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ABSTRACT
Over the past decade, side-channels have proven to be
significant and practical threats to modern computing
systems. Recent attacks have all exploited the underly-
ing shared hardware. While practical, mounting such a
complicated attack is still akin to listening on a private
conversation in a crowded train station. The attacker
has to either perform significant manual labor or use AI
systems to automate the process. The recent academic
literature points to the latter option. With the abun-
dance of cheap computing power and the improvements
made in AI, it is quite advantageous to automate such
tasks. By using AI systems however, malicious parties
also inherit their weaknesses, most notably the vulnera-
bility to adversarial samples.

In this work, we propose the use of adversarial learning
as a defensive tool to obfuscate and mask side-channel in-
formation. We demonstrate the viability of this approach
by first training CNNs and other machine learning classi-
fiers on leakage trace of different processes. After training
a highly accurate model (99+% accuracy), we test it
against adversarial learning. We show that through min-
imal perturbations to input traces, the defender can run
as an attachment to the original process and cloak it
against a malicious classifier.

Finally, we investigate if an attacker can use adversar-
ial defense methods, adversarial re-training and defensive
distillation to protect the model. Our results show that
even in the presence of an intelligent adversary that
employs such techniques, adversarial learning methods
still manage to successfully craft perturbations hence
the proposed cloaking methodology succeeds.

1 INTRODUCTION
Deep learning (DL) has proven to be a very powerful
tool for a variety of tasks like handwritten digit recogni-
tion [ 26], image classification and labeling [ 25, 38, 66],
speech recognition [64], lip reading [ 3], verbal reason-
ing [40], playing competitive video games [ 20, 53] and
even writing novels [45]. As with any booming technology,
it is also adopted by malicious actors e.g.,posting to inter-
net boards to shift public opinion by social engineering.
One of the latest known examples of this is the millions
of AI-generated comments on the FCC net-neutrality
boards [32, 59]. These AI-crafted posts were semantically
sound and not easy to detect as fake. Another example
of malicious use of AI is for spam and phishing attacks.

It is now possible to craft custom phishing e-mails using
AI with higher ‘yield’ than human crafted ones [ 15, 57].
AI system can even participate in hacking competitions
where human creativity and intuition was thought to
be irreplaceable. In 2016, DARPA sponsored a hacking
competition for AI systems where the task was to find
and fix vulnerabilities in computer systems within a
given time period [ 33]. According to a survey among
cybersecurity experts, the use of AI for cyber attacks
will become more common with time [62].

Classical side-channel attacks (SCA) deal with bulk
amounts of noisy data that require human interpretation
and intuition to process. Such task are perfectly suited
for AI systems and it is reasonable that malicious parties
are aware of this opportunity. The academic literature
already shows the use of AI for processing side-channel
leakage. In 2011 Hospodar et al. [28] demonstrated the
first use of machine learning, LS-SVM specifically, on a
power SCA on AES and showed that the ML approach
yields better results than the traditional template at-
tacks. Later, Heuser et al. [27] showed the superiority
of multi-class SVM for noisy data in comparison to the
template attacks. Martinasek et al. [ 42, 43] showed that
artificial neural networks can recover AES keys from
power measurements with a success rate of 96%. In 2015
Beltramelli [4] used LSTM to collect meaningful key-
stroke data via motions of the smart watch user. In 2016,
Maghrebi et al. [ 41] compared four DL based techniques
with template attacks to attack an unprotected AES
implementation using power consumption and showed
that CNN outperforms template attacks. Finally in 2017,
Gulmezoglu et al. [24] showed that machine learning can
be used to extract meaningful information from cache
side-channel leakage to recover web traffic of users.

A straightforward countermeasure against SCAs is to
drown the sensitive computation leakage in noise to cloak
it. However, this defense has proven to be ineffective
in addition to being computationally expensive with
significant performance overhead. In this study, we argue
that we can do much better than random noise and craft
much smaller noise by using adversarial learning (AL).
By using AL, we achieve a stronger cloaking effect using
smaller changes to the trace hence minimal overhead to
the system. Also, the proposed defense does not require
redesigning the software or the hardware stacks. The
proposed framework can be deployed as an opt-in service
that users can enable or disable at wish, depending on
their privacy needs at the time.
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In summary, attacking machine learning is easier than
defending it [18] and if used strategically in a non-
traditional way i.e., as a defensive countermeasure, AL
against malicious parties with AI capabilities can be
quite advantageous. In this work, we expand this idea
and show that AL is indeed a useful defensive tool to
cloak private processes from AI capable adversaries.

Our Contribution
In this work, we propose a framework and explore the
necessary steps to cloak processes against SCAs as well as
the defenses a malicious party can use. More specifically
in this paper we;

∙ show how to profile crypto processes with high
accuracy via their side-channel leakage using deep
learning and various classical machine learning
models. We classify 20 types of processes using
readily available, high resolution Hardware Perfor-
mance Counters (HPC). Further, we investigate
the effect of parameter choices like the number of
features, samples and data collection intervals on
the accuracy of such classifiers.

∙ present the use of AL methods to craft pertur-
bations and add them to the system hardware
trace to cloak the side-channel leakage of private
processes. We show that this is a strong defense
against an attacker using DL classifiers.

∙ test and quantify the efficiency of different AL
methods and present the accuracy and applicabil-
ity of each attack.

∙ show that even when adversarial defense methods
adversarial re-training or defensive distillation is
employed by the attacker, adversarial perturba-
tions still manage to cloak the process.

2 BACKGROUND
In this section, we provide the necessary background
information to better understand the attack, adversarial
sample crafting as a countermeasure and the improved
attack. More specifically, we go over micro-architectural
attacks, hardware performance counters, convolutional
neural networks (CNNs), and AL attacks.

2.1 Micro-architectural Attacks
Over the last decade, there has been a surge of micro-
architectural attacks. Low-level hardware bottlenecks
and performance optimizations have shown to allow pro-
cesses running on shared hardware to influence and re-
trieve information about one another. For instance, cache
side-channel attacks like Prime&Probe and Flush+Reload
exploit the cache and memory access time difference to
recover fine-grain secret information and even recover se-
cret crypto keys [ 5, 21–23, 30, 31, 36, 47, 54, 55, 65, 69].
In these works, the attacker exploits micro-architectural
leakages stemming from memory access time variations,
e.g.,when the data is retrieved from small but faster
caches as opposed to slower DRAM memory.

2.2 Hardware Performance Counters
Hardware Performance Counters (HPCs) are special pur-
pose registers that provide low-level execution metrics
directly from the CPU. This low-level information is par-
ticularly useful during software development to detect
and mitigate performance bottlenecks before deploy-
ment. For instance, low number of cache hits and high
cache misses indicate an improperly ordered loop. By re-
ordering some operations, a developer can significantly
improve the performance.

