, an optimal base algorithm would
ensure MN = O(w1:N√

N
).

5.1. Convergence Properties

Now we state the main result, which quantifies the regret of
PICCOLO with respect to the sequence of linear loss func-
tions that it has access to. The proof is given in Appendix F.

Theorem 1. Suppose Hn defines a strongly convex func-
tion with respect to ‖ · ‖n. Under Assumption 1, run-
ning PICCOLO ensures

∑N
n=1 〈wngn, πn − π〉 ≤ MN +∑N

n=1
w2
n

2 ‖en‖
2
∗,n − 1

2‖πn − π̂n‖
2
n−1, for all π ∈ Π.

The term ‖en‖2∗,n in Theorem 1 says that the performance of
PICCOLO depends on how well the base algorithm adapts to
the error en through the adapt operation in the Correction
Step. Usually adapt updates Hn gradually (Assumption 1)
while minimizing 1

2‖en‖
2
∗,n, like we showed in ADAGRAD.

In general, when the base algorithm is adaptive and
optimal for adversarial problems, we show in Ap-
pendix G that its PICCOLOed version guarantees that
E[
∑N
n=1 〈wngn, πn − π〉] ≤ O(1) + CΠ,Φ

w1:N√
N

, where
CΠ,Φ = O(|Π|+ EΦ + σ2

g + σ2
ĝ) is some constant related

to the diameter of Π (denoted as |Π|), the model bias EΦ,
and the sampling variance σ2

g and σ2
ĝ of gn and ĝn, respec-

tively. Through Lemma 2 and 3, this bound directly implies
accelerated and bias-free policy performance.

Theorem 2. Suppose l̃n is convex3and wn ≥ Ω(1). Then
running PICCOLO yields E[Regretn(l̃)/w1:N] = O(

CΠ,Φ√
N

),
where CΠ,Φ = O(|Π|+ EΦ + σ2

g + σ2
ĝ) = O(1).

3The convexity assumption is standard, as used in (Duchi et al.,
2011; Ross et al., 2011; Kingma & Ba, 2015; Cheng & Boots,

Predictor-Corrector Policy Optimization

Table 1: Upper bounds of the average regret of different
policy optimization algorithms.

ALGORITHMS UPPER BOUNDS IN BIG-O

PICCOLO 1√
N

(
|Π|+ σ2

g + σ2
ĝ + EΦ

)
MODEL-FREE 1√

N

(
|Π|+G2

g + σ2
g

)
MODEL-BASED 1√

N

(
|Π|+G2

ĝ + σ2
ĝ

)
+ EΦ

DYNA 1√
2N

(
|Π|+ 1

2

(
G2
g +G2

ĝ + σ2
g + σ2

ĝ

))
+EΦ

5.2. Comparison

To appreciate the advantages of PICCOLO, we review sev-
eral policy optimization algorithms and compare their regret.
We show that they can be viewed as incomplete versions of
PICCOLO, which only either result in accelerated learning
or are unbiased, but not both (see in Table 1).

We first consider the common model-free approach (Sutton
et al., 2000; Kakade, 2002; Peters & Schaal, 2008; Peters
et al., 2010; Silver et al., 2014; Sun et al., 2017; Cheng et al.,
2018), i.e. applying the base algorithm with gn. To make
the comparison concrete, suppose ‖E[gn]‖2∗ ≤ G2

g for some
constantGg , where we recall gn is the sampled true gradient.
As the model-free approach is equivalent to setting ĝn = 0
in PICCOLO, by Theorem 1 (with en = gn), the constant
CΠ in Theorem 2 would become O(|Π| + G2

g + σ2
g). In

other words, PICCOLOing the base algorithm improves the
constant factor from G2

g to σ2
ĝ + EΦ. Therefore, while the

model-free approach is bias-free, its convergence can be
further improved by PICCOLO, as long as the models {Φn}
are reasonably accurate on average.4

Next we consider the pure model-based approach with a
model that is potentially learned online (Jacobson & Mayne,
1970; Todorov & Li, 2005; Deisenroth & Rasmussen, 2011;
Pan & Theodorou, 2014; Levine & Koltun, 2013; Sun et al.,
2018). As this approach is equivalent to only performing
the Prediction Step5, its performance suffers from any mod-
eling error. Specifically, suppose ‖E[ĝn]‖2∗ ≤ G2

ĝ for some
constant Gĝ. One can show that the bound in Theorem 2
would becomeO((|Π|+G2

ĝ+σ2
ĝ)/
√
N+EΦ), introducing

a constant bias in O(EΦ).

