
Text Captcha Is Dead? A Large Scale Deployment and Empirical
Study

Chenghui Shi1,*, Shouling Ji1,*,#,(�), Qianjun Liu*, Changchang Liu†, Yuefeng Chen‡, Yuan He‡,
Zhe liu§, Raheem Beyah⋆ and Ting Wang£

*Zhejiang University, #Alibaba-Zhejiang University Joint Institute of Frontier Technologies,
‡Alibaba Group, §Nanjing Unversity of of Aeronautics and Astronautics,

†IBM Research, ⋆Georgia Institute of Technology, £Penn State
{chenghuishi, sji, liuqj0522}@zju.edu.cn, Changchang.liu33@ibm.com, {yuefeng.chenyf, heyuan.hy}@alibaba-inc.com,

zhe.liu@nuaa.edu.cn, raheem.beyah@ece.gatech.edu, inbox.ting@gmail.com

ABSTRACT
The development of deep learning techniques has significantly
increased the ability of computers to recognize CAPTCHA (Com-
pletely Automated Public Turing test to tell Computers and Hu-
mans Apart), thus breaking or mitigating the security of existing
captcha schemes. To protect against these attacks, recent works
have been proposed to leverage adversarial machine learning to
perturb captcha pictures. However, they either require the prior
knowledge of captcha solving models or lack adaptivity to the evolv-
ing behaviors of attackers. Most importantly, none of them has been
deployed in practical applications, and their practical applicability
and effectiveness are unknown.

In this work, we introduce advCAPTCHA, a practical adversarial
captcha generation system that can defend against deep learning
based captcha solvers, and deploy it on a large-scale online platform
with near billion users. To the best of our knowledge, this is the
first such work that has been deployed on international large-scale
online platforms. By applying adversarial learning techniques in
a novel manner, advCAPTCHA can generate effective adversarial
captchas to significantly reduce the success rate of attackers, which
has been demonstrated by a large-scale online study. Furthermore,
we also validate the feasibility of advCAPTCHA in practical ap-
plications, as well as its robustness in defending against various
attacks. We leverage the existing user risk analysis system to iden-
tify potential attackers and serve advCAPTCHA to them. We then
use their answers as queries to the attack model. In this manner,
advCAPTCHA can be adapted/fine-tuned to accommodate the at-
tack model evolution. Overall, advCAPTCHA can serve as a key
enabler for generating robust captchas in practice and providing
useful guidelines for captcha developers and practitioners.

KEYWORDS
captcha, adversarial learning, usable study

1 INTRODUCTION
Captcha 2 is a type of challenge-response test in computing that
aims to distinguish between human and automated programs (ma-
chines). Ever since its invention, captcha has been widely used to
1Chenghui Shi and Shouling Ji are the co-first authors. Shouling Ji is the corresponding
author.
2For readability purposes, we will write the acronym in lowercase.

improve the security of websites and various online applications
by preventing the abuse of online services such as phishing, bots,
spam, and Sybil attacks. Existing captcha mechanisms can be gen-
erally classified as text-based captcha [10], image-based captcha
[40, 47], audio-based captcha [24], game-based captcha [42] and
others [20, 32]. Among them, text-based captchas have been most
popularly studied and applied up to now and in a foreseeable future,
which is the focus of this work as well.
Status Quo and Motivation. Over the past decade, a number of
attacks have been proposed for automatically recognizing captchas.
In early time, many attacks are hard-coded for specific captcha
schemes [6, 15, 27], where designing the attacking heuristics and
methods requires heavy expert involvement. Thus, many defense
strategies that leverage varied fonts and/or background noise are
proposed to make captchas more robust and challenging. Later on,
to further defend against more generic attacks [5, 16] that target
multiple text-based captcha schemes, advanced defense strategies
(e.g., through using merged characters and character distortion
[6, 44]) are proposed to increase the difficulty of character segmen-
tation and recognition.

Recently, deep learning techniques have shown great success
for text recognition [7, 34], which are naturally further being intro-
duced to break advanced captchas. To build up a deep learning based
captcha solver, attackers only need to 1) collect a certain number of
labeled training data, which can be done by hiring low cost human
labors or directly using the existing crowdsourcing platforms, and
then 2) use mature deep learning techniques/platforms to train an
end-to-end captcha solver. The end-to-end model does not require
preprocessing or character segmentation, while taking a whole
captcha as input and recognize it directly. As extensively demon-
strated, these deep learning-based attacks can achieve significantly
good recognition performance on various captchas [33, 45].

To make things even worse, captcha solving platforms [1, 2],
which are the commercial sectors aiming at captcha solving, can
benefitmore from the state-of-the-art deep learning techniques. The
previously accumulated captchas can not only help train a powerful
solver directly, but also benefit the break of new captcha schemes
leveraging transfer learning [45]. As a consequence, many works
have declared the death of text-based captchas [5, 36]. However,
small business and non-Internet firms/sectors still widely deploy

1

the potentially vulnerable text captchas, due to their usability, low
cost and high scalability.

Interestingly, recent research finds that Machine Learning (ML)
models, especially deep learning models, are vulnerable to adversar-
ial perturbation [38], which can be injected into a legitimate image
such that the classifier predicts an incorrect label for the image.
The adversarial attacks to ML models, on the other hand, provide
inspiration to captcha defense against modern attacks, which are
usually based on state-of-the-art deep learning techniques. Specifi-
cally, to defend against these attacks, recent works that leverage
adversarial learning to inject adversarial perturbations to captchas
have been proposed [29, 35]. We name these captchas with carefully
designed perturbations as adversarial captchas. These adversarial
captchas are expected to be resilient to deep learning based attacks
and meanwhile preserving high usability for human.

Although the idea of adversarial captcha is promising, there is
still a huge gap between the proposed mechanisms and the actual
application. First, they usually assume priorly-known knowledge
of the attack models [29, 35], i.e., the adversarial perturbations
inserted to the captcha depend on the prior knowledge of the attack
model (e.g., its parameters), which is, however, usually unavailable
in practice. Second, previous works lack adaptivity to the evolving
behaviors of attackers. The attackers, e.g., captcha solving platforms,
usually have strong capability and incentives to update their models
rapidly in practice. Once the attackers evolve their models, the
captcha generation mechanism needs to be adapted as well. Finally,
to the best of our knowledge, most, if not all, of the proposed
adversarial captcha generation schemes are not actually deployed
or evaluated in real world applications, as the time of writing this
paper. In other words, whether the idea of adversarial captcha
works on the real world platforms is not yet known. Therefore, it
is important to study highly secure, adaptive and practically usable
adversarial captcha generation and deployment schemes.
Our Method. To fill the blank, by collaborating with a world-
wide leading Internet company, we develop an adaptive adversarial
captcha generation system, namely advCAPTCHA, and deploy it
on a large-scale e-commerce platform with 824 million active indi-
vidual users and over 1 million commercial users. Leveraging this
deployment and application, we conduct a large scale empirical
study to evaluate the security, effectiveness, adaptivity, and usabil-
ity of our proposed mechanism. At a high level, advCAPTCHA first
trains a substitute solving model by collected captchas, then em-
ploys the substitute model to generate adversarial captchas. After
that, by uniquely viewing the answers submitted by the attackers
as the queries to their solving models, advCAPTCHA can fine-tune
the substitute model to approximate the attack model by learning
its captcha recognition behavior.
Contributions. Our main contributions can be summarized as
follows.

(1)Anadaptive, practically high-usable adversarial captcha
generation system.We propose advCAPTCHA for generating ad-
versarial captchas against ML based captcha solving attacks in
practice. advCAPTCHA can achieve high usability while improving
the security of text-based captchas. Moreover, by viewing captcha
pictures as queries to the attack model and using these queries
to fine-tune the substitute model, advCAPTCHA presents good
adaptivity to the evolution of real world attack models.

(2) Deployment of adversarial captchas on a large-scale
online e-commerce platform. We deployed advCAPTCHA on
a large-scale international e-commerce platform. Extensive exper-
iments on the real world platform show that advCAPTCHA can
evidently decrease the captcha breaking rate of the underground
market by 50%, i.e., adversarial captchas are practically more secure.
We also show the usability and robustness of advCAPTCHA in
practical deployment.

(3) Useful guidelines for captcha developers and practi-
tioners. Through uniquely interacting with the attackers from
the underground market, we demonstrate that 1) practical attack-
ers are more inclined to use end-to-end solving models to directly
recognize a captcha as a whole; 2) multiple solving models may be
simultaneously leveraged by attackers to mitigate the security of ad-
versarial captchas; 3) the adaptivity of captchas in accommodating
the updates of attack models is important in practical deployment.
These important observations can be leveraged by captcha devel-
opers and practitioners to guide the design and deployment of
advanced adversarial captchas in the future.

2 BACKGROUND AND RELATED WORK
2.1 ML Model Vulnerability
Recent works have discovered that the existing ML models includ-
ing neural networks are vulnerable to various attacks. We introduce
two types of attacks that will be used in our methods.
Model Evasion Attack. In an evasion attack, an adversary aims
to inject carefully crafted perturbations into a legitimate instance
such that the classifier predicts an incorrect label for the instance.
Such kind of instances are named adversarial examples.

In [38], Szegedy et al. first found that DNNs are vulnerable to
imperceptible perturbation in the image domain. Then, many works
[8, 9, 11, 13, 17, 21, 28, 31] further explored how to generate adversar-
ial examples. Based on the adversary’s knowledge, these works can
be classified into two categories: white-box attacks [8, 17, 31], where
the adversary has full knowledge of the model including the model
architecture and parameters, and black-box attacks [9, 11, 13, 21, 28],
where the adversary has none, or has limited knowledge of the
model.

