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ABSTRACT

Computational models of learning can be powerful tools to
test educational technologies, automate the authoring of in-
structional software, and advance theories of learning. These
mechanistic models of learning, which instantiate computa-
tional theories of the learning process, are capable of mak-
ing predictions about learners’ performance in instructional
technologies given only the technology itself without fitting
any parameters to existing learners’ data. While these so
call “zero-parameter” models have been successful in mod-
eling student learning in intelligent tutoring systems they
still show systematic deviation from human learning perfor-
mance. One deviation stems from the computational mod-
els’ lack of prior knowledge—all models start off as a blank
slate—leading to substantial differences in performance at
the first practice opportunity. In this paper, we explore
three different strategies for accounting for prior knowledge
within computational models of learning and the effect of
these strategies on the predictive accuracy of these models.

1. INTRODUCTION

A computational theory approach to modeling psychological
phenomenon consist of building simulations of cognitive pro-
cesses and testing their ability to emulate and explain human
behavior. Within educational data mining there have been
several attempts to model student learning processes using
a computational theory approach. For example SimStudent
[1] is a computational approach which simulates human stu-
dents. The Apprentice Learner (AL) Architecture [2] is a
modular framework for creating computational agents such
as SimStudent that learn to solve problems in intelligent tu-
toring systems (ITSs) as a human student would. These
computational agents mimic the inductive learning process

Erik Harpstead
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

harpstead@cmu.edu

Christopher J. MacLellan
Soar Technology, Inc.
3600 Green Court, Suite 600
_Ann Arbor, MI 48105
chris.maclellan@soartech.com

Kenneth R. Koedinger
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

koedinger@cmu.edu

undergone by students in response to examples and correct-
ness feedback given in a particular domain.

These approaches afford several different use cases relevant
to the domain of EDM. First, as cognitive models of human
learning, these computational agent models can be used to
test theories of human learning. The AL framework uniquely
serves this role since it is designed so that its components
can be interchanged, to enable the instantiation of differ-
ent theories of learning that can be tested against human
behavior.

Second, insofar as as computational agents constitute high
fidelity models of human learning as simulated students,
they can be used as cognitive crash dummies for instruc-
tional design prior to the longer process of classroom tri-
als and A/B studies. For example, experiments with Sim-
Student and agents built with AL showed that interleaving
fraction addition and fraction multiplication problems would
lead to more efficient learning by opportunity in an ITS [14].
This result was later corroborated by human trials [15].

Finally, simulated students can be used as efficient authoring
tools. Simulated students can form generalized production
rules from examples and correctness feedback meaning that
they can be trained in a manner similar to example tracing
[3] to build expert models for ITSs. Expert models trained
with SimStudent, for example, have similar expressivity and
accuracy as hand-written production rule models, but can be
built in significantly less time and without any programming
knowledge required by the author [12, 11, 16].

Computational theory approaches of learning such as Sim-
Student and the simulated students built with the AL frame-
work are at their core zero-parameter models of human learn-
ing. These approaches are distinct from performance pat-
tern models such as the Additive Factors Model (AFM) [4, 5]
or Bayesian Knowledge Tracing (BKT) [6] since they at-
tempt to predict the presence of a pattern in behavior (e.g.,
learning a new skill or misconception) given only the task
environment and a few underlying assumptions about the
learning process rather than fitting to data from individual
students. These computational theory approaches to human



modeling attempt to make predictions of human behavior
without knowing anything about the humans that they are
modeling, putting the burden of the modeling process on de-
liberate and explainable algorithmic design choices. While
there are added challenges to designing computational the-
ory approaches that accurately reflect human behavior, they
have the advantage of fine-grained explainability. Since a
computational theory approach actually performs the tasks
given to the students that it attempts to model, the fidelity
of the model to its human counterparts can be evaluated in a
more incisive manner, considering not just the performance
of the model by opportunity, but the types of errors it makes
and strategies it employs as well.