A hybrid heuristic to combine the model-based and model-
free updates is DYNA (Sutton, 1991; Sutton et al., 2012),
which interleaves the two steps during policy optimization.
This is equivalent to applying gn, instead of the error en,
in the Correction Step of PICCOLO. Following a similar

2018), which holds for tabular problems as well as some special
cases, like continuous-time problems (cf. (Cheng & Boots, 2018)).

4It can be shown that if the model is learned online with a
no-regret algorithm, it would perform similarly to the best model
in the hindsight (cf. Appendix G.4)

5These algorithms can be realized by the fixed-point formula-
tion of the Prediction Step with (arbitrarily small) regularization.

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

PICCOLO-ADVERSARIAL

DYNA-ADVERSARIAL

(a) Adversarial model

0 20 40 60 800

200

400

600

800

1000

Base Algorithm
TRUEDYN

BIASEDDYN0.2-FP

BIASEDDYN0.5-FP

BIASEDDYN0.8-FP

(b) Different model fidelities

Figure 1: Performance of PICCOLO with different predic-
tive models. x axis is iteration number and y axis is sum
of rewards. The curves are the median among 8 runs with
different seeds, and the shaded regions account for 25% per-
centile. ADAM is used as the base algorithm, and the update
rule, by default, is PICCOLO; e.g. TRUEDYN in (a) refers
to PICCOLO with TRUEDYN predictive model. (a) Com-
parison of PICCOLO and DYNA with adversarial model. (b)
PICCOLO with the fixed-point setting (8) with dynamics
model in different fidelities. BIASEDDYN0.8 indicates that
the mass of each individual robot link is either increased or
decreased by 80% with probability 0.5 respectively.

analysis as above, one can show that the convergence rate in
Theorem 2 would becomeO((|Π|+G2 +σ2)/

√
2N+EΦ),

where G2 = 1
2 (G2

g +G2
ĝ) and σ2 = 1

2 (σ2
g +σ2

ĝ). Therefore,
DYNA is effectively twice as fast as the pure model-free
approach when the model is accurate. However, it would
eventually suffer from the performance bias due model er-
ror, as reflected in the term EΦ. We will demonstrate this
property experimentally in Figure 1.

Finally, we note that the idea of using Φn as control vari-
ate (Chebotar et al., 2017; Grathwohl et al., 2018; Papini
et al., 2018) is orthogonal to the setups considered above,
and it can be naturally combined with PICCOLO. For ex-
ample, we can also use Φn to compute a better sampled
gradient gn with smaller variance (line 5 of Algorithm 1).
This would improve σ2

g in the bounds of PICCOLO to a
smaller σ̃2

g , the size of reduced variance.

6. Experiments
We corroborate our theoretical findings with experiments6

in learning neural network policies to solve robot RL tasks
(CartPole, Hopper, Snake, and Walker3D) from OpenAI
Gym (Brockman et al., 2016) with the DART physics en-
gine (Lee et al., 2018)7. The aim is to see if PICCOLO
improves the performance of a base algorithm, even though
in these experiments the convexity assumption in the theory
does not hold. We choose several popular first-order mir-

6The codes are available at https://github.com/
gtrll/rlfamily.

