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Abstract
The translation equivariance of convolutional lay-
ers enables convolutional neural networks to gen-
eralize well on image problems. While translation
equivariance provides a powerful inductive bias
for images, we often additionally desire equivari-
ance to other transformations, such as rotations,
especially for non-image data. We propose a gen-
eral method to construct a convolutional layer
that is equivariant to transformations from any
specified Lie group with a surjective exponential
map. Incorporating equivariance to a new group
requires implementing only the group exponential
and logarithm maps, enabling rapid prototyping.
Showcasing the simplicity and generality of our
method, we apply the same model architecture to
images, ball-and-stick molecular data, and Hamil-
tonian dynamical systems. For Hamiltonian sys-
tems, the equivariance of our models is especially
impactful, leading to exact conservation of linear
and angular momentum.

1. Introduction
Symmetry pervades the natural world. The same law of
gravitation governs a game of catch, the orbits of our plan-
ets, and the formation of galaxies. It is precisely because
of the order of the universe that we can hope to understand
it. Once we started to understand the symmetries inherent
in physical laws, we could predict behavior in galaxies bil-
lions of light-years away by studying our own local region
of time and space. For statistical models to achieve their
full potential, it is essential to incorporate our knowledge
of naturally occurring symmetries into the design of algo-
rithms and architectures. An example of this principle is
the translation equivariance of convolutional layers in neu-
ral networks (LeCun et al., 1995): when an input (e.g. an
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Figure 1. Many modalities of spatial data do not lie on a grid, but
still possess important symmetries. We propose a single model
to learn from continuous spatial data that can be specialized to
respect a given continuous symmetry group.

image) is translated, the output of a convolutional layer is
translated in the same way.

Group theory provides a mechanism to reason about symme-
try and equivariance. Convolutional layers are equivariant
to translations, and are a special case of group convolu-
tion. A group convolution is a general linear transformation
equivariant to a given group, used in group equivariant con-
volutional networks (Cohen and Welling, 2016a).

In this paper, we develop a general framework for equiv-
ariant models on arbitrary continuous (spatial) data repre-
sented as coordinates and values {(xi, fi)}Ni=1. Spatial data
is a broad category, including ball-and-stick representations
of molecules, the coordinates of a dynamical system, and
images (shown in Figure 1). When the inputs or group
elements lie on a grid (e.g., image data) one can simply
enumerate the values of the convolutional kernel at each
group element. But in order to extend to continuous data,
we define the convolutional kernel as a continuous function
on the group parameterized by a neural network.

We consider the large class of continuous groups known as
Lie groups. In most cases, Lie groups can be parameterized
in terms of a vector space of infinitesimal generators (the Lie
algebra) via the logarithm and exponential maps. Many use-
ful transformations are Lie groups, including translations,
rotations, and scalings. We propose LieConv, a convolu-
tional layer that can be made equivariant to a given Lie
group by defining exp and log maps. We demonstrate the
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expressivity and generality of LieConv with experiments
on images, molecular data, and dynamical systems. We
emphasize that we use the same network architecture for
all transformation groups and data types. LieConv achieves
state-of-the-art performance in these domains, even com-
pared to domain-specific architectures. In short, the main
contributions of this work are as follows:

• We propose LieConv, a new convolutional layer equiv-
ariant to transformations from Lie groups. Models
composed with LieConv layers can be applied to non-
homogeneous spaces and arbitrary spatial data.

• We evaluate LieConv on the image classification bench-
mark dataset rotMNIST (Larochelle et al., 2007), and
the regression benchmark dataset QM9 (Blum and Rey-
mond, 2009; Rupp et al., 2012). LieConv outperforms
state-of-the-art methods on some tasks in QM9, and in
all cases achieves competitive results.

• We apply LieConv to modeling the Hamiltonian of
physical systems, where equivariance corresponds to
the preservation of physical quantities (energy, angular
momentum, etc.). LieConv outperforms state-of-the-
art methods for the modeling of dynamical systems.

We make code available at
https://github.com/mfinzi/LieConv

2. Related Work
One approach to constructing equivariant CNNs, first in-
troduced in Cohen and Welling (2016a), is to use standard
convolutional kernels and transform them or the feature
maps for each of the elements in the group. For discrete
groups this approach leads to exact equivariance and uses
the so-called regular representation of the group (Cohen
et al., 2019). This approach is easy to implement, and has
also been used when the feature maps are vector fields (Zhou
et al., 2017; Marcos et al., 2017), and with other representa-
tions (Cohen and Welling, 2016b), but only on image data
where locations are discrete and the group cardinality is
small. This approach has the disadvantage that the compu-
tation grows quickly with the size of the group, and some
groups like 3D rotations cannot be easily discretized onto a
lattice that is also a subgroup.