While computational theory models have demonstrated some
success in the past they still possess several systematic issues
in their performance. When applied to the task of modeling
learning many computational theory models manifest some
version of a cold start problem. Namely, as these models,
by definition, are not fit to information from individual stu-
dents, they often lack the ability to account for individual
differences in prior knowledge or experience that students
bring to bear. Performance pattern models are free to deal
with this problem in a number of ways. For example, AFM
and its variants often fit some kind of student intercept to
allow for variation among students’ initial ability [4, 5]. Sev-
eral strategies for estimating Bayesian priors in BKT have
been proposed in the EDM literature [6, 7]. In a perfor-
mance pattern context estimating prior knowledge amounts
to estimating some parameter between 0 and 1. Compu-
tational theory models, on the other hand, require a fully
specified mechanistic skill to be initialized and refined in a
learning process that directly models the process of a human
trying to master skills in an intelligent tutoring system.

In this paper we explore several strategies for accounting for
prior knowledge in the AL architecture and compare each
strategy’s ability to generate learner performance similar to
that of students. We close with a discussion of these strate-
gies and discuss the limitations of our current approaches as
well as directions for future work.

2. OUR EXPERIMENT

2.1 The Apprentice Learner Architecture

The Apprentice Learner (AL) Architecture is a modular
framework for modeling the human learning process from
demonstrations and feedback [2]. The purpose of the archi-
tecture is to serve as a test-bed for computational theory
approaches to student modeling. Agents created in the AL
framework induce production rules from training that can
be provided either interactively by a human or by working
with an existing ITS. In our experiments we use the latter
approach to train a set of simulated students on an intel-
ligent tutoring system with the same order of problems as
each student from a human dataset.

AL agents receive two types of feedback from ITSs, exam-
ples and correctness feedback. When an AL agent has a
learned production rule that can fire it will try the resulting
action and get correctness feedback from the ITS, other-
wise the agent will request a hint (i.e., an example) from
the ITS. Through positive examples from hint requests and
positive feedback, and negative examples from negative feed-

back, AL refines its understanding of the domain and learns
to correctly solve problems in the ITS.

To induce a production rule model suitable for solving prob-
lems, AL employs a four mechanism learning process con-
sisting of when-learning, where-learning, how-learning, and
which-learning. The when- and where-learning mechanisms
determine the context in which a production rule should fire,
the how-learning mechanism searches for chains of overly
general operators that explain tutor demonstrations to de-
termine what a production should do when it fires, and the
which-learning determines which production rule should fire
if multiple are applicable.

The operators that how-learning employs are “overly gen-
eral”; in the sense that they are applicable in a wide range
of domains, but not specific enough to solve problems in any
particular domain. Overly general operators do not consti-
tute production rules since they are not programmed with
any sense of when they should fire. In our experiments we
use one perceptual operator ‘equals’ which adds to the prob-
lem state the fact that two values are equal, and four pro-
cedural operators ‘add’, ‘subtract’, ‘multiply’ and ‘divide’.
The conditions in which these operators should be utilized,
the particular interface elements from which they derive
their numerical inputs, and the interface elements that will
receive their outputs are learned by the when- and where-
learning mechanisms respectively to create full production
rules.

The AL agents in our experiments employ Trestle [13], an
incremental hierarchical categorization algorithm for when-
learning. For where-learning, since we use only static in-
terfaces in our experiments, we employed a ‘most specific’
strategy, which uses the inputs and outputs present in pos-
itive training examples without trying to generalize from
those examples to unseen cases. We allow our how-learning
mechanism to only use single operation explanations (i.e.
just multiply or add two numbers, not three numbers or
combinations of operators). The which-learning mechanism
chooses the production rule which has been employed suc-
cessfully with the highest frequency so far given the current
state representation.