In the black-box setting, there are two popular methods to gen-
erate adversarial examples. The first method depends on the trans-
ferability [30] of adversarial examples. An adversary first trains
a substitute model, leverages the substitute model to generate ad-
versarial examples and transfers them to attack a target model
(i.e., victim model). The second method is the gradient estimation
method. Chen et al. noted that transferability is not always reliable
and they explored the gradient estimation method as an alterna-
tive to the substitute model [11]. In gradient estimation methods
[11, 21, 28], the adversary can query the target model by sending
any input and receive the predicted class probabilities. Then, the ad-
versary approximates the gradient information of the target model
by leveraging the query results. Finally, such estimated gradient
information will be further leveraged to generate adversarial exam-
ples. However, these methods need a large number of queries to
generate an adversarial example.
Model Extraction Attack. In an extraction attack, adversaries
aim to leverage the target model predictions to construct another

2

model as an approximation to the target model. Existing model
extraction methods usually consist of the following steps: 1) con-
struct a dataset X where the samples could be randomly selected
or carefully designed within the input space; 2) leverage the target
model F to predict X and obtain the predicted results Y ; 3) consider
Y as the ground truth of X and train an approximation model F̂ .

In [14], Fredrikson et al. developed a method that exploits the
confidence values revealed along with predictions. In [41], Wu et al.
formalized model extraction from a game-theoretic perspective. In
[39], Florian et al. designed equation-solving attacks, which could
extract near-equivalent models from multiple models, including
SVM, decision trees and neural networks. However, it is inefficient
to directly apply these methods to Deep Neural Networks (DNNs) in
practice, especially when the attackers have no access to other pre-
dicted results (such as confidence scores) than the label information
[30].

2.2 Modern Attacks on Captchas
Over the past decade, a number of attacks have been proposed to
solve captchas, which are summarized in Table 2. Yan et al. [43]
discovered the fatal design errors in many captcha schemes and
used the simple pattern recognition algorithms to break captchas
with high success rates. Early works [6, 15] typically follow three
steps: preprocessing, segmentation and recognition. Specially, they
first use heuristic methods to filter background patterns, e.g., line
noise in the background of the captcha, then use segmentation tech-
niques, e.g., color filling segmentation, to segment the captchas, and
finally use a ML model to recognize the segmentation. Later works
[5, 16] combine segmentation and recognition together. They use
ML models to score all possible ways to segment a captcha, then
find the most likely way as output. Most recently, by leveraging
deep learning techniques, Ye et al. [45] used a DNN model to di-
rectly recognize captcha images without character segmentation.
In particular, they first generate synthetic captchas to learn a base
solver and then fine-tune the base solver on a small set of real
captchas by leveraging transfer learning. Thus, their method can
achieve good recognition performance with a significantly smaller
set of real captchas, as compared to previous methods.

In addition to academic research, captcha solving platforms [1,
2] have also used deep neural networks to break captchas. As a
commercial sector aiming at captcha solving, they have already
accumulated a huge number of captchas generated from a variety
of captcha schemes. With these data, they can train a very powerful
solver and break a range of captcha schemes.

2.3 Motivating the Design of advCAPTCHA
As stated in Section 2.2, most attacks on text captchas are based on
ML techniques, which are vulnerable to various adversarial attacks
(recall Section 2.1). Therefore, we aim to exploit the vulnerability
of ML models to actively defend against ML based captcha solvers,
i.e., generating adversarial captchas to fool the ML based captcha
solvers. However, in general practical scenarios, we usually cannot
access the attack models. Therefore, it is difficult for us to directly
generate adversarial captchas against them. One intuitive method
is to first generate adversarial captchas against a substitute model
(which is trained by using our own captcha scheme) that performs

the same task as the attack model, and then use the generated ad-
versarial captchas targeting the substitute model to defend against
the real unknown attack model.

However, this intuitive method may not perform well in practice
due to the following two reasons. 1) Through our careful obser-
vations in practical applications, we found that attackers usually
target at multiple captcha schemes simultaneously instead of only
one. Therefore, the substitute model we trained by our own captcha
schememay deviate from the attack model. As a result, the adversar-
ial captchas generated by the substitute model may not demonstrate
transferabiltiy against the real attack model. 2) In practice, attackers
have strong capability and incentives to update their attack models,
which may further degrade the transferabiltiy of the adversarial
captchas. In the worst case, the security of the adversarial captchas
may degrade to that of the ordinary ones. Therefore, the captcha
generationmechanism needs to be updated as well to defend against
the evolving attack models.

The security of adversarial captchas closely depends on the simi-
larity between our substitute model and the attack model. Thus, to
generate effective adversarial captchas requires an effective chan-
nel to observe and understand the real attack model. To address
the above challenges, we incorporate the idea of model extraction
into constructing the substitute model. In detail, we uniquely view
the answers that the attackers submit as queries to their solving
models. Then, we use these queries to extract the real attack model.
It is worthy noting that we do not directly construct our substitute
model from these queries considering the efficiency issues of DNN
(recall Section 2.1). Instead, we first train a solving model by using
pre-collected captchas and the corresponding labels, then employ
such model as a baseline substitute model to generate adversarial
captchas, and finally transfer them to defend against the real attack
model. Once an update of the attack models is observed, we can
query the attack models and fine-tune the baseline substitute model
by leveraging these queries. As a result, we update our substitute
model dynamically to accommodate the evolving models of the
attackers.

2.4 Comparison with Prior Work
We first compare our method with closely related work [29, 35] in
Table 2. In [29], Osadchy et al. proposed a method to generate Im-
mutable Adversarial Noise (IAN), which is specifically designed for
image captchas. It is easier to generate adversarial image captchas
compared to adversarial text captchas, since the perturbation space
of image captchas is much bigger. Technically, the idea of IAN
is simple: injecting enough perturbations to prevent existing im-
age filtering techniques. In [35], Shi et al. proposed an adversarial
captcha generation and evaluation system, aCAPTCHA, which can
be applied for text captchas. The core idea of aCAPTCHA is to
inject perturbation into the frequency domain instead of the space
domain. We note that aCAPTCHA does not directly inject pertur-
bations into captchas. Instead, it first injects perturbations into a
single character image, and then combines different character im-
ages into one captcha, which would limit the efficiency of captchas
in practice.

Based on our analysis above, we can summarize the main differ-
ence between advCAPTCHA and [29, 35] as below. 1) Benefited by

3

Table 1: Summary of recent works on solving captchas.

Captcha Solver Year Preprocessing Segmentation Recognition Method Training Data

Yan et al. [43] 2007 none vertical segmentation
snake segmentation pattern recognition none

Bursztein et al. [6] 2011 image processing color filling segmentation SVM
KNN real captchas

Gao et al. [15] 2013 image processing color filling segmentation CNN real captchas
Bursztein et al. [5] 2014 none cut point detector KNN real captchas

Gao et al. [16] 2016 none Log-Gabor Filter KNN
CNN real captchas

Ye et al. [45] 2018 GAN none CNN real captchas
synthetic captchas

Table 2: Comparison of Adversarial Captchas.

Method Captcha Scheme Perturbation Domain Substitute Model Adaptivity Practical Deployment
IAN [29] image captcha space CNN no no

aCAPTCHA [35] text captcha
image captcha

frequency
space

CNN
CNN no no

advCAPTCHA text captcha space CRNN yes yes

using an end-to-end solver (recognizing captchas without segmen-
tation), our method can directly inject perturbations into the whole
captcha, which is more efficient in practice; 2) To the best of our
knowledge, we are the first to consider the evolving behaviors of at-
tackers. By incorporating the idea of model extraction, we employed
the answers of the attack model to make our substitute model bet-
ter fit the actual attack model; 3) We are also the first to deploy
adversarial captchas on a large-scale online platform. By applying
adversarial learning techniques in a novel manner, advCAPTCHA
can generate effective adversarial captchas to significantly reduce
the success rate of attackers, which has been demonstrated by a
large-scale online study. Furthermore, we also validate the feasibil-
ity of advCAPTCHA in practical use, as well as its robustness in
defending against various attacks.

Our proposed perturbation algorithms in advCAPTCHA are also
novel as compared with previous perturbation methods. 1) Com-
pared to previous methods that only construct the substitute model
by the training dataset, our method can fine-tune the substitute
model to approximate the real attack model, which is more effec-
tive and efficient in generating high-quality adversarial captchas; 2)
Compared to the gradient estimation method that requires a large
number of queries for every adversarial example, our method only
needs a small number of queries to fine-tune the substitute model,
based on which we can generate unlimited adversarial captchas; 3)
Previous methods in model extraction, which aim to construct the
approximate model, cannot be applied to extract DNNs, especially
when only the label information is available. In comparison, our
method starts by building an existing substitute model that per-
forms a similar task with the target model and uses the queries to
make the existing model similar to the target model. Therefore, our
method is more feasible in practice.

3 DESIGN OF ADVCAPTCHA
In this section, we describe the design details of advCAPTCHA as
an effective defense against deep learning based captcha solvers.

3.1 Overview
We provide the workflow of advCAPTCHA in Figure 1, which
consists of the following 4 important steps.

Step 1. Training the substitute solving model. In practice,
we usually have no prior knowledge of the attack model, thus
we need to train an alternative solving model and employ it as a
substitute for the real attack model. Then, the substitute model can
be leveraged to generate adversarial captchas to defend against the
captcha solving attacks. There are two factors we need to concern in
this step: model structure and training data. For the model structure,
we choose a model which can simultaneously recognize all the
characters in a captcha picture without image preprocessing and
character segmentation. For the training data, we consider multiple
different captcha schemes, in order to enhance the generalizability
of our substitute model. With these data and model structures, we
can train a substitute solving model. This process is detailed in
Section 3.2.

Step 2. Generating adversarial captchas.With the substitute
solving model in place, we carefully design perturbation algorithms
to generate adversarial captchas. Motivated by the evasion attacks
developed in the domain of image classification, we propose sev-
eral perturbation algorithms which are applicable for perturbing
captchas. These algorithms can achieve a good tradeoff between
security and usability. After adversarial captchas are generated, we
can use them to defend against ML based attacks. This process is
described with more details in Section 3.3.