7The environments are defined in DartEnv, hosted at https:
//github.com/DartEnv.

https://github.com/gtrll/rlfamily
https://github.com/DartEnv
https://github.com/gtrll/rlfamily
https://github.com/DartEnv

Predictor-Corrector Policy Optimization

0 50 100 1500

1000

2000

3000

4000

5000
Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(a) Hopper ADAM

0 50 100 1500

500

1000

1500

2000

2500

3000

Base Algorithm
LAST

REPLAY

TRUEDYN

BIASEDDYN0.2-FP

(b) Snake ADAM

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(c) Walker3D NATGRAD

0 200 400 600 8000

500

1000

1500

2000

2500

3000
Base Algorithm
LAST

REPLAY

TRUEDYN

(d) Walker3D TRPO

Figure 2: Performance of PICCOLO in various tasks. x axis is iteration number and y axis is sum of rewards. The curves
are the median among 8 runs with different seeds, and the shaded regions account for 25% percentile.

ror descent base algorithms (ADAM (Kingma & Ba, 2015),
natural gradient descent NATGRAD (Kakade, 2002), and
trust-region optimizer TRPO (Schulman et al., 2015)). We
compute gn by GAE (Schulman et al., 2016). For predictive
models, we consider off-policy gradients (with the samples
of the last iteration LAST or a replay buffer REPLAY) and
gradients computed through simulations with the true or
biased dynamics models (TRUEDYN or BIASEDDYN). We
will label a model with FP if ĝn is determined by the fixed-
point formulation (8)8; otherwise, ĝn = Φn(π̂n). Please
refer to Appendix H for the details.

In Figure 1, we first use CartPole to study Theorem 2, which
suggests that PICCOLO is unbiased and improves the perfor-
mance when the prediction is accurate. Here we additionally
consider an extremely bad model, ADVERSARIAL, that pre-
dicts the gradients adversarially.9 Figure 1 (a) illustrates
the performance of PICCOLO and DYNA, when ADAM is
chosen as the base algorithm. We observe that PICCOLO
improves the performance when the model is accurate (i.e.
TRUEDYN). Moreover, PICCOLO is robust to modeling
errors. It still converges when the model is adversarially
attacking the algorithm, whereas DYNA fails completely.
In Figure 1 (b), we conduct a finer comparison of the effects
of different model accuracies (BIASEDDYN-FP), when ĝn is
computed using (8). To realize inaccurate dynamics models
to be used in the Prediction step, we change the mass of links
of the robot by a certain factor, e.g. BIASEDDYN0.8 indi-
cates that the mass of each individual link is either increased
or decreased by 80% with probability 0.5, respectively. We
see that the fixed-point formulation (8), which makes multi-
ple queries of Φn for computing ĝn, performs much better
than the heuristic of setting ĝn = Φ(π̂n), even when the
latter is using the true model (TRUEDYN). Overall, we
see PICCOLO with BIASEDDYN-FP is able to accelerate
learning, though with a degree varying with model accura-
cies; but even for models with a large bias, it still converges

8In implementation, we solve the corresponding optimiza-
tion problem with a few number of iterations. For example,
BIASEDDYN-FP is aporoximatedly solved with 5 iterations.

9We set ĝn+1 = − (maxm=1,...,n ‖gm‖/‖gn‖) gn.

unbiasedly, as we previously observed in Figure 1 (a),

In Figure 2, we study the performance of PICCOLO in a
range of environments. In general, we find that PICCOLO
indeed improves the performance10 though the exact degree
depends on how ĝn is computed. In Figure 2 (a) and (b), we
show the results of using ADAM as the base algorithm. We
observe that, while setting ĝn = Φn(π̂n) is already an effec-
tive heuristic, the performance of PICCOLO can be further
and largely improved if we adopt the fixed-point strategy
in (8), as the latter allows the learner to take more globally
informed update directions. Finally, to demonstrate the flex-
ibility of the proposed framework, we also “PICCOLO” two
other base algorithms, NATGRAD and TRPO, in Figure 2
(c) and (d), respectively. The complete set of experimental
results can be found in Appendix H.

7. Conclusion
PICCOLO is a general reduction-based framework for solv-
ing predictable online learning problems. It can be viewed
as an automatic strategy for generating new algorithms that
can leverage prediction to accelerate convergence. Further-
more, PICCOLO uses the Correction Step to recover from
the mistake made in the Prediction Step, so the presence of
modeling errors does not bias convergence, as we show in
both the theory and experiments. The design of PICCOLO
leaves open the question of how to design good predictive
models. While PICCOLO is robust against modeling error,
the accuracy of a predictive model can affect its effective-
ness. PICCOLO only improves the performance when the
model can make non-trivial predictions. In the experiments,
we found that off-policy and simulated gradients are often
useful, but they are not perfect. It would be interesting to
see whether a predictive model that is trained to directly
minimize the prediction error can further help policy learn-
ing. Finally, we note that, despite the focus of this paper on
policy optimization, PICCOLO can naturally be applied to
other optimization and learning problems.