Another approach, drawing on harmonic analysis, finds a ba-
sis of equivariant functions and parametrizes convolutional
kernels in that basis (Worrall et al., 2017; Weiler and Cesa,
2019; Jacobsen et al., 2017). These kernels can be used to
construct networks that are exactly equivariant to continu-
ous groups. While the approach has been applied on general
data types like spherical images (Esteves et al., 2018; Co-
hen et al., 2018), voxel data (Weiler et al., 2018), and point

clouds (Thomas et al., 2018; Anderson et al., 2019), the
requirement of working out the representation theory for the
group can be cumbersome and is limited to compact groups.
Our approach reduces the amount of work to implement
equivariance to a new group, enabling rapid prototyping.

There is also work applying Lie group theory to deep neural
networks. Huang et al. (2017) define a network where the
intermediate activations of the network are 3D rotations
representing skeletal poses and embed elements into the Lie
algebra using the log map. Bekkers (2019) use the log map
to express an equivariant convolution kernel through the use
of B-splines, which they evaluate on a grid and apply to
image problems. While similar in motivation, their method
is not readily applicable to point data and can only be used
when the equivariance group acts transitively on the input
space. Both of these issues are addressed by our work.

3. Background
3.1. Equivariance

A mapping h(·) is equivariant to a set of transformations
G if when we apply any transformation g to the input of
h, the output is also transformed by g. The most common
example of equivariance in deep learning is the translation
equivariance of convolutional layers: if we translate the
input image by an integer number of pixels in x and y, the
output is also translated by the same amount (ignoring the
regions close to the boundary of the image). Formally, if
h : A→ A, and G is a set of transformations acting on A,
we say h is equivariant to G if ∀a ∈ A, ∀g ∈ G,

h(ga) = gh(a). (1)

The continuous convolution of a function f : R→ R with
the kernel k : R → R is equivariant to translations in the
sense that Lt(k ∗ f) = k ∗ Ltf where Lt translates the
function by t: Ltf(x) = f(x− t).

It is easy to construct invariant functions, where transfor-
mations on the input do not affect the output, by simply
discarding information. Strict invariance unnecessarily lim-
its the expressive power by discarding relevant information,
and instead it is necessary to use equivariant transformations
that preserve the information.

3.2. Groups of Transformations and Lie Groups

Many important sets of transformations form a group. To
form a group the set must be closed under composition,
include an identity transformation, each element must have
an inverse, and composition must be associative. The set
of 2D rotations, SO(2), is a simple and instructive example.
Composing two rotations r1 and r2, yields another rotation
r = r2 ◦ r1. There exists an identity id ∈ G that maps
every point in R2 to itself (i.e., rotation by a zero angle).

https://github.com/mfinzi/LieConv
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And for every rotation r, there exists an inverse rotation r−1

such that r ◦ r−1 = r−1 ◦ r = id. Finally, the composition
of rotations is an associative operation: (r1 ◦ r2) ◦ r3 =
r1 ◦ (r2 ◦ r3). Satisfying these conditions, SO(2) is indeed
a group.

We can also adopt a more familiar view of SO(2) in terms
of angles, where a rotation matrix R : R → R2×2 is
parametrized as R(θ) = exp(Jθ). J is the antisymmet-

ric matrix J =

[
0 −1
1 0

]
(an infinitesimal generator of the

group) and exp is the matrix exponential. Note that θ is
totally unconstrained. Using R(θ) we can add and subtract
rotations. Given θ1, θ2 we can compute R(θ1)−1R(θ2) =
exp(−Jθ1 + Jθ2) = R(θ2 − θ1). R(θ) = exp(Jθ) is an
example of the Lie algebra parametrization of a group, and
SO(2) forms a Lie group.

More generally, a Lie group is a group whose elements form
a smooth manifold. Since G is not necessarily a vector
space, we cannot add or subtract group elements. However,
the Lie algebra of G, the tangent space at the identity, g =
TidG, is a vector space and can be understood informally as
a space of infinitesimal transformations from the group. As
a vector space, one can readily expand elements in a basis
A =

∑
k a

kek and use the components for calculations.