Step 3. Querying the attackmodel.This step is optional which
is only conducted when there is a need to fine-tune the substitute
model (e.g., an update of the attack model is observed). In this step,
we aim to query the attack models by collecting the captchas sent to

4

 Step 1: Training the
 Substitute Solving Model
- End-to-end model structure
- Mixed training data

 Step 2: Generating
Adversarial Captchas
- Generate adversarial perturbations
- Inject them into captchas

 Step 4: Fine-tuning the
 Substitute Solving Model
- Fit the query data
- Maintain accuracy in original

training data
Query Results

Various Captcha Schemes

Captcha Attack
Models

 Step 3: Querying the Attack
 Model
- Distribute high risk users captchas
- Collect their answers

Deployed Captchas Adversarial Captchas

Substitute Solving
Model

Figure 1: Workflow of advCAPTCHA.
them and the answers they submitted. The key issue in this step is
how to exactly distribute captchas to the attackers. Luckily, we can
take advantage of the existing user risk analysis system [36], where
users who are identified as abnormal users with high confidence
are classified as attackers. Finally, we distribute the captchas to
these attackers and collect their answers which will be used in the
next step. This process is detailed in Section 3.4.

Step 4. Fine-tuning the substitute solvingmodel.Motivated
by the model extraction attacks, we propose a novel mechanism
to fine-tune our substitute model to approximate the real attack
model. Specifically, we fine-tune the substitute model by using a
set of labeled captchas that are collected from step 3. Here, we
view the answers submitted by the attackers as queries to the at-
tack model, and each answer conveys partial information of the
attack model. Model extraction allows us to fine-tune our substitute
model to approximate the attack model automatically. In addition,
compared to constructing a new substitute model from scratch, fine-
tuning the existing substitute model is more efficient. Leveraging
this fine-tuning step, we can effectively adapt our defense system
after observing an update of the attacker’s model. This process is
described in detail in Section 3.5.

3.2 Constructing Substitute Solving Model
3.2.1 Model Structure. Our captcha solving model aims to di-

rectly recognize the captcha images, which is different from many
previous works [5, 16] that solve text-based captchas by follow-
ing three steps: preprocessing, segmentation and recognition. We
use an end-to-end recognition model, where the input is a captcha
image without preprocessing and the output is the sequence of
characters in the image. Specifically, we employ a Convolutional
Recurrent Neural Network (CRNN) [33] as our captcha solving
model, which requires less expert involvement and is more con-
venient for generating adversarial captchas. We defer the detailed
structure of CRNN to Appendix A for brevity. Generally, this model
first extracts features from the input image, then auto-segments
features (full captcha) and recognizes each segmentation (single
character), and finally seeks the best combination. This process can
significantly reduce the amount of data required to train the model.
In our evaluation, we can use 100K samples to train a solver with
92% accuracy for the four-character captcha scheme (which has 624
types of label sequences).

3.2.2 Training the Substitute Model. Based on the CRNN model
in Section 3.2.1, we train a substitute solving model for the target
captcha scheme deployed on real world websites. Note that we
aim to build a substitute model which is close to the actual attack
model that may be trained by the captchas generated from mul-
tiple captcha schemes. Therefore, we train the substitute solver
by leveraging the target captcha scheme, as well as other captcha
schemes. To collect different captcha schemes, we can either crawl
from different websites or generate by open source softwares. Then
we can use these mixed data as the training dataset. Each training
sample consists of a captcha image (without preprocessing) and an
integer vector that stores the character IDs of the captcha. Note
that we assign a unique ID to each candidate character of the target
captcha scheme. The trained substitute model can then be applied
to generate adversarial captchas.

3.3 Generating Adversarial Captchas
3.3.1 Notations. We first present necessary notations in the

context of generating adversarial images. We represent a solver as
a function Fθ (x) = y, where Fθ is the neural network, x ∈ Rn×m

is the input image and y ∈ Rr is the corresponding output. Note
that for the CRNN model, y is a label sequence and r is the number
of characters in the captcha. Define x′ ∈ Rn×m as the adversarial
image and let L(θ ,x,y) be the objective function of Fθ . As in [31][8],
we use Lp norm to measure the similarity between x and x′, which
is defined as Lp = | |x − x′ | |p = (

∑n
i=1

∑m
j=1 |xi, j − x′i, j |

p)1/p .

3.3.2 Perturbation Algorithm. Recently, many evasion attacks
have been proposed to generate adversarial images [4, 46]. However,
these methods cannot be directly applied to perturb captchas, based
on the following two reasons. 1) Previous methods for perturbing
images focus on classification models whose prediction contains
the probability of the input for all labels. Then, they can rely on
these confidence information to generate adversarial examples,
e.g., to increase the probability of the target label or to decrease the
probability of the ground truth label. In comparison, for captcha, we
leverage an end-to-end model which uses a decode step to compute
the output. In particular, our method utilizes the CTC loss to predict
the probability of the input for a given label sequence. Thus, in our
method, we generate adversarial captchas by decreasing the CTC
loss of the ground truth label sequence. 2) We need to pay special

5

attention to restrict the location of perturbations injected into a
captcha to maintain its high usability. In particular, we use a mask
to control the position where the perturbations to be injected and
the perturbation can be calculated as

x′ = x + ϵ · | |∆xL(θ ,x,y) · M | |p (1)

where M ∈ Rn×m is a 2D matrix named as mask, deciding which
area of the original captcha the perturbations need to be injected
into. M is a binary matrix where noise can only be injected to the
pixel of (i, j) if Mi, j = 1. We can easily choose an appropriate M
(such as background areas) to maintain the usability of the adver-
sarial captchas. ϵ is a constant which controls the total amount of
injected perturbations. Obviously, a higher ϵ requires more per-
turbations to be added to the captchas. This method computes the
adversarial perturbation by only one step following Equation 1,
which is thus named as a direct method.

We also consider the iterative method to generate adversarial
captchas. This method iteratively takes multiple small steps (as
shown in Equation 2) to compute the adversarial perturbation while
adjusting the direction after each step. Compared to the direct
method, the iterative method can result in more misclassification
(i.e., more robust captchas from the defense perspective) under the
same perturbation level [23].

xt+1 = xt + α · | |∆xL(θ ,x,y) · M | |p (2)

where α is a constant to control the amount of injected perturba-
tions in each step. For an iterative method containing s steps, the
total amount of perturbations in the iterative method is ϵ = s × α .
In the iterative method, the default step number s is 10 and the
default perturbation level α is one-tenth of ϵ .

At last, in order to generatemore randomized adversarial captchas,
we propose a mixture method to inject various perturbations into a
captcha image, where

x′ = x +
k∑
i=1

GeneratePerturbation(L(θ ,x,y),p, ϵ,α ,Mi) (3)

We show the process of the mixture method in Algorithm 1. Basi-
cally, we first randomly choose k masks. Note that different per-
turbations inserted to the same area may conflict with each other,
thus we make sure these multiple masks have no spatial overlap.
For each mask, adversarial perturbations are generated by differ-
ent methods (direct and iterative methods) and parameter settings
(different distance measures and perturbation levels). Finally, we in-
tegrate these perturbations together and inject them to the original
captcha.

3.4 Querying the Attack Model
Next, we need to distribute adversarial captchas to attackers and
record their answers. It seems paradoxical that if we could figure
out which users were attackers, we could simply deny the access
of them instead of sending them captchas. We emphasize that 1)
this step is optional which is only conducted when the substitute
model needs to be fine-tuned; 2) in practice, we can only figure
out a small part of high-confidence attackers. By engaging with
these high-confidence attackers, we can improve the security of
adversarial captchas and eventually defend against more potential
attackers. Now, a key challenge here is to recognize attackers.

Algorithm 1: Mixture method.
1 i = 1 ;
2 while i ≤ k do
3 Randomly choose a mask Mi ;
4 Set distance metric p ;
5 if direct method then
6 Set perturbation level ϵ ;
7 Compute perturbation ∆xi by Equation 1;

8 if iterative method then
9 Set step number s ;

10 Set perturbation level α ;
11 Compute perturbation ∆xi by Equation 2;

12 ∆x =
∑k
i=1 ∆xi ;

13 x′ = x + ∆x

We do not submit adversarial captchas to the commercial ser-
vices to be solved, since we do not know which commercial services
are employed by the attackers. Instead, we take advantage of ex-
isting user risk analysis system [36] to identify high-confidence
attackers. When a user operation needs to be judged, the front-end
web collects the user’s behavior information and the environment
information and submits them to the risk control engine at the
back-end. The follow-up risk control engine will make a decision
based on the features of these collected information, such as mouse
movement, IP address and Cookie. It can determine whether to
block the operation or make a second judgment. We note that the
user risk analysis system in our work is different from [36]. In
addition to the user environment information and high frequency
information (which is similar to [36]), our user risk analysis system
pays more attention to user behavior information, e.g., mouse slid-
ing and page detention time, which is more difficult to forge and
thus more reliable.

We also worthy to note that identifying high-confidence attack-
ers may not be a real time process. In practice, we send captchas
to the risk users (including high-confidence and low-confidence
attackers). At the same time, we record their answers and corre-
sponding features which are collected by the risk analysis system.
After a few days (e.g., a week) deployment, the domain experts
can further analyze the records to identify the high-confidence
attackers by leveraging multiple tools and domain knowledge. In
this way, we can recognize attackers with high accuracy. We detail
this process in Appendix B. Finally, we select answers submitted by
identified attackers and view them as queries to the attack model.