HPCs are also useful to obtain system health check
and/or anomaly detection in real-time. For instance,
in [ 1] Alam et al. leverages perf_event API to detect
micro-architectural side-channelattacks. In 2009, Lee
et al. [ 67] showed that HPCs can be used on cloud sys-
tems to provide real-time side-channel attack detection.
In [10, 11], researchers used HPCs to detect cache attacks.
Moreover, Allaf et al. [ 2] used a neural network, decision
tree, and kNN to specifically detect Flush+Reload and
Prime&Probe attacks on AES. Moreover, researchers
have shown that by using the fine-grain information pro-
vided by HPCs, it is possible to violate personal privacy
as well. In [ 24], Gulmezoglu et al. showed that HPC
traces can be used to reveal the visited websites in a sys-
tem using variety of ML techniques such as auto-encoder,
SVM, kNN and decision trees and works even on privacy
conscious Tor browser. More applications of HPCs in
cyber security countermeasures can be found in [17].

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNN) is a supervised
feed-forward artificial neural network architecture. One
important aspect of CNNs is that they don’t saturate
easily and can reach high accuracy with more train-
ing data. Also, unlike the classical ML methods, CNNs
do not require data features to be identified and pre-
processed before training. Instead, CNNs discover and
learn relevant features in the data without human in-
tervention, making them very suitable for automated
tasks. In the past decade, CNNs surpassed humans in
many tasks that were considered nearly impossible to
automate. This breakthrough is fueled by the rapid in-
crease in GPU powered parallel processing power and
the advancements in deep learning. CNNs have been
successfully applied to image, malware and many other
classification problems. Training a CNN model is done
in 3 phases. First, the labeled dataset is split into three
parts; training, validation and test. The training data
is fed to the CNN with initial hyper-parameters and
the classification accuracy is measured using the vali-
dation data. Guided by the validation accuracy results,
the hyper-parameters are updated to increase the accu-
racy of the model while maintaining its generality. After
the model achieves the desired validation accuracy, it is
tested with the test data and the final accuracy of the
model is obtained.
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2.4 Adversarial Learning
AL is a sub-field of machine learning (ML) that stud-
ies the robustness of trained models under adversarial
settings. The problem stems from the underlying as-
sumption that the training and the test data comes from
the same source are consistent in their features. Studies
have shown however that by introducing some small
external noise or in this context what is commonly re-
ferred to as adversarial perturbations, it is possible
to craft adversarial samples and manipulate the out-
put of ML models. In other words, by carefully crafting
small perturbations, one can push a test sample from
the boundaries of one class to another. Due to the math-
ematical properties of the high-dimensional space that
the classifier operates in, this modification can be very
small. AL refers to the group of techniques that are used
to perturb test samples to classifiers and force misclas-
sification. While there are many different methods of
crafting such perturbations, ideally they are desired to
be minimal and not easily detectable.

Adversarial attacks on classical ML classifiers (un-
der both white-box and black-box scenarios) have been
known for quite some time [ 6–9, 29, 35, 39, 70]. However,
it was Szegedy et al. [60] that first introduced AL at-
tacks on DNNs. The 2013 study showed that very small
perturbations that are indistinguishable to human eye
can indeed fool CNN image classifiers like ImageNet.
The perturbations in the study are calculated using
the technique called Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS). This algorithm searches in
the variable space to find parameter vectors (perturba-
tion) that can successfully fool the classifier. Later in
2014, Goodfellow et al. [19] improved the attack by using
the Fast Gradient Sign Method (FGSM) to efficiently
craft minimally different adversarial samples. Unlike the
L-BFGS method, the FGSM is computationally conser-
vative and allows much faster perturbation crafting. In
2016, Papernot et al. [50] further improved upon Good-
fellow’s FGSM by using Jacobian Saliency Map Attack
(JSMA) to craft adversarial samples. Unlike the previous
attacks, JSMA does not modify randomly selected data
points or pixels in an image. Instead, it finds the points
of high importance with regards to the classifier decision
and then modifies these specific pixels. These points are
found by taking the Jacobian matrix of the loss function
given a specific input sample, allowing an attacker to
craft adversarial samples with fewer modifications.

In 2016 [34, 37, 48], multiple new adversarial attacks
were discovered. Moreover, the research showed that
these adversarial samples are transferable i.e., pertur-
bations that can fool a model can also work on other
models trained on the same task. In [ 49], Papernot et al.
showed that adversarial attacks can also succeed under
the black-box attack scenario where an attacker has only
access to the classification labels. In this scenario, the
attacker has no access to the model parameters such
as weights, biases, classification confidence or the loss,

therefore, cannot directly compute or use the gradients
to craft a perturbation. Instead, the attacker uses the
target model as an oracle that labels the inputs and
then uses these labeled images to train her own classifier.
Authors demonstrated the feasibility of the attack on
MetaMind and Deep Neural Network (DNN) classifiers
hosted by Amazon and Google. With 84.24%, 96.19%
and 88.94% misclassification rates respectively, they were
able to fool the targeted classifiers.

In [ 14], researchers have shown that by iteratively
morphing a structured input, it is possible to craft adver-
sarial samples under black-box attack scenario. Authors
have implemented the attack against a PDF malware
classifier and have reported 100% evasion rate. Moreover,
the study acknowledges the fact that black-box attack
model has a cost of obtaining labeled data from observa-
tions and defines and uses a cost function that takes into
account the number of observations. The attack works by
adding and/or removing compilable objects to the PDF.
Black-box scenario does not assume to obtain confidence
scores from the model under attack, only the class out-
put. In summary, the AL is an active research area with
plethora of new attacks, defenses and application cases
emerging daily [12, 16, 44, 58, 63].

In addition to attack classifiers, adversarial learning
have also been used to provide privacy for streaming traf-
fic and facial recognition databases [46, 68]. In contrast
to these works, DeepCloak uses adversarial learning to
craft additional traffic on micro-architectural level to
mask the overall side-channel leakage.

3 METHODOLOGY
Our goal is to show that side-channel classifiers can be
successfully stopped using the concept of AL. To vali-
date this assumption, we first train DL-based classifiers
using real side-channel data, and show their degradation
as the result of AL techniques, even if the DL-based
classifier is aware of the AL based cloaking defense. In
our experiments, we take the following steps:

(1) Training the process classifierC using side-channel
leakage Ω.

(2) Crafting adversarial samples 𝛿 to cloak the user
processes and force𝐶 to misclassify.

(3) Training a new classifier 𝐶 ′ with adversarial de-
fense methods; Defensive Distillation and Adver-
sarial Re-training.

(4) Testing previously crafted adversarial samples 𝛿
against the new classifier 𝐶 ′. Also crafting and
testing new adversarial samples 𝛿′ against the pro-
tected classifier 𝐶 ′.

We outline this methodology in Figure 1. In the first
stage, Alice the defender runs a privacy sensitive pro-
cess𝑋 . The eavesdropper Eve collects the side-channel
leakageΩ and feeds it into her classifier 𝐶 and discovers
what type of process X is. Then in stage 2, Alice cloaks
her process by crafting the adversarial sample 𝛿. When
faced with this adversarial sample, Eve’s classifier 𝐶
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Figure 1: Alice, the defender runs the process X and leaks
theΩ. Eve, the attacker obtains the leakage and identifies
the processX using the classifier,C. Then,Alice crafts
the adversarial perturbation𝛿 and forces C to misclassify
the trace asX ′. Eve then trainsC′ with adversarialre-
training and defensive distillation. Now, Eve can classify
𝛿′ +Ω partially correct.However,when Alice crafts𝛿′

againstC ′, X is again misclassified.

fails and misclassifies the leakage trace as 𝑋 ′. In the
third stage, Eve trains a new classifier 𝐶 ′ using defensive
distillation and adversarial re-training to protect it from
misclassification cause by the adversarial perturbation
𝛿. In the final stage, Alice first tests previously crafted
adversarial samples against Eve’s protected classifier
𝐶 ′. Then, Alice updates her adversarial sample crafting
target to fool 𝐶 ′ rather than the original classifier 𝐶 .

