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Abstract

Extending classical probabilistic reasoning using
the quantum mechanical view of probability
has been of recent interest, particularly in
the development of hidden quantum Markov
models (HQMMs) to model stochastic processes.
However, there has been little progress in
characterizing the expressiveness of such models
and learning them from data. We tackle
these problems by showing that HQMMs
are a special subclass of the general class
of observable operator models (OOMs) that
do not suffer from the negative probability
problem by design. We also provide a feasible
retraction-based learning algorithm for HQMMs
using constrained gradient descent on the Stiefel
manifold of model parameters. We demonstrate
that this approach is faster and scales to larger
models than previous learning algorithms.

1 Introduction and Related Work

Classical probabilistic graphical models provide a
principled framework for Bayesian reasoning, and there
has been much interest in extending this framework by
incorporating the mathematical formalism of quantum
mechanics (Leifer and Poulin, 2008; Yeang, 2010; Leifer
and Spekkens, 2013; Warmuth and Kuzmin, 2014). Hid-
den quantum Markov models (HQMMs) (Monras et al.,
2010; Clark et al., 2015; Srinivasan et al., 2018b) have
been some of the more well-investigated models; recent
work by Srinivasan et al. (2018b) showed that every finite-
dimensional hidden Markov model (HMM) can also be
modeled by a finite-dimensional HQMM, and empirically
demonstrated some theoretical advantages of HQMMs
over HMMs. A major motivation for investigating such
‘quantum models’ has been the promise of a more general
and expressive class of probabilistic models. Yet, a clear
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characterization of the expressiveness of these models
and a practical learning algorithm has remained lacking.
These are precisely the problems we tackle in this paper.

Our theoretical exploration of HQMMs is primarily cen-
tered around their relationship to the observable operator
models (OOMs) developed by Jaeger (2000). OOM-
equivalents have been independently developed and are
also referred to in the literature as uncontrolled predictive
state representations (PSRs) (Singh et al., 2004), linearly
dependent processes (Ito et al., 1992), and stochastic
weighted automata (Balle et al., 2014; Thon and Jaeger,
2015). OOMs can be seen as a generalization of the
well-known hidden Markov models (Rabiner, 1986), but
despite their generality they lack a constructive definition.
A valid OOM must never produce a negative probability
for a sequence of observations, yet it is undecidable
(Wiewiora, 2007) whether or not a candidate set of OOM
parameters will yield negative probabilities. This is known
as the negative probability problem (NPP) of OOMs, and
must be handled with heuristics in practice (Cohen et al.,
2013). An alternative approach is to construct models
that avoid the NPP by design, such as norm-observable
operator models (NOOMs) (Zhao and Jaeger, 2010)
or quadratic weighted automata (Bailly, 2011). While
NOOMs can simulate processes that no finite-dimensional
HMM could model (such as the ‘probability clock’ (Zhao
and Jaeger, 2010)), it is unclear whether they have the
broad expressiveness of OOMs; it isn’t even known if
they contain HMMs as a subclass. In this context, we
make three main theoretical contributions in this paper:
(i) we show how HQMMs can be seen as a generalization
of NOOMs, (ii) we formulate the Liouville representation
of HQMMs which uniquely characterizes the model and
allows for direct comparison between HQMMs, and
(iii) we show that every finite-dimensional HQMM is
equivalent to a finite-dimensional OOM, with the special
property that we can characterize the valid initial states as
the spectraplex of Hermitian PSD matrices with trace 1.

We also present results on learning these models from
data. We use the Kraus operator parameterization of
HQMMs using matrices {Ki} that satisfy the constraint
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iKi=I. Stacking the operatorsKi vertically to form
a matrix , the constraint can be re-written as †= I.
The existing approach to learning HQMMs (Srinivasan
et al., 2018b) yields feasible parameters by starting with
an initial guess  and iteratively finding unitary transfor-
mations that increase the likelihood of the data. However,
this method is inefficient, often gets trapped in poor
optima, and can only handle a small number of hidden
states. The absence of a practical learning algorithm has
been a bottleneck in the development of these models
(Schuld et al., 2015). Our primary experimental contri-
bution in this paper is the application and analysis of a
viable approach to the learning problem: since  lies on
the Stiefel manifold (Stiefel, 1936; Edelman et al., 1998),
we can directly learn feasible parameters by constraining
gradient updates to lie on the manifold using a well-known
retraction-based algorithm (Wen and Yin, 2013). We
show that this approach is faster, finds better optima, and
can handle more hidden states than the previous method.

2 The Expressiveness of HQMMs

In general, the models we discuss are used to model
sequential data and assume an evolving latent state that
emits discrete observations at each time-step. Further
intuition on these models can be found in Appendix A.