3.5 Fine-tuning the Substitute Model
The final step is to fine-tune the substitute model. Our fine-tuning
process aims to make the substitute model fit the collected query
data, as well as maintain accuracy for the original captcha data.
Therefore, we formulate a multi-objective optimization task by
optimizing the weighted sum of the two objectives.

minimize
θ

L(θ ,xq ,yq) + λ · L(θ ,xo ,yo) (4)

where (xq ,yq) is the query data generated by step 3 and (xo ,yo) is
the original training data used by step 1. θ are substitute model pa-
rameters, e.g., weights and bias. L(·) is the loss function measuring
the error in classification, which is the CTC loss in our experiment.
λ is the weight to balance the tradeoff between the loss of the new

6

query data and the original captcha data. In our experiments, we
adjust λ dynamically to ensure that a reasonable proportion of the
original training data can be correctly recognized. We use the Adam
optimizer [22] to effectively solve Equation 4.

Note that in order to improve the efficiency of the fine-tune
process, we query the attack model by adversarial captchas rather
than ordinary ones. The reasons are as follows. Suppose that xq is a
captcha used in the query process, y′ = FΘ(xq) is the prediction of
the substitute model for xq , and y′′ is the prediction of the actual
attack model for xq . In the fine-tuning process, we aim to make the
substitute model fit the collected query data. In other words, we
leverage the difference between y′ and y′′ to update the substitute
model. If we use ordinary captchas to query the attack model, for
most cases, y′′ is the same as y′ since both the attack model and the
substitute model have high recognition rates for ordinary captchas.
Such queries are thus less informative to fine-tune the substitute
model. In comparison, leveraging adversarial captchas to query
the attack model, which, according to our observations, usually
generates different y′ and y′′. Therefore, under the same num-
ber of queries, compared to ordinary captchas, using adversarial
captchas can achieve better model fitting performance. Experiment
evaluations in Section 6.5 confirm this conclusion.

Moreover, the accuracy of the updated substitute model may
be degraded especially when the labels in the query datasets are
deviated from the ground truth. To overcome this issue, we add
the second objective of maintaining the accuracy of the original
training data to Equation 4. In Sections 5.3, 6.1, 6.2, we verify the
effectiveness of the fine-tuning process and show its robustness
against various attack models.

4 DEPLOYMENT AND EVALUATION SETUP
4.1 Application Platform
We deploy advCAPTCHA on a large-scale international commercial
platform, which provides a broad range of services for corporations
and individual users. The current number of commercial users
has exceeded 1 million, covering government, consumer, aviation,
financial and other fields, and the current number of monthly active
users is 824 million.

During online studies, we only conduct experiments on a website
provided by the cooperative company for the sake of risk control.
This website is a government service website from which some
public information (such as traffic violations, driving license, etc.)
can be queried. When a user logins account or queries the informa-
tion, he/she must pass the human machine recognition test. From
the user’s point of view, he/she needs to slide a bar firstly, which is
similar to unlocking the phone screen. Then the user risk analysis
system will judge the risk level of the user and determine whether
to send him/her a captcha. The captcha scheme deployed on this
website is text captcha consisting of four characters, with merged
characters while no background noise. According to domain ex-
perts in the company, the website is approximately suffered from
100,000 to 1,000,000 attacks per day.

4.2 Deployment
We deploy advCAPTCHA on the above platform as follows. 1) Our
cooperative company generates N ordinary captchas each week

Figure 2: Twelve captcha schemes used in our paper.We use all the captcha
schemes in the training phase and only one scheme (as shown in the left
which is deployed in the real world platform) for the test phase.

by its existing captcha generation algorithm, where N = 100, 000
in our evaluation for each experiment. 2) According to the algo-
rithms in Section 3, we leverage the substitute model to generate
N adversarial captchas from the N ordinary captchas. 3) When
there is an authentication request, i.e., the risk analysis system
determine he/she is a risky user (including high-confidence and
low-confidence), we send the adversarial captcha to the user. At the
same time, we record his/her corresponding features and answer.
4) Each week, the domain experts involve and further analyze the
stored features to confirm the high-confidence attackers. This pro-
cess is detailed in Appendix B. 5) When we observe an update of the
attack model, e.g., the overall success rate of the attack increases
sharply, we use the answers submitted by the high-confidence at-
tackers to fine-tune our substitute model. The whole process of
deployment and evaluation continues for 9 months, based on which
we formulate our analysis for online user studies in Section 5. Note
that, only the results submitted by these high-confidence attackers
are used to measure the security of our adversarial captchas.

4.3 Evaluation Setup
In total, we use 12 different captcha schemes in the evaluation,
where 7 of them are real captcha schemes provided by our coop-
erative company and the other 5 schemes are from open source
softwares [3]. These schemes can generate captchas that contain
different background, different length and other defense factors. We
show the example captchas generated by the employed schemes in
Figure 2. In the training phase, we use all the 12 captcha schemes to
train the substitute model, which can make the solver more general.
In the test phase, i.e., online study, we only use one captcha scheme
(the actually used captcha scheme by the cooperated company) to
generate adversarial captchas, since our objective is to protect the
captcha scheme that is deployed on the real website.

5 EVALUATION
In this section, we conduct a large-scale online empirical study to
evaluate the performance of advCAPTCHA. Firstly, we analyze the
behavior of the identified attackers in online experiments. Then, we
show the effectiveness of advCAPTCHA, as well as its robustness
under different model parameters and different substitute models.

5.1 Analysis of Attackers (High Risk Users)
In the captcha security scenario, attackers are defined as the ones
that solve captchas by using well-trained ML models or other well-
designed automatic means. Thus, they may exhibit different behav-
iors from normal users.
Different Answer Lengths.When providing captcha solving ser-
vice, a captcha solver usually receives captchas generated from
different schemes, e.g., different font styles, different background,
and captchas with different lengths. In order to maximize profits,

7

Figure 3: The incorrect recognition rate for different sets of adver-
sarial captchas.

Figure 4: Examples of adversarial perturbations located around a
specific character, which would impact human recognition.

captcha solvers in practice usually train a model that can be used
for attacking different captcha schemes. Therefore, such model
may return answers with different lengths even for a fixed-length
captcha scheme. In comparison, for the answers submitted by hu-
mans, whether correct or not, the corresponding character length
is very likely to be correct, especially for the fixed-length captcha
scheme. Thus it is possible that the length distribution of the an-
swers submitted by bots and real users has difference. Therefore,
in the experiment, we 1) leverage the substitute model to generate
adversarial captchas, 2) select 100,000 adversarial captchas that
have abnormal length based on the substitute model’s prediction, 3)
send these adversarial captchas to the the attackers and the normal
users, and 4) measure the lengths of their answers. The results are
shown in Figure 3. We observe that the lengths of answers submit-
ted by 76% of the attackers are different from four as defined by
our captcha scheme, while only 2% of the normal users return an-
swers with different lengths. This phenomenon also demonstrates
that the captcha solvers developed by current attackers are very
likely end-to-end models, otherwise attackers would return the
same length of answers for the fixed-length captcha scheme.
Different Performance to Adversarial Captchas. ML models
are vulnerable to adversarial examples, while in comparison hu-
man beings are rarely influenced (this can be assured in the design
of adversarial examples, which takes the usability/utility into ac-
count). In this experiment, we first leverage the substitute model
to generate 100,000 adversarial captchas. Based on the substitute
model’s prediction, we classified these adversarial captchas into
two categories. 1)Wrong-character captchas: the captcha that has
only one character different from the ground truth. e.g., 2DUA is
recognized as 2DUS. 2) Wrong-answer captchas: the captcha that
has more than one characters different from the ground truth. e.g.,
Agz3 is recognized as NGE3. Then we send these captchas to the
attackers and the normal users, and Figure 3 shows the recogni-
tion error rate of the attackers and normal users for adversarial
captchas. We observe that attackers are more likely to recognize
the adversarial captchas incorrectly, as compared to that of the
normal users. In other words, attackers are more vulnerable to ad-
versarial captchas. We also observe that the recognition rate of the
normal users for wrong-answer captchas is higher than that for
wrong-character captchas. After carefully analyzing the captchas
in different settings, we find that L0-based perturbations added to

Table 3: Classification accuracy of 6 model structures. Classifica-
tion accuracy indicates the SR of the model for ordinary captchas.

NO. Model Structure Classification Accuracy
1 LeNet+LSTM+CTC 92.4%
2 ResNet50+LSTM+CTC 94.1%
3 LeNet+Bi-LSTM+CTC 93.5%
4 ResNet50+Bi-LSTM+CTC 93.2%
5 LeNet 82.3%
6 ResNet50 75.6%

wrong-character captchas would be located around the character
(as shown in Figure 4), which may also affect human recognition.
Instead, L∞-based perturbations would not affect human recogni-
tion. This observation motivates us to carefully analyze the location
of the injected perturbations in the algorithm. During the practical
deployment, we prefer to use a mixture method (using both the L0
and the L∞ distance to generate adversarial captchas). We inject
L∞-based perturbations to the entire captcha while only injecting
the L0-based perturbations to the background. In this way, we tend
to generate highly usable and secure adversarial captchas.

Our analysis above demonstrates that the recognition behav-
ior of the attackers are to some extent distinguishable from that
of the normal users. 1) The lengths of the answers submitted by
attackers are more likely to be different even for a fixed-length
captcha scheme, which indicates current attackers may employ
deep learning based solvers. 2) Adversarial captchas tend to have a
significant impact on the performance of the attackers while having
little impact on the normal users.

5.2 Effectiveness of advCAPTCHA
Impact of the Perturbation Algorithm. First, we evaluate the
performance of our adversarial captchas under different algorithm
parameters in Section 3.3: distance metric Lp , which controls the
basic shape of perturbation, and perturbation level ϵ , which con-
trols the total amount of perturbations. We calculate the Success
Rate (SR) of attackers to quantify their performance. For distance
metrics, we choose L0, L∞ and the mixture method (using both
the L0 and the L∞ distance to generate adversarial captchas); Note
that L0 and L∞ are the common distance metrics for generating
adversarial examples [17, 31]. For perturbation levels, we choose
ϵ = 0.1, 0.2, 0.3 for the L∞-based method and ϵ = 25, 50, 100 for the
L0-based method, according to our usability study in Section 5.4.
We also consider the direct and iterative methods, which contains
10 steps and the perturbation level α for each step is one tenth of ϵ
(this setting is consistent with all the following experiments). Note
that we use the same mask size through all the experiments, which
is one quarter of the captcha area. We use Model 1 (in Table 3) as
the substitute model and show the corresponding experimental
results in Figure 5.