We apply this methodology to a scenario where a ma-
licious party trains a CNN to classify running processes
using the HPC trace as the input. This information is
extremely useful to the attacker since it helps to choose
a specific attack or pick a vulnerable target among oth-
ers. Once a a target is found, an attacker can perform
micro-architectural or application specific attacks. To cir-
cumvent this information leakage and protect processes,
the defender attempts to mask the process signature.
Ideally, the masking is minimal and does not interfere
with the running process.

Specifically, in our methodology, the attacker peri-
odically collects 5 HPC values over 10 msec total with
10 usec intervals, resulting in total of 5000 data points
per trace. Later, trace is fed into classical ML and DL
classifiers. In this section, we explain our choice of the
specific HPCs, the application classifier design and im-
plementation details, the AL attacks applied to these
classifiers and finally test the efficiency of adversarial
defenses against our cloaking method.

3.1 HPC Profiling
HPCs are special purpose registers that provide detailed
information on low-level hardware events in computer
systems. These counters periodically count specified
event like cache accesses,branches, TLB misses and
many others. This information is intended to be used by
developers and system administrators to monitor and

fine-tune performance of applications. The availability
of a specific counter depends on the architecture and
model of the CPU. Among many available HPCs, we
have selected the following 5 for the classification task;

(1) Total Instructions:the total number of retired i.e.,
executed and completed CPU instructions.

(2) Branch Instructions:the number of branch instruc-
tions (both taken and not taken).

(3) TotalCache References:the total number of L1,
L2, and L3 cache hits and misses.

(4) L1 Instruction Cache Miss:the occurrence of L1
cache instruction cache misses.

(5) L1 Data Cache Miss:the occurrence of L1 cache
data cache misses.

We have selected these HPCs to cover a wide variety
of hardware events with both coarse and fine-grain in-
formation. For instance, the Total Instructionsdoes
not directly provide any information about the type
of the instructions being executed. However, different
instructions execute in varying number of cycles even
if the data is loaded from the same cache level. This
execution time difference translates indirectly into the
total instructions executed in the given time period and
hints about the instruction being executed.
Branch InstructionsHPC provides valuable infor-

mation about the execution flow as well. Whether the
branches are taken or not taken, the total number of
branches in the executed program remains constant for
a given execution path. This constant in the leakage
trace helps eliminate noise elements and increases clas-
sification accuracy. The Total Cache ReferencesHPC
provides similar information to the Branch Instructions
HPC in the sense that it does not leak information about
the finer details like the specific cache set or even the
cache level. However it carries information regarding the
total memory access trace of the program. Regardless of
the data being loaded from the CPU cache or the mem-
ory, the total number of cache references will remain the
same for a given process. The L1 Instruction Cache
Missand the L1 Data Cache MissHPCs provide fine-
grain information about the Cold Start misses on the
L1 cache. Since the L1 cache is small, the data in this
cache level is constantly replaced with new data, incre-
menting these counters. Moreover, separate counters for
the instruction and the data misses allows the profiler
to distinguish between arithmetic and memory intensive
operations and increase accuracy. Finally, all five of the
HPCs are interval counters meaning that they count
specific hardware events within selected time periods.

3.2 Classifier Design and Implementation
In the first part of the study, we design and implement
classifiers that can identify processes using the HPC
leakage. To show the viability of such classifier, we chose
20 different ciphers from the OpenSSL 1.1.0 library as
the classification target. Note that these classes include
ciphers with both very similar and extremely different
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performance traces e.g.,AES-128,ECDSAB571, ECD-
SAP521, RC2 and RC2-CBC. Moreover, we also trained
models to detect the version of the OpenSSL library for
a given cipher. For this task, we used OpenSSL versions
0.9.8, 1.0.0, 1.0.1, 1.0.2 and 1.1.0.

3.2.1 ClassicalML Classifiers:In this study, we refer
to non-neural network classification methods as classical
ML classifiers. In order to compare and contrast classical
ML methods with CNNs, we trained a number of differ-
ent classifiers using the Matlab Classification Learning
Toolbox. The trained classifiers include SVMs, decision
trees, kNNs and variety of ensemble methods.

3.2.2 Deep Learning Classifier:We designed and imple-
mented the CNN classifier using Keras with Tensorflow-
GPU back-end. The model has the total of 12 layers
including the normalization and the dropout layers. In
the input layer, the first convolution layer, there are a
total of 5000 neurons to accommodate the 10 msec of
leakage data with 5000 HPC data points. Since the net-
work is moderately deep but extremely wide, we used 2
convolution and 2 MaxPool layers to reduce the number
dimensions and extract meaningful feature representa-
tions from the raw trace.

In addition to convolution and MaxPool layers, we
used batch normalization layers to normalize the data
from different HPC traces. This is a crucial step since
the hardware leakage trace is heavily dependent on the
system load and scales with overall performance. Due to
this dependency, the average execution time of a process
or parts of a process can vary from one execution to
another. Moreover, in the system-wide leakage collection
scenario, the model would train over this system load
when it should be treated as noise. If not handled prop-
erly, the noise and shifts in the time domain results in
over-fitting the training data with the dominant average
execution time, decreasing the classification rate. By us-
ing the batch normalization layer, the model learns the
features within short time intervals and the relation be-
tween different HPC traces. Finally, the output layer has
20 neurons with softmax activation, each representing a
classes of process. To train the model, we use Categorical
Cross-entropy loss function with the Adam Optimizer.

3.3 Adversarial Learning Attacks
AL remains an important open research problem in AI.
Traditionally, AL is used to fool AI classifiers and test
model robustness against malicious inputs. In this study
however, we propose to use AL as a defensive tool to mask
the side-channel trace of applications and protect against
micro-architectural attacks and privacy violations. In
the following, we explain the specific adversarial attacks
that we have used. We consider the following 10 attacks:
∙ Additive Gaussian Noise Attack (AGNA):Adds Gauss-

ian Noise to the input trace to cause misclassification.
The standard deviation of the noise is increased until
the misclassification criteria is met. This AL attack

method is ideal to be used in the cloaking defense
due to the ease of implementation of the all-additive
perturbations. A sister-process can actuate such ad-
ditional changes in the side-channel trace by simply
performing operations that increment specific counters
like cache accesses or branch instructions.

∙ Additive Uniform Noise Attack (AUNA):Adds uni-
form noise to the input trace. The standard deviation
of the noise is increased until the misclassification cri-
teria is met. Like AGNA, AUNA is easy to implement
as a sister-process due to its additive property.

∙ Blended Uniform Noise Attack (BUNA):Blends the
input trace with Uniform Noise until the misclassifica-
tion criteria is met.