2.1 Hidden Markov Models

Definition 1 (HMMs). An n-dimensional Hidden
Markov Model with a set of discrete observations O is
a tuple (Rn, A, C, ~x0) where initial state ~x0, transition
matrix A, and emission matrix C satisfy the following
conditions:

(i) Non-negative parameters: ~x0 2 Rn
�0, A 2 Rn⇥n

�0 ,

C2R
|O|⇥n
�0 ,

(ii) Normalized initial state: ~1T~x0=1,

(iii) Column-stochastic operators: ~1TA=~1TC=~1T .

HMM belief states are always interpretable as probability
distributions over hidden system states. At each time-step,
we update the belief state and condition on observation us-
ing the column-stochastic matrices A and C respectively:

~x
0

t=A~xt�1 ~xt=
diag(C(y,:))~x

0
t

~1Tdiag(C(y,:))~x0t
, (1)

where diag(Cy,:) places the row y of matrix C in a
diagonal matrix. We can also compute the probability
of a sequence of observations ȳ= y1,...,yt from a given
belief state ~x as follows:

P(ȳ)=~1Tdiag(C(yt,:))A ··· diag(C(y1,:))A~x (2)

2.2 Observable Operator Models

We describe OOMs as a generalization of HMMs. Observe
that the operations above can be equivalently represented

by defining observable operators Ty=diag(C(y,:))A for
each observation y:

~xt=
Ty~xt�1

~1TTy~xt�1

P(ȳ)=~1TTyt ··· Ty1~x (3)

We can arrive at OOMs by relaxing constraint (i) in
Definition 1 (so entries in ~x, A, C can be negative) and
requiring only that the model always assign non-negative
probabilities to observations. This allows us to define a
standard OOM as follows:

Definition 2 (Standard OOMs (Jaeger, 2000)). An
n-dimensional standard Observable Operator Model with a
set of discrete observations O is a tuple (Rn

,{Ty}y2O,~x0)
where initial state ~x0 2 Rn and observable operators
{Ty}y2O2Rn⇥n satisfy the following constraints:

(i) Normalized initial state: ~1T~x0=1,

(ii) Normalized marginal over observations:
~1T
P

y2OTy=~1T ,

(iii) Non-negative probabilities: ~1TTyt...Ty1~x0�0 for all
sequences y1...yt.

Note that the above definition is non-constructive since
it does not tell us what constraints we could place on
model parameters or initial states to satisfy condition (iii)
– this is the cost of relaxing the non-negativity constraint.

In fact, it is undecidable whether a given candidate OOM
(Rn, (Ty)y2O, ~x0) satisfying conditions (i)-(ii) will violate
condition (iii) (Wiewiora, 2007). This is the root of the
infamous negative probability problem (NPP) in OOMs,
since we cannot identify whether a learned model will
assign negative probabilities to observations.

Jaeger (2000) further showed that HMM ⇢ OOM using
the ‘probability clock’ OOM which requires an infinite-
dimensional HMM to model. The non-negativity con-
straint (i) from Definition 1 forces the largest eigenvalue
of an observable operator Ty of an HMM to be real (by
the Perron-Frobenius theorem). However, negative en-
tries in OOMs allow the largest eigenvalue to be complex,
which allows the latent states (and hence conditional prob-
abilities) to display oscillatory behaviour. Jaeger (2000)
uses this property in their probability clock example.

A useful conceptual characterization of a candidate OOM
with parameters {Ty}y2O is the convex cone of valid initial
states it admits, i.e., the initial states for which the model
will never assign a negative probability for observations. If
there is no such cone, the model is invalid. Indeed, Jaeger
(2000) present the following alternative to condition (iii):

Proposition 1 (Jaeger (2000)). A tuple (Rn
,(Ty)y2O,~x0)

satisfying conditions (i)-(ii) of Definition 2 is an OOM if
and only if there exists a pointed convex cone K such that:

(i) Initial state is in the cone: ~x02K,
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(ii) Cone is closed under the operators: Ty~x2K for all
~x2K and y2O,

(iii) The sum of entries for any point in the cone is
non-negative: ~1T~x�0 for all ~x2K.

Conditions (i) and (ii) guarantee that any initial state
inside such a cone will stay inside the cone under action
of Ty, and condition (iii) guarantees that any state inside
the cone will evaluate to a non-negative probability. This
characterization can also tell us which OOMs have equiva-
lent HMMs: a finite-dimensional OOM has an equivalent
finite-dimensional HMM if and only if K is a k-polyhedral
cone for some k, i.e., it is generated by some finite set of
vectors (Jaeger, 2000). Proposition 1 also gives us a recipe
to find OOMs that do not suffer from the NPP: select
a desired convex cone of valid initial states and construct
operators such that the cone is closed under their action.