From Figure 5, we have the following observations. 1) Adversarial
captchas can effectively reduce the SR of attackers. The lowest SR
for adversarial captchas (reduced to 36%) happens when the mixture
method is applied with ϵ = 100 for L0 distance and ϵ = 0.3 for L∞
distance, and the perturbations are generated by the direct method,
given that the SR of attackers for ordinary captchas is 76%. 2) The
perturbation level ϵ is the most important factor among different
parameters. The SR of the attackers drops noticeably when the
perturbation level is raised. Other parameters, e.g., the distance

8

(a) ϵ = 25 for L0 and ϵ = 0.1 for L∞ (b) ϵ = 50 for L0 and ϵ = 0.2 for L∞ (c) ϵ = 100 for L0 and ϵ = 0.3 for L∞

Figure 5: Performance comparison under different algorithms and perturbation levels for adversarial captcha generation.

(a) only the target captcha scheme (b) all real captcha schemes (c) all captcha schemes

Figure 6: Performance comparison under different model structures and training data for the substitute model.

metric, direct and iterative methods, have less impact on the SR
of the attack model. Although the best performance is achieved
by the direct method, it cannot always outperform the iterative
method. 3) The mixture method, which injects the integration of
different perturbations into a captcha, can improve the security of
adversarial captchas. We observe that compared with only injecting
L∞ or L0 perturbations into a captcha, the mixture method, which
injects both L∞-based and L0-based perturbations into a captcha,
can reduce SR with additional 8% on average. One possible reason
is that the mixture method can leverage the advantage of both L∞-
and L0-based methods in black-box scenarios.
Impact of the Substitute Model. Now, we evaluate the perfor-
mance of our adversarial captchas under different substitute models.
There are two factors need to take account in constructing the sub-
stitute model: model structure and training data (recall Section 3.2).
Thus, we consider several different model structures and training
data in the experiment. For the model structure, we use the CRNN
model as the target model which contains three components: CNN
part, RNN part and CTC part. For each CNN and RNN part, we
consider two model structures, ResNet and LeNet for CNN, and
LSTM and Bi-LSTM for RNN, respectively. Note that the CTC part
is fixed structure. Thus, we use 4 types of models (Model 1-4 in
Table 3) as the substitute model. For training data, we collect the
captchas generated by different captcha schemes (recall Section 4.3)
and divide them into three types: only the target captcha scheme,
which only contains the captcha scheme deployed on the website,
all the real captcha schemes, which contains 7 captcha schemes
owned by our cooperative company, and all the real and synthetic
captcha schemes, which contains 5 captcha schemes synthesized
by ourselves in addition to the above 7 schemes. Based on our
analysis in Figure 5, we choose the best setting as follows. For the

distance metrics, we choose L0, L∞; for the perturbation levels, we
set ϵ = 100 for L0 and ϵ = 0.3 for L∞, respectively. We use the
mixture method to generate adversarial captchas with L0,L∞ dis-
tance and direct, iterative methods. We use these settings as default
settings for all the following experiments in the paper. The results
are shown in Figure 6.

From Figure 6, we have the following observations. 1) The model
structure is not an important factor that influences the performance
of adversarial captchas. There is no substitute model that always
maintain better results than other models. One potential reason
is that solving text-based captcha is not complicated, thus simple
model structures such as LeNet are sufficiently strong to handle
it. In the subsequent experiments, we still employ Model 1 as the
substitute model for convenience. 2) Training data is important to
the security of adversarial captchas. Compared to the first and sec-
ond types (only the target captcha scheme and all the real captcha
schemes) of training data, when we use the third type (all the real
and synthetic captcha schemes) of training data to train a substitute
model, the security of adversarial captchas has been substantially
improved (where the SR of the attack model is reduced by 10% to
20% as compared to the best result in Figure 5). This demonstrates
that using mixed training data to train the substitute model can
increase the security of adversarial captchas. One possible reason is
that the attackers may train their attack models for various captcha
schemes. In other words, the training data that attackers used is
also the mixed training data. As a result, the model we trained by
the captchas generated using different captcha schemes would be
more consistent with the attack model.
Improving Adversarial Examples versus Improving Adver-
sarial Captchas. In [12], the authors proposed a method which
integrates the momentum techniques into the iterative method for

9

Table 4: Usability of advCAPTCHA.

Adversarial

OrdinaryL0 method
without mask

L∞ method
without mask L0 method L∞ method Mixture method

Perturbation level 50 100 200 260 0.1 0.2 0.3 0.4 50 100 200 260 0.1 0.2 0.3 0.4 L0
L∞

25
0.1

50
0.2

100
0.3

130
0.4

Success rate (%) 91.4 75.2 60.6 41.4 89.8 83.2 73.2 64.6 89.7 85.5 75.3 75.9 89.6 83.9 81.4 78.1 90.4 87.5 85.5 75.9 89.8
Average time (s) 7.3 9.5 9.4 9.6 9.4 10.9 10.8 11.7 7.5 8.6 8.9 9.2 7.8 8.4 9.1 9.8 7.6 7.8 9.6 10.4 7.5
Median time (s) 6.4 8.1 9.1 8.7 8.3 9.7 9.6 9.9 6.5 7.6 7.9 8.2 6.7 7.5 8.3 8.6 5.9 6.3 8.2 9.1 6.1

the purpose of escaping from poor local maximum during itera-
tions. They found that the momentum method can improve the
transferability of adversarial examples, i.e., improving the security
of adversarial captchas from the defense perspective, under the
same perturbation level. Therefore, we further evaluate the mo-
mentum method in adversarial captcha generation. However, from
Figure 5, we find that the performance of the momentum method
is not consistent with the previous experience [12]. After using the
momentummethod in captcha generation, the security of the gener-
ated captchas cannot be improved in several scenarios. From Figure
5, we observe that under a low perturbation level (e.g., ϵ = 25 for L0,
ϵ = 0.1 for L∞), the momentum method can reduce the SR of the
attack model. In comparison, under a high perturbation level (e.g.,
ϵ = 100 for L0, ϵ = 0.3 for L∞), the momentum method increases
the SR of the attack model, which indicates that the momentum
method may even have negative effect. One possible reason is the
difference between adversarial example generation and adversarial
captcha generation. Compared to generating adversarial examples
that inject human-imperceptible perturbations, we generate ad-
versarial captchas by injecting human-tolerable perturbations and
controlling the areas to inject perturbation. Therefore, it is expected
to study the dedicated method to improve the quality of adversarial
captchas.

5.3 Impact of Fine-tuning the Substitute Model
Now, we evaluate whether fine-tuning the substitute model by the
query of the attack model can improve the security of adversarial
captchas.

According to Section 5.2, we employ Model 1 as the substitute
model and its training data is generated by all the real and synthetic
captcha schemes. In the experiment, we first leverage the substi-
tute model to generate 100,000 adversarial captchas. Then we send
these adversarial captchas to identified attackers and collect their
answers, which will be further leveraged to find-tune the substitute
model, generate corresponding adversarial captchas and send back
to the identified attackers for evaluation again. After fine-tuning
the model, we observe that the SR of attackers has been further
reduced to 12% (as compared to 17% before the fine-tuning process
according to Figure 6). This shows that the model extraction tech-
nique and the fine-tuning can effectively improve the substitute
model to make it more similar to the attacker model, thus increas-
ing the security of the generated adversarial captchas. Moreover,
fine-tuning the substitute model can play a greater role when the
attackers update their attack models. Therefore, our fine-tuning
process can provide adversarial captchas strong adaptivity against
the update of attack models. We will further explore the fine-tuning
performance of advCAPTCHA under the updates of attack models
in the Section 6.1.

Figure 7: The tradeoff between the SR of users and the SR of at-
tackers under the same parameter settings for the mixture method.
From right to left, these four points correspond to ϵ = 0.1 for L∞
method, ϵ = 25 for L0 method; ϵ = 0.2 for L∞ method, ϵ = 50 for L0
method; ϵ = 0.3 for L∞ method, ϵ = 100 for L0 method; and ϵ = 0.4
for L∞ method, ϵ = 130 for L0 method, respectively.

5.4 Usability Analysis
Finally, we conduct experiments to evaluate the usability of adv-
CAPTCHA in practical applications. In the experiment, we set five
groups of adversarial captchas. 1) The captchas generated using the
L0 method without mask, where we inject L0 perturbations into the
captchas and the size of the mask is the full captcha area. Note
that the mask is used to restrict the area of injected perturbations,
and the full captcha area for the mask means no restriction for in-
jected perturbations. 2) The captchas generated using the L∞ method
without mask, where we inject L∞ perturbations into the captchas
and the size of the mask is the full captcha area. 3) The captchas
generated using the L0 method, where we inject L0 perturbations
into the captchas and the size of the mask is one quarter of the
captcha area. 4) The captchas generated using the L∞ method, where
we inject L∞ perturbations into the captchas and the size of the
mask is one quarter of the captcha area. 5) The captchas generated
using the mixture method, where we inject both L0 and L∞ per-
turbations into captchas and the size of each mask is one eighth
of the captcha area. Then, we send these captchas to the normal
group (recall Section 5.1), and collect their answers and the time
consumption for solving each captcha. We show the collected data
in Table 4, including the average successful probability, the average
time consumption, and the median time consumption of all the
users to finish the corresponding captcha, respectively.