2.2 Data Source

To evaluate different methods of pretraining AL agents we
used student performance data from an ITS for fraction
arithmetic [15]. The dataset consisted of the work of 117
students on three different types of fraction arithmetic prob-
lems: 1) adding fractions with the same denominator, 2)
adding fractions with different denominators, and 3) multi-
plying fractions. In the interface students are first asked
if they need to convert the two fractions, which is false
in the addition-same and multiplication cases and true in
the addition-different case. If the fractions need to be con-
verted then the students must find the common denomina-
tor between them and write in the converted fractions before
adding them. This dataset is available on DataShop [9] *.

"https://pslcdatashop.web.cmu.edu/Project?id=243



2.3 Training Strategies

We explored three different strategies for accounting for prior
knowledge in AL Agents. For each of these strategies an
agent was paired with a human student and provided some
form of pretraining based on data collected about that stu-
dent prior to working through that student’s problem se-
quence in the data. In our experiments we attempted three
different strategies to account for prior knowledge estimated
fraction prior experience, estimated whole number prior ex-
perience, and demonstrated pretest. Additionally, we ran a
no pretraining control condition which begins from a con-
ventional cold start.

2.3.1 Estimating Prior Experience

In the estimated fraction and estimated whole number prior
experience strategies agents worked through a number of
pretraining problems based on estimates of each student’s
prior opportunities to practice problems in each of the three
types of fraction arithmetic problem. We estimated the
number of prior opportunities (P;;) that a student ¢ had
on each knowledge component (KC) k [10] in the fraction
arithmetic tutor. Taking the AFM mixed model regression
equation:

log( :Z,jij ) = 0i + Sk(qiBr + g vrTix), 0i ~ N(0, 0?)

Consider an imaginary tabla-rasa student with no knowledge
of anything at all with student intercept 6_ o, and a student
with student-intercept #. We can find the number of prior
opportunities P;; such that the tabla-rasa student has the
same log odds of answering a question in KC k as student i:

0—co + Xk (qinfr) + Sr(qieve Pix) = 0i + Zr(qjx5k)

0;—6_ oo

— Py, = -~

An issue with this formulation is that a true tabla-rasa stu-
dent would have 0_~ equal to -inf, so we introduce an ap-
proximation for 6_., in order to get reasonable values for
Pii.. In our experiments we choose 6_.,=-2 since this is the
student intercept at which a student practicing a single KC
step with a KC intercept of zero would have about a 10%
probability of getting the step correct. Although this an ar-
bitrary choice, we believe it is a reasonable one, much in the
same way that it is reasonable to choose a 90% chance of
correct behavior as a mastery threshold in a BKT model.

There are three distinct types of fraction arithmetic prob-
lems, which each have their own sets of KCs. In the case of
fraction addition the two fractions can either have the same
denominator, in which case the student need only add the
numerators, or the denominators could be different, requir-
ing the student to convert the fractions before adding. In
the third case, fraction multiplication, the KCs are distinct
from the addition cases. Since in practice fraction arith-
metic problems are not presented with any of their KCs in
isolation we estimated the number of problems of each type
to give as prior training to our learning agents as the min-
imum P;; among the problems of a given type. For the

estimated fraction prior experience case we pretrain on a
number of random problems from each type according to
these estimates. In the estimated whole number prior ex-
perience case we pretrain as many random whole number
addition problems as there are estimated same denominator
problems and as many random whole number multiplication
problems as estimated multiplication problems.

In the estimated fraction condition, randomly generated prob-
lems were restricted to have denominators between 2 and
12 with numerators less than each fraction’s denominator
(i-e., no improper fractions). In the estimated whole number
condition, each agent was given randomly generated whole
number arithmetic problems prior to beginning the core tu-
toring sequence. These whole number arithmetic tutors were
restricted to numbers between 1 and 12.