General OOMs The standard OOMs given in
Definition 2 are the original formulation by Jaeger (2000),
which is stricter than necessary. Various equivalent
formulations have been proposed, including as Sequential
Systems (SS) by Thon and Jaeger (2015), uncontrolled
predictive state representations (PSRs), or stochastic
weighted automata (Balle et al., 2014). In this paper, we
refer to the these as ‘general OOMs’. The main difference
is that the model parameters are no longer constrained
to be real, and we don’t force the state entries to sum
to one; instead the state can be any vector as long as we
can use a linear functional ~� (which for standard OOMs
was fixed to be ~1T ) to recover the probabilities. While
the model parameters can be defined over arbitrary fields,
we define general OOMs over the complex field as this
allows us to eventually recover HQMMs.

Definition 3 (General OOMs (Thon and Jaeger,
2015)). An n-dimensional general Observable Operator
Model with a set of discrete observations O is a tuple
(Cn

,(⌧⌧⌧y)y2O,~x0,~�) where initial state ~x02Cn, observable
operators {⌧⌧⌧y}y2O 2 Cn⇥n, and a linear evaluation
functional ~�2Cn satisfy the following constraints:

(i) Normalized Initial State: ~�†
~x0=1,

(ii) Normalized marginal over observations: ~�†
⌧⌧⌧yt...⌧⌧⌧y1x0

=
P

y2O~�
†
⌧⌧⌧y⌧⌧⌧yt...⌧⌧⌧y1~x0 for all sequences y1...yt,

(iii) Non-negative probabilities: ~�
†
⌧⌧⌧yt ...⌧⌧⌧y1~x0 2 [0,1] for

all sequences y1...yt.

For such a model, the state update after observing y2O
and computing the probability of that observation are
carried out as follows:

~xt=
⌧⌧⌧y~xt�1

~�†⌧⌧⌧y~xt�1
P(ȳ)=~�

†
⌧⌧⌧yt ··· ⌧⌧⌧y1~x (4)

As shown in Proposition 13 of Thon and Jaeger (2015),
every n-dimensional general OOM has an equivalent

† is the complex conjugate transpose

standard OOM that is a similarity transform away,
i.e., we can find a similarity transform S such that
(Cn

, (S⌧⌧⌧yS�1)y2O,S~!0,~�S�1) = (Cn
, (Ty)y2O,~v0,~1T ).

We will use this equivalence to show that NOOMs and
HQMMs are special cases of OOMs. Finally, we note
that finite dimensional OOMs are the most expressive
class of linear models capable of modeling any stochastic
process whose ‘system-dynamics’ matrix (Singh et al.,
2004) has finite rank (Zhao and Jaeger, 2010). Hence
these models are extremely powerful, although the NPP
makes it challenging to use them in practice.

2.3 Norm-observable Operator Models

NOOMs represent a class of models designed to avoid
the NPP by construction. The central idea is to wrap
the output of the model with the non-linear function k·k2
so that it always returns non-negative values.

Definition 4 (NOOMs (Zhao and Jaeger, 2010)). An
n-dimensional Norm Observable Operator Model with a
set of discrete observations O is a tuple (Rn

,(���y)y2O,~v0)
where initial state ~v0 2 Rn and observable operators
{���y}y2O2Rn⇥n satisfy the following constraints:

(i) Normalized initial state: k~v0k22=1,

(ii) Normalized marginal over observations:P
y2O ���

†
y ���y=I.

The updated state after observing y 2 O and the
probability of that observation can be computed as

~vt=
���y~vt�1

k���yt ... ���y1~vk
P(ȳ)=k���yt ... ���y1~vk

2
(5)

Although any stochastic process can be represented as
a NOOM in some inner product space, this space may
be infinite dimensional (Zhao and Jaeger, 2010). For
practical purposes, we care about the expressiveness
of finite-dimensional NOOMs. Zhao and Jaeger (2010)
showed that NOOM ✓ OOM, and once again used the
ability of a real-valued NOOM operator to have complex
eigenvalues in a NOOM probability clock to show that
there are finite-dimensional NOOMs that cannot be
modeled exactly by finite-dimensional HMMs.

Zhao and Jaeger (2010) show that despite their non-linear
form, NOOMs are equivalent to n

2-dimensional OOMs,
and indeed we will build upon this approach to re-derive
HQMMs. Zhao and Jaeger (2010) use Kronecker prod-
uct relationships for the 2-norm (where ~I is a vectorized
identity matrix that implements a matrix trace operation)
to show that sequence probabilities in a NOOM from
Equation 5 can also be evaluated as:

P(ȳ)=~ITn2 (���yt⌦ ���yt) ... (���y1⌦ ���y1)(~v0 ⌦ ~v0), (6)

Now, if we define ~�=~In2, ⌧⌧⌧y =���y⌦���y, and the initial

state ~!02Rn2

as ~!0=~v0 ⌦ ~v0, we get a general OOM
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(Cn, (⌧⌧⌧y)y2O, ~!0, ~�). As shown by Zhao and Jaeger
(2010), this is a similarity transform of a standard OOM,
with S= In2+ 1

n2
~1n2(~�T �~1Tn2). Thus, NOOMs are not

any more expressive than OOMs, i.e., NOOM ✓ OOM.