From Table 4, we observe that 1) the mask in the perturbation
algorithm is very helpful for maintaining the usability of adversarial
captchas. Without using mask in the adversarial captcha generation,
the SR of humanwhen recognizing adversarial captchas is obviously
lower than that of the ordinary captchas, especially under high
perturbation level. In comparison, if we restrict the location of
perturbations by the mask, the SR of human when recognizing
adversarial captchas is similar to that of the ordinary captchas. 2)
The mixture method, which injects various perturbations into a

10

captcha, almost has no negative impact on human recognition. 3)
ϵ ≤ 0.3 for L∞ and ϵ ≤ 100 for L0 are good choices in practice for
maintaining the usability of the adversarial captchas. These selected
values of ϵ have also shown good performance in balancing the SR
of normal users and the SR of attackers (shown in Figure 7). Within
this range, the SR of normal users decreases much more slowly
than the SR of attackers. Therefore, we consider ϵ ≤ 0.3 for L∞ and
ϵ ≤ 100 for L0 in our experiments.

Evaluating advCAPTCHA with volunteer participants who are
recruited in the real world would be interesting, which, however,
may lead to other limitations. For instance, the scale of users would
be much smaller compared to that of the online test in our exper-
iments. Another challenge lies in the selection of participants to
prevent bias due to demographics. Therefore, following the best-in-
practice evaluation manner, we choose to conduct online experi-
ments for evaluating the usability of advCAPTCHA.

In summary, according to our evaluation, the adversarial captchas
generated by advCAPTCHA, have similar usability as the ordinary
ones. Combining with the security evaluation of advCAPTCHA
in Section 5.2, they together demonstrate that advCAPTCHA is
resilient to ML based attacks while preserving high usability for
human.

6 FURTHER ANALYSIS OF THE FINE-TUNING
PROCESS

In this section, we further analyze the fine-tuning process of adv-
CAPTCHA through offline experiments, including security anal-
ysis after attack model updating, robustness in defending against
different attack models, the impact of human labor in the query
process and the influence of fine-tuning parameters. We analyze the
worst-case performance of advCAPTCHA by using Model 1 as the
baseline substitute model and Model 4 as the default attack since
they present the largest difference in structure. To be consistent
with the experiments in Section 5, we generate adversarial captchas
by using the mixture method which injects L0 perturbation with
ϵ = 100 and L∞ perturbation with ϵ = 0.3.

6.1 Security Analysis after Attack Model
Update

First, we investigate the fine-tuning process of advCAPTCHA un-
der attack model updating. Specifically, we compare the security of
the adversarial captchas generated by the original substitute model
and the fine-tuned substitute model. In the experiment, we retrain
the attack model by using 100,000 adversarial captchas and the
corresponding labels to simulate the process that captcha solving
services update their attack models (assuming that the attackers
obtain the ground-truth labels of the adversarial captchas using
human labor or other means). Then we query the retrained at-
tack model (by sending 100,000 adversarial captchas to it) and use
the query results (the answers submitted by the attack model) to
fine-tune the substitute model. Finally, we leverage the original
substitute model and the fine-tuned substitute model, respectively,
to generate adversarial captchas and measure the corresponding
SRs of the attack model.

We observe that the SR of the attack model has increased from
7% to 43% when we use 100,000 adversarial captchas to retrain the

Figure 8: The SRs of the attack model for the adversarial captchas,
which are generated by fine-tuned substitute models at different
rounds of attack model update.

attack model. After we fine-tune the substitute model by the 100,000
answers submitted by the attack model, its SR has decreased to 13%.
These observations demonstrate that advCAPTCHA can adaptively
defend against attack model update. In practice, we can fine-tune
the captcha generation model regularly, e.g., each week, or when a
substantial increase of the overall SR is observed.

Next, we conduct five rounds of attack model update to further
measure the security of adversarial captchas. Each round follows
the same setting listed above, i.e., using 100,000 adversarial captchas
to retrain and query the attack model. After each round of update,
we obtain a new fine-tuned model. Figure 8 shows the SRs of the
attack model for the adversarial captchas, which are generated by
fine-tuned substitute models at different rounds of attack model
update. From Figure 8, we can observe that the SR of the attack
model grows slowly with the number of rounds of attack model
update. This observation indicates that the security of adversarial
captchas will not decrease rapidly with the update of the attack
model. Considering the actual time and cost that the attackers need
to upgrade their models, adversarial captchas can greatly improve
the security and vitality of the original captcha scheme.

6.2 Robustness of advCAPTCHA in Defending
against Various Attack Models

In practice, there may exist multiple attack models that simulta-
neously break captchas. Here we consider multiple attack models
(Model 2, 3, 4, 5, 6 with the corresponding SR for the ordinary
captchas shown in Table 3). In the query process, we query each
of the five attack models for the same number of times (i.e., we
send them the same number of adversarial captchas) ranging from
10K to 100K. Figure 9 shows the performance of advCAPTCHA
under the five different attack models. From Figure 9 and Table
3, we observe that 1) the SR of all the attack models are within
[41%, 46%], which indicates that advCAPTCHA can defend against
various attack models; 2) our fine-tuning process can still effectively
reduce the SR of all the attack models (from 43% to 23% on average
across models). We also observe that under multiple attack models,
the degradation of SR is less than that of a single attack model (as
shown in Figure 11). In particular, for 100,000 query rounds, the SR
is 13% under the single model attack and 23% under the attack of
five models. This result is within our expectation since it is more
difficult to use a single substitute model to fit multiple different
attack models.

11

Figure 9: The performance of the fine-tuning process under 5 at-
tack models.

6.3 Impact of Human Answers in Query
Process

In the querying process, we use the risk analysis system to iden-
tify attackers. However, the queries we collect from the identified
attackers may contain results submitted by human, which may
be caused by the false positives of the risk analysis system. Here,
we investigate whether these human answers would influence the
fine-tuning process.

Adversarial captchas are designed for defending against auto-
mated solving, while can still be identified correctly by human
beings. Thus the answers submitted by human are often correct.
Hence, in order to simulate human answers, we change the query
answers of the attack model as the correct captchas. Specifically,
in the experiment, we first use adversarial captchas to query the
attack model and obtain answers from it. Then, we modify the
query answers to the correct ones by different proportions (e.g.,
0%, 10%, 20%, ..., 100%). Here, different proportions correspond to
the different numbers of human answers in all of the queries. Next,
we use the modified query data to fine-tune the substitute model.
Finally, we leverage the fine-tuned substitute models to generate
adversarial captchas, and measure the SR of the attack model.

Figure 10 shows how human answers in the queries affects the
performance of adversarial captchas. We can observe that 1) a small
proportion of human answers in the queries has no impact on
model fine-tuning. The SR of the attack model increases slightly
when the proportion of human answers ≤ 20%. Moreover, we can
query more times to achieve a similar performance to that without
human answers if the proportion of human answers ≤ 30%; 2) as
the proportion of human answers increases, the SR of the attack
model grows. However, even under a high proportion of human
answers, the SR is similar to that without fine-tuning. These results
demonstrate that advCAPTCHA is resistant to human answers in
the query process. One reason is that, in the fine-tuning process,
we ensure the model accuracy for its original training data (recall
Equation 4), which can prevent the substitute model from deviating
from the right direction. We further analyze the impact of the
parameters in Equation 4 to the fine-tuning process in the following
experiment.

6.4 Performance under Different λ
In order to better illustrate the role of the second item L(θ ,xo ,yo)
in the fine-tuning objective function (Equation 4), we conduct an ex-
periment to investigate the fine-tuning performance under various
values of λ. Specifically, we fine-tune the substitute model under

Figure 10: The success rates of the attack model after modifying
different proportions of query results to fine-tune the substitute
model.

Table 5: Original accuracy (classification accuracy on the original
training data) and success rate of the adversarial captchas generated
by the fine-tunedmodels under different λ and proportions of mod-
ified query results.

λ Proportion Original Accuracy SR

0
0 80.1% 40.3%
0.1 81.2% 50.5%
0.7 83.2% 70.2%

1
0 83.7% 25.5%
0.1 85.3% 32.5%
0.7 90.2% 42.8%

10
0 87.3% 41.3%
0.1 90.3% 43.6%
0.7 92.1% 51.5%

different values of λ and different proportions of human-submitted
answers, given the total number of queries is 100,000. We show the
corresponding results in Table 5.

From Table 5, we have the following observations. First, when
only 0% or 10% of the answers are submitted by human, the second
item in the fine-tuning objective function can prevent the degra-
dation of model accuracy on the original data and meanwhile can
decline the SR of the attack model. Second, it is important to select
an appropriate value of λ. A large value of λ would easily make the
model pay too much attention to the original training data in the
fine-tuning process, instead of fitting the attack model. In practice,
according to our experience, we found that dynamically adjusting
its value so that the model accuracy on the original training data is
around 90% can achieve a good trade-off between fitting the attack
model and preventing model crash.

6.5 Impact of Captchas in the Query Process
According to the analysis in Section 3.5, we know that using ad-
versarial captchas (instead of ordinary captchas) can accelerate
the fine-tuning process. Here, we further verify this conclusion
using empirical evaluations. In the experiment, we first send both
the ordinary captchas and the adversarial captchas to the attack
model, respectively. The number of captchas ranges from 10K to
100K for each type of captcha. Then we fine-tune the substitute
models by using the answers corresponding to the ordinary and
adversarial captchas, respectively, and obtain two new substitute
models. Finally, we generate adversarial captchas by leveraging
the two fine-tuned substitute models to defend against the attack
model. Figure 11 shows the relationship between the SR of the

12

Figure 11: Impact of captchas for fine-tuning the substitute model.

attack model and the number of queries. We observe that when
fine-tuning the substitute model, using ordinary captchas requires
more queries (about 10 times) to achieve similar performance as
that of the adversarial captchas. This is because both the attack
model and the substitute model have high recognition rates for
ordinary captchas. For a captcha, if the query result (the output
of the attack model for the captcha) is similar to the output of the
substitute model, it is less informative for fine-tuning the substi-
tute model. Therefore, it is recommended to leverage adversarial
captchas in the fine-tuning process.

