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Abstract

We consider a large family of problems in which an ordering (or, more precisely, a chain of
subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family
includes variations of Min Sum Set Cover (MSSC), several scheduling and search problems,
and problems in Boolean function evaluation. We define a new problem, called the Min Sum
Ordering Problem (MSOP) which generalizes all these problems using a cost and a weight
function on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for
the problem of finding a subset whose ratio of weight to cost is maximal, we show that under
very minimal assumptions, there is a polynomial time 4α-approximation algorithm for MSOP.
This approximation result generalizes a proof technique used for several distinct problems in
the literature. We apply this to obtain a number of new approximation results.
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1 Introduction

Many optimization problems (perhaps the most famous of which being the Traveling Salesman

Problem, or TSP) require the elements of a finite set to be arranged in some order to minimize

some cost.This work is concerned with ordering problems in which the objective is not to minimize

a single total cost, as in the TSP, but an incremental sum of costs or, equivalently, a weighted

average of costs. For example, in many scheduling problems, the objective is to minimize some

weighted sum of completion times of a set of jobs. The order in which the jobs are processed may

be constrained by some form of precedence constraints. In search problems, one might wish to

minimize the expected time or cost incurred in searching for a target or targets that are hidden

according to a known probability distribution, and the set of feasible searches may be restricted

by some network structure. These problems arise in search and rescue as wellas military search

operations. Sequential testing problems also come under this framework:a set of tests (for example,

medical tests, database queries or quality tests of computer chip components) must be performed

in some order to minimize an expected cost (of forming a diagnosis, of determining whether the

query is satisfied or of checking whether the component meets certain quality standards).

We unify problems of this type by introducing a new, very general problem formulation, which

we call the Min Sum Ordering Problem or MSOP. Roughly speaking, the problem is to choose an

increasing (with respect to set inclusion) sequence of subsets, called a chain, of a finite set V so as to

minimize some weighted sum of costs, where the weights and costs are given by two non-negative,

non-decreasing set functions (a cost function and a weight function). The elements in the chain

must belong to some specified family of subsets of V .If this family contains all subsets of V , then

the problem is equivalent to minimizing over all permutations of V , where the subsets in the chain

correspond to the elements picked “so far” by the permutation. By setting the problem up in the

more general way, in terms of maximizing over chains rather than permutations, we ensure that

the model is general enough to incorporate the intricacies of precedence constraints or restrictions

due to a network structure, for example. MSOP is described more precisely in Section 2, where we

also discuss in detail some examples of problems that come under its framework.

Similar “min-sum” problems with general cost and/or weight functions have been introduced

in Iwata et al. (2012) and Pisaruk (1992) (considered further in Fokkink et al. (2019)). MSOP

is more general than both of these problems in two ways. Firstly, we make weaker assumptions

about the form of the cost and weight functions: Pisaruk (1992) assumes that the cost function is

submodular and the weight function is supermodular, and Iwata et al. (2012) (implicitly) assume

the weight function is the cardinality function. Our main results require that either the cost function
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is subadditive or the weight function is superadditive. Secondly, the aforementioned works take the

approach of minimizing over all permutations of V , in contrast to our approach of minimizing over

chains.

MSOP is NP-hard, so we consider approximation algorithms in the case that the cost and

weight functions take particular forms. An important concept in our analysis is that of the density

of a subset of V , which is the ratio of its weight to its cost. In forming a chain, we define the
marginal density of each subset in the chain as the ratio of the increase in weight to the increase

in cost. The algorithm relies on a subroutine that solves the subproblem of finding subsets of

maximum marginal density, or approximates this subproblem within some factor α ≥ 1. We

consider a greedy algorithm which forms a chain by recursively picking subsets of maximum (or

approximately maximum) marginal density. Our main result (Theorem 1) says that the greedy

algorithm is a 4α-approximation algorithm for an optimal solution to MSOP for any subadditive

cost function and arbitrary weight function (subject to a technical condition on the set of feasible

chains). By considering a dual problem we also prove an approximation result for the class of

problems with a superadditive weight function using a “backward” greedy algorithm (Theorem 13).

The proof of Theorem 1 is inspired by the elegant proof in Feige et al. (2004) of the 4-

approximation algorithm for the problem Min Sum Set Cover (MSSC). This is the problem of

ordering a ground set V to minimize the sum of “covering times” of a given collection of subsets of

V , where the covering time of a subset is the earliest position in the ordering of any element of that

subset. The proof uses the idea of representing the cost of the ordering produced by the greedy algo-

rithm and that of an optimal ordering by two histograms, and showing that when the first histogram

is shrunk by a factor of two in the horizontal and vertical directions, it fits in the second histogram.

The proof idea is generalized in Streeter and Golovin (2008), who proved a 4-approximation result

for a class of problems that includes some special cases ofMSOP, including MSSC. A different

generalization of MSSC is given in Iwata et al. (2012) to prove the 4-approximation for one case

of the Minimum Linear Ordering Problem. More recently, a similar proof was used in Hermans

et al. (2019) to establish an 8-approximation for the expanding search problem, and in Happach

and Schulz (2020a) to obtain a 4-approximation for bipartite OR-scheduling.

While the last three works cited all use a similar proof method, the proof is somewhat different

in each case and none of these results directly implies another.The similarity of the proofs strongly

suggests that some deeper result is behind all of these problems.We confirm here that this is indeed

the case by showing that MSOP generalizes each of them. In Section 3 we shall show that their

respective approximation results are generalized by Theorem 1,which we prove using a variation

of the proof originally devised by Feige et al. (2004). The main difference from the original proof
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stems from the fact that our algorithm does not greedily pick elements of V one by one, but rather

greedily picks subsets in the chain.Also, we do not optimize over permutations but over chains.

In Section 4, we will show that Theorem 1 can be applied to additional problems in scheduling

theory and in Boolean function evaluation. In particular, we consider scheduling problems with

OR-precedence constraints, where the set of jobs to be processed are represented by the vertices of a

directed acyclic graph (DAG), and a job can only be processed after at least one of its predecessors

in the DAG has been processed. We use Theorem 1 to show that there is a polynomial time

4-approximation algorithm for the problem of minimizing the sum of the weighted completion

times of a set of jobs that must be scheduled so as to respect some OR-precedence constraints

given by a DAG that is in the form of an inforest or, more generally,a multitree (where inforests

and multitrees will be defined in Section 4). We also give a 4-approximation algorithm for a

version of MSSC with OR-precedence constraints in the form of an inforest.Finally, we give an 8-

approximation algorithm for minimizing the expected cost of non-adaptively evaluating a Boolean

read-once formula (AND/OR tree), assuming independent tests.In Section 5 we introduce the dual

problem, which leads to further approximation results, and in Section 6 we indicate directions for

future work.

2 Problem Definition and Examples

Let V be a finite set of cardinality n and let f, g : F → R be a cost function and a weight function,

respectively,defined on some family of subsets F ⊆ 2 V that contains ∅ and V (where we use the

symbol ⊆ to denote “is a subset of or equal to” and ⊂ to denote strict inclusion). We assume that

f and g are given by value oracles. We define an F-chain to be a sequence of subsets S = (Sj )k
j=0

for some k such that ∅ = S 0  ⊂ S 1  ⊂ . . .  ⊂ S k = V and S j  ∈ F for each j. When there is no

ambiguity, we will simply refer to an F -chain as a chain.

Then the Min Sum Ordering Problem is to minimize

Cf,g (S) ≡
kX

j=1
f (S j )(g(S j ) − g(S j−1 )), (1)

over all chains S = {S j } k
j=0 . We assume in this paper that f and g are non-decreasing with

respect to set inclusion and that f (∅) = g(∅) = 0. If S minimizes C f,g (S), we say it is optimal

and if C f,g (S) is at most a factor α ≥ 1 times the optimal value of the objective, we say S is an

α-approximation. Theorems 1 and 13 are approximation results for MSOP in the cases that f is

subadditive and F is closed under union, or g is superadditive and F is closed under intersection,

respectively. (The function f is subadditive if and only if f (S  T∪  ) ≤ f (S) + f (T ) for all S, T  F∈
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and g is superadditive if and only if g(S  T∪  ) ≥ g(S) + g(T ) for all S, T  F∈ . Subadditivity and

superadditivity are more general concepts that submodularity and supermodularity, where f is

submodular if and only if f (S  T∪  ) + f (S ∩ T ) ≤ f (S) + f (T ) for all S, T  F∈  and f is supermodular

if and only if f (S  T∪  ) + f (S ∩ T ) ≥ f (S) + f (T ) for all S, T  F∈  .)