10Note that different base algorithms are not directly compara-
ble, as further fine-tuning of step sizes is required.

Predictor-Corrector Policy Optimization

Acknowledgements
This research is supported in part by NSF NRI 1637758 and
NSF CAREER 1750483.

References
Amari, S.-I. Natural gradient works efficiently in learning.

Neural computation, 10(2):251–276, 1998.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter, J. Z.
Differentiable MPC for end-to-end planning and control.
In Advances in Neural Information Processing Systems,
pp. 8299–8310, 2018.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and
slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, pp. 5360–5370,
2017.

Beck, A. and Teboulle, M. Mirror descent and nonlinear
projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
arXiv preprint arXiv:1606.01540, 2016.

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G.,
Schaal, S., and Levine, S. Combining model-based and
model-free updates for trajectory-centric reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 703–711,
2017.

Cheng, C.-A. and Boots, B. Convergence of value aggrega-
tion for imitation learning. In International Conference
on Artificial Intelligence and Statistics, volume 84, pp.
1801–1809, 2018.

Cheng, C.-A., Yan, X., Wagener, N., and Boots, B. Fast
policy learning through imitation and reinforcement. In
Proceedings of the 34th Conference on Uncertanty in
Artificial Intelligence, pp. 845–855, 2018.

Cheng, C.-A., Yan, X., Theodorou, E., and Boots, B. Ac-
celerating imitation learning with predictive models. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J.,
Jin, R., and Zhu, S. Online optimization with gradual
variations. In Conference on Learning Theory, pp. 6–1,
2012.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly
adaptive online learning. In International Conference on
Machine Learning, pp. 1405–1411, 2015.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-
based and data-efficient approach to policy search. In
International Conference on machine learning, pp. 465–
472, 2011.

Diakonikolas, J. and Orecchia, L. Accelerated extra-gradient
descent: A novel accelerated first-order method. arXiv
preprint arXiv:1706.04680, 2017.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Gordon, G. J. Regret bounds for prediction problems. In
Annual Conference on Computational Learning Theory,
pp. 29–40. ACM, 1999.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duve-
naud, D. Backpropagation through the void: Optimizing
control variates for black-box gradient estimation. In
International Conference on Learning Representations,
2018.

Gupta, V., Koren, T., and Singer, Y. A unified approach to
adaptive regularization in online and stochastic optimiza-
tion. arXiv preprint arXiv:1706.06569, 2017.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2-3):169–192, 2007.

Hazan, E. et al. Introduction to online convex optimization.
Foundations and Trends R© in Optimization, 2(3-4):157–
325, 2016.

Ho-Nguyen, N. and Kılınç-Karzan, F. Exploiting problem
structure in optimization under uncertainty via online
convex optimization. Mathematical Programming, pp.
1–35, 2018.

Jacobson, D. H. and Mayne, D. Q. Differential dynamic
programming. 1970.

Jadbabaie, A., Rakhlin, A., Shahrampour, S., and Sridha-
ran, K. Online optimization: Competing with dynamic
comparators. In Artificial Intelligence and Statistics, pp.
398–406, 2015.

Juditsky, A., Nemirovski, A., and Tauvel, C. Solving varia-
tional inequalities with stochastic mirror-prox algorithm.
Stochastic Systems, 1(1):17–58, 2011.

Predictor-Corrector Policy Optimization

Kakade, S. and Langford, J. Approximately optimal approxi-
mate reinforcement learning. In International Conference
on Machine Learning, volume 2, pp. 267–274, 2002.

Kakade, S. M. A natural policy gradient. In Advances in
neural information processing systems, pp. 1531–1538,
2002.

Kalai, A. and Vempala, S. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In
Advances in neural information processing systems, pp.
1008–1014, 2000.

Korpelevich, G. The extragradient method for finding saddle
points and other problems. Matecon, 12:747–756, 1976.