The exponential map exp : g → G gives a mapping from
the Lie algebra to the Lie group, converting infinitesimal
transformations to group elements. In many cases, the image
of the exponential map covers the group, and an inverse
mapping log : G→ g can be defined. For matrix groups the
exp map coincides with the matrix exponential (exp(A) =
I + A + A2/2! + ... ), and the log map with the matrix
logarithm. Matrix groups are particularly amenable to our
method because in many cases the exp and log maps can be
computed in closed form. For example, there are analytic
solutions for the translation group T(d), the 3D rotation
group SO(3), the translation and rotation group SE(d) for
d = 2, 3, the rotation-scale group R∗× SO(2), and many
others (Eade, 2014). In the event that an analytic solution
is not available there are reliable numerical methods at our
disposal (Moler and Van Loan, 2003).

3.3. Group Convolutions

Adopting the convention of left equivariance, one can define
a group convolution between two functions on the group,
which generalizes the translation equivariance of convolu-
tion to other groups:

Definition 1. Let k, f : G → R, and µ(·) be the Haar
measure on G. For any u ∈ G, the convolution of k and f
on G at u is given by

h(u) = (k ∗ f)(u) =

∫

G

k(v−1u)f(v)dµ(v). (2)

(Kondor and Trivedi, 2018; Cohen et al., 2019)

3.4. PointConv Trick

In order to extend learnable convolution layers to point
clouds, not having the regular grid structure in images, Dai
et al. (2017), Simonovsky and Komodakis (2017), and Wu
et al. (2019)go back to the continuous definition of a con-
volution for a single channel between a learned function
(convolutional filter) kθ(·) : Rd → Rcout×cin and an in-
put feature map f(·) : Rd → Rcin yielding the function
h(·) : Rd → Rcout ,

h(x) = (kθ ∗ f)(x) =

∫
kθ(x− y)f(y)dy. (3)

We approximate the integral using a discretization:

h(xi) = (V/n)
∑

j

kθ(xi − xj)f(xj) . (4)

Here V is the volume of the space integrated over and n is
the number of quadrature points. In a 3× 3 convolutional
layer for images, where points fall on a uniform square
grid, the filter kθ has independent parameters for each of
the inputs (−1,−1), (−1, 0), . . . , (1, 1). In order to accom-
modate points that are not on a regular grid, kθ can be
parametrized as a small neural network, mapping input off-
sets to filter matrices, explored with MLPs in Simonovsky
and Komodakis (2017). The compute and memory costs
has severely limited this approach, for typical CIFAR-10
images with batchsize = 32, N = 32 × 32, cin = cout =
256, n = 3×3, evaluating a single layer requires computing
20 billion values for k.

In PointConv, Wu et al. (2019) develop a trick where clever
reordering of the computation cuts memory and computa-
tional requirements by ∼ 2 orders of magnitude, allowing
them to scale to the point cloud classification, segmenta-
tion datasets ModelNet40 and ShapeNet, and the image
dataset CIFAR-10. We review and generalize the Efficient-
PointConv trick in Appendix A.1, which we will use to
accelerate our method.

4. Convolutional Layers on Lie Groups
We now introduce LieConv, a new convolutional layer that
can be made equivariant to a given Lie group. Models with
LieConv layers can act on arbitrary collections of coordi-
nates and values {(xi, fi)}Ni=1, for xi ∈ X and fi ∈ V
where V is a vector space. The domain X is usually a low
dimensional domain like R2 or R3 such as for molecules,
point clouds, the configurations of a mechanical system,
images, time series, videos, geostatistics, and other kinds of
spatial data.
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Figure 2. Visualization of the lifting procedure. Panel (a) shows a point x in the original input space X . In panels (b)–(f) we illustrate the
lifted embeddings for different groups in the form [u, q], where u ∈ G is an element of the group and q ∈ X/G identifies the orbit (see
Section 4.5). For SE(2) the lifting is multi-valued.

We begin with a high-level overview of the method. In
Section 4.1 we discuss transforming raw inputs xi into group
elements ui on which we can perform group convolution.
We refer to this process as lifting. Section 4.2 addresses
the irregular and varied arrangements of group elements
that result from lifting arbitrary continuous input data by
parametrizing the convolutional kernel k as a neural network.
In Section 4.3, we show how to enforce the locality of the
kernel by defining an invariant distance on the group. In
Section 4.4, we define a Monte Carlo estimator for the
group convolution integral in Eq. (2) and show that this
estimator is equivariant in distribution. In Section 4.5, we
extend the procedure to cases where the group does not
act transitively on the input space (when we cannot map
any point to any other point with a transformation from the
group). Additionally, in Appendix A.2, we show that our
method generalizes coordinate transform equivariance when
G is Abelian. At the end of Section 4.5 we provide a concise
algorithmic description of the lifting procedure and our new
convolution layer.