Although it is convenient to define MSOP in terms of minimizing over chains, the applications

that we are interested in are problems of minimizing over a set of permutations of V . To be more

precise, let σ : V → V be a permutation of V , and for j = 1, . . . , n, let S σ
j be the union of the

first j elements of V under the permutation σ. Then for a set Σ of permutations of V and given

functions f and g, we wish to solve

min
σ∈Σ

nX

j=1
f (Sσ

j )(g(S σ
j ) − g(S σ

j−1 )). (2)

We refer to this problem as the Min Sum Permutation Problem or MSPP. We will show in Section 3

that as long as Σ satisfies some technical condition, MSPP can be regarded as a special case of

MSOP. Indeed, let FΣ consist of all initial sets of some σ ∈ Σ (that is, all subsets of V that contain

the first j elements of some permutation σ ∈ Σ, for some j). Suppose we have an α-approximate

solution S to MSOP with F = F Σ . Then any permutation σ such that every subset in S is some

initial set of σ will be an α-approximate solution to MSPP. This observation is easily verified and

we postpone its justification until Section 3.

The idea of minimizing over chains is novel, but MSPP has been studied previously in some

other special cases. In particular, Pisaruk (1992) considered the problem in the case that f is

submodular and g is supermodular, giving a 2-approximation algorithm. This special case was

also considered more recently in Fokkink et al. (2019), where the problem was introduced as the

submodular search problem,and previous to that, Fokkink et al. (2017) considered the case off

submodular and g modular.

If g is the cardinality function g(S) = |S| and the sets S j increase by one element in each step,

then the sum in (1) reduces to
P k

j=1 f (S j ). This special case of MSPP was considered in Iwata

et al. (2012), for various classes of function f . In particular, a 4-approximation algorithm was

obtained in the case that f is supermodular. We discuss this in more detail in Subsection 2.2,

in particular in reference to MSSC and its generalizations. A more general 4-approximation had

already been proved by Streeter and Golovin (2008) in the case of f supermodular and g modular.

We will define a simple greedy algorithm for MSOP, which we now briefly describe (see Section 3

for a more precise description). The algorithm constructs a chain by recursively choosing the

(j + 1)th subset S j+1 in the chain in such a way as to maximize the marginal density (g(S j+1 ) −

g(Sj ))/(f (S j+1 ) − f (Sj )). We refer to this maximization problem as the maximum density problem.
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If the maximum density problem cannot be solved in polynomial time, but we can approximate it

in polynomial time within a factor α ≥ 1 then we call a chain produced by such an approximation

an α-greedy chain.We will prove the following in Section 3.

Theorem 1 Suppose f is subadditive and F is closed under union. Then for any α ≥ 1, an

α-greedy chain is a 4α-approximation for an optimal chain for MSOP.

Later, in Section 5, we will derive an analogous result to Theorem 1 for a “backward” greedy

algorithm, using the concept of the dual problem.

In the next subsection we present some examples of problems in the fields of search theory,

scheduling theory and Boolean function evaluation that fall under the umbrella of MSOP.

2.1 Search Theory and AND-Scheduling

The expanding search problem was introduced in Alpern and Lidbetter (2013), and independently

in Averbakh and Pereira (2012) under a different nomenclature. A connected graph G = (V, E) is

given, and each edge e  E∈  has a cost ce. A target is hidden on one of the vertices of the graph

according to a known probability distribution, so that the probability it is on vertex v  V∈  is p v .

An expanding search, starting at some distinguished root r is a sequence of edges e1, . . . , e|E| chosen

so that r is incident to e 1 and every edge ei (i > 1) is incident to some previously chosen edge.

For a given expanding search, the expected search cost ofthe target is the expected value of the

sum of the costs of all the edges chosen up to and including the first edge that contains the target.

The problem is to find an expanding search with minimal expected search cost. The problem was

shown to be NP-hard in Averbakh and Pereira (2012), and Hermans et al. (2019) recently gave an

8-approximation algorithm.

To express the problem in the form of MSOP, let Σ be the set of expanding searches and take

F = F Σ , as described in the preamble to this section. Then F is closed under union, since its

elements consist of connected subgraphs of G containing r. For S  F∈ , let f (S) =
P

e S∈
ce and

let g(S) be the sum of p v over all vertices v contained in some edge of S.Then f is modular, and

Theorem 1 along with the results of Subsection 3.2 on MSPP imply that the greedy algorithm is

4α-approximate, where α is the approximation ratio of the maximum density problem, generalizing

the analogous Theorem 2 of Hermans et al. (2019).

Alpern and Lidbetter (2013) gave a solution to the expanding search problem in the case that

the graph is a tree. In this case, the problem is equivalent to a special case of the single machine,

precedence constrained scheduling problem, usually denoted 1|prec|
P

wj Cj , of minimizing the sum

of the weighted completion times of a set of jobs. A partial order is given on the jobs, and a job
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becomes available for processing only after all of its predecessors have been processed.We refer

to this type of precedence constraints and precedence constrained scheduling as AND-precedence

constraints and AND-scheduling. The jobs have weights w j and processing times pj , and for a

given ordering, the completion time C j of a job j is the sum of its processing time and all the

processing times of the jobs preceding it.The problem is to find a feasible ordering that minimizes

the weighted sum
P

wj Cj of the completion times. Comparing the weights and the processing

times to the probabilities and the edge costs in the expanding search problem, it is easy to see that

if the partial order has a tree-like structure, then the scheduling problem and the search problem

are equivalent, as pointed out in Fokkink et al. (2019).

A polynomial time algorithm for the scheduling problem 1|prec|
P

wj Cj on trees was given

by Horn (1972). Sidney (1975) proved that any optimal schedule (for general precedence con-

straints) must respect what is now known as a Sidney decomposition, obtained by recursively

taking subsets of jobs of maximum density. Lawler (1978) gave a polynomial time algorithm for

the problem on series-parallel graphs, which was generalized to two-dimensionalpartial orders in

a series of papers of Correa and Schulz (2005) and Ambühl and Mastrolilli (2009). Chekuri and

Motwani (1999) and Margot et al. (2003) independently showed that any schedule consistent with

a Sidney decomposition is a 2-approximation.Earlier 2-approximation algorithms were derived by

Schulz (1996) and Chudak and Hochbaum (1999).Correa and Schulz (2005) showed that all known

2-approximations are consistent with a Sidney decomposition.Sidney’s decomposition theorem and

the resulting 2-approximation algorithm was generalized to the case of MSOP with f submodular

and g supermodular in Fokkink et al. (2019), where further applications to scheduling and search

problems were given.

2.2 Min Sum Set Cover and its Generalizations

Min Sum Set Cover was first introduced by Feige et al. (2002). An instance of MSSC consists

of a finite ground set V and a collection of subsets (or hyperedges) E ofV . For a given linear

ordering (or permutation) π : V → [n] := {1, . . . , n} of the elements of V , the covering time of set

e  E∈  is the first point in time that an element contained in e appears in the linear ordering, i.e.,

π(e) := min{π(v) | v  e}∈ . The objective is to find a linear ordering that minimizes the total sum

of covering times,
P

e E∈ π(e).

MSSC is closely related to Minimum Color Sum (MCS), which was introduced by Kubicka and

Schwenk (1989),and can be shown to be a special case of MSSC (though the reduction is not of

polynomial size – see Feige et al. (2002)).MSSC and MCS are min sum variants of the well-known

Set Cover and Graph Coloring problems, respectively.
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Iwata et al. (2012) introduced a generalization of MSSC called the Minimum Linear Ordering

Problem, which can be regarded as the specialcase of MSPP where g is the cardinality function.