∙ Contrast Reduction Attack (CRA):Calculates pertur-
bations by reducing the ‘contrast’ of the input trace
until a misclassification occurs. In case of the side-
channel leakage trace, the attack smooths parts of the
original trace and reduces the distance between the
minimum and the maximum data points.

∙ Gradient Attack (GA):Creates a perturbation with
the loss gradient with regards to the input trace. The
magnitude of the added gradient is increased until the
misclassification criteria is met. The attack only works
when the model has a gradient.

∙ Gaussian Blur Attack (GBA):Adds Gaussian Blur to
the input trace until a misclassification occurs. Gauss-
ian blur smooths the input trace and reduces the am-
plitude of outliers. Moreover, this method reduces the
resolution of the trace and cloaks fine-grain leakage.

∙ GSA (Gradient Sign Attack) [19]:Also called the Fast
Gradient Sign Method, the attack has been proposed
by Goodfellow et al. in 2014. GSA works by adding
the sign of the elements of the gradient of the cost
function with regards to the input trace. The gradient
sign is then multiplied with a small constant that is
increased until a misclassification occurs.

∙ L-BFGS-B Attack (LBFGSA) [61]:The attack utilizes
the modified Broyden-Fletcher-Goldfarb-Shanno algo-
rithm, an iterative method for solving unconstrained
nonlinear optimization problems, to craft perturba-
tions that have minimal distance to the original trace.
The attack morphs the input to a specific class. How-
ever, in our experiments, we did not target a specific
class and chose random classes as the target.

∙ Saliency Map Attack (SMA) [52]:Works by calculating
the forward derivative of the model to build an ad-
versarial saliency map to detect which input features
e.g.,pixels in an image, have a stronger effect on the
targeted misclassification. Using this information, an
adversary can modify only the features with high im-
pact on the output and produce smaller perturbations.

∙ Salt and Pepper Noise Attack (SPNA):Works by adding
Salt and Pepper noise (also called impulse noise) to
the input trace until a misclassification occurs. For im-
ages, salt and pepper values correspond to white and
black pixels respectively. For the side-channel leakage
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trace however, these values correspond to the upper
and the lower bounds in the trace.

3.4 Adversarial Learning Defenses
In order to see the viability of any defense method that
can be used by an attacker against our adversarial per-
turbations, we have explored two methods: adversarial
re-training and defensive distillation (DD). These de-
fenses are an integral part of this study since an attacker
capable of overcoming adversarial perturbation would
deem any cloaking mechanism moot.

3.4.1 Gradient Masking:The term gradient masking
defense has been introduced in [49] to represent group
of defense methods against adversarial samples. The de-
fense works by hiding the gradient information from the
attacker to prevent it from crafting adversarial samples.
Papernot et al. [49] however showed that the method
fail under the oracle access scenario.An attacker can
query the classifier with enough samples to create a
cloned classifier. Since the clone and the original classi-
fiers have correlated gradients, the attacker can use the
gradient from the clone and craft adversarial samples,
bypassing the defense. Due to the known weaknesses and
limitations of this defense method, we do not further
investigate it in this study.

3.4.2 AdversarialRe-training:This defense idea was
first proposed by Szegedy et al. in 2013 [60]. Later in
2014, Goodfellow et al. [ 19] improved the practicality of
the method by showing how to craft adversarial sam-
ples efficiently using the Fast Gradient Sign Method. In
this defense, the model is re-trained using adversarial
samples. By doing so, the model is ‘vaccinated’ against
adversarial perturbations and can correctly classify them.
In other words, the method aims to teach adversarial
perturbations to the model so that it can generalize
better and not be fooled by small perturbations. While
this method works successfully against a specific type of
attack, it has been shown to fail against attack methods
that the model was not trained for. Nevertheless, we ap-
ply this defense method to our classifiers and investigate
its applicability to side-channel leakage classifiers.

3.4.3 Defensive Distillation:The DD has been pro-
posed by Papernot et al. [48] in 2016 to protect DL
models against AL attacks. The goal of this technique
is to increase the entropy of the prediction vector to
protect the model from being easily fooled. The method
works by pre-training a model with a custom output
layer. Normally, the softmax temperature is set to be as
small as possible to train a tightly fitted, highly accurate
model. In the custom layer however, the temperature
value is set to a higher value to distill the probability
outputs. The first model is trained with the training data
using hard labels i.e., the correct class label is set to ‘1’
and all other class labels are set to ‘0’. After the model is
trained, the training samples are fed into it and the prob-
ability outputs are recorded as soft labels. Then these

soft labels are used to train the second, distilled model
with the same training data. This process smooths the
model surface on directions that an adversary would use
to craft perturbations. This smoothing process increases
the perturbation size required to craft an adversarial
samples and invalidates some of the previously crafted
adversarial samples. This smoothing can be set to differ-
ent levels by adjusting the temperature value. Note that
however, the DD can reduce the classification accuracy
significantly if the temperature value is set too high.

4 EXPERIMENT SETUP AND RESULTS
In this section, we give details of our experiment setup,
and the results of different adversarial attacks on the
crypto-process classifier, and finally present the results
of hardened adversarially re-trained and distilled models.

Experiment Setup:DL models perform large amounts of
matrix multiplications that can run efficiently in modern
GPU systems. For that reason, we used a workstation
with two Nvidia 1080Ti (Pascal architecture) GPUs,
20-core Intel i7-7900X CPU and 64 GB of RAM. On
the software side, the classifier model is coded using
Keras v2.1.3 with Tensorflow-GPU v1.4.1 back-end and
other Python3 packages such as Numpy v1.14.0, Pandas,
Sci-kit, H5py etc.

The HPC data is collected from a server with Intel
Xeon E5-2670 v2 CPU running Ubuntu 16 LTS. The
CPU has 85 HPCs of which 50 are accessible from user-
space. To access the HPCs, we had the choice of us-
ing Perf and PAPI libraries. Due to the lower sampling
rate of Perf, we chose to use the PAPI with QuickHPC [13]
front-end. QuickHPC is a tool developed by Marco Chi-
appetta to collect high-resolution HPC data using the
PAPI back-end. It is over 30000 times faster than perf-
stat and provides an easy to use interface.

4.1 Classification Results
The classifiers are trained to identify 20 classes repre-
senting a diverse set of different ciphers of five different
versions of OpenSSL, as detailed in Section 3.2. For
training, we split our dataset into three parts as training
(%60), validation (%20) and test (%20).