2.3.2 Demonstrating Prior Answers

In the demonstrated pretest case we pretrain the AL agents
by providing them with demonstrations of the exact answers
that students gave in a pretest evaluation of the original
study. In order to model both the knowledge and miscon-
ceptions of the student, these answers are given to AL as
positive examples regardless of whether or not each of the
students’ answers were correct. The goal here is that the
pretest encapsulates a picture of each students’ prior con-
ceptions that may contain more information than a fit pa-
rameter. The pretest is a snapshot of students behavior
under a particular set of problems, a sample which we use
to infuse an associated AL agent with the same knowledge
and misconceptions as the original student.

One limitation of our pretest demonstration approach is that
the available pretest data only contained the given fraction
problems and the students’ final answers. Thus, the demon-
strations that we provided to the agents appeared as single
steps even though the human students may have done mul-
tiple mental calculations to arrive at their answer. This
issue is likely to be particularly salient on fraction addition
problems with different denominators as the common de-
nominator process would not be apparent.

3. RESULTS

In Figure 1 we see that the estimated fraction condition gets
closest to the human first opportunity performance, followed
by the demonstrated pretest condition. The estimated whole
number condition behaves almost equivalent to the control
case with a 100% first opportunity error rate.

To test the fit of each strategy to the human data we cal-
culate the residuals between the human learning curves and
the learning curves generated from the AL agents run with
each pretraining strategy (Figure 2). Table 1 shows sev-
eral statistics of the fit of each strategy to the human data.
The ”Accuracy” column shows the mean accuracy between
the correctness (0 for incorrect and 1 for correct) of each
human and that human’s AL agent counterpart over all stu-
dents and opportunities. The "First Opp. Accuracy” column
shows this same statistic, but only for the first opportunity.
In both cases the estimated fraction strategy shows the best
fit to the human data.

In addition to testing the predictive accuracy of the models,
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Figure 2: Learning curve residuals (human minus
agent) for each strategy across all knowledge com-
ponents. Error bars are standard errors.

we next looked at the explanatory power of the model— by
looking at its ability to account for variation in the human
error rates over the course of problem solving. As a coarse
measure of explanatory power, we first conducted a x? test
of independence between each model correctness and the hu-
man correctness. This test confirmed that there is a signifi-
cant relationship between each models’ predictions and the
human correctness (independence hypothesis rejected for all
models, p < 0.001). Next, we looked to more finely eval-
uate how well each model explains variation in the human
data. To do this we used a mixed-effects regression analysis
[16]. For this analysis, we used a mixed-effects model with
fixed effects for each model prediction as well as the prac-
tice opportunity counts. The model also included random
effects for the intercept and slopes of each knowledge com-
ponents as well as intercepts for each student.?> This model,

2The mixed-effect regression model used in R: Hu-
man.Correctness ~ Agent.Correctness + Opportunity + (1

which is effectively the Additive Factors Model [4, 5] with an
additional term for the model predictions, serves a role sim-
ilar to a repeated measures ANOVA analysis by accounting
for general effects of within student and skill ( knowledge
component) performance as well as the effect of repeated
practice. The model enabled us to evaluate how well each
computational models’ predictions improved the overall re-
gression model fit over the baseline AFM model. By apply-
ing model fit statistics, such as AIC, to these mixed-effects
models, we could evaluate which model better accounted for
variation in the human behavior above general practice ef-
fects and general correlations of behavior within students
and skills. The baseline AFM model fit to this data had an
AIC score of 9558.7. The "AIC” column in Table 1 shows the
AIC scores for the mixed-effects model with the added fixed
effects for each respective computational model. Note, the
numbers of free parameters and data points between each of
these models is equivalent thus we did not consider other fit
statistics such as BIC or HQC as they would have resulted
in an identical ordering.

These results show that all models provide some explana-
tory power over the baseline AFM model. However, the
no pretraining control model appears to provide the most
explanatory power. Although this result seems counter-
intuitive from the graphs shown in Figure 1, there is at least
one possible explanation. Mainly, that the estimated frac-
tion model better fits the average of all students whereas
the no pretraining model better fits individual students—
specifically students with high initial error. The estimated
fraction model likely better fits the students that perform
better initially; however these students have less variation
in their behavior that the model might account for and this
variation is already accounted for as a general within-student
effect of the regression evaluation. In contrast, the no pre-
training control and demonstrated pretest models better fit
students with lower performance at the beginning, who also
have more variation to account for.