(In fact, Iwata et al. (2012) perform the summation in the opposite order from (1), but of course

the objective is the same.) We give here a slightly different reduction of MSSC to MSPP. Taking

F to be 2 V , for a subset S  F∈  , we define g(S) to be the number of hyperedges that contain some

element of S and f (S) to be the cardinality of S. Then the total sum of covering times is given

by (1). The dual of this problem (see Section 5) corresponds to the reduction of Iwata et al. (2012).

Kubicka and Schwenk (1989) observed that MCS can be solved in linear time for trees, and Bar-

Noy and Kortsarz (1998) proved that it is APX-hard already for bipartite graphs. For general

graphs, Bar-Noy et al. (1998) showed that a greedy algorithm is 4-approximate for MCS. Feige

et al. (2002) observed that the greedy algorithm of Bar-Noy et al. (1998) applied to MSSC, which is

to choose the element that is contained in the most uncovered sets next, yields a 4-approximation

algorithm for MSSC. They simplified the proof by analyzing the performance ratio via a time-

indexed linear program instead of comparing the greedy solution directly to the optimum. In the

journal version of their paper, Feige et al. (2004) further simplified the proof to an elegant histogram

framework, which inspired the results of this paper, and proved that one cannot approximate MSSC

strictly better than 4, unless P = NP.

Munagala et al. (2005) generalized MSSC by introducing non-negative costs cv on the elements

of V and non-negative weights we on the sets in E . The task is to find a linear ordering π that

minimizes the sum of weighted covering costs of the sets,
P

e E∈
weC(e). The covering cost of e  E∈

is defined as C(e) := min{
P

u V∈  :π(u)≤π(v) cu | v  e  E}∈ ∈  (that is, the sum of all the costs of all

the elements of V chosen up to and including the element that covers e). This problem is known

as pipelined set cover. A natural extension of the greedy algorithm is to pick the element v that

maximizes the ratio of the sum of the weights of the sets covered by v and the cost of v. In

fact, Munagala et al. (2005) showed that this greedy algorithm is 4-approximate for pipelined set

cover.

Pipelined set cover can be expressed in the form of MSOP by taking f(S) =
P

v S∈
cv for a

subset S  V⊆  and g(S) to be the sum of the weights of all the subsets in E that contain at least one

element of S. In this case, g is submodular and f is modular, and the fact that the greedy algorithm

is 4-approximate follows from Theorem 1 of this paper (or more specifically, from Corollary 2).

Yet another generalization of MSSC is precedence-constrained MSSC. Here, the sets are subject

to AND-precedence constraints and the task is to find a linear extension of the partial order on the

sets. This problem was studied by McClintock et al. (2017), who proposed a 4
√

n-approximation

algorithm for precedence-constrained MSSC using a similar approach to ours: first, apply a
√

n-
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approximation for finding a subset of V of maximum density, and then use a histogram-type

argument, which yields an additional factor of 4. This result also follows from Theorem 1 of this

paper (assuming the approximation result for the maximum density problem).

2.3 OR-Scheduling

One can interpret pipelined set cover as a single-machine scheduling problem in the following way.

There is a job j v for every element v  V∈  with processing time p j v = c v and weight w j v = 0,

and a job j e for every e  E∈  with processing time p j e = 0 and weight w j e = w e. Further, there

are OR-precedence constraints between job jv and all jobs j e with v  e∈ . That is, job j e becomes

available for processing after at least one of its predecessors in {jv | v  e  E}∈ ∈  is completed. Then,

finding a linear ordering of V that minimizes the sum of weighted covering costs is equivalent to

finding a feasible single-machine schedule that minimizes the sum of weighted completion times.

Formally, OR-scheduling is defined as follows: Let N be a set of jobs that are subject to

precedence constraints given by a (DAG) G = (N, E). An arc (i, j)  E∈  indicates that job i is

an OR-predecessor of j. Any job j with {i  N |∈  (i, j)  E} 6∈ = ∅ requires that at least one of its

predecessors is completed before it can start.A job without predecessors may be scheduled at any

point in time. The task is to find a feasible schedule, i.e., each job is processed non-preemptively

for pj units of time, and at each point in time at most one job is processed, that minimizes the sum

of weighted completion times.

To see that OR-scheduling is indeed a special case of MSOP, let Σ be the set of feasible schedules,

and let F = F Σ . In other words, S  F∈  if and only if for any job in S with predecessors, at least

one of its predecessors is contained in S as well.Clearly, F is closed under union. Further, we set

f (S) =
P

j S∈
pj and g(S) =

P
j S∈

wj for every set of jobs S  N⊆  . With these modular functions,

it is not hard to see that the sum of weighted completion times of a schedule is equal to (2).

Note that, for the above reduction from pipelined set cover, the set of jobs can be partitioned into

N = A ∪̇B such that all arcs in the precedence graph go from A to B. We call such a precedence

graph bipartite. In a recent paper, Happach and Schulz (2020a) presented a 4-approximation

algorithm for scheduling with bipartite OR-precedence constraints using an approach similar to

ours. For bipartite OR-scheduling, the maximum density sets can be computed in polynomial

time, so a histogram argument yields a 4-approximation algorithm. In Section 4.1, we will show

that yet another class of OR-precedence constraints,namely inforests, admit a 4-approximation

algorithm.

Scheduling with OR-precedence constraints was previously considered in the context of AND/OR-

networks, see, e.g., Gillies and Liu (1995); Erlebach et al. (2003).In this case, Erlebach et al. (2003)
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presented the best-known approximation factor, which is linear in the number of jobs, and showed

that obtaining a polynomial time constant-factor approximation algorithm is NP-hard. For the

case where the AND/OR-constraints are of a similar bipartite structure as above, and no AND-

constraints are within B × A, Happach and Schulz (2020b) obtained a 2∆-approximation algorithm

with ∆ being the maximum number of OR-predecessors of any job in B. Johannes (2005) proved

that minimizing the sum of weighted completion times with OR-constraints is already NP-hard for

unit-processing time jobs. Happach and Schulz (2020a) strengthened this result and showed that

the problem remains NP-hard even for bipartite OR-precedence constraints with unit processing

times and 0/1 weights, or 0/1 processing times and unit weights.

2.4 Boolean Function Evaluation

In the non-adaptive Stochastic Boolean Function Evaluation problem (non-adaptive SBFE), we are

given a Boolean function φ(x 1, . . . , xn ) that must be evaluated on an initially unknown random

assignment to its input variables. The random assignment is assumed to be drawn from a product

distribution, that is, a joint distribution on the x i ’s, where the x i ’s are independent. Let p i :=

P [xi = 1]. We also assume 0 < pi < 1.

The value of an x i in the random assignment can only be ascertained by performing a test,

which we call test i. Performing test i incurs a positive integer cost ci , and its outcome is the value

of x i . Tests are performed sequentially until there is enough information to determine the value

of φ.

The task in the non-adaptive SBFE problem is as follows: Given φ, the pi ’s, and the ci ’s, find

a linear ordering of the tests (i.e., a non-adaptive strategy) that minimizes the expected value of

the sum of the testing costs incurred in determining the value of φ.

The non-adaptive SBFE problem can be formulated as an MSOP problem by setting F = 2 V ,

where V = {1, . . . , n} is the set of tests, f (S) =
P

i S∈
ci , and g(S) is equal to the probability that

the value of φ can be determined from the outcomes of the tests in S.

SBFE problems are a subclass of sequential testing problems that have been studied under

different names in a variety of application areas, including database query optimization, artificial

intelligence, and product quality testing. An excellent survey of exact algorithms for SBFE problems

was written by Ünlüyurt (2004). More recent work addresses approximation algorithms (e.g.,

Deshpande et al. (2016), Allen et al. (2017) and Gkenosis et al. (2018)). Much of the above

work considers adaptive SBFE problems,where the goal is to find an adaptive testing strategy of

minimum expected cost. In an adaptive strategy, the choice of the next test can differ depending

on the outcomes of the previous tests.
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An easy case of the SBFE problem is where φ is the Boolean OR function, φ(x1, . . . , xn ) =
x1  ∨ . . .  x∨ n . In this case, the same solution is optimal for both the non-adaptive and adaptive

problem versions: perform the tests in decreasing order of the ratio p i /c i until the value of f can

be determined (which occurs as soon as an xi = 1 is found, or after all x i have been found to equal

0). This optimal solution has been rediscovered many times (cf.Ünlüyurt (2004)).