4.1. Lifting from X to G

If X is a homogeneous space of G, then every two elements
in X are connected by an element in G, and one can lift ele-
ments by simply picking an origin o and defining Lift(x) =
{u ∈ G : uo = x}: all elements in the group that map
the origin to x. This procedure enables lifting tuples of co-
ordinates and features {(xi, fi)}Ni=1 → {(uik, fi)}N,Ki=1,k=1,
with up to K group elements for each input.1 To find all
the elements {u ∈ G : uo = x}, one simply needs to find
one element ux and use the elements in the stabilizer of
the origin H = {h ∈ G : ho = o}, to generate the rest
with Lift(x) = {uxh for h ∈ H}. For continuous groups
the stabilizer may be infinite, and in these cases we sample
uniformly using the Haar measure µ which is described
in Appendix C.2. We visualize the lifting procedure for

1When fi = f(xi), lifting in this way is equivalent to defining
f↑(u) = f(uo) as in Kondor and Trivedi (2018).

different groups in Figure 2.

4.2. Parameterization of the Kernel

The conventional method for implementing an equivariant
convolutional network (Cohen and Welling, 2016a) requires
enumerating the values of k(·) over the elements of the
group, with separate parameters for each element. This
procedure is infeasible for irregularly sampled data and
problematic even for a discretization because there is no
generalization between different group elements. Instead
of having a discrete mapping from each group element to
the kernel values, we parametrize the convolutional kernel
as a continuous function kθ using a fully connected neural
network with Swish activations, varying smoothly over the
elements in the Lie group.

However, as neural networks are best suited to learn on
euclidean data and G does not form a vector space, we
propose to model k by mapping onto the Lie Algebra g,
which is a vector space, and expanding in a basis for the
space. To do so, we restrict our attention in this paper to Lie
groups whose exponential maps are surjective, where every
element has a logarithm. This means defining kθ(u) =
(k ◦ exp)θ(log u), where k̃θ = (k ◦ exp)θ is the function
parametrized by an MLP, k̃θ : g→ Rcout×cin . Surjectivity
of the exp map guarantees that exp ◦ log = id, although not
in the other order.

4.3. Enforcing Locality

Important both to the inductive biases of convolutional neu-
ral networks and their computational efficiency is the fact
that convolutional filters are local, kθ(ui − uj) = 0 for
‖ui − uj‖ > r. In order to quantify locality on matrix
groups, we introduce the function:

d(u, v) := ‖ log(u−1v)‖F , (5)

where log is the matrix logarithm, and F is the Frobenius
norm. The function is left invariant, since d(wu,wv) =
‖ log(u−1w−1wv)‖F = d(u, v), and is a semi-metric (it
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Figure 3. A visualization of the local neighborhood for R∗× SO(2),
in terms of the points in the input space. For the computation
of h at the point in orange, elements are sampled from colored
region. Notice that the same points enter the calculation when the
image is transformed by a rotation and scaling. We visualize the
neighborhoods for other groups in Appendix C.6.

does not necessarily satisfy the triangle inequality). In Ap-
pendix A.3 we show the conditions under which d(u, v)
is additionally the distance along the geodesic connect-
ing u, v, a generalization of the well known formula for
the geodesic distance between rotations ‖ log(RT1 R2)‖F
(Kuffner, 2004).

To enforce that our learned convolutional filter k is local, we
can use our definition of distance to only evaluate the sum
for d(u, v) < r, implicitly setting kθ(v−1u) = 0 outside a
local neighborhood nbhd(u) = {v : d(u, v) ≤ r},

h(u) =

∫

v∈nbhd(u)
kθ(v

−1u)f(v)dµ(v). (6)

This restriction to a local neighborhood does not break
equivariance precisely because d(·, ·) is left invariant.
Since d(u, v) = d(v−1u, id) this restriction is equiva-
lent to multiplying by the indicator function kθ(v−1u) →
kθ(v

−1u)1[d(v−1u,id)≤r] which depends only on v−1u.
Note that equivariance would have been broken if we used
neighborhoods that depend on fixed regions in the input
space like the square 3 × 3 region. Figure 3 shows what
these neighborhoods look like in terms of the input space.