Lee, J., Grey, M. X., Ha, S., Kunz, T., Jain, S., Ye, Y.,
Srinivasa, S. S., Stilman, M., and Liu, C. K. DART:
Dynamic animation and robotics toolkit. The Journal of
Open Source Software, 3(22):500, feb 2018.

Levine, S. and Koltun, V. Guided policy search. In In-
ternational Conference on Machine Learning, pp. 1–9,
2013.

McMahan, H. B. A survey of algorithms and analysis for
adaptive online learning. The Journal of Machine Learn-
ing Research, 18(1):3117–3166, 2017.

McMahan, H. B. and Streeter, M. Adaptive bound optimiza-
tion for online convex optimization. In COLT 2010 - The
23rd Conference on Learning Theory, 2010.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nemirovski, A. Prox-method with rate of convergence o
(1/t) for variational inequalities with lipschitz continuous
monotone operators and smooth convex-concave saddle
point problems. SIAM Journal on Optimization, 15(1):
229–251, 2004.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

Oh, J., Singh, S., and Lee, H. Value prediction network. In
Advances in Neural Information Processing Systems, pp.
6120–6130, 2017.

Pan, Y. and Theodorou, E. Probabilistic differential dy-
namic programming. In Advances in Neural Information
Processing Systems, pp. 1907–1915, 2014.

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and
Restelli, M. Stochastic variance-reduced policy gradient.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 4023–4032, 2018.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L.,
Racanière, S., Reichert, D., Weber, T., Wierstra, D., and
Battaglia, P. Learning model-based planning from scratch.
arXiv preprint arXiv:1707.06170, 2017.

Peters, J. and Schaal, S. Natural actor-critic. Neurocomput-
ing, 71(7-9):1180–1190, 2008.

Peters, J., Mülling, K., and Altun, Y. Relative entropy policy
search. In AAAI, pp. 1607–1612. Atlanta, 2010.

Rakhlin, A. and Sridharan, K. Online learning with pre-
dictable sequences. In COLT 2013 - The 26th Annual
Conference on Learning Theory, pp. 993–1019, 2013a.

Rakhlin, S. and Sridharan, K. Optimization, learning, and
games with predictable sequences. In Advances in Neural
Information Processing Systems, pp. 3066–3074, 2013b.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. In International Conference on
Learning Representations, 2018.

Ross, S. and Bagnell, J. A. Reinforcement and imitation
learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, S., Gordon, G., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In International conference on artificial
intelligence and statistics, pp. 627–635, 2011.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In Proceedings of the 31th International Conference on
Machine Learning, pp. 387–395, 2014.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,
N., Barreto, A., et al. The predictron: End-to-end learning
and planning. In Proceedings of the 34th International
Conference on Machine Learning, 2017.

Predictor-Corrector Policy Optimization

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. A
general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362
(6419):1140–1144, 2018. ISSN 0036-8075.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks: Learning generalizable
representations for visuomotor control. In Proceedings of
the 35th International Conference on Machine Learning,
2018.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imita-
tion learning for sequential prediction. In Proceedings of
the 34th International Conference on Machine Learning,
pp. 3309–3318, 2017.

Sun, W., Gordon, G. J., Boots, B., and Bagnell, J. A. Dual
policy iteration. In Advances in Neural Information Pro-
cessing Systems 31, pp. 7059–7069, 2018.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM SIGART Bulletin, 2(4):
160–163, 1991.

Sutton, R. S. and Barto, A. G. Introduction to reinforcement
learning, volume 135. MIT press Cambridge, 1998.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural
Information Processing Systems, pp. 1057–1063, 2000.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowl-
ing, M. P. Dyna-style planning with linear function ap-
proximation and prioritized sweeping. arXiv preprint
arXiv:1206.3285, 2012.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., and Vanhoucke, V. Sim-to-real: Learn-
ing agile locomotion for quadruped robots. In Robotics:
Science and Systems XIV, 2018.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Todorov, E. and Li, W. A generalized iterative LQG method
for locally-optimal feedback control of constrained non-
linear systems. In American Control Conference, pp.
300–306. IEEE, 2005.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In International Conference
on Machine Learning, pp. 928–936, 2003.