2.4 Hidden Quantum Markov Models

Previous work by Srinivasan et al. (2018b) derived
HQMMs by generalizing HMMs using system-environment
interactions (illustrated using a quantum circuit), and
showed that every n-dimensional HMM can be modeled
by an HQMM with no more than an n

2-dimensional
hidden states. Here, we take a different approach; we will
show how HQMMs can be defined through a series of
natural generalizations of NOOMs in such a way that
they also end up containing finite-dimensional HMMs.
We do so by allowing parameters to be complex and
expanding the concepts of NOOM states and operators
using the representation in Equation 6.

Generalizing NOOM States We know from Equa-
tion 6 that the initial state ~!0 can viewed as a vectorized

rank-1 Hermitian matrix ⇢⇢⇢0, i.e., ~!0=vec
⇣
~v0~v

†

0

⌘
=vec(⇢⇢⇢0).

A natural generalization would be to let the initial state be
a vectorized matrix of arbitrary rank, i.e., ⇢⇢⇢0=

P
ipi~vi~v

†

i
instead. The normalization condition on the initial state
can then be restated as 1=~�

†
~⇢0=~ITn2~⇢0=tr(⇢⇢⇢0)=

P
ipi.

As a linear combination of outer products of vectors
with themselves, ⇢⇢⇢0 must be Hermitian. We additionally
assume that the constituent eigenvectors live in a Hilbert
space H, so that ⇢⇢⇢0 lives in a Liouville space, i.e.,
the outer product of two Hilbert spaces. Further, in
the NOOM, ~v0~v

†

0 had a single eigenvalue of 1. If we
impose no further constraints, we could allow pi to be
complex-valued or negative as long as the normalization
condition above was satisfied. However, this could once
again lead to negative probabilities when applying the
evaluation ~�, and hence a non-constructive model. Thus,
we impose a positive semi-definiteness (PSD) constraint
on the initial state to guarantee that pi 2R�0 so that
tr(⇢⇢⇢0) is real and non-negative. Essentially, we are now
considering a model whose initial states ~⇢0 are vectorized
arbitrary-rank Hermitian PSD matrices, which constitute
a pointed convex cone. Such matrices are called density
matrices in quantum mechanics (Nielsen and Chuang,
2010), and the imposition of the PSD constraint on the
states is what allows these models to avoid the NPP.

Generalizing NOOM operators Having defined a
convex cone of valid states, we now derive operators that
ensure that the state always evolves inside the cone. We re-
fer to such operators acting on our states in Liouville space
as Liouville superoperators {Ly}y2O. Condition (ii) in
Definition 4 ensured that probabilities of observations com-
puted by the NOOM were normalized, and the equivalent
condition in the OOM representation in Equation 6 is that

~�
†

⇣P
y2O⌧⌧⌧y

⌘
=~�

†. We impose a similar constraint (trace

preservation or TP) on the superoperators to ensure we get
a normalized distribution over observations. In addition
to this, we further need to ensure that the probabilities
assigned to observations are real and non-negative, i.e., the
operators must always preserve the Hermitian PSD con-
dition of the state. Finding a constructive way to impose
these restrictions on Liouville superoperators is challeng-
ing, and it is easier to do so on the ‘reshuffled’ version of it
called its Choi matrix (Wood et al., 2015). The reshuffle
operation involves reshaping the n2�dimensional columns
of the Liouville superoperator into n⇥n matrices. Going
across the columns of Ly from left to right, we fill up the
blocks of the Choi matrix column-first with these reshaped
matrices (see Appendix B and Życzkowski and Bengtsson
(2004) for further details). In the context of Hermitian pre-
serving (HP)maps, there is no elegant way to also impose a
simple PSD-preserving ‘positivity’ constraint (Choi, 1975;
Pillis, 1967). Therefore, we must impose a slightly more
restrictive complete positivity (CP) constraint which guar-
antees that the map Ly⌦I is PSD-preserving for identity
matrices of any dimension. In fact, Choi (1975) suggest
that a CP map is the natural constructive generalization
of ‘positivity’ for a linear HP map. We define L-HQMMs
as a generalization of NOOMs with these constraints:

Definition 5 (L-HQMMs). An n
2-dimensional Liouville-

Hidden Quantum Markov Model with a set of discrete
observations O is a tuple (Cn2

, (Ly)y2O,~⇢0,~I) where

the initial state ~⇢0 2 Cn2

and Liouville superoperators
{Ly}y2O 2 Cn2

⇥n2

with corresponding Choi matrices
{Cy}y2O satisfy the following constraints:

(i) ~⇢0 is a vectorized Hermitian PSD matrix of arbitrary
rank,

(ii) Normalized initial state: ~IT~⇢0=1,

(iii) CP: Cy�0 (Choi matrix is PSD).