4.1.1 CNN Classifier:For the CNN classifier, we firstly
investigated the effect of the number of HPCs collected
and trained our models for 100 epochs with data from a
varying number of HPCs. Not surprisingly, even using
a single HPC, our CNN classifier achieved 81% valida-
tion accuracy by training more epochs. Moreover, we
noticed that after the 30th epoch, the model overfitted
the training data i.e., the validation accuracy started to
drop while the training accuracy kept increasing. When
we increased the number of HPCs collected, our models
became much more accurate and achieved over 99% vali-
dation accuracy as seen in Figure 3. Moreover, when we
use the data from all 5 HPCs, our model achieved 99.8%
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Figure 2:Results for the CNN classifier trained using
varying number of features. Models reach highest valida-
tion accuracy with 1000 and 2000 features.

validation accuracy in less than 20 epochs. While our val-
idation accuracy saturates even with only 2 HPCs, Total
Instructions and Branch Instructions we have decided to
use all 5 of them. We made this decision because in a real-
world attack scenario, an attacker might be using any
one or more of the HPCs. Since it would not be known
which specific hardware event(s) an attacker would mon-
itor, we decided to use all 5, monitoring different low
level hardware events to provide a comprehensive cloak-
ing coverage. To find the optimum number of features
per HPC, we have trained multiple models with using
various number of features. As shown in Figure 2, the
validation accuracy saturates at 1000 and 2000 features,
validation loss drops after 1000 features. For this reason,
we chose to use 1000 features for our experiments.

Further, we investigated how the number of training
samples affect the validation accuracy. For that, we have
trained 6 models with a varying number of training
samples. For the first model, we have used only 100
samples per class (2000 samples in total) and later on
trained models with 300, 1000, 3000, 10000 and 30000
samples per class. In the first model, we achieved 99.8%
validation accuracy after 40 epochs of training. When we
trained models with more data, we have reached similar
accuracy levels in much fewer epochs. To make a good
trade-off between the dataset size and training time, we
have opted to use 1000 samples per class. This model
reached 100% accuracy with 20 epochs of training as
shown in Figure 4. Finally, our last model achieved 100%
accuracy just after 4 epochs when trained with 30000
samples per class.

We also show that in addition to detecting the process
type, we can also distinguish between different versions
of OpenSSL. For each of the 20 analyzed ciphers, we
built classifiers to identify the library version. Figure 5
presents the classification results of two models trained
using 1 and 5 HPC traces respectively. As cipher updates
between versions can be very small, the added informa-
tion from sampling several HPCs is essential for high
classification rates, as shown in the results.

Table 1: Application classification results for the classical
ML classifiers with and without PCA feature reduction.

Classification MethodWithout With PCA
PCA (99.5% variance)

Fine Tree 98.7 99.9
Medium Tree 85.4 94.8
Coarse Tree 24.9 25
Linear Discriminant 99.6 99.7
Quadratic Discriminant N/A 99.4
Linear SVM 99.9 98.2
Quadratic SVM 99.9 96.9
Cubic SVM 99.9 94.3
Fine Gaussian SVM 40 88.2
Medium Gaussian SVM 98.3 92.1
Coarse Gaussian SVM 99.7 13.4
Fine kNN 96.8 11.1
Medium kNN 94.9 7.8
Coarse kNN 85.5 5.2
Cosine kNN 92.5 19.6
Cubic kNN 85.2 7.7
Weighted kNN 95.9 8.3
Boosted Trees 99.2 99.8
Bagged Trees 99.9 94.8
Subspace Discriminant 99.8 99.7
Subspace kNN 84.8 88.1
RUSBoosted Trees 76 92.8

Best 99.9 99.9

4.1.2 ClassicalML Methods: In our training of ML
classifiers, the first challenge was the fact that the side-
channel leakage data is extremely wide. We have chosen
to train our models using 1000 data points per HPC
with 5 HPCs monitored simultaneously. This parameter
selection is done empirically to provide wide cloaking
coverage and train highly accurate models as explained
in Section 4.1.1. Using 1000 data points with 10 usec
intervals per HPC allowed us to obtain high quality
data in a short observation window. Nevertheless, 5000
dimensions is unusually high for classifiers, especially
considering that we are training multi-class classifiers
with 20 possible classes.

In order to find optimal settings for the hardware
leakage trace, we tried different parameters with each
classifier. For instance in the case of decision trees, we
have trained the ‘Fine Tree’, ‘Medium Tree’ and ‘Coarse
Tree’ classifiers. The difference between these classifiers
is that respectively they allow 5, 20, and 100 splits
(leaves in the decision tree) to better distinguish between
classes.For the case of Gaussian SVM, fine, medium
and coarse refers to the kernel scale set to sqrt(P)/4,
sqrt(P) and sqrt(P)*4 respectively. As for the kNN, the
parameters refer to the number of neighbors and the
different distance metrics.

Results for the classical ML classifiers are given in
Table 1. Classic ML algorithms achieve very high success
rates for the given classification task. The trained models
can in fact classify running processes by using their HPC
traces. Note that the Quadratic Discriminant did not
converge to a solution without the PCA application
hence no score is given in the table.
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Figure 3:Classification accuracy of models trained using 1 and 5 HPCs.Even using data from a single HPC trace is
enough to obtain high accuracy top-1 classification rates, albeit taking longer to train.
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Figure 4:Classification accuracy ofmodels trained using 100 and 1000 samples per class.Both models reach 99%
accuracy in 20 and 40 epochs of training respectively.
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Figure 5:Library version classifier accuracy for models trained using 1 and 5 HPCs.Accuracy ofthe former model
saturate at 61% while the latter reach 99%.

4.2 AL on the Unprotected Model
Next, we crafted adversarial perturbations for the un-
protected classifiers by using and adapting the publicly
available Foolbox [56] library to our scenario. The library
provides numerous adversarial attacks and provides an
easy to use API. For a selected attack, Foolbox crafts

necessary perturbations on a given sample and classifier
model pair to ‘fool’ the given model. Detailed informa-
tion about these attacks can be found in Section 3.3.

Table 3 presents the classification accuracy of per-
turbed samples. As the results show, almost all test
samples are misclassified by the classifier model with
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Table 2: Effectiveness of adversarial re-training and DD on 100,000 previously crafted adversarial samples. The results
show what percentage of previously successful adversarial samples are ineffective on the hardened models.

Adversarial
Attack

Adversarial
Re-training

DD with
T=1

DD with
T=2

DD with
T=5

DD with
T=10

DD with
T=20

DD with
T=30

DD with
T=40

DD with
T=50

DD with
T=100

AGNA 42 77 60 70 83 83 63 64 62 75
AUNA 43 77 60 70 83 82 63 65 61 75
BUNA 94 92 92 91 94 94 94 96 94 100
CRA 94 95 99 94 94 94 94 99 88 95
GA 97 99 72 83 99 99 96 80 90 90
GBA 84 83 84 88 82 94 93 91 93 88
GSA 99 91 90 91 99 99 99 95 99 98
LBFGSA 51 76 63 63 78 87 65 65 63 71
SMA 26 71 50 52 62 82 49 47 32 48
SPNA 4 84 76 78 94 93 76 79 73 80

Table 3: Perturbation results against both the unprotected and the hardened (Adversarial Re-training) CNN classifier.
The new adversarialsamples have up to 29% lower misclassification confidence compared to the unprotected model.
However, adversarial samples are still misclassified with quite high confidence values in the range of 63-98%.