A more general and challenging case is where φ is given by a (monotone) read-once formula.

A read-once formula, also called an AND/OR tree, is a rooted tree with the following properties.

Each internal node of the tree is labeled either OR or AND (corresponding to OR or AND gates).

The leaves of the tree are labeled with Boolean variables x 1, . . . , xn , where n is the number of

leaves, with each xi appearing in exactly one leaf. Given a Boolean assignment to the variables in

the leaves, the value of the formula on that assignment is defined recursively in the usual way:the

value of a leaf labeled xi is the assignment to xi , and the value of a tree whose root is labeled OR

(respectively, AND) is the Boolean OR (respectively, AND) of the values of the subtrees of that

root. Read-once formulas are equivalent to series-parallel systems (cf.̈Unlüyurt (2004)).

An example read-once formula, corresponding to the expression φ(x1, x2, x3, x4, x5) = x 1  ∧ x2 ∧

((x 3  ∧ x 4)  x∨ 5), is shown in Figure 1. Consider evaluating this formula using the non-adaptive

strategy represented by the permutation (3, 4, 5, 2, 1). Suppose,for example, that the first test

reveals that x 3 = 0, the second that x 4 = 1, and the third that x 5 = 0. Then testing will stop

after that third test, when it can be determined that the value of f is 0. The probability of this

happening is (1 − p3)p4(1 − p5), and the incurred cost in this case is c3 + c4 + c5. More generally,

for each prefix R of (3, 4, 5, 2, 1),let P R denote the probability that testing stops at the end of

that prefix. Using qi to denote 1 − p i , we have e.g., P(3) = P (3,4) = 0, P(3,4,5) = (1 − p 3p4)q5

and P(3,4,5,2) = (1 − P (3,4,5) )q2. The expected cost of using the non-adaptive strategy specified by

(3, 4, 5, 2, 1) to evaluate f is c 3 + c 4 + c 5 + c 2(1 − P (3,4,5) ) + c 1(1 − P (3,4,5,2) ). Equivalently, the

expected cost is equal to
P 5

j=1 f (S j )(g(S j ) − g(S j−1 )), where Sj is the set consisting of the first j

elements of the permutation (3, 4, 5, 2, 1),f (S j ) =
P

i S∈ j
ci , and g(Sj ) is the probability that the

value of φ can be determined by performing just the tests in S j . Thus g(S j ) − g(S j−1 ) = P R j ,

where Rj denotes the prefix consisting of the first j elements of the permutation.

The adaptive SBFE problem for read-once formulas has been studied in a number of papers

since the 1970’s (cf. Ünlüyurt (2004); Greiner et al. (2006)). It is not known whether there is a

polynomial-time algorithm for solving the problem or whether it is NP-hard, even in the unit-cost

case. It is also unknown whether there is a polynomial-time approximation algorithm with an

approximation factor sublinear in n.

The non-adaptive SBFE problem for general read-once formulas does not appear to have been

11
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Figure 1: Read-once formula

studied previously. As with the adaptive problem, we do not know whether the non-adaptive

problem is NP-hard. It is easy to show that, in contrast to the case of the OR function, an optimal

non-adaptive strategy for evaluating a read-once formula will generally incur higher expected cost

than an optimal adaptive strategy. This is because, for example, learning that a variable x i = 0

when its parent node is labeled AND allows us to “prune” all other subtrees of that AND node,

making it unnecessary to perform tests on any of the variables that were in the pruned subtrees.

In Section 4.3 we show that there is an 8-approximation algorithm for the non-adaptive SBFE

problem for read-once formulas.We do this by giving a 2-approximation algorithm for the associated

maximum density problem. In the unit-cost case, the algorithm runs in polynomial time. For

general costs ci , the runtime of the algorithm depends on the costs, and runs in pseudo-polynomial

time.

We note that I¸sık and Ünlüyurt (2013) briefly considered what might be called a “partially-

adaptive” version of the SBFE problem for read-once formulas, where the strategy is specified by a

permutation, but tests in the permutation are skipped if the results of previous tests have rendered

them irrelevant. There does not appear to be a way to formulate this version of the problem as an

MSOP.

3 Approximating MSOP

In this section, we first prove our main result in Subsection 3.1. In Subsection 3.2 we then justify

the observation made in Section 2 that MSPP is really a special case of MSOP.

3.1 Proof of Main Result

For a set A  F∈ , we write f A for the function on F given by f A (S) = f (S) − f (A), and similarly

for gA . For f A (S) 6= 0, let ρA (S) = g A (S)/f A (S) be the marginal density of S (with respect to A).

If A = ∅, we drop the subscript from ρ and simply refer to ρ(S) as the density of S.

12



We consider a greedy algorithm for MSOP. For α ≥ 1, we call an F-chain S = (S j )k
j=0 an

α-greedy chain if
ρSj (Sj+1 ) ≥

1
α max

{T F∈ :S j ⊆T }
ρSj (T ),

for all j = 0, . . . , k − 1. If α = 1, an α-greedy chain is simply one for which S j+1 has maximum

marginal density with respect to S j for each j = 0, . . . , k − 1.

We now prove Theorem 1, which is a generalization of the result and proof in Feige et al. (2004).
Proof of Theorem 1. Let T = (T j )`

j=0 be an optimal chain and let S = (S i )k
i=0 be an α-greedy

chain. We first construct a histogram with ` columns, the area under which is equal to C f,g (T ).

The base of the jth column of the histogram is the interval from g(T j−1 ) to g(T j ) and its height is

f (T j ). Thus, the total area under the histogram is equal to C f,g (T ).

Next, we construct a second histogram with k columns, the area under which is equal to Cf,g (S).

Let ρi = ρ Si−1 (Si ) and let ϕ i = ρ −1
i (g(V ) − g(Si−1 )). The base of the ith column of this histogram

is the interval from g(Si−1 ) to g(S i ) and its height is ϕi . Thus the total area A under this histogram

is

A =
kX

i=1

ϕ i (g(Si ) − g(S i−1 ))

=
kX

i=1
(g(V ) − g(Si−1 ))(f (S i ) − f (S i−1 )) (3)

= g(V )
kX

i=1
(f (S i ) − f (S i−1 )) −

kX

i=1
g(Si−1 )(f (S i ) − f (S i−1 ))

The first sum on the right-hand side above is telescopic and equal to f (V ) − f (∅) = f (V ).

Rearranging the second sum, we obtain

A = g(V )f (V ) − g(S k−1 )f (V ) +
k−1X

i=1
f (S i )(g(S i ) − g(S i−1 ))

=
kX

i=1
f (S i )(g(S i ) − g(S i−1 ))

= C f,g (S).

The two histograms are depicted in Figure 2(a). Note that the heights of the columns in the

first histogram, from left to right, are non-decreasing.

Now shrink the second histogram by a factor of 2α in the vertical direction, and a factor of

2 in the horizontal direction, and move it to the right so it is flush with the right end g(V ), as

depicted in Figure 2(b). This results in point (x, y) being mapped to ( g(V )+x
2

, y
2α ). The distance of

this latter point from the right end is (g(V ) − x)/2.

13
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Figure 2: (a) Two histograms with total area C f,g (T ) (left) and C f,g (S) (right); (b) the shrunken

version of the second histogram in the first histogram.

We now show that the shrunken (and shifted) histogram is contained in the first histogram,

from which it follows that C f,g (S) ≤ 4αC f,g (T ), proving the theorem. To show that the shrunken

histogram is contained in the first histogram, it is sufficient to show that if (a, b) is the top left

point of some column i in the shrunken histogram, and (c, d) is the top right point of some column

j in the first histogram, then d < b implies that c < a. Here (a, b) = g(V )+g(S i−1 )
2

, ϕ i

2α and

(c, d) = (g(T j ), f (Tj )).