4.4. Discretization of the Integral

Assuming that we have a collection of quadrature points
{vj}Nj=1 as input and the function fj = f(vj) evaluated
at these points, we can judiciously choose to evaluate the
convolution at another set of group elements {ui}Ni=1, so
as to have a set of quadrature points to approximate an
integral in a subsequent layer. Because we have restricted
the integral (6) to the compact neighbourhood nbhd(u),
we can define a proper sampling distribution µ|nbhd(u) to
estimate the integral, unlike for the possibly unbounded G.
Computing the outputs only at these target points, we use
the Monte Carlo estimator for (1) as

h(ui) = (k ∗
∧

f)(ui) =
1

ni

∑

j∈nbhd(i)
k(v−1j ui)f(vj), (7)

where ni = |nbhd(i)| the number of points sampled in each
neighborhood.

For vj ∼ µ|nbhd(u)(·), the Monte Carlo estimator is
equivariant (in distribution).

Proof: Recalling that we can absorb the local neigh-
borhood into the definition of kθ using an indicator function,
we have

(k ∗
∧

Lwf)(ui) = (1/ni)
∑

j

k(v−1j ui)f(w−1vj)

= (1/ni)
∑

j

k(ṽ−1j w−1ui)f(ṽj)

d
= (k ∗

∧

f)(w−1ui) = Lw(k ∗
∧

f)(ui).

Here ṽj := wvj , and the last line follows from the fact

that the random variables wvj
d
= vj are equal in distribu-

tion because they are sampled from the Haar measure with
property dµ(wv) = dµ(v). The equivariance also holds de-
terministically when the sampling locations are transformed
along with the function vj → wvj . Now that we have the
discretization hi = (1/ni)

∑
j∈nbhd(i) k̃θ(log(v−1j ui))fi,

we can accelerate this computation using the Efficient-
PointConv trick, with the argument of aij = log(v−1j ui)
for the MLP. See Appendix A.1 for more details. Note
that we can also apply this discretization of the convolution
when the inputs are not functions fi = f(xi), but sim-
ply coordinates and values {(xi, fi)}Ni=1, and the mapping
{(ui, fi)}Ni=1 → {(ui, hi)}Ni=1 is still equivariant, which
we also demonstrate empirically in Table B.1. We also de-
tail two methods for equivariantly subsampling the elements
to further reduce the cost in Appendix A.4.

4.5. More Than One Orbit?

Figure 4. Orbits of SO(2) and T(1)y containing input points in R2.
Unlike T(2) and SE(2), not all points are not contained in a single
orbit of these small groups.

In this paper, we consider groups both large and small, and
we require the ability to enable or disable equivariances like
translations. To achieve this functionality, we need to go
beyond the usual setting of homogeneous spaces considered
in the literature, where every pair of elements in X are
related by an element inG. Instead, we consider the quotient
space Q = X/G, consisting of the distinct orbits of G in
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X (visualized in Figure 4).2 Each of these orbits q ∈ Q
is a homogeneous space of the group, and when X is a
homogeneous space of G then there is only a single orbit.
But in general, there will be many distinct orbits, and lifting
should preserve the information on which orbit each point
is on.

Since the most general equivariant mappings will use this
orbit information, throughout the network the space of el-
ements should not be G but rather G × X/G, and x ∈ X
is lifted to the tuples (u, q) for u ∈ G and q ∈ Q. This
mapping may be one-to-one or one-to-many depending on
the size of H , but will preserve the information in x as
uoq = x where oq is the chosen origin for each orbit. Gen-
eral equivariant linear transforms can depend on both the
input and output orbit, and equivariance only constrains the
dependence on group elements and not the orbits.

When the space of orbits Q is continuous we can write the
equivariant integral transform as

h(u, q) =

∫

G,Q

k(v−1u, q, q′)f(v, q′)dµ(v)dq′. (8)

When G is the trivial group {id}, this equation simplifies
to the integral transform h(x) =

∫
k(x, x′)f(x′)dx′ where

each element in X is in its own orbit.

In general, even if X is a smooth manifold and G is a Lie
group it is not guaranteed that X/G is a manifold (Kono
and Ishitoya, 1987). However in practice this is not an issue
as we will only have a finite number of orbits present in
the data. All we need is an invertible way of embedding
the orbit information into a vector space to be fed into kθ.
One option is to use an embedding of the orbit origin oq , or
simply find enough invariants of the group to identify the
orbit. To give a few examples:

1. X = Rd and G = SO(d) : Embed(q(x)) = ‖x‖

2. X = Rd and G = R∗ : Embed(q(x)) =
x

‖x‖

3. X = Rd and G = T(k) : Embed(q(x)) = x[k+1:d]

Discretizing (8) as we did in (7), we get

hi =
1

ni

∑

j∈nbhd(i)
k̃θ(log(v−1j ui), qi, qj)fj , (9)

which again can be accelerated with the Efficient-PointConv
trick by feeding in aij = Concat([log(v−1j ui), qi, qj ]) as

2When X is a homogeneous space and the quantity of interest
is the quotient with the stabilizer of the origin H: G/H ' X ,
which has been examined extensively in the literature. Here we
concerned with the separate quotient space Q = X/G, relevant
when X is not a homogeneous space.

input to the MLP. If we want the filter to be local over orbits
also, we can extend the distance d((ui, qi), (vj , qj))

2 =
d(ui, vj)

2 + α‖qi − qj‖2, which need not be invariant to
transformations on q. To the best of our knowledge, we are
the first to systematically address equivariances of this kind,
where X is not a homogeneous space of G.

To recap, Algorithms 1 and 2 give a concise overview of our
lifting procedure and our new convolution layer respectively.
Please consult Appendix C.1 for additional implementation
details.

Algorithm 1 Lifting from X to G×X/G
Inputs: spatial data {(xi, fi)}Ni=1 (xi ∈ X , fi ∈ Rcin ).
Returns: matrix-orbit-value tuples {(uj , qj , fj)}NKj=1 .
For each orbit q ∈ X/G, choose an origin oq .
For each oq , compute its stabilizer Hq .
for i = 1, . . . , N do

Find the orbit qi ∈ X/G , s.t. xi ∈ qi.
Sample {vj}Kj=1, where vj ∼ µ(Hqi) (see C.2).
Compute an element ui ∈ G s.t. uioq = xi.
Zi = {(uivj , qi, fi)}Kj=1.

end
return Z

Algorithm 2 The Lie Group Convolution Layer
Inputs: matrix-orbit-value tuples {(uj , qj , fj)}mj=1

Returns: convolved matrix-orbit-values {(ui, qi, hi)}mi=1

for i = 1, . . . ,m do
u−1i = exp(− log(ui)).
nbhdi = {j : d((ui, qi), (uj , qj)) < r)}.
for j = 1, . . . ,m do

aij = Concat([log(u−1i uj), qi, qj ]).
end
hi = (1/ni)

∑
j∈nbhdi kθ(aij)fj (see A.1).

end
return (u,q,h)

5. Applications to Image and Molecular Data
First, we evaluate LieConv on two types of problems: clas-
sification on image data and regression on molecular data.
With LieConv as the convolution layers, we implement a
bottleneck ResNet architecture with a final global pooling
layer (Figure 5). For a detailed architecture description,
see Appendix C.3. We use the same model architecture for
all tasks and achieve performance competitive with task-
specific specialized methods.
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Table 1. Classification Error (%) on RotMNIST dataset for LieConv with different group equivariances and baselines: G-CNN (Cohen
and Welling, 2016a), H-Net (Worrall et al., 2017), ORN (Zhou et al., 2017), TI-Pooling (Laptev et al., 2016), RotEqNet (Marcos et al.,
2017), E(2)-Steerable CNNs (Weiler and Cesa, 2019) .

Baseline Methods LieConv (Ours)

G-CNN H-NET ORN TI-Pooling RotEqNet E(2)-Steerable Trivial T(1)y T(2) SO(2) SO(2)×R∗ SE(2)

2.28 1.69 1.54 1.2 1.09 0.68 1.58 1.49 1.44 1.42 1.27 1.24

Table 2. QM9 Molecular Property Mean Absolute Error

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr2 meV meV meV

NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.500
SchNet .235 63 41 34 .033 .033 14 14 .073 19 14 1.700
Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.027
LieConv(T3) .084 49 30 25 .032 .038 22 24 .800 19 19 2.280

5.1. Image Equivariance Benchmark

The RotMNIST dataset consists of 12k randomly rotated
MNIST digits with rotations sampled uniformly from
SO(2), separated into 10k for training and 2k for validation.
This commonly used dataset has been a standard benchmark
for equivariant CNNs on image data. To apply LieConv to
image data we interpret each input image as a collection
of N = 28× 28 points on X = R2 with associated binary
values: {xi, f(xi)}784i=1 to which we apply a circular center
crop. We note that LieConv is broadly targeting generic
spatial data, and more practical equivariant methods exist
specialized to images (e.g. Weiler and Cesa (2019)). How-
ever, as we demonstrate in Table 1, we are able to easily
incorporate equivariance to a variety of different groups
without changes to the method or the architecture of the
network, while achieving performance competitive with
methods that are not applicable beyond image data.