7 DISCUSSION AND LIMITATION
In the daily operation of websites, since the high-confidence at-
tackers can be relatively easily blocked by a risk analysis system,
we setup our objective of developing advCAPTCHA as to defend
against low-confidence attackers. Certainly, it is impossible to ob-
tain the perfect ground truth of attackers in practice. Therefore,
in the deployment and evaluation, to make our experiments and
results more convincing, following a best-in-practice manner, we
leverage the high-confidence attackers to evaluate the security en-
hancement of advCAPTCHA, i.e., in our evaluation period, before
directly blocking them, we leverage them to evaluate advCAPTCHA
first. Moreover, in our experiments, these high-confidence attackers
are also manually confirmed by the domain experts (shown in Ap-
pendix B). Thus, to some extent, the high-confidence attackers can
be considered as known attackers. It is reasonable to believe that our
experimental results can reflect the performance of advCAPTCHA
under actual attacks.

We would like to highlight the generalizability of advCAPTCHA,
as well as its advantages over existing works. advCAPTCHA and
other captcha schemes are not competitive but complementary. The
key objective of adversarial captchas is to increase the difficulty
of recognition for computers. Therefore, advCAPTCHA can be ex-
tended to captcha schemes that perform similar recognition tasks,
e.g., image captchas. Specifically, there are two steps for general-
izing advCAPTCHA to other captcha schemes: 1) replacing the
substitute model (the CRNN model in Section 3.2) with the model
that could recognize the target captcha scheme, e.g., CNN for rec-
ognizing image captchas; 2) designing an appropriate perturbation
mechanism to inject noise into the target captcha images. In fact,
we have implemented additional evaluation of advCAPTCHA for
click-based captcha schemes where the users are asked to click a
word in a picture according to the prompt. Due to the space con-
straints, we do not include this design in the paper. Experimental
results verify the effectiveness of advCAPTCHA in this scenario

as well, which further demonstrates its generalizability in various
captcha generation schemes and application scenarios.

advCAPTCHA is also a potential enhancement to the user risk
analysis system, e.g., Google noCaptcha. This popular captcha
scheme can provide a great user experience, as normal users’ oper-
ations are not interrupted in most situations. However, the security
of the overall system has not been improved as compared to tra-
ditional captchas, since the adversaries can simply ignore the risk
analysis in the first phase and only focus on captcha solving in
the second phase. In this case, our advCAPTCHA can degrade the
performance of captcha solvers through dynamically generating
adversarial captchas.

The usability of advCAPTCHA can be affected by the ordinary
version of a captcha scheme. The failure rates of advCAPTCHA
for normal users highly depend on the ordinary version of the
captcha scheme itself. Therefore, advCAPTCHA cannot enhance
a captcha scheme if it is already poorly designed. Moreover, sim-
ilar to many other captcha schemes which perform recognition
tasks, advCAPTCHA cannot defend against the captcha solving
services that employ human users. We believe this is acceptable,
since captchas are designed to be recognized by human beings.
Limitations and Future Works. As an attempt to design secure,
adaptive and practically high-usable adversarial captchas, we be-
lieve our approach can be improved inmany perspectives, especially
when considering the practical deployment and application. We
discuss the limitations of this work along with future directions
below.

Generate more secure and usable adversarial captchas. In
our adversarial captcha generation algorithm, the total amount of
perturbations is a key parameter to control balance between the
security and usability of adversarial captchas. How to generate
more secure and usable adversarial captchas with less perturbation
is a meaningful, yet challenging, question. Meanwhile, given an
amount of perturbation, how to elegantly distribute it over an
adversarial captcha (instead of directly injecting perturbations into
the background areas) is another interesting topic to study.

Generate more effective query data. In the paper, we only
use ordinary captchas and adversarial captchas to query the attack
model. In fact, we can deliberately construct well-designed data to
accelerate the model extraction process. For example, according to
previous study [39], using data closer to the model classification
boundary can benefit the model extraction process. Therefore, how
to generate more effective query data for the captcha solvers would
be an interesting future work.

Leverage multiple substitute models. In Section 6.2, we only
use a single substitute model to generate adversarial captchas. How-
ever, when facing several different attack models, it is difficult to
use a single substitute model to fit all these models. As an interest-
ing future work, we plan to generalize our method to incorporate
multiple substitute models so that they can better approximate a
broad range of attack models in practice.

8 CONCLUSION
In this paper, we present the design and evaluation for advCAPTCHA,
which is the first large-scale deployment of adversarial captchas on
an international e-commerce platform, in order to defend against

13

ML based captcha solving attackers. advCAPTCHA fills the gap
between the scientific innovations of adversarial captchas and its
adoptions in practical applications. Specifically, we propose novel
perturbation methods to generate adversarial captchas to degrade
the performance of captcha solvers. We further incorporate the
idea of model extraction to make our substitute model fit the actual
attack model. This strategy can automatically adapt our defense
system after observing an update of the attacker’s model. Extensive
experiments on the real world platform demonstrate the effective-
ness of advCAPTCHA which can significantly reduce the success
rate of actual attackers.

ACKNOWLEDGEMENT
We would like to thank our shepherd Jelena Mirkovic and the
anonymous reviewers for their valuable suggestions for improving
this paper. This work was partly supported by NSFC under No.
61772466, U1936215, and U1836202, the National Key Research and
Development Program of China under No. 2018YFB0804102, the
Zhejiang Provincial Natural Science Foundation for Distinguished
Young Scholars under No. LR19F020003, the Zhejiang Provincial
Natural Science Foundation under No. LSY19H180011, the Zhejiang
Provincial Key R&D Program under No. 2019C01055, the Ant Finan-
cial Research Funding, and the Alibaba-ZJU Joint Research Institute
of Frontier Technologies. Ting Wang is partially supported by the
National Science Foundation under Grant No. 1910546, 1953813,
and 1846151.

REFERENCES
[1] [n. d.]. https://www.deathbycaptcha.com.
[2] [n. d.]. http://www.captchatronix.com.
[3] [n. d.]. https://pypi.org/project/captcha/.
[4] N. Akhtar and A. Mian. 2018. Threat of Adversarial Attacks on Deep Learning in

Computer Vision: A Survey. IEEE Access (2018).
[5] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John C. Mitchell. [n.

d.]. The End is Nigh: Generic Solving of Text-based CAPTCHAs. In 8th USENIX
Workshop on Offensive Technologies (WOOT 14).

[6] Elie Bursztein, Matthieu Martin, and John Mitchell. [n. d.]. Text-based CAPTCHA
Strengths and Weaknesses. In CCS ’11.

[7] Michal Busta, Lukas Neumann, and Jiri Matas. 2017. Deep textspotter: An end-to-
end trainable scene text localization and recognition framework. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV).

[8] Nicholas Carlini and David Wagner. [n. d.]. Towards evaluating the robustness
of neural networks. In IEEE Symposium on Security and Privacy (SP) 2017.

[9] N. Carlini and D. Wagner. 2017. Adversarial examples are not easily detected:
Bypassing ten detection methods. AISec (2017).

[10] Kumar Chellapilla and Patrice Y. Simard. 2005. Using Machine Learning to Break
Visual Human Interaction Proofs (HIPs). In Advances in Neural Information
Processing Systems 17. MIT Press.

[11] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. [n.
d.]. ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural
Networks Without Training Substitute Models. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security (AISec ’17).

[12] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting adversarial attacks with momentum. In Proceedings of
the IEEE conference on computer vision and pattern recognition.

[13] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017. Robust physical-
world attacks on deep learning models. arXiv preprint arXiv:1707.08945 (2017).

[14] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. [n. d.]. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In
CCS ’15.

[15] Haichang Gao, Wei Wang, Jiao Qi, Xuqin Wang, Xiyang Liu, and Jeff Yan. [n. d.].
The robustness of hollow CAPTCHAs. In CCS ’13.

[16] Haichang Gao, Jeff Yan, Fang Cao, Zhengya Zhang, Lei Lei, Mengyun Tang, Ping
Zhang, Xin Zhou, Xuqin Wang, and Jiawei Li. 2016. A Simple Generic Attack on
Text Captchas. In NDSS 2016.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. [n. d.]. Explaining
and harnessing adversarial examples. In ICLR 2015.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. (1997).

[20] K. Hwang, C. Huang, and G. You. [n. d.]. A Spelling Based CAPTCHA System by
Using Click. In International Symposium on Biometrics and Security Technologies
2012.

[21] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. [n. d.]. Black-box
adversarial attacks with limited queries and information. In ICML 2018.

[22] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[23] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. [n. d.]. Adversarial examples
in the physical world. ICLR 2017 ([n. d.]).

[24] Jonathan Lazar, Jinjuan Feng, Tim Brooks, Genna Melamed, Brian Wentz,
Jonathan Holman, Abiodun Olalere, and Nnanna Ekedebe. [n. d.]. The Sound-
sRight CAPTCHA: an improved approach to audio human interaction proofs for
blind users. In CHI 2012.

[25] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE (1998).

[26] Keaton Mowery and Hovav Shacham. [n. d.]. Pixel perfect: Fingerprinting canvas
in HTML5. ([n. d.]).

[27] Yoichi Nakaguro, Matthew Dailey, Sanparith Marukatat, and Stanislav Makhanov.
[n. d.]. Defeating line-noise CAPTCHAs with multiple quadratic snakes. Com-
puters Security 2013 ([n. d.]).

[28] N. Narodytska and S. P. Kasiviswanathan. 2017. Simple black-box adversarial
perturbations for deep networks. In IEEE Conference on Computer Vision and
Pattern Recognition.