(iv) TP: ~IT
⇣P

y2OLy

⌘
=~IT ,

(v) HP: Cy=C†
y,

For such a model, the state update after observing y2O
and computing the probability of that observation are:

~⇢t=
Ly~⇢t�1

~ITLy~⇢t�1

P(ȳ)=~ITLyt ... Ly1~⇢ (7)

The exact relationship between HQMMs and OOMs was
previously unknown, but this formulation of HQMMs
allows us to state an important result:

Theorem 1. HQMM ✓ OOM, and the set of valid
initial states for HQMMs is a spectraplex.

Proof. Setting ~�=~I, L-HQMMs satisfy condition (i) of
General OOMs laid out in Definition 3 by construction.
Condition (ii) of Definition 3 is satisfied by the TP
constraint on L-HQMMs. Next, the HP and CP con-
straints on L-HQMMs guarantee that Lȳ~⇢ always yields
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a vectorized Hermitian PSD matrix. The trace of this
matrix is always real and non-negative, i.e., ~ITLȳ~⇢� 0.

We also have ~ITLy~⇢0  ~IT
⇣P

y2OLy

⌘
~⇢0 = ~IT~⇢0 = 1,

satisfying condition (iii) of Definition 3.

The valid initial states of L-HQMMs are Hermitian
PSD matrices with unit trace. Hermitian PSD matrices
form a convex cone, and the intersection of this cone
with the linear affine subspace of trace 1 matrices is a
spectrahedron known as a spectraplex.

Using the same similarity transform that we used for
NOOMs S=In2+ 1

n2
~1n2(~�T�~1Tn2), we can transform any

n
2-dimensional L-HQMM into an equivalent standard

OOM. It is still an open question whether HQMMs are
a proper subset of OOMs.

An alternate formulation of HQMMs Prior work
on HQMMs have represented these models in the so-called
operator-sum representation (Srinivasan et al., 2018b;
Monras et al., 2010). While operations on vectorized ma-
trices are fairly common in quantum information (and was
implicitly used for HQMMs in Srinivasan et al. (2018a)),
L-HQMMs are a novel formulation of HQMMs. We now
derive the operator-sum representation of HQMMs from
L-HQMMs, showing that the two are equivalent.

From Definition 5, we know that any model equivalent to
L-HQMMs must have CP, TP, and HP operators. From
Choi’s theorem (Choi, 1975), we know that any map
which can be expressed in the operator-sum representation
K(⇢⇢⇢)=

P
wKw ⇢⇢⇢K†

w is guaranteed to be CP, and will pre-
serve the PSD nature of any input matrix. In the context
of CP maps, the operator matrices Kw are commonly
called Kraus operators (Kraus, 1971). The quadratic ap-
plication of operators preserves the Hermiticity of ⇢⇢⇢. Thus,
the operator-sum representation is particularly appealing
because it guarantees the CP and HP constraints by
construction. Note that this representation of CP maps
is merely the inverse vectorization of the Liouville form

vec

 
X

w

Kw ⇢⇢⇢ K†

w

!
=
X

w

(K⇤

w ⌦ Kw)~⇢ = L~⇢

Thus, the action of a Liouville superoperator Ly corre-
sponding to the observable y on ~⇢ can can be equivalently
represented by a set of Kraus operators {Ky,wy} acting
on the density matrix ⇢⇢⇢, where the cardinality of this set
|wy| is determined by the Schmidt-rank (or Kraus-rank,
as we soon explain) of Ly. The Schmidt-rank is analogous
to the rank revealed by an SVD, but for a decomposition
into a Kronecker product of two vector spaces.

Finally, the operator-sum representation also provides a
convenient way of ensuring the TP constraint: the full
set of Kraus operators across all observables must satisfyP

y,wy
K†

y,wy
Ky,wy =I (Nielsen and Chuang, 2010). This

condition essentially generalizes condition (ii) for NOOMs

in Definition 4 to allow multiple operators per observable.
We can now define HQMMs using the Kraus operator-sum
representation, as given in Srinivasan et al. (2018b).

Definition 6 (K-HQMMs). An n-dimensional Kraus-
Hidden Quantum Markov Model with a set of discrete
observations O is a tuple (Cn⇥n

,{Ky,wy}y2O,⇢⇢⇢0, tr(·))
where initial state ⇢⇢⇢0 2 Cn⇥n and Kraus operators
{Ky,wy}y2O,wy2N 2 Cn⇥n satisfy the following con-
straints:
(i) ⇢⇢⇢0 is a Hermitian PSD matrix of arbitrary rank,

(ii) Normalized Initial State: tr(⇢⇢⇢0)=1,

(iii) Normalized marginal over observations (TP):P
y,wK

†
y,wKy,w=I.

The state update after observing y is computed as

⇢⇢⇢t=

P
wy

Ky,wy ⇢⇢⇢t�1 K†
y,wy

tr
⇣P

wy
Ky,wy ⇢⇢⇢t�1 K†

y,wy

⌘ , (8)

and probability of a given sequence is given by:

P(ȳ)=tr

0

@
X

wyt

Kyt,wyt
...