Unprotected Classifier Hardened Classifier (Adv. Re-training)

Adversarial
Attack

Original Sample
Classification
Confidence

Adversarial
MisClassification

Confidence

Perturbation
Size (MAD)

Original Sample
Classification
Confidence

Adversarial
MisClassification

Confidence

Perturbation
Size (MAD)

AGNA 99 96 0.00294 92 82 0.00294
AUNA 99 97 0.00292 91 82 0.00332
BUNA 99 99 0.05000 96 93 0.05000
CRA 99 99 0.05254 97 98 0.04999
GA 99 99 0.00250 88 97 0.00398
GBA 99 97 0.00080 93 74 0.00071
GSA 99 99 0.00499 89 97 0.00596
LBFGSA 99 86 0.00025 89 72 0.00031
SMA 99 92 0.00001 88 63 0.00008
SPNA 99 96 0.01528 92 74 0.08268

very high accuracy at over 86%. Another important met-
ric for the adversarial learning is the Mean Absolute
Distance (MAD) and the Mean Squared Distance (MSD)
of the perturbed traces from the originals. These met-
rics quantify the size of the changes i.e., perturbations
made to the original traces by various adversarial at-
tack methods. The difference between the MAD and the
MSD is that, the latter is more sensitive to the larger
changes due to the square operation. For instance, if an
adversarial perturbation requires a significant change in
1 sample point among the 5000 features, it will have a
stronger impact in the final MSD value than average
change distributed over few points. MAD however is
more dependent on the overall change in the trace, i.e.,
all 5000 sample points have the same impact on the final
distance. Our results show that with most adversarial
attacks, perturbation MAD is around or well below 1%
and within the ideal range.

4.3 AL on the Hardened Models
Here we present the results of the AL attacks on the
hardened classifier models. As explained in Section 3, we
wanted to test the robustness of our cloaking mechanism
against classifiers hardened with Adversarial Re-training
and DD. To recap the scenario, Alice the defender wants

to cloak her process by adding perturbations to her exe-
cution trace so that eavesdropper Eve cannot correctly
classify what Alice is running. Then Eve notices or pre-
dicts the use of adversarial perturbations on the data and
hardens her classifier model against AL attacks using
adversarial re-training and DD.

In order to test the attack scenario on hardened mod-
els, we first craft 100,000 adversarial samples per adver-
sarial attack against the unprotected classifier. Then we
harden the classifier with the aforementioned defense
methods and feed the adversarial samples. Here, we aim
to measure the level of protection provided by the ad-
versarial re-training and the DD methods. As presented
in Table 2, the application of both the adversarial re-
training and the DD invalidates some portion of the
previously crafted adversarial samples.For the adver-
sarial re-training, the success rate varies between 99%
(GSA) and 4% (SPNA). In other words, 99% of the
adversarial samples crafted using GSA against the un-
protected model are invalid on the hardened model. As
for the DD, we see similar rates of protection ranging
from 61% up to 100% for old perturbations. Impressively,
100% of the adversarial samples crafted using the BUNA
are now ineffective against the model trained with DD
at temperature T=100. In short, by using the adversar-
ial re-training or the DD, Eve can indeed harden her
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Table 4: MAD sizes of adversarial perturbations crafted against the DD applied classifier. Application of the adversarial
re-training and DD only marginally increases the perturbation size needed to fool the classifier in most cases.

Adversarial
Attack

Unprotected
Model

Adversarial
Re-trained

DD with
T=1

DD with
T=2

DD with
T=5

DD with
T=10

DD with
T=20

DD with
T=30

DD with
T=40

DD with
T=50

DD with
T=100

AGNA 0.00294 0.00294 0.00035 0.00265 0.00062 0.01059 0.01389 0.00452 0.00766 0.01797 0.00431
AUNA 0.00292 0.00332 0.00033 0.00238 0.00071 0.01114 0.01336 0.00514 0.00948 0.01787 0.00451
BUNA 0.05000 0.05000 0.04989 0.05301 0.08198 0.10293 7.52282 0.05006 0.05002 0.16376 0.07748
CRA 0.05254 0.04999 0.04999 0.10247 0.08548 0.10780 NA 0.04998 1.44158 0.27992 0.07448
GA 0.00250 0.00398 0.00355 0.00283 0.10224 0.00783 0.00364 0.00860 2.75805 0.00849 0.00303
GBA 0.00080 0.00071 0.00058 0.00092 0.00060 0.04992 NA 0.00169 0.00046 0.00062 0.00083
GSA 0.00499 0.00596 0.00504 0.00534 0.13665 0.02482 0.00540 0.01064 0.04121 0.01670 0.00550
LBFGSA 0.00025 0.00031 0.00533 0.00178 0.00024 0.00210 0.07670 0.00088 0.02872 0.00521 0.00920
SMA 0.00001 0.00008 0.00003 0.00012 0.00007 NA NA 0.00001 0.00001 NA NA
SPNA 0.01528 0.08268 0.01060 0.00940 0.00360 0.01804 0.02000 0.00260 0.02000 0.02000 0.01980

classifier against AL. However, keep in mind that Alice
can observe or predict this behavior and introduce new
adversarial samples targeting the hardened models.

4.3.1 AdversarialRe-training:After training the DL
classifier model and crafting adversarial samples, we use
these perturbations as training data and re-train the
classifier. The motivation here is to teach the classifier
model to detect these perturbed samples and correctly
classify them. With this re-training stage, we expect
to see whether we can ‘immunize’ the classifier model
against given adversarial attacks. However, as the re-
sults in Table 3 show, all of the adversarial attacks still
succeed albeit requiring marginally larger perturbations.
Moreover, while we observe a drop in the misclassifica-
tion confidence, it is still quite high at over 63% i.e.,
Eve’s classifier can be fooled by adversarial samples.

4.3.2 Defensive Distillation:We have used the tech-
nique proposed in [ 51] and trained hardened models
with DD at various temperatures ranging from 1 to 100.
Our results show that, even if the eavesdropper Eve hard-
ens her model with DD, the trained model is still prone
to adversarial attacks albeit requiring larger perturba-
tions in some cases. In Table 4, we present the MAD
i.e., the perturbation size, of various attack methods
on both unprotected and hardened models. Our results
show that the application of DD indeed offers a certain
level of hardening to the model and increases the pertur-
bation sizes. However this behavior is erratic compared
to the adversarial re-training defense i.e., the MAD is
significantly higher at some temperatures while much
smaller for others. For instance, the MAD for the AUNA
perturbations against the unprotected model is 0.00292
in average for 100,000 adversarial samples. The pertur-
bation size for the same attack drops to 0.00033 when
the distillation defense is applied with temperature T=1.
This in turn practically makes Eve’s classifier model
easier to fool. Same behavior is observed with the ad-
versarial samples crafted using AGNA and GBA as well.
For the cases that the DD actually hardens Eve’s model
against adversarial samples, the MAD is still minimal.
Hence, Alice can still successfully craft adversarial sam-
ples with minimal perturbations and fool Eve’s model.
Finally, NA values in Table 4 represent cases where the

model had very low classification accuracy and could
not correctly classify original samples.

5 CONCLUSION
Side-channel leakage on shared hardware systems pose a
real and present danger to the security and the privacy
of users. Even when the software is perfectly isolated, co-
resident tenants still share the underlying hardware and
are prone to side-channel attacks. Especially considering
the wide adoption of AI across many disciplines, it is
not surprising that such attacks will become automated
and even easier to perform in the future. There is a clear
need for users to cloak their execution fingerprints from
the underlying shared system.