So assume d < b, or equivalently

f (T j ) <
ρ−1

i (g(V ) − g(Si−1 ))
2α

. (4)

Let a0 be the distance of (a, b) from the right boundary, that is, a0 = (g(V ) − g(S i−1 ))/2 and let
c0 be the distance of (c, d) from the right boundary, that is, c0 = g(V ) − g(T j ). We want to show

that d < b implies c < a, or equivalently that a 0 < c 0. So we want to show that

g(V ) − g(Si−1 )
2

< g(V ) − g(T j ). (5)
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Since F is closed under union, Si−1  ∪ Tj  ∈ F. We will use the fact that, because S is α-greedy,

ρi = ρ Si−1 (Si ) ≥
1
α

ρSi−1 (Si−1  ∪ T j ) =
g(Si−1  ∪ T j ) − g(S i−1 )

α(f (S i−1  ∪ T j ) − f (S i−1 ))
. (6)

Because f is subadditive, f (Si−1  ∪ T j ) − f (S i−1 ) ≤ f (T j ). Combining that fact with (6) yields

αf (T j ) ≥ ρ −1
i (g(Si−1  ∪ T j ) − g(S i−1 ))

= ρ −1
i ((g(V ) − g(S i−1 )) − (g(V ) − g(S i−1  ∪ T j )))

Using our assumption in (4), we thus get

ρ−1
i (g(V ) − g(Si−1 ))

2
> ρ −1

i ((g(V ) − g(S i−1 )) − (g(V ) − g(S i−1  ∪ T j )))

≥ ρ −1
i ((g(V ) − g(S i−1 )) − (g(V ) − g(T j ))),

where the second inequality follows from the fact g is non-decreasing.Rearranging gives (5). 2

Observe that if F = 2 V and f is supermodular and g is submodular, then for S j  ⊆ T ,

ρSj (T ) ≤
P

v T \S∈ j
g(Sj  ∪ {v}) − g(S j )

P
v T \S∈ j

f (S j  ∪ {v}) − f (S j )
≤ max

v T \S∈ j

ρSj (Sj  ∪ {v}).

Hence, a 1-greedy chain can be obtained in polynomial time by adding singletons one-by-one.

Suppose f is not just supermodular but also modular. Then f is also subadditive so, by Theorem 1,

there is a polynomial time 4-approximation algorithm. We summarize this observation below.

Corollary 2 Suppose F = 2V . If f is modular and g is submodular then a 1-greedy chain can be

constructed in polynomial time and there exists a polynomial-time 4-approximation algorithm for

MSOP.

As discussed in Subsection 2.2, the problem MSSC and, more generally, pipelined set cover, are

special cases of MSOP where g is submodular and f is modular, so the 4-approximation algorithms

for these problems follow from Corollary 2.

3.2 Minimizing Over Permutations

We now turn to the problem MSPP, given in (2), where we wish to minimize a weighted sum over a

set of permutations Σ. We will show that provided Σ satisfies a certain technical condition, solving

MSPP for Σ is equivalent to solving the corresponding MSOP problem (with the same f and g)

for F = F Σ .

Suppose F is some family of subsets of V , and suppose S ≡ (S j )k
j=0 is an F -chain. Then if

1 = j 1 ≤ . . . ≤ j ` = k, we say S0 ≡ (S j i )`
i=0 is a subchain of S.
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Lemma 3 Suppose S ≡ (Sj i )`
i=0 is a subchain of the F -chain S0 ≡ (S j )k

j=0 . Then

(i) C f,g (S) ≥ C f,g (S0) and

(ii) if S approximates MSOP by a factor of α ≥ 1 then so does S 0.

Proof. We perform the following calculation.

Cf,g (S) ≡
`X

i=1
f (S j i )(g(S j i ) − g(S j i−1 ))

=
`X

i=1
f (S j i )

j iX

j=j i−1 +1
(g(Sj ) − g(S j−1 ))

≥
`X

i=1

j iX

j=j i−1 +1
f (S j )(g(S j ) − g(S j−1 ))

=
kX

j=1
f (S j )(g(S j ) − g(S j−1 )) ≡ C f,g (S0),

where the inequality above follows from the monotonicity of f and g. Part (ii) of the lemma follows

immediately. 2

Suppose now that Σ is a set of permutations of V . Recall that F Σ consists of all subsets of V

that are initial sets of some permutation σ ∈ Σ. If for some FΣ -chain S, there exists a permutation

σ ∈ Σ such that each element of S is an initial set of σ, then we say σ is consistent with S. If every
F Σ -chain is consistent with some permutation in Σ then we say Σ is well-founded.

Lemma 4 Suppose Σ is a set of permutations of V and that Σ is well-founded. If there exists a

polynomial time α-approximation algorithm for MSOP with F = F Σ for some α ≥ 1 then there

exists a polynomial time α-approximation algorithm for MSPP.

Proof. This follows immediately from Lemma 3, part (ii). Indeed, suppose that S is an α-

approximate F Σ -chain and that σ is consistent with S. Let S 0 be the chain consisting of all the

initial sets of σ. Then S is a subchain of S0, so S0 is an α-approximation for MSOP. Equivalently,

σ is an α-approximation for MSPP. 2

It is easy to think of examples of Σ that are not well-founded. For example, if V = {1, 2, 3} and

Σ contains only the permutations (1, 2, 3) and (3, 1, 2), then the FΣ -chain {{1}, {1, 3}, {1, 2, 3}} is

not consistent with either of the two permutations, so Σ is not well-founded.

However, for all the examples we consider in this paper, the set of permutations is well-founded.

This is easy to check by using the following sufficient condition.
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For two permutations σ and τ of V , let π j (σ, τ ) be the permutation that follows σ for the

first j elements then chooses the remaining elements of V in the order specified by τ , for each

1 ≤ j ≤ n. For example, if V = {1, 2, 3, 4, 5}, and σ and τ are given by (3, 1, 5, 2, 4) and (4, 5, 1, 2, 3),

respectively then π2(σ, τ ) is given by (3, 1, 4, 5, 2) and π3(σ, τ ) is given by (3, 1, 5, 4, 2).

If Σ is a set of permutations for which π j (σ, τ ) ∈ Σ for any σ, τ ∈ Σ and 1 ≤ j ≤ n, then we

say Σ is closed.

Lemma 5 Let Σ be a set of permutations of V . If Σ is closed then it is well-founded and F Σ is

closed under union.

Proof. Suppose Σ is closed. Let S = (S j )k
j=1 be a F Σ -chain. We will show that there is some

permutation contained in Σ that is consistent with S. Let σ j be a permutation in Σ that is

consistent with S j for j = 1, . . . , k. We set τ1 = σ 1 and for j = 2, 3, . . . , k, we recursively define
τ j = π |Sj−1 |(τ j−1 , σj ), which is contained in Σ, by induction on j and since Σ is closed. Also, S1 is

an initial set of τ 1, and, by definition of π |Sj−1 |(τ j−1 , σj ) and by induction on j, each of S 1, . . . , Sj

are initial sets of τ j for j ≥ 2. Therefore, τk is consistent with S, so Σ is closed.

To see that FΣ is closed under union, let S and T be elements of FΣ . Then they are initial sets

of some permutations σ and τ in Σ, so S  T∪  is an initial set of π |S| (σ, τ ), which lies in Σ, since Σ

is closed. Therefore S  T  F∪ ∈ Σ . 2

We observe that for the expanding search problem, if we take Σ to be the set of expand-

ing searches,then it is easy to check that Σ is closed and therefore well-founded, by Lemma 5.

Furthermore, F Σ is closed under union. Similarly, for both AND-precedence constraints and OR-

precedence constraints, the set of feasible orderings is closed and therefore well founded.If Σ consists

of all permutations of V , as in Boolean function evaluation, then Σ is trivially well-founded. It

follows from Lemma 4 that for these problems, if we can find a solution (or approximate solution)

S to MSOP with F = F Σ , then we can recover a solution (or approximate solution) to the original

problem by taking any permutation that is consistent with S. Since in each case FΣ is closed under

union, we only need f to be subadditive to apply Theorem 1.

4 Applications

We now describe some special cases of MSOP for which our results imply the existence of approx-

imation algorithms.

We will begin in Subsection 4.1 by first providing 4-approximation algorithms for OR-scheduling

(as defined in Subsection 2.3) on inforests and, more generally, on multitrees.We then consider a
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new OR-precedence constrained version of MSSC in Subsection 4.2 and show that there is also a 4-

approximation algorithm for this. Lastly, in Subsection 4.3, we give an 8-approximation algorithm

for a problem in Boolean function evaluation.