0

@
X

wyt

Ky1,wy1
⇢⇢⇢0K

†
y1,wy1

1

A...K†
yt,wyt

1

A

(9)

The K-HQMM representation was used by Srinivasan
et al. (2018b) to show that any n dimensional HMM
can be written as an equivalent n

2 dimensional K-
HQMM, while there were HQMMs like the NOOM
probability clock (trivially an HQMM) that required
infinite-dimensional HMMs; hence HMM ⇢ HQMM.

Uniqueness of L-HQMMs Note that the Kraus
operator sum formulation of K-HQMMs does not
uniquely define a CP map; it can be equivalently defined
using different sets of Kraus operators (with possibly
different cardinalities). Thus, it is not evident how one
might compare two K-HQMMs. On the other hand, the
Liouville superoperator is the unique representation of
a CP map, and can be factorized into a canonical set of
Kraus operators (Wood et al., 2015; Miszczak, 2011). The
minimal number of Kraus operators in such a factorization
is known as the Kraus-rank of the CP map. We describe
this unique factorization further in Appendix B.

HQMMs & NOOMs We have shown that n-
dimensional NOOMs form a subset of n-dimensional
HQMMs through generalization. Prior work by Srinivasan
et al. (2018b) used ‘HQMMs’ and ‘NOOMs’ somewhat am-
biguously, differentiating them primarily by the field over
which they are defined (R or C). In this paper we have
used the original formulation of NOOMs (Zhao and Jaeger,
2010) to draw a clearer distinction, whereby NOOMs are
simply HQMMs with rank-1 vectorized initial states and
Kraus-rank 1 operators. Particularly, for a fixed latent
dimension n

2 of the vectorized density matrix, an HQMM
allows for a greater diversity of both states and dynamics.
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First, note that the valid states of HQMMs are Hermitian
PSD matrices with unit trace, also known as mixed
density matrices in quantum mechanics (Nielsen and
Chuang, 2010). By contrast, the valid states for NOOMs
correspond to the set of pure density operators (with
rank 1). Since these operators encode the probability
distribution of the latent state, we see that HQMM states
can represent mixture distributions of NOOM states.
Formally, the set of rank-1 density matrices are extremal
points of the spectraplex defined by arbitrary rank density
matrices. This gives us some geometric intuition for why
HQMMs have a richer state space than NOOMs.

Second, HQMMs can have an arbitrary number of Kraus
operators per observable while NOOMs are restricted
to one to preserve rank-1 states. This indicates that
the evolution associated with individual observations
in an n-dimensional NOOM is restricted to dynamics
corresponding to rank-1 Choi matrices. Thus, an
n-dimensional HQMMs with arbitrary Kraus rank can
encode richer dynamics than an n-dimensional NOOM.

3 Learning HQMMs

Having characterized the expressiveness of HQMMs, we
now turn to the task of learning them from data.

The Learning Problem We use the negative log-
likelihood of the data as our loss function, which can
be written as a function of the set of Kraus operators
{Ky,w} as follows (Srinivasan et al., 2018b):

L=�ln tr

 
X

w

Kyn,w...

 
X

w

Ky1,w ⇢⇢⇢0 K
†
y1,w

!
...K†

yn,w

!

(10)

Note that the learned Kraus operators must satisfy the TP
constraint

P
y,wK

†
y,wKy,w=I. The problem of learning

a set of N trace-preserving n⇥n Kraus operators can
equivalently be framed as one of learning a matrix 2
CnN⇥n on the Stiefel manifold i.e., that satisfy 

†
= I,

where  can be block-partitioned row-wise into the N

Kraus operators that parameterize the HQMM. Both the
previous and this paper’s approach begin with an initial
guess0 with a pre-determined partitioning into the Kraus
operators we wish to learn, and iteratively make changes
to the guess to maximize the log-likelihood.

The Previous Approach Since  is a matrix with
orthonormal columns, any initial guess 0 is a unitary
transformation away from the true 

⇤ that maximizes
the log-likelihood. The existing method (Srinivasan et al.,
2018b) iteratively finds a series of Givens rotations that
locally increase the log-likelihood. However, a Givens
rotation only changes two rows of  at a time, making
this approach prohibitively slow for learning large 

matrices. Furthermore, since these two rows are picked at
random, this approach is not guaranteed to step towards
the optimum at every iteration.

Retraction Based Optimization We propose
directly learning  using a gradient-based algorithm. Note
that since L is a function of complex matrices, the direc-
tion of steepest descent corresponds to the gradient with
respect to the complex conjugate of the Kraus operators
(Hjørungnes and Gesbert, 2007). We use the algorithm
proposed by Wen and Yin (2013) to constrain our param-
eter updates on the Stiefel manifold. Given a gradient G
of L with respect to parmeters , the constrained update
�(⌧) from some initial feasible solution 0 is

�(⌧)=0�⌧U
⇣
I+

⌧

2
V†U

⌘�1
V†

0, (11)

where U=[G | 0], V=[0 |�G], G is the gradient at
0, and ⌧ the step size. The trajectory �(⌧) is a smooth
retraction (Adler et al., 2002) of the gradient onto the man-
ifold, and is the direction of steepest descent to feasibly
optimize Equation 10. We combine this retraction with a
simple gradient descent scheme to ensure that †=I after
every update. In Appendix C, we provide an algorithm
box and further details on the Wen-Yin algorithm, and
also compare it against some alternative approaches.