Finally, we analyzed the residuals shown in Figure 2 using
a linear regression analysis. This analysis fit a line to each
residual curve to get an estimate of the intercept and slope
of these curves. Table 2 shows the slopes and intercepts of
these linear models with their accompanying 95% confidence
regions. This analysis shows there is a significant intercept
and slope for each of the models (all intercepts and slopes
are non-zero, p < 0.001). However, the estimated fraction
model has the intercepts and slopes that are closest to zero,
suggesting that it is a better fit of the overall error rates and
error rates by opportunity.

+ Opportunity | KnowledgeComponent) + (1 | Student.Id).

Table 1: Fit statistics to human data by strategy.

| Strategy | Acc. | First Opp. Acc. | AIC |
No Pretraining 0.684 0.316 9541.3
Est. Fractions 0.805 0.643 9558.1
Demo Pretest 0.701 0.389 9548.2
Est. Whole Num | 0.681 0.326 9556.4




4. DISCUSSION

Our current experiments in accounting for prior knowledge
in AL agents have mixed results, but yield fruitful direc-
tions for future work. Our most promising method, the es-
timated fraction prior experience case, reduces the average
first opportunity error rate across all knowledge components
down to about 40%. The human students by contrast be-
gin at about a 30% error rate. The demonstrated pretest
case yielded little improvement over the control. The only
slight first opportunity improvement in the demonstrated
pretest case is likely due to the often erroneous answers that
the students produced in the pretest, which we presented to
our AL agents as the ground truth in this condition. Our
original hypothesis was that these erroneous but positively
labelled examples would account for any existing miscon-
ceptions in the human students. However, these erroneous
examples may have gone too far toward confusing the AL
agents. An alternate explanation is that the lack of nega-
tive examples in this case hinders the AL agents’ capacity to
effectively delineate between their learned production rules.
Finally, since the estimated whole number learning curves
turned out to behave equivalently to the control case both
in first opportunity error rate and in over-all shape, we need
to look more closely at AL’s capabilities for cross-interface
skill transfer in future work .

We consider these experiments to be a first exploratory pass
at accounting for prior knowledge in computational model-
ing approaches to human learning. Among them, the esti-
mated fraction prior experience case is decidedly the closest
to human behavior. However, we certainly think we can get
much closer to the human behavior going forward.

One direction for future work is to improve our estimates
for the number of opportunities to pre-train our agents with
to account for the prior knowledge of their human coun-
terparts so that the intercepts of the human and AL agent
learning curves match. We can approximate the average of
the ground truth number of prior opportunities by calculat-
ing the number of opportunities that the control condition
takes to gain parity with the human students at their first
opportunity. By comparison to this ground truth average it
appears that our estimates are too large in the multiplica-
tion (14.17 vs. 6) and same denominator addition problems
(6.76 vs. 4) and too low in the addition different problems
(6.79 vs. 9). We found that these discrepancies could not
be remedied by a different choice of 0_.

In previous evaluations of the AL framework in other do-
mains AL agents learned more per opportunity than the
human subjects [16]. We hope to explore this fact further
by evaluating situations where AL agents over/under per-
forms relative to the humans, and find ways of correcting
the discrepancy.

Table 2: Linear model fit to residuals.

| Strategy Intercept | Slope |
No Pretraining | —0.474 £0.012 | 0.030 £ 0.002
Est. Fractions -0.108 +0.011 | 0.007 4+ 0.002
Demo Pretest —0.422 £0.012 | 0.026 £ 0.001
Est. Whole Num | —0.490 +£0.012 | 0.031 £ 0.001

One direction for future work that will help us converge on
an accurate model of a human learning, is to give AL agents
the capability to make random guesses guided by statistics
of human errors. This behavior might include inputting
common random numbers, copying random numbers, and
applying overly general operators at random. Much in the
same way that we have estimated the P;; from human data,
we would need to estimate a distribution from which these
behaviors could be drawn. Similar statistics could be esti-
mated for inferential and procedural slip mistakes 2.