4.1 OR-Scheduling

We consider a special case of MSOP that can be stated in terms of MSPP. Suppose the elements

of V are vertices of a DAG G = (V, E) which represents some OR-precedence constraints.That is,

a permutation σ of V is feasible if each element v with a non-empty set of predecessors appears

in σ later than at least one of its direct predecessors P(v) (where P(v) is the set of u such that

(u, v)  E∈ ). Recall that a DAG G = (V, E) is an intree if every vertex has at most one successor.

A DAG whose connected components are intrees is an inforest.

Theorem 6 Consider an instance of MSPP for which the set of feasible permutations is derived
from some OR-precedence constraints given by an inforest.Then if f is modular and g is submod-

ular, there is a polynomial time 4-approximation algorithm for the problem.

Proof. Note f is modular and hence subadditive. Also, as pointed out in Subsection 3.2, the

set of feasible permutations Σ is closed and therefore, by Lemma 5, the set Σ is consistent and FΣ

is closed under union. Hence,by Theorem 1 and Lemma 4, it suffices to construct in polynomial

time a 1-greedy FΣ -chain.

We characterize inclusion-minimal sets of maximum density, using the concept of a stem. We

define a stem in G to be a sequence of vertices v1, . . . , vk in V such that v 1 has no predecessors and
vi  ∈ P(v i+1 ) for all i = 1, . . . , k − 1. We show that any inclusion-minimal subset Sj+1 of V that

maximizes the density ρSj (Sj+1 ) is a stem and that we can enumerate all stems in polynomial time.

Observe that, if we remove a stem Sj from the instance along with all edges incident to vertices in

the stem, the graph decomposes into intrees again; also fSj is modular and gSj is submodular. So

it suffices to consider only Sj = ∅.

Since G is an inforest, the number of paths starting at any vertex is bounded by the total number

of vertices. Therefore, the total number of stems is O(n 2). So we can enumerate all stems S that

start at a job without a predecessor, and pick the one of maximum density ρ(S) = g(S)/f (S). It

remains to show that a stem of maximum density is indeed an OR-initial set of maximum density.

Let S  F∈  be an inclusion-minimal set of maximum density and suppose that S is not a

stem. Since G is an inforest, S must be an inforest that contains at least two vertices without a

predecessor.Since every vertex has at most one successor, any vertex without a predecessor induces

a unique stem to the root of its connected component in S (the root of a component being the
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Figure 3: Paths starting at v and u to the root, and their intersection point `.

unique vertex contained in that component that has no successors). For two such vertices, v and

u, let ` be the vertex where the unique stems starting at v and u meet, see Figure 3. (Note that `

does not exist if v and u are in different connected components.) Now, let Tv := {v, v 1, . . . , vk } be

the set of vertices on the stem from v to ` such that v k  ∈ P(`), i.e., ` = v k+1 . If ` does not exist,

then let T v be the stem starting at v to its root in S. Clearly, Tv  ∈ F, and also T := S \ T v is an

OR-initial set.

By the submodularity of g, the density ρ(S) satisfies

ρ(S) ≤
g(Tv) + g(T )
f (Tv) + f (T )

= θρ(T v) + (1 − θ)ρ(T ), (7)

where θ = f (T v)/(f (T v) + f (T )) ∈ [0, 1]. Hence,by the maximality of ρ(S), both T v and T must

have maximum density, contradicting the assumption that S was an inclusion-minimal subset of

maximum density.
2

Recall from Subsection 2.3 the problem of minimizing the sum of weighted completion times

of a set of jobs, where the order that the jobs are processed must respect some OR-precedence

constraints given by some DAG G. Suppose that G is an inforest. Since the cost function and the

weight function are both modular, the next theorem follows immediately from Theorem 6.

Theorem 7 There is a polynomial time 4-approximation algorithm for OR-scheduling of inforests.

In fact, we derive a more generalresult for OR-scheduling of multitrees, introduced in Furnas

and Zacks (1994). A DAG is called a multitree if, for every vertex, its successors form an outtree

(where an outtree is a DAG such that each vertex has at most one predecessor).Equivalently, there

is at most one directed path between any two vertices. Inforests are examples of multitrees.

Theorem 8 There is a polynomial time 4-approximation algorithm for OR-scheduling of multi-

trees.
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Proof. By Theorem 13 and Lemma 4, it is sufficient to find a 1-greedy F -chain, where F = F Σ

and Σ is the set of feasible schedules.

We will show that the inclusion-minimal sets of maximum density are outtrees.This means that

we can find a maximum density subset of F by considering each vertex v with no predecessors and

finding a maximum density subtree Tv  ∈ F of the outtree formed by v and its sucessors. This can

be done in polynomial time using the dynamic programming algorithm of Horn (1972), for example.

We then choose a subtree Tv with maximum density over all vertices v with no predecessors.

The proof that the inclusion-minimal sets of maximum density are outtrees is similar to the proof

that the inclusion-minimal subsets of Theorem 6 were stems, so we do not go into detail.It can be

shown that if S is an inclusion-minimal set of maximum density that is not an outtree, then it can

be expressed as the disjoint union of an outtree T and another set in F .By an identical calculation

as in (7), the set T must have maximum density, contradicting S being inclusion-minimal. This

completes the proof. 2.

It is worth pointing out that approximating the problem of minimizing the sum of weighted

completion times for OR-scheduling appears to be harder than the analogous problem for AND-

scheduling in the following sense.As discussed in Subsection 2.1, for AND-scheduling there is a poly-

nomial time algorithm for series-parallel DAGs and polynomial time 2-approximation algorithms

for arbitrary DAGs, whereas for OR-scheduling,we have given polynomial time 4-approximation

algorithms for inforests and, more generally,multitrees. It is not possible that better approxima-

tions exist for OR-scheduling on multitrees (or even for bipartite graphs) unless P = NP, since the

same is true of MSSC, which is a special case of OR-scheduling on bipartite graphs. Of course,

for outtrees, OR-scheduling and AND-scheduling are equivalent, but there are no polynomial time

algorithms known for OR-scheduling on any other classes of DAGS.

4.2 OR-Precedence Constrained MSSC and Pipelined Set Cover

Consider a variation of MSSC in which the order that the elements of V are chosen must be

consistent with some OR-precedence constraints given by a DAG G. As in pipelined set cover,

we additionally assume that there is a non-negative cost cv for each vertex v and a non-negative

weight we for each hyperedge e  E∈ , and the objective is to minimize the weighted sum of covering

times of the edges. As for OR-scheduling, we take F to be the collection of OR-initial sets of G

and as for pipelined set cover, we take f (S) =
P

v S∈
cv and g(S) to be the sum of the weights of

all hyperedges in E that contain at least one element of S, for S  F∈  . Then f is modular and g is

submodular, so we can again apply Theorem 6.
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Theorem 9 There is a polynomial time 4-approximation algorithm for pipelined set cover with

OR-precedence constraints that take the form of an inforest.

To see that Theorem 9 is a generalization Theorem 7, simply observe that if the set of hyperedges

E consists of all the singletons of V , then pipelined set cover with OR-precedence constraints is

equivalent to OR-scheduling.

4.3 Evaluation of Read-Once Formulas

Recall the inputs to the non-adaptive SBFE problem for read-once formulas:(1) a read-once formula

φ(x1, . . . , xn ), (2) for each x i , the value pi := P [x i = 1] where 0 < p i < 1, and (3) for each x i , the

associated test cost ci , which is greater than 0.

We assume without loss of generality that each AND and OR gate of φ has fan-in 2.We consider

each input x i in φ to also be a gate (an input gate) of φ.

We use partial assignments to represent the outcomes of a subset of the tests. In a partial

assignment b  {∈ 0, 1, }∗
n , bi = ∗ means that test i has not been performed and the value of x i is

unknown, otherwise bi is the outcome of test i. For (full) assignment a  {∈ 0, 1} n and S a subset

of V = {1, . . . , n}, a|S is the partial assignment b  {∈ 0, 1, }∗
n where bi = a i for i  S∈ , and bi = ∗

otherwise.