4 Experimental Results

To show the superior performance of the retraction-based
algorithm for constrained optimization on the Stiefel
manifold (COSM) over the previous Givens Search
(GS) method in learning HQMMs, we evaluate their
accuracy and run-time on two datasets. The first is the
synthetic dataset used by Srinivasan et al. (2018b) that
was generated by an HMM. The second is a real-world
dataset, on which the GS approach is prohibitively slow;
demonstrating the scalability of COSM. In Appendix D,
we also present results where COSM outperforms GS on
the synthetic data used by Srinivasan et al. (2018b) that
was generated by an HQMM representing a quantum
mechanical process.

Training For all our HQMMs, we use the log-likelihood
loss function from Equation 10. We initialize the latent
state ⇢⇢⇢0 as a random Hermitian PSD matrix using the
QETLAB toolbox (Johnston, 2016), and  as a random
orthonormal matrix. Except for very small models, COSM
is fairly robust to random initializations (see Appendix E).
We compute the gradient of the loss function with respect
to the complex conjugate of the Kraus operators using
the Autograd package (which can handle complex differ-
entiation), and vertically stack the gradients of the Kraus
operators to construct the gradient G of the matrix . To
smoothen the trajectory we apply momentum with �=0.9
(Rumelhart et al., 1986; Qian, 1999), and re-normalize the
gradient before and after the momentum update, making

A preliminary version of these experimental results

appeared in Adhikary et al. (2019). Code available at

https://github.com/sandeshAdhikary/learning-hqmms-
stiefel-manifold
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the magnitude of updates entirely dependent on step-size.
We refer to HQMMs using the tuple (n,s,w)�HQMM,
where n is the number of hidden states, s is the number
of possible outputs (earlier denoted |O|), and w is the
number of Kraus operators per output, also referred to as
the dimension of the ‘environment’ variable (Srinivasan
et al., 2018b). Consequently, for an (n,s,w)�HQMM we
have 2Cnsw⇥n. Note that when w=1, we are effecti-
ively learning a NOOM. We also provide the performance
of HMMs trained using the Expectation-Maximization
(EM) algorithm (with 5 random restarts) for reference.
Details of our hyperparameter tuning procedure and
computing infrastructure are described in Appendix F.

Metrics On the synthetic HMMdataset, we use a scaled
log-likelihood (M. Zhao, 2007; Srinivasan et al., 2018b)
independent of sequence length called description accu-

racy: DA=f

⇣
1+ logsP(Y |D)

`

⌘
, where f(·) squishes the log-

likelihood from (�1,1] to (�1,1) (with f(x)=tanh(x/8)
for x0, and f(x)=x for x>0). WhenDA=1, the model
predicted the sequence with perfect accuracy, and when
DA>0, the model performed better than random. The er-
ror bars represent one standard deviation of the DA scores
across many test samples. On the real-world dataset, we
report the average accuracy for a classification problem.

4.1 Synthetic HMM Data

For our first experiment, we generated data using the
same synthetic HMM as Srinivasan et al. (2018b), with 6
hidden states and 6 possible outputs. We show two things
with the experiments on this dataset: 1) COSM finds
better optima than GS, and 2) COSM is much faster
than GS – so much so that we could train larger HQMMs
than were previously possible. We also investigate the
effects of increasing model size by adding latent states
(n) versus increasing the Kraus-rank (w).

We used the same 20 training and 10 validation sequences
of length 3000 used by Srinivasan et al. (2018b), splitting
up each sequence into 300 sequences and use a burn-in
of 100. We trained HQMMs using the COSM approach
for 60 epochs, and evaluated the model with the highest
validation DA score on the test set. The results for this
model are shown in Figure 1a and Figure 1b.

COSM finds better optima than GS As shown in
Figure 1a, HQMMs (with w=1) learned using COSM
achieve better optima than HQMMs learned using GS
for all n. As described in Section 2.4, these models are
essentially complex-valued NOOMs. We also confirm
that as noted in Srinivasan et al. (2018b), small HQMMs
(n  5) can model this data better than small HMMs,
although this doesn’t hold for n=6. However, we can take
advantage of the additional Kraus-rank hyperparameter
w available to HQMMs to further improve performance,
as shown in Figure 1b for (5,6,w)�HQMMs (varying w).
Also note that the number of parameters for an HQMM

(a) w=1

(b) n=5

Figure 1: Test Set Performances on the Synthetic
HMM Data: The dashed line represents the test set
performance of the true model (a (6,6)-HMM) that
generated the data.

scales faster than for an HMM.