With this work we took a first step in this direction.
Specifically, by making clever defensive use of adversarial
crafting we introduced a new cloaking defense against the
side-channel leakage classifiers. We first demonstrated
the threat side-channel leakage poses by processing leak-
age profiles to yield highly accurate AI models which
may be used by an adversary to violate privacy and se-
curity policies of applications. We trained various types
of classifiers including the classical ML methods and
showed how the parameter selection affects the learning
rate and the validation accuracy. While this is a strong
threat to shared hardware systems, we showed that it can
be mitigated using carefully crafted adversarial samples.
Moreover, we investigated defenses that can potentially
help an attack to bypass the adversarial samples. Our
results show that even in the presence of defensive distil-
lation and adversarial re-training, the defender can craft
working adversarial samples and fool the attacker. These
perturbations can be implemented as a sister-process
that will run side-by-side with the original and easily
cause misclassification to the attacker’s model without
any significant overhead. Using the adversarial crafting-
based cloaking mechanism that we have outlined in this
work, users can enable such services on-demand for sen-
sitive operations. Efficient design and implementation
of such defenses for shared hardware systems like cloud
remains an open research problem. Finally, to the best
of our knowledge, this work is the first use of adversarial
crafting for defensive purposes. We envision the same
approach to be useful in other application scenarios.



DeepCloak: Adversarial Crafting As a Defensive Measure to Cloak Processes DYNAMICS, 2019, Puerto Rico, USA

REFERENCES
[1] Alam, M., Bhattacharya, S., Mukhopadhyay, D., and Bhat-

tacharya, S. Performance counters to rescue: A ma-
chine learning based safeguard against micro-architectural
side-channel-attacks. Cryptology ePrint Archive, Report
2017/564, 2017. https://eprint.iacr.org/2017/564.

[2] Allaf, Z., Adda, M., and Gegov, A. A comparison study
on flush+reload and prime+probe attacks on aes using ma-
chine learning approaches. In Advances in Computational
Intelligence Systems (Cham, 2018), F. Chao, S. Schock-
aert, and Q. Zhang, Eds., Springer International Publishing,
pp. 203–213.

[3] Assael, Y. M., Shillingford, B., Whiteson, S., and de Fre-
itas, N. Lipnet: Sentence-level lipreading. arXiv preprint
arXiv:1611.01599 (2016).

[4] Beltramelli, T., and Risi, S. Deep-spying: Spying us-
ing smartwatch and deep learning. arXiv preprint
arXiv:1512.05616 (2015).

[5] Bernstein, D. J. Cache-timing attacks on AES, 2004. URL:
http://cr.yp.to/papers.html#cachetiming.

[6] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndi ,ć
N., Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery
in databases (2013), Springer, pp. 387–402.

[7] Biggio, B., Fumera, G., and Roli, F. Security evaluation
of pattern classifiers under attack. IEEE transactions on
knowledge and data engineering 26, 4 (2014), 984–996.

[8] Biggio, B., Nelson, B., and Laskov, P. Support vector
machines under adversarial label noise. In Asian Conference
on Machine Learning (2011), pp. 97–112.

[9] Biggio, B., Nelson, B., and Laskov, P. Poisoning at-
tacks against support vector machines. arXiv preprint
arXiv:1206.6389 (2012).

[10] Briongos, S., Irazoqui, G., Malagón, P., and Eisenbarth,
T. Cacheshield: Protecting legacy processes against cache
attacks. arXiv preprint arXiv:1709.01795 (2017).

[11] Briongos, S., Irazoqui, G., Malagón, P., and Eisenbarth,
T. Cacheshield: Detecting cache attacks through self-
observation. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (New York,
NY, USA, 2018), CODASPY ’18, ACM, pp. 224–235.

[12] Carlini, N., and Wagner, D. Towards evaluating the ro-
bustness of neural networks. In Security and Privacy (SP),
2017 IEEE Symposium on (2017), IEEE, pp. 39–57.

[13] Chiappetta, M. Quickhpc. https://github.com/chpmrc/
quickhpc, 2015.

[14] Dang, H., Huang, Y., and Chang, E.-C. Evading classifiers
by morphing in the dark. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security (2017), ACM, pp. 119–133.

[15] Emmanuel, Z. Security experts air concerns over hackers
using AI and machine learning for phishing attacks.
https://www.computerweekly.com/news/450427653/
Security-experts-air-concerns-over-hackers-using-AI-and-
machine-learning-for-phishing-atttacks/.

[16] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Song, D.,
Kohno, T., Rahmati, A., Prakash, A., and Tramer, F. Note
on attacking object detectors with adversarial stickers.  arXiv
preprint arXiv:1712.08062 (2017).

[17] Foreman, J. C. A survey of cyber security countermea-
sures using hardware performance counters. arXiv preprint
arXiv:1807.10868 (2018).

[18] Goodfellow, I., and Papernot, N. Is attacking machine
learning easier than defending it? http://www.cleverhans.io/
security/privacy/ml/2017/02/15/why-attacking-machine-
learning-is-easier-than-defending-it.html.

[19] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572 (2014).

[20] Gordon, R. AI beats pros at Super Smash Bros. http://www.
csail.mit.edu/ai_beats_pros_at_super_smash_bros. Ac-
cessed: 2017-10-27.

[21] Gruss, D., Maurice, C., Wagner, K., and Mangard, S.
Flush+ flush: a fast and stealthy cache attack. In Interna-
tional Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (2016), Springer, pp. 279–299.

[22] Gruss, D., Spreitzer, R., and Mangard, S. Cache template
attacks: automating attacks on inclusive last-level caches. In

Proceedings of the 24th USENIX Conference on Security
Symposium (2015), USENIX Association, pp. 897–912.

[23] Gullasch, D., Bangerter, E., and Krenn, S. Cache games–
bringing access-based cache attacks on AES to practice. In
Security and Privacy (SP), 2011 IEEE Symposium on
(2011), IEEE.

[24] Gülmezoglu, B., Zankl, A., Eisenbarth, T., and Sunar, B.
PerfWeb: How to Violate Web Privacy with Hardware Per-
formance Events. In Computer Security - ESORICS 2017 -
22nd European Symposium on Research in Computer Se-
curity, Oslo, Norway, September 11-15, 2017, Proceedings,
Part II (2017), pp. 80–97.

[25] Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D.,
Narayanaswamy, A., Venugopalan, S., Widner, K., Madams,
T., Cuadros, J., et al. Development and validation of a
deep learning algorithm for detection of diabetic retinopathy
in retinal fundus photographs. Jama 316, 22 (2016).

[26] Hadad, Y. 30 amazing applications of deep learn-
ing. http://www.yaronhadad.com/deep-learning-most-
amazing-applications/, Aug 2017. Accessed: 2017-10-27.

[27] Heuser, A., and Zohner, M. Intelligent machine homicide.
COSADE 7275 (2012), 249–264.

[28] Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede,
I., and Vandewalle, J. Machine learning in side-channel
analysis: a first study. Journal of Cryptographic Engineering
1, 4 (2011), 293.

[29] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I.,
and Tygar, J. Adversarial machine learning. In Proceed-
ings of the 4th ACM workshop on Security and artificial
intelligence (2011), ACM, pp. 43–58.