The question certainly is raised: if we must rely on descrip-
tors of human behavior derived from fitting statistical mod-
els to human performance, then to what extent are we em-
ploying a zero-parameter approach to modeling? No doubt,
we are using fit parameters in our modeling approach by
bootstrapping our models guided by student intercepts cal-
culated from AFM. However, our computational modelling
approach attempts to replicate human behavior instead of
only fitting performance, and this process is guided a pri-
ori via computational theories of student learning, not by
comparison to human data.

Although our nearly zero-parameter computational approach
opens up many possibilities for testing theories of human
learning, it comes with its own set of difficulties and limita-
tions. In contrast to performance estimation models such as
AFM and BKT which require only the logs of human per-
formance on an ITS, our approach also requires a working
ITS for the AL agent to work against. This limits the appli-
cability of our method to older datasets for which the actual
tutoring interfaces have been lost to time. Currently our
system works on the newest HTML version of CTAT and
has been used successfully in previous experiments on the
older Java version of CTAT as well. However, in order to
use different ITSs new code must be written to communicate
tutor events to the AL framework’s RESTful API.

While a nearly zero-parameter computational approach to
human learning allows us to form and test theories of learn-
ing in a very detailed manner, it should be noted that the
strength of any claim about the underlying cognitive pro-
cesses of students is dependant on both the specificity of
such a model in replicating human behavior and the gener-
alizability of such a model across different domains. Here
we have looked at just a single domain, fraction arithmetic,
since it is amenable to all three of our proposed strategies.
However, it should be noted that although validity claims are
strengthened in a zero-parameter computational approach
by the fact that behavior must be explained on an algorith-
mic level and not by fitting parameters, it is still possible
that two underlying learning mechanisms yield almost in-
distinguishable behavior. Thus generalizability is essential
to any claim about human cognitive processes. However,
generalizability cannot be gained for free by the availability
of more diverse data, as is often the case with deep learn-
ing models. Rather, any observed discrepancies between do-
mains must be explicitly explained and accounted for by the
investigator at an algorithmic level. This fact lends very high
explainability to a zero-parameter computational approach,
but nonetheless presents an added challenge.

3These statistics would be difficult to estimate convincingly
with a zero-parameter approach.



5. CONCLUSION

We have tested three different strategies for accounting for
prior knowledge in AL agents trained on fraction arithmetic
problems. Our three strategies were 1) ’estimated fraction
prior experience’ where we gave the AL agents additional
practice in fraction arithmetic problems before starting the
core tutor problems, 2) ’demonstrated pretest’ where we
showed the AL agents their human counterparts’ answers
on pretest problems before starting the core tutor problems,
and 3) ’estimated whole number prior experience’ where we
pretrained the AL agents with whole number arithmetic
problems. Our results showed that in terms of matching
human learning curves the estimated fraction case beats out
all the other strategies. However the control case, which had
no pretraining at all, best explains the variance in the data.

We have discussed several limitations of our nearly zero-
parameter computational approach to testing theories of
learning, and have offered several avenues for improvement.
Concerning the limited accuracy of our current approach in
estimating the number of prior opportunities necessary for
an AL agent to account for the prior knowledge of its human
counterpart, we have offered an avenue for further refine-
ment. Additionally we have discussed ways that we might
accounting for non-deterministic human behavior such as

initial guessing. Finally, we have addressed the zero-parameter

nature of our approach and considered its technical and epis-
temological limitations and strengths. We consider the AL
framework to be a strong avenue for testing theories of learn-
ing, and hope to refine our computational approach to mod-
eling human learning in future work.
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