COSM is much faster than GS In Figure 2, we
plot the test set DA versus CPU training time for the
smallest and largest models trained. To ensure a fair
comparison, we train both approaches on sequences of
length 300 and a batch size of 30. Note that we pre-tune
hyperparameters on the validation set, and the graphs
show the changing test DA as the models are trained with
these hyperparameters (test DAs were not used to tune
hyperparameters). For all models, we see that COSM
converges much faster than GS, and the difference in both
speed and accuracy is especially pronounced for the larger
models; COSM quickly approaches convergence within a
few hundred seconds, while GS yields very poor solutions
even after 2000 seconds. As the GS method can take days
to converge for large models, we did not directly calculate
a precise speedup but provide an estimate in Appendix G.

Srinivasan et al. (2018b) proved that a (6,6,6)-HQMM
should be sufficient to fully model a (6,6)-HMM, but
the GS method was too slow to train this model. With
COSM, we are able to show that this theoretical guarantee
holds in practice. In fact, we find that in practice a
(5,6,3)�HQMM is sufficient to model our (6,6)�HMM.

4.2 Splice Dataset
For our second experiment, we use the real-world splice
dataset (Dheeru and Karra Taniskidou, 2017; Towell
et al., 1991) consisting of DNA sequences of length 60,
each element of which represents one of four nucleobases:
Adenine (A), Cytosine (C), Guanine (G), and Thyamine
(T). A DNA sequence typically consists of information
encoded in sub-sequences (exons), that are separated by
superfluous sub-sequences (introns). The task associated
with this dataset is to classify sequences as having an
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Figure 2: COSM Learns More Accurate Models Faster than GS: Test DA versus training time for various
(n,s,w)-HQMMs trained on the synthetic HMM data. COSM converges to a better optimum faster than GS for all
models; the dashed line represents the DA of the true data generating model.

exon-intron (EI) splice, an intron-exon (IE) splice, or
neither (N), with 762, 765, and 1648 labeled examples
for each label respectively. In addition to A, C, T and G,
the raw dataset also contains some ambiguous characters,
which we filter out prior to training. We demonstrate
that COSM can be used to train HQMMs on real-world
datasets which would have been too slow to train using GS.

We train a separate model for each of the three labels,
and during test-time, choose the label corresponding to
the model that assigned the highest likelihood to the
given sequence. We train HQMMs using the COSM
method and HMMs with the EM algorithm (with 5
random restarts) for reference. In Figure 3, we report the
average classification accuracies across all labels obtained
with 5-fold cross validation. For reference, a random
classifier achieves around 33.3% accuracy.

Figure 3: Average 5-fold Test Set Performance
on the Splice Dataset Test set accuracies (top) and
number of parameters (bottom) for various HQMMs
and HMMs trained using the COSM and EM algorithms
respectively. Errorbars in the top graph represent the
mean standard deviation across labels over the 5 folds.

Note that 5-fold cross-validation is prohibitively time
consuming for GS, even for models with a modest number
of parameters. However, we are able to learn these
HQMMs with COSM. We also see that (as before) there
is a sizable marginal gain in DA when going from w=1
to w=2, with the benefits of increasing w further being
less clear. However unlike the previous experiment, we
still see persistent gains by increasing n. Interpreting this
in conjunction with the results in the previous section
suggests that we have to tune both n and w depending
on the dataset. We also find that for a given number of
hidden states, COSM is able to learn an HQMM that out-
performs the corresponding HMM, although this comes
at the cost of a rapid scaling in the number of parameters.

5 Conclusion

We showed that HQMMs are OOMs that generalize
NOOMs, and that unlike prior approaches that avoid
the NPP by design, HQMMs are able to model arbitrary
HMMs as well. HQMMs expand the convex cone of valid
states from rank-1 PSD matrices in (complex valued)
NOOMs to arbitrary rank Hermitian PSD matrices. We
also formulated the unique Liouville representation of a
HQMMs, which allows direct comparison between models,
and also simplifies theoretical analysis connecting them
to general OOMs. Future work could focus on identifying
the exact relationship between NOOMs and HMMs, and
whether arbitrary OOMs can be converted to HQMMs.

We also used a retraction-based learning algorithm that
directly constrains gradient updates to the Stiefel manifold
to learn feasible HQMMs, and presented experimental
results on a synthetic and a real-world dataset. Our pro-
posed algorithm outperforms the prior approach in terms
of both accuracy and speed, allowing us to train HQMMs
that were previously too large to train. Future work
could investigate approximation strategies that reduce the
parameters of HQMMs at minimal cost to performance, or
learning schemes that dynamically learn the Kraus-rank
w instead of tuning it as a hyperparameter. Other
future work could develop new QGMs defined via Kraus
operators, which can be learned using our approach.
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