[30] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T.,
and Sunar, B. Cache attacks enable bulk key recovery on
the cloud. In International Conference on Cryptographic
Hardware and Embedded Systems—CHES (2016), Springer
Berlin Heidelberg, pp. 368–388.

[31] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B.
Wait a minute! a fast, cross-vm attack on aes. In Interna-
tional Workshop on Recent Advances in Intrusion Detec-
tion (2014), Springer, pp. 299–319.

[32] Jon Brodkin . 2 million people-and some dead
ones-were impersonated in net neutrality comments.
https://arstechnica.com/tech-policy/2017/12/dead-people-
among-millions-impersonated-in-fake-net-neutrality-
comments/.

[33] Keren Elazari . Hackers are on the brink of launching a
wave of AI attacks. http://www.wired.co.uk/article/hackers-
ai-cyberattack-offensive.

[34] Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial
machine learning at scale. arXiv preprint arXiv:1611.01236
(2016).

[35] Laskov, P., and Lippmann, R. Machine learning in adversarial
environments, 2010.

[36] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Man-
gard, S. Armageddon: Cache attacks on mobile devices. In
25th USENIX Security Symposium (USENIX Security 16)
(2016), USENIX Association, pp. 235–252.

[37] Liu, Y., Chen, X., Liu, C., and Song, D. Delving into trans-
ferable adversarial examples and black-box attacks. arXiv
preprint arXiv:1611.02770 (2016).

[38] Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E.,
Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev,
A., Nelson, P. Q., Corrado, G. S., et al. Detecting cancer
metastases on gigapixel pathology images. arXiv preprint
arXiv:1703.02442 (2017).

[39] Lowd, D., and Meek, C. Adversarial learning. In Proceedings
of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining (2005), ACM, pp. 641–
647.

[40] MacDonald, F. A Deep Learning Machine Just Beat Hu-
mans in an IQ Test. https://www.sciencealert.com/a-deep-
learning-machine-just-beat-humans-in-an-iq-test.

[41] Maghrebi, H., Portigliatti, T., and Prouff, E. Breaking
cryptographic implementations using deep learning tech-
niques. In International Conference on Security, Privacy,
and Applied Cryptography Engineering (2016), Springer,
pp. 3–26.

[42] Martinasek, Z., Hajny, J., and Malina, L. Optimization
of power analysis using neural network. In International
Conference on Smart Card Research and Advanced Appli-
cations (2013), Springer, pp. 94–107.



DYNAMICS, 2019, Puerto Rico, USA Mehmet Sinan İnci, Thomas Eisenbarth, and Berk Sunar

[43] Martinasek, Z., and Zeman, V. Innovative method of the
power analysis. Radioengineering 22, 2 (2013), 586–594.

[44] Meng, D., and Chen, H. Magnet: a two-pronged defense
against adversarial examples. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security (2017), ACM, pp. 135–147.

[45] O’Brien, E. Romance novels, generated by artificial intelli-
gence. https://medium.com/towards-data-science/romance-
novels-generated-by-artificial-intelligence-1b31d9c872b2,
Aug 2017.

[46] Oh, S. J., Fritz, M., and Schiele, B. Adversarial image
perturbation for privacy protection a game theory perspec-
tive. In 2017 IEEE International Conference on Computer
Vision (ICCV) (2017), IEEE, pp. 1491–1500.

[47] Osvik, D. A., Shamir, A., and Tromer, E. Cache attacks
and countermeasures: the case of AES. In Cryptographers
Track at the RSA Conference (2006), Springer, pp. 1–20.

[48] Papernot, N., McDaniel, P., and Goodfellow, I. Trans-
ferability in machine learning: from phenomena to black-
box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016).

[49] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security
(2017), ACM, pp. 506–519.

[50] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on (2016), IEEE, pp. 372–
387.

[51] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A.
Distillation as a defense to adversarial perturbations against
deep neural networks. In Security and Privacy (SP), 2016
IEEE Symposium on (2016), IEEE, pp. 582–597.

[52] Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M.,
Celik, Z. B., and Swami, A. The limitations of deep learning
in adversarial settings. CoRR abs/1511.07528 (2015).

[53] Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long,
H., and Wang, J. Multiagent Bidirectionally-Coordinated
Nets for Learning to Play StarCraft Combat Games. arXiv
preprint arXiv:1703.10069 (2017).

[54] Percival, C. Cache missing for fun and profit, 2005.
[55] Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Man-

gard, S. Drama: Exploiting dram addressing for cross-cpu
attacks. In USENIX Security Symposium (2016), pp. 565–
581.

[56] Rauber, J., Brendel, W., and Bethge, M. Foolbox v0.8.0:
A python toolbox to benchmark the robustness of machine

learning models. arXiv preprint arXiv:1707.04131 (2017).
[57] Simonite, T. This AI Will Craft Tweets That Youll Never

Know Are Spam. https://www.technologyreview.com/s/
602109/this-ai-will-craft-tweets-that-youll-never-know-
are-spam/.

[58] Su, J., Vargas, D. V., and Kouichi, S. One pixel at-
tack for fooling deep neural networks. arXiv preprint
arXiv:1710.08864 (2017).

[59] Susan Decker . FCC Rules Out Delaying Net Neutrality
Repeal Over Fake Comments. https://www.bloomberg.
com/news/articles/2018-01-05/fcc-rules-out-delaying-net-
neutrality-repeal-over-fake-comments.

[60] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199 (2013).

[61] Tabacof, P., and Valle, E. Exploring the space of adversarial
images. CoRR abs/1510.05328 (2015).

[62] The Cylance Team . Black Hat Attendees See AI as
Double-Edged Sword. https://threatmatrix.cylance.com/
en_us/home/black-hat-attendees-see-ai-as-double-edged-
sword.html.

[63] Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., and
McDaniel, P. Ensemble adversarial training: Attacks and
defenses. arXiv preprint arXiv:1705.07204 (2017).

[64] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M.,
Stolcke, A., Yu, D., and Zweig, G. Achieving human par-
ity in conversational speech recognition. arXiv preprint
arXiv:1610.05256 (2016).

[65] Yarom, Y., and Falkner, K. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In
(USENIX Security 2014) (2014).

[66] Yu, K.-H., Zhang, C., Berry, G. J., Altman, R. B., Ré, C.,
Rubin, D. L., and Snyder, M. Predicting non-small cell lung
cancer prognosis by fully automated microscopic pathology
image features. Nature communications 7 (2016).

[67] Zhang, T., Zhang, Y., and Lee, R. B. Cloudradar: A real-time
side-channel attack detection system in clouds. In Interna-
tional Symposium on Research in Attacks, Intrusions, and
Defenses (2016), Springer.

[68] Zhang, X., Hamm, J., Reiter, M. K., and Zhang, Y. Statisti-
cal privacy for streaming traffic. In NDSS (2019).

[69] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T.
Cross-tenant side-channel attacks in PaaS clouds. In CCS
(2014), pp. 990–1003.

[70] Zhou, Y., Kantarcioglu, M., Thuraisingham, B., and Xi, B.
Adversarial support vector machine learning. In Proceed-
ings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining (2012), ACM,
pp. 1059–1067.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