[29] Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman,
and Daniel Pérez-Cabo. 2017. No bot expects the DeepCAPTCHA! Introducing
immutable adversarial examples, with applications to CAPTCHA generation.
IEEE Transactions on Information Forensics and Security (2017).

[30] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. [n. d.]. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security.

[31] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. [n. d.]. The limitations of deep learning in adversarial
settings. In IEEE European Symposium on Security and Privacy (EuroS&P) 2016.

[32] S. K. Saha, A. K. Nag, and D. Dasgupta. 2015. Human-Cognition-Based
CAPTCHAs. IT Professional (2015).

[33] B. Shi, X. Bai, and C. Yao. 2017. An End-to-End Trainable Neural Network for
Image-Based Sequence Recognition and Its Application to Scene Text Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2017).

[34] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, and Xiang Bai. 2016.
Robust scene text recognition with automatic rectification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jianhai Chen, Raheem A. Beyah,
and Ting Wang. 2019. Adversarial CAPTCHAs. CoRR abs/1901.01107 (2019).
arXiv:1901.01107

[36] S. Sivakorn, I. Polakis, and A. D. Keromytis. [n. d.]. I am Robot: (Deep) Learning
to Break Semantic Image CAPTCHAs. In 2016 IEEE European Symposium on
Security and Privacy (EuroS P).

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[38] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[39] Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
[n. d.]. Stealing machine learning models via prediction apis. In Usenix Security
2016.

[40] H. Weng, B. Zhao, S. Ji, J. Chen, T. Wang, Q. He, and R. Beyah. 2019. Towards
understanding the security of modern image captchas and underground captcha-
solving services. Big Data Mining and Analytics 2, 2 (2019), 118–144.

[41] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. [n. d.]. A Methodology for
Formalizing Model-Inversion Attacks. In 2016 IEEE 29th Computer Security Foun-
dations Symposium (CSF).

[42] Y Xu, G Reynaga, Sonia Chiasson, J.-M. Frahm, Fabian Monrose, and Paul
van Oorschot. [n. d.]. Security and Usability Challenges of Moving-Object
CAPTCHAs: Decoding Codewords in Motion. In Usenix Security 2012.

[43] J. Yan and A. S. E. Ahmad. [n. d.]. Breaking Visual CAPTCHAs with Naive Pattern
Recognition Algorithms. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007).

14

https://www.deathbycaptcha.com
http://www.captchatronix.com
https://pypi.org/project/captcha/
http://arxiv.org/abs/1901.01107

[44] Jeff Yan and Ahmad Salah El Ahmad. [n. d.]. A Low-cost Attack on a Microsoft
Captcha. In CCS ’08.

[45] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei
Xu, Xiaojiang Chen, and Zheng Wang. [n. d.]. Yet Another Text Captcha Solver:
A Generative Adversarial Network Based Approach. In CCS ’18.

[46] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems (2019).

[47] Bin B Zhu, Jeff Yan, Qiujie Li, Chao Yang, Jia Liu, Ning Xu, Meng Yi, and Kaiwei
Cai. [n. d.]. Attacks and design of image recognition CAPTCHAs. In CCS ’10.

A CRNN MODEL STRUCTURE
Here, We describe each part of CRNN in detail. CRNN mainly con-
sists of three parts: Convolutional Neural Network (CNN) part which
extracts a feature sequence from the input image, Recurrent Neural
Network (RNN) part which predicts a label distribution for each
feature representation and Connectionist Temporal Classification
(CTC) part which translates all label distributions into the final label
sequence, as shown in Figure 12.
CNN Part. The component of convolutional layers is constructed
by taking the convolutional and pooling layers from a standard
CNN model (fully-connected layers are removed). Such component
is used to extract a sequential feature representation from an input
image. Before being fed into the network, all the images need to
be scaled to the same height (width could be different). Then a
sequence of feature vectors f1, ..., fr is extracted from the feature
maps produced by the component of convolutional layers, which
is the input for the recurrent layers. The value of r is related to
the width of the input image. Obviously, a wider input image will
induce a longer feature sequence. Note that our method can accom-
modate any type of CNN models, e.g., Lenet [25], ResNet [18] and
Inception [37]. Table 6 shows the structure of our solver which has
four convolutional layers, where each of the convolutional layer
is followed by a max-pooling layer. This structure is simple and
effective in practical applications which can achieve high accuracy
with a small amount of training data and a short inference time.
RNN Part. The recurrent layers predict a label distribution lt for
each feature representation ft in the feature sequence f1, ..., fr .
The traditional RNNs are vulnerable to the vanishing gradient
problem, while the Long Short Term Memory (LSTM) method is
more effective in tackling this issue [19]. The special design of
LSTM can capture long-range dependencies, which often occur in
image-based sequences. Table 6 shows the structure of our RNN
part which has two LSTM layers.
CTC Part. CTC layer decodes the predictions made by the RNN
part into a label sequence. The objective of the CTC part is to find
the label sequence with the highest probability conditioned on the
predicted label distributions. By leveraging the CTC part, we only
need captcha images and their corresponding label sequences to
train the network, without requiring labeling positions of individual
characters.

B GROUND TRUTH CONSTRUCTION
Now, we describe how domain experts label a user as an attacker.
There are many kinds of features or signals that experts can utilize.
We introduce three categories of features in the following.

1) User Environment Information. Normal users use browsers to
browse websites, while attackers often use scripts to crawl infor-
mation. Thus, their browser attributes are different. The web-front

B
atch N

orm
alization

Leaky R
eLu

Flatten V
ector

LSTM

LSTM

Fully C
onnected

C
TC D

ecoder

d 2 d 6

CNN Part RNN Part CTC Part

M
ax Pool

* 4

Figure 12: Architecture for our substitute solving model.

Table 6: CRNN model details

Layer Type Configurations
Input 30 × 100 gray-scale image

Convolution 1 filters=64, kernel=3,strides=1
BatchNorm

Max Pooling 1 kernel=2, strides=2
Convolution 2 filters=128, kernel=3,strides=1
BatchNorm

Max Pooling 2 kernel=2, strides=2
Convolution 3 filters=128, kernel=3, strides=1
BatchNorm

Max Pooling 3 kernel=2, strides=2
Convolution 4 filters=64, kernel=3,strides=1
BatchNorm

Max Pooling 4 kernel=2, strides=2
LSTM 1 hidden units=256
LSTM 2 hidden units=256

Fully Connect
CTC

Figure 13: The statistic of the device number with respect to access
frequency.

client of the user risk analysis system executes a series of checks
for collecting the user environment information, e.g., web driver,
user-agent and Cookie. The experts can detect various items, for
example, whether a user uses an automate web driver, whether the
user-agent contains the complete information, or is misformated.
Moreover, in order to obtain real browser attributes, web fingerprint
techniques, e.g., webGL fingerprinting [26], are employed. The dis-
crepancies between fingerprints with the reported user-agent are
also important factors considered by the experts.

2) High Frequency Information. A significant characteristic of
machine traffic is the high access frequency compared to the normal
users. The experts can analyze the access frequency for different
entities, e.g., IP, account and device, to find attackers. Moreover,
they can set a strict threshold, e.g., 100 times per second, to avoid
misclassification. Figure 13 shows the statistic of the device number
with respect to the access frequency during a week. We can find
many devices access too frequently.

15

Figure 14: The statistic of the access numberwith respect to sliding
time.

3) User Behavior Information. As we stated in Section 4.1, a user
needs to slide a bar for the authentication. Such sliding behavior
information is an important feature to identify attackers. Figure
15 shows the the difference between machine mouse trajectories
and human mouse trajectories. From Figure 15, experts can classify
users whose mouse trajectories are significantly different from
normal users as attackers. Moreover, they can even simply analyze
the sliding time. Figure 14 shows the statistics of the device number
with respect to sliding time during a week. Obviously, those devices
which slide the bar too fast, e.g., less than 0.1 second, are machine
traffic. In addition, even the attackers realize that the sliding time is
a detection variable and deliberately extend the sliding time, we can
still detect them leveraging other advanced means. For instance,
they access too many times in a short time and their sliding time
are similar, which can also be observed in Figure 14.

The sophisticated attackers may try to avoid detection by obfus-
cating some features, i.e., when they aware of mouse movement,
they can deliberately simulate human trajectories. However, it is
difficult for the attackers to simulate human behaviors in all possi-
ble features. Actually, there are many other features we have not
mentioned in the paper due to the confidentiality requirements of
the company. By analyzing various features, experts can label a
attacker with high confidence.

(a) normal trajectory

(b) abnormal trajectory 1

(c) abnormal trajectory 2

Figure 15: Mouse trajectories during sliding a bar. Human trajec-
tory in 15(a) is smooth while machine trajectory is either rough in
15(b) or linear in 15(c).

16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 ML Model Vulnerability
	2.2 Modern Attacks on Captchas
	2.3 Motivating the Design of advCAPTCHA
	2.4 Comparison with Prior Work

	3 Design of advCAPTCHA
	3.1 Overview
	3.2 Constructing Substitute Solving Model
	3.3 Generating Adversarial Captchas
	3.4 Querying the Attack Model
	3.5 Fine-tuning the Substitute Model

	4 Deployment and Evaluation Setup
	4.1 Application Platform
	4.2 Deployment
	4.3 Evaluation Setup

	5 Evaluation
	5.1 Analysis of Attackers (High Risk Users)
	5.2 Effectiveness of advCAPTCHA
	5.3 Impact of Fine-tuning the Substitute Model
	5.4 Usability Analysis

	6 Further Analysis of the Fine-Tuning Process
	6.1 Security Analysis after Attack Model Update
	6.2 Robustness of advCAPTCHA in Defending against Various Attack Models
	6.3 Impact of Human Answers in Query Process
	6.4 Performance under Different
	6.5 Impact of Captchas in the Query Process

	7 Discussion and Limitation
	8 Conclusion
	References
	A CRNN Model Structure
	B Ground Truth Construction