5.2. Molecular Data

Now we apply LieConv to the QM9 molecular property
learning task (Wu et al., 2018). The QM9 regression dataset
consists of small inorganic molecules encoded as a collec-
tion of 3D spatial coordinates for each of the atoms, and
their atomic charges. The labels consist of various properties
of the molecules such as heat capacity. This is a challenging
task as there is no canonical origin or orientation for each
molecule, and the target distribution is invariant to E(3)
(translation, rotation, and reflection) transformations of the
coordinates. Successful models must generalize across dif-
ferent spatial locations and orientations.

We first perform an ablation study on the Homo problem
of predicting the energy of the highest occupied molecular
orbital for the molecules. We apply LieConv with different
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Figure 5. A visual overview of the LieConv model architecture,
which is composed of L LieConv bottleneck blocks that couple
the values at different group elements together. The BottleBlock is
a residual block with a LieConv layer between two linear layers.

equivariance groups, combined with SO(3) data augmen-
tation. The results are reported in Table 5.2. Of the three
groups, our SE(3) network performs the best. We then apply
T(3)-equivariant LieConv layers to the full range of tasks in
the QM9 dataset and report the results in Table 2. We per-
form competitively with state-of-the-art methods (Gilmer
et al., 2017; Schütt et al., 2018; Anderson et al., 2019), with
lowest MAE on several of the tasks. See B.1 for a demon-
stration of the equivariance property and efficiency with
limited data.
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Cormorant Trivial SO(3) T(3) SE(3)

34 31.7 65.4 29.6 26.8

Table 3. LieConv performance (Mean Absolute Error in meV) for
different groups on the HOMO regression problem.

Figure 6. A qualitative example of the trajectory predictions over
100 time steps on the 2D spring problem given a set of initial con-
ditions. We see that HLieConv (right) yields predictions that are
accurate over a longer time than HOGN (left), a SOTA architecture
for modeling interacting physical systems.

6. Modeling Dynamical Systems
Accurate transition models for macroscopic physical sys-
tems are critical components in control systems (Lenz et al.,
2015; Kamthe and Deisenroth, 2017; Chua et al., 2018) and
data-efficient reinforcement learning algorithms (Nagabandi
et al., 2018; Janner et al., 2019). In this section we show
how to enforce conservation of quantities such as linear and
angular momentum in the modeling of Hamiltonian systems
through LieConv symmetries.

6.1. Predicting Trajectories with Hamiltonian
Mechanics

For dynamical systems, the equations of motion can be writ-
ten in terms of the state z and time t: ż = F (z, t). Many
physically occurring systems have Hamiltonian structure,
meaning that the state can be split into generalized coordi-
nates and momenta z = (q,p), and the dynamics can be
written as

dq

dt
=
∂H
∂ p

dp

dt
= −∂H

∂ q
(10)

for some choice of scalar Hamiltonian H(q,p, t). H is
often the total energy of the system, and can sometimes
be split into kinetic and potential energy termsH(q,p) =
K(p) +V (q). The dynamics can also be written compactly

as ż = J∇zH for J =

[
0 I
−I 0

]
.

As shown in Greydanus et al. (2019), a neural network

parametrizing Ĥθ(z, t) can be learned directly from tra-
jectory data, providing substantial benefits in generaliza-
tion over directly modeling Fθ(z, t), and with better en-
ergy conservation. We follow the approach of Sanchez-
Gonzalez et al. (2019) and Zhong et al. (2019). Given an
initial condition z0 and Fθ(z, t) = J∇zĤθ, we employ a
twice-differentiable model architecture and a differentiable
ODE solver (Chen et al., 2018) to compute predicted states
(ẑ1, . . . , ẑT ) = ODESolve(z0, Fθ, (t1, t2, ..., tT )). The pa-
rameters of the Hamiltonian model Ĥθ can be trained di-
rectly through the L2 loss,

L(θ) =
1

T

T∑

t=1

||ẑt − zt ||22. (11)

6.2. Exact Conservation of Momentum

While equivariance is broadly useful as an inductive bias, it
has a very special implication for the modeling of Hamil-
tonian systems. Noether’s Hamiltonian theorem states that
each continuous symmetry in the Hamiltonian of a dynami-
cal system has a corresponding conserved quantity (Noether,
1971; Butterfield, 2006). Symmetry with respect to the con-
tinuous transformations of translations and rotations lead
directly to conservation of the total linear and angular mo-
mentum of the system, an extremely valuable property for
modeling dynamical systems. In fact, all models that ex-
actly conserve linear and angular momentum must have a
corresponding translational and rotational symmetry. See
Appendix A.5 for a primer on Hamiltonian symmetries,
Noether’s theorem, and the implications in the current set-
ting.