Given partial assignment b  {∈ 0, 1, }∗
n , an extension of b is a (full) assignment a  {∈ 0, 1}n where

ai = b i for all i such that b i 6= ∗.If φ(a) has the same value ` for all extensions a of b, the value of

φ is determined by b and we write φ(b) = `. Otherwise, we write φ(b) = ∗.

Let A 1, . . . , An be independent Bernoulli random variables, where P [Ai = 1] = p i . Let A =

[A1, . . . , An ].

In the MSOP formulation of the non-adaptive SBFE problem for read-once formulas, F = 2 V

where V = {1, . . . , n} is the set of tests, f (S) =
P

i S∈
ci , and g(S) = P [φ(A| S) 6= ∗].

The set F is closed under union and f is modular. We will obtain an 8-approximate solution

to this MSOP by constructing a 2-greedy chain.

For S  T  V⊂ ⊆  ,
ρS(T ) =

P [φ(A|T ) 6= ∗] − P [φ(A|S) 6= ∗]P
i T \S∈

ci
(8)

By the independence of the Ai , for any partial assignment b  {∈ 0, 1, }∗
n ,

P [A|S = b] =
Y

i S∈ :b i =1

pi
Y

i S∈ :b i =0

(1 − pi ).

For S  V⊂  and α > 0, call R  V \S⊆  an α-approximate max-density supplement for S if

ρS(S  R∪ ) ≥
1
α max

{T V⊆  :S T }⊂

ρS(T ).
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For gate G of φ, define tests(G) to be the set of i  V∈  such that x i is a descendant of G in the

tree φ. We consider a gate to be its own descendant, so if G is an input gate xi , then i  tests∈ (G).

Each gate G of φ is the root of a subtree of φ. Define φG to be the subformula corresponding

to the subtree of φ that is rooted at G. Thus φG is a read-once formula over the variable set
{x i | i  tests∈ (G)}. We treat φG as computing a function over {0, 1}n , whose output depends only

on the values of the variables in {x i | i  tests∈ (G)}. For b  {∈ 0, 1, }∗
n , we refer to φ G(b) as the

output of gate G on partial assignment b, which may be either 0, 1, or ∗.

We note that given a subset S  V⊆  , and `  {∈ 0, 1}, the value of P [φG(A| S) = `] for each gate G

of φ can be computed in time linear in n by processing the gates of φ in bottom-up order.Consider

the case where ` = 1 and let pG = P [φG(A| S) = 1]. If G is an input gate x i , then pG = p i if x i  ∈ S,

otherwise pG = 0. If G is an AND gate with children G 0 and G00, then because φ is read-once and

the A i are independent, pG = p G0 · pG00. If G is an OR gate, then p G = p G0 + pG00− pG0 · pG00.

Dually, consider the case where ` = 0 and let q G = P [φG(A S) = 0]. If G is an input gate x i ,

then qG = 1 − p i if x i  ∈ S, otherwise qG = 0. If G is an OR gate with children G 0 and G00, then
qG = qG0qG00. If G is an AND gate, then q G = qG0 + qG00− qG0qG00.

4.3.1 The 8-Approximation Algorithm

The 8-approximation algorithm, for the non-adaptive SBFE problem for read-once formulas, relies

on the following lemma.

Lemma 10 Given S  V⊂  , a 2-approximate max-density supplement R for S can be computed in
time polynomial in n and

P n
i=1 ci .

Proof. We prove the lemma for the case of unit costs, where all the ci ’s are equal to 1. We then

explain how to extend the proof to handle arbitrary costs.

Assume the ci ’s are all equal to 1. We describe an algorithm that we call FindSupp that finds

a max-density subset R for a given input subset S.

Fix S. For R  V \S⊆ , let σ(R) = ρ S(S  R∪ ). Since we assumed the ci ’s are equal to 1,

σ(R) =
P [φ(A|S R∪ ) 6= ∗] − P [φ(A|S) 6= ∗]

|R|
.

Clearly, P [φ(A|S) 6= ∗] = P [φ(A|S) = 1] + P [φ(A| S) = 0] and similarly for A| S R∪ .

For `  {∈ 0, 1}, define

σ` (R) =
P [φ(A|S R∪ ) = `] − P [φ(A| S) = `]

|R|
.

Thus
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σ(R) = σ 1(R) + σ 0(R) (9)

The idea behind FindSupp is to compute two subsets R1 and R0, maximizing σ1 and σ0 respec-

tively. By (9), the R ` with the larger value of σ ` (R ` ) is a 2-approximate max-density supplement

for S.

For gate G of φ, let T (G) = tests(G)\S. For t  {∈ 0, . . . , |T (G)|}, and `  {∈ 0, 1}, let R G,t,` be a

subset R that maximizes the value of P [φG(A| S R∪ ) = `] subject to the constraints that R  T⊆  (G)

and |R| = t.

Let pG,t,` be the value of P [φG(A| S R∪ ) = `] for R = R G,t,` . Let G̃ denote the root gate of φ.

Thus for t  {∈ 1, . . . , |V \S|} and `  {∈ 0, 1}, setting R = R G̃,t,` maximizes the value of σ̀ (R), over

all R  V \S⊆  of size t.

Algorithm FindSupp:
FindSupp first runs a procedure ComputeRp that computes RG̃,t,` and pG̃,t,` for all t  {∈ 1, . . . , |V \S|}

and `  {∈ 0, 1}. We describe the details of ComputeRp below.

After running ComputeRp, the algorithm uses it to obtain the two subsets, R1 and R0, max-

imizing σ 1 and σ0 respectively. It does this as follows. First, using the linear-time procedure

described above, it computes the value of P [φ(A|S) = `], for `  {∈ 0, 1}.

For each t  {∈ 1, . . . , |V \S|}, for `  {∈ 0, 1}, FindSupp computes the value of

σ` (R G̃,t,` ) =
pG̃,t,` − P [φ(A|S) = `]

t

For each `  {∈ 0, 1}, the algorithm then finds the value of t which yielded the highest value for
σ` (R G̃,t,` ). Let t ` denote that value. Let R ` be the value of RG̃,t,` for t = t ` .

Because R̃G,t,` maximizes σ̀ among candidate subsets of size t, setting R = R` maximizes σ̀ (R)

among candidate subsets of allpossible sizes.The algorithm returns R 0 if σ 0(R0) > σ 1(R1), and

returns R1 otherwise.

Procedure ComputeRp:
For all gates G of φ, ComputeRp computes the values of pG,t,` and RG,t,` for all t  {∈ 0, . . . , |T (G)|},

and `  {∈ 0, 1}. It processes the gates G of φ in bottom-up order, from the leaves to the root.

We begin by describing how ComputeRp computes pG,t,` and RG,t,` when G is an AND gate,

t  {∈ 0, . . . , |T (G)|}, and ` = 1. Suppose that G0 and G00are the children of AND gate G, and that
RG0,t 0,1, pG0,t 0,1, RG00,t 00,1, and pG00,t 00,1 have already been computed,for all t 0  ∈ {0, . . . , |T (G0)| and
t00  ∈ {0, . . . , |T (G00)|. ComputeRp first computes the product pG0,j,1 · pG00,t−j,1 for all j such that
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j  {∈ 0, . . . , |T (G0)|} and t − j  {∈ 0, . . . , |T (G 00)|}.) It then sets j ∗ to be the value of j maximizing

that product, and sets R G,t,1 = R G0,j ∗ ,1  ∪ R G00,t−j ∗ ,1 and pG,t,1 = p G0,j ∗ ,1 · pG00,t−j ∗ ,1.

The correctness of these settings follows from the fact that that RG,t,1 must consist of a subset
R0of T (G0) of some size j∗, and a subset R00of T (G00) of size t−j ∗. RG,t,1 maximizes the probability

that G outputs 1 (among subsets of T (G) of size t, when added to S).Since φ is a read-once formula,

tests(G0) and tests(G 00) are disjoint. R0 and R00are thus sets that maximize the probability that
G0 and G00output 1 (when added to S, among subsets of T (G0) and T (G00) of sizes j ∗ and t − j ∗

respectively). Thus, given j ∗, RG,t,1 can be set to R 0  ∪ R 00where R0 = R G0,j ∗ ,1, R00= R G00,t−j ∗ ,1,

and pG,t,1 can be set to pG0,j ∗ ,1 · pG00,t−j ∗ ,1. Since ComputeRp is not given the value of j∗, it must

try all possible j.