As showed in Section 4, we can construct models that are
equivariant to a large variety of continuous Lie Group sym-
metries, and therefore we can exactly conserve associated
quantities like linear and angular momentum. Figure 7(a)
shows that using LieConv layers with a given T(2) and/or
SO(2) symmetry, the model trajectories conserve linear
and/or angular momentum with relative error close to ma-
chine epsilon, determined by the integrator tolerance. As
there is no corresponding Noether conservation for discrete
symmetry groups, discrete approaches to enforcing symme-
try (Cohen and Welling, 2016a; Marcos et al., 2017) would
not be nearly as effective.

6.3. Results

For evaluation, we compare a fully-connected (FC) Neural-
ODE model (Chen et al., 2018), ODE graph networks
(OGN) (Battaglia et al., 2016), Hamiltonian ODE graph
networks (HOGN) (Sanchez-Gonzalez et al., 2019), and
our own LieConv architecture on predicting the motion
of point particles connected by springs as described in
(Sanchez-Gonzalez et al., 2019). Figure 6 shows exam-
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Figure 7. Left: We can directly control whether linear and angular momentum is conserved by changing the model’s symmetries. The
components of linear and angular momentum of the integrated trajectories are conserved up to integrator tolerance. Middle: Momentum
along the rollout trajectories for the LieConv models with different imposed symmetries. Right: Our method outperforms HOGN, a
state-of-the-art model, on both state rollout error and system energy conservation.

ple rollout trajectories, and our quantitative results are pre-
sented in Figure 7. In the spring problem N bodies with
mass m1, . . . ,mN interact through pairwise spring forces
with constants k1, . . . , kN×N . The system preserves energy,
linear momentum, and angular momentum. The behavior
of the system depends both the values of the system pa-
rameters (s = (k,m)) and the initial conditions z0. The
dynamics model must learn not only to predict trajectories
across a broad range of initial conditions, but also infer the
dependence on varied system parameters, which are addi-
tional inputs to the model. We compare models that attempt
to learn the dynamics Fθ(z, t) = dz/dt directly against
models that learn the Hamiltonian as described in section
6.1.
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Figure 8. Test MSE as a function of the number of examples in the
training dataset,N . As the inductive biases of Hamiltonian, Graph-
Network, and LieConv equivariance are added, generalization
performance improves. LieConv outperforms the other methods
across all dataset sizes. The shaded region corresponds to a 95%
confidence interval, estimated across 3 trials.

In Figure 7(a) and 7(b) we show that by changing the in-
variance of our Hamiltonian models, we have direct control
over the conservation of linear and angular momentum in
the predicted trajectories. Figure 7(c) demonstrates that
our method outperforms HOGN, a SOTA architecture for

dynamics problems, and achieves significant improvement
over the naïve fully-connected (FC) model. We summa-
rize the various models and their symmetries in Table 6.
Finally, in Figure 8 we evaluate test MSE of the different
models over a range of training dataset sizes, highlighting
the additive improvements in generalization from the Hamil-
tonian, Graph-Network, and equivariance inductive biases
successively.

7. Discussion
We presented a convolutional layer to build networks that
can handle a wide variety of data types, and flexibly swap
out the equivariance of the model. While the image, molec-
ular, and dynamics experiments demonstrate the generality
of our method, there are many exciting application domains
(e.g. time-series, geostats, audio, mesh) and directions for
future work. We also believe that it will be possible to bene-
fit from the inductive biases of HLieConv models even for
systems that do not exactly preserve energy or momentum,
such as those found in control systems and reinforcement
learning.

The success of convolutional neural networks on images has
highlighted the power of encoding symmetries in models
for learning from raw sensory data. But the variety and com-
plexity of other modalities of data is a significant challenge
in further developing this approach. More general data may
not be on a grid, it may possess other kinds of symmetries,
or it may contain quantities that cannot be easily combined.
We believe that central to solving this problem is a decou-
pling of convenient computational representations of data
as dense arrays from the set of geometrically sensible opera-
tions they may have. We hope to move towards models that
can ‘see’ molecules, dynamical systems, multi-scale objects,
heterogeneous measurements, and higher mathematical ob-
jects, in the way that convolutional neural networks perceive
images.
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