Similarly, suppose G is an AND gate, t  {∈ 0, . . . , |T (G)|}, and ` = 0. In this case, ComputeRp

computes pG0,j,0 + p G00,t−j,0 − p G0,j,0 · pG00.t−j,0 for all possible j, and then sets j ∗ to be the value

that maximized the expression. It then sets R G,t,0 = R G0,j ∗ ,0  ∪ R G00,t−j ∗ ,0 and pG,t,0 = p G0,j ∗ ,0 +
pG00,t−j ∗ ,0 − pG0,j ∗ ,0 · pG00,t−j ∗ ,0. The correctness in this case follows from the fact that the output

of G is 0 if either of its child gates outputs 0, and to maximize the probability that AND gate G

outputs 0, one needs to maximize the probability that each of its children outputs 0.

The case where G is an OR gate is dual and we omit the details.

The remaining case is where G is an input gate xi , t  {∈ 0, . . . , T (G)}, and `  {∈ 0, 1}. Note that

since G is an input gate, if i  S∈ , then |T (G)| = 0. If i 6  S∈ , then |T (G)| = 1. If t = 0, then for

`  {∈ 0, 1}, ComputeRp sets RG,t,` = ∅. Then, if i  S∈  it sets p G,t,1 = p i and pG,t,0 = 1 − p i . If i 6  S∈

it sets both p G,t,0 = 0 and p G,t,1 = 0. If t = 1 (and therefore i 6  S∈ ), it sets R G,t,` = x i , pG,t,1 = p i

and pG,t,0 = 1 − p i . The correctness of these settings is straightforward.

Generalization to arbitrary costs:
The algorithm FindSupp can easily be modified to handle arbitrary non-negative integer costs.

The main difference is that t is used to represent the total cost of a set R of tests, rather than just

the size of the set.

Consider a gate G of φ. If there is at least one subset R  T⊆  (G) such that t =
P

i R∈
ci , call t a

feasible value for G.

For t a feasible value for G, let R G,t,` be the subset maximizing ρR (S) (whose denominator is

now
P

i R∈
ci ) subject to the constraints that R  T⊆  (G) and

P
i R∈

ci = t.

ComputeRp computes RG,t,` for all feasible values t for G. When ComputeRp computes RG,t,` for

an AND or OR gate G, instead of trying all j  {∈ 0, . . . , |T (G 0)|} where t − j  {∈ 0, . . . , |T (G 00)|}, as

it did in the unit cost case, ComputeRp tries all j such that j is feasible for G 0 and t − j is feasible

for G00. The other modifications in the algorithm are straightforward.

24



The running time of FindSupp is O(n(
P

i V∈
ci )2). 2

The algorithm described in Lemma 10 can be used to form a 2-greedy chain S0  ⊂ S1  ⊂ . . .  S⊂ k ,

where each Sj+1 is generated from Sj by running FindSupp with S = S j to produce R, and then

setting Sj+1 = S j  ∪ R.

The theorem now follows immediately from Lemma 10 and Theorem 1.

Theorem 11 There is an 8-approximation algorithm solving the non-adaptive SBFE problem
for read-once formulas. The running time of the algorithm depends on the costs c i . It runs in

polynomial-time in the unit cost case, and in pseudo-polynomial time when the costs are arbitrary

positive integers.

5 Backward Greedy Algorithms

The greedy algorithm we presented for MSOP works by starting with the empty set of elements,

and greedily adding subsets in each greedy step. An alternative greedy approach starts with the

set V , and greedily removes subsets from V in each greedy step.A backward greedy approach was

used by Iwata et al. (2012) in their work on some special cases of MSPP.

In this section, we describe a backward analog to our greedy algorithm for MSOP and its

relationship to a dual MSOP problem, analogous to the dual problem introduced in Fokkink et al.

(2019).

We call an F-chain S = (S j )k
j=0 a backward α-greedy chain if

ρSj (Sj−1 ) ≤ α min
{T F∈ :T S⊆ j }

ρSj (T ),

for all j = 1, . . . , k.

A backward α-greedy chain can be seen to be equivalent to an α-greedy chain for the dual

problem. To describe the dual problem, we write the cost function C(f, g) in another, equivalent

way. Fixing F ⊆ 2 V , we first define F # as the family of complements of sets in F . That is,
F # = {S  V⊆  : V \ S  F}∈ . Note that F is closed under intersection if and only if F # is closed

under union. There is a one-to-one correspondence between F -chains and F# -chains, obtained by

mapping an element S of an F -chain to V \S and reversing the order.We refer to the corresponding
F # -chain of a F -chain S as its dual chain, which we denote by S# . We also denote the dual function

of f by f # : F # → R, given by f # (S) = f (V ) − f (V \ S), and similarly for g. Note that a set

function is the dual of its dual, as is an F -chain, and that f# and g# are non-decreasing.Also, f is

submodular if and only if f # is supermodular and f is subadditive if and only if f# is superadditive.

25



Given an MSOP with inputs f , g and F, the dual problem is an MSOP with inputs g # , f #

and F # . In other words, the dual problem is to minimize

Cg# ,f # (T ) =
kX

j=1

g# (Tj )(f # (Tj ) − f # (Tj−1 )),

over all F # -chains T = (T j )k
j=0 . Observe that an MSOP is the dual of its dual.

It is now easy to see that an F -chain S = (S j )n
j=0 is a backward α-greedy chain if and only if

its dual chain is an α-greedy F # -chain for the dual problem.

The following is immediate and generalizes a similar observation from Fokkink et al. (2019).

Lemma 12 If S is an F-chain, then C f,g (S) = C g# ,f # (S# ) and S is an α-approximation for an

instance of MSOP if and only if S # is an α-approximation for its dual.

Proof. To prove the first statement, we point out that the area A under the second histogram in

the proof of Theorem 1, given by the sum in (3), is equal to C g# ,f # (S# ). This area is also shown

to be equal to Cf,g (S) later in the same proof. The second statement in the lemma follows directly

from the first. 2

Applying Theorem 1 to the dual problem, we obtain the following theorem as a corollary.

Theorem 13 Suppose g is superadditive and F is closed under intersection.Then for any α ≥ 1,

a backward α-greedy chain is a 4α-approximation for an optimal chain for MSOP.

We may also apply Corollary 2 to the dual problem to obtain an additional corollary.

Corollary 14 Suppose F = 2V . If f is supermodular and g is modular then a backward 1-greedy

chain can be found in polynomial time and there exists a polynomial-time 4-approximation algo-

rithm for MSOP.

6 Future Work

We have created a general framework for min-sum ordering problems, and while Theorem 1 relies

on very modest assumptions, it is only useful if the maximum density problem can be efficiently

approximated. More work is needed in this area in order to further exploit our approximation

result.

Particular problems of interest include Generalized Min Sum Set Cover (GMSSC), introduced

in Azar et al. (2009). Unlike MSSC, where a hyperedge is “covered” the first time any of its vertices

are chosen,in GMSSC, each hyperedge has its own “covering requirement”, which specifies how
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many of its vertices must be chosen before it is “covered”. The objective is to minimize the sum

of covering times, as in MSSC. The best known approximation algorithm for GMSSC is 12.4, due

to Im et al. (2014). This could be improved if the associated maximum density problem could be

approximated within a factor less than 3.13. Of course, by adding costs to vertices and weights to

hyperedges, one could further generalize GMSSC, giving rise to a more general maximum density

problem of interest.

Another problem that comes under our framework is the Unreliable Job Scheduling Problem

(UJP), introduced in Agnetis et al. (2009). In the basic setting, a set of jobs with given rewards must

be scheduled by a single machine to maximize the total expected reward. There is a probability

of failure associated with each job when it is scheduled, and if failure occurs the machine cannot

schedule any further jobs.The problem has a neat “index” solution. Natural generalizations of the

problem would consider the possibility of AND- or OR-precedence constraints, and therefore their

associated maximum density problems.
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