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Abstract
Training machine learning models that are robust
against adversarial inputs poses seemingly insur-
mountable challenges. To better understand ad-
versarial robustness, we consider the underlying
problem of learning robust representations. We
develop a notion of representation vulnerability
that captures the maximum change of mutual in-
formation between the input and output distri-
butions, under the worst-case input perturbation.
Then, we prove a theorem that establishes a lower
bound on the minimum adversarial risk that can
be achieved for any downstream classifier based
on its representation vulnerability. We propose an
unsupervised learning method for obtaining intrin-
sically robust representations by maximizing the
worst-case mutual information between the input
and output distributions. Experiments on down-
stream classification tasks support the robustness
of the representations found using unsupervised
learning with our training principle.

1. Introduction
Machine learning has made remarkable breakthroughs in
many fields, including computer vision (He et al., 2016)
and natural language processing (Devlin et al., 2019), espe-
cially when evaluated on classification accuracy on a given
dataset. However, adversarial vulnerability (Szegedy et al.,
2014; Engstrom et al., 2017), remains a serious problem
that impedes the deployment of the state-of-the-art machine
learning models in safety-critical applications, such as au-
tonomous driving (Eykholt et al., 2018) and face recognition
(Sharif et al., 2016). Despite extensive efforts to improve
model robustness, state-of-the-art adversarially robust train-
ing methods (Mądry et al., 2018; Zhang et al., 2019) still
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fail to produce robust models, even for simple classification
tasks on CIFAR-10 (Krizhevsky et al., 2009).

In addition to many ineffective empirical attempts for achiev-
ing model robustness, recent studies have identified intrinsic
difficulties for learning in the presence of adversarial ex-
amples. For instance, a line of works (Gilmer et al., 2018;
Fawzi et al., 2018; Mahloujifar et al., 2019; Shafahi et al.,
2018) proved that adversarial vulnerability is inevitable if
the underlying input distribution is concentrated. Schmidt
et al. (2018) showed that for certain learning problems, ad-
versarially robust generalization requires more sample com-
plexity compared with standard one, whereas Bubeck et al.
(2019) constructed a specific task on which adversarially
robust learning is computationally intractable.

Motivated by the apparent empirical and theoretical diffi-
culties of robust learning with adversarial examples, we
focus on the underlying problem of learning adversarially
robust representations (Garg et al., 2018; Pensia et al., 2020).
Given an input space X ⊆ Rd and a feature space Z ⊆ Rn,
any function g : X → Z is called a representation with
respect to (X ,Z). Adversarially robust representations de-
note the set of functions from X to Z that are less sensitive
to adversarial perturbations with respect to some metric ∆
defined on X . Note that one can always get an overall clas-
sification model by learning a downstream classifier given
a representation, thus learning representations that are ro-
bust can be viewed as an intermediate step for the ultimate
goal of finding adversarially robust models. In this sense,
learning adversarially robust representations may help us
better understand adversarial examples, and perhaps more
importantly, bypass some of the aforementioned intrinsic
difficulties for achieving model robustness.

In this paper, we give a general definition for robust rep-
resentations based on mutual information, then study its
implications on model robustness for a downstream clas-
sification task. Finally, we propose empirical methods for
estimating and inducing representation robustness.

Contributions. Motivated by the empirical success of stan-
dard representation learning using the mutual information
maximization principle (Bell & Sejnowski, 1995; Hjelm
et al., 2018), we first give a formal definition on representa-



tion vulnerability as the maximum change of mutual infor-
mation between the representation’s input and output against
adversarial input perturbations bound in an∞-Wasserstein
ball (Section 3). Under a Gaussian mixture model, we es-
tablished theoretical connections between the robustness of
a given representation and the adversarial gap of the best
classifier that can be based on it (Section 3.1). In addition,
based on the standard mutual information and the represen-
tation vulnerability, we proved a fundamental lower bound
on the minimum adversarial risk that can be achieved for
any downstream classifiers built upon a representation with
given representation vulnerability (Section 3.2).

To further study the implication of robust representations,
we first propose a heuristic algorithm to empirically esti-
mate the vulnerability of a given representation (Section
4), and then by adding a regularization term on represen-
tation vulnerability in the objective of mutual information
maximization principle, provide an unsupervised way for
training meaningful and robust representations (Section 5).
We observe a direct correlation between model and repre-
sentation robustness in experiments on benchmark image
datasets MINST and CIFAR-10 (Section 6.1). Experiments
on downstream classification tasks and saliency maps fur-
ther show the effectiveness of our proposed training method
in obtaining more robust representations (Section 6.2).

Related Work. With similar motivations, several different
definitions of robust features have been proposed in litera-
ture. The pioneering work of Garg et al. (2018) considered a
feature to be robust if it is insensitive to input perturbations
in terms of the output values. However, their definition of
feature robustness is not invariant to scale changes. Based
on the linear correlation between feature outputs and true
labels, Ilyas et al. (2019) proposed a definition of robust fea-
tures to understand adversarial examples, whereas Eykholt
et al. (2019) proposed to study robust features whose outputs
will not change with respect to small input perturbations.
However, these two definitions either require the additional
label information or restrict the feature space to be discrete,
thus are not general. The most closely related work to ours is
Pensia et al. (2020), which considered Fisher information of
the output distribution as the indicator of feature robustness
and proposed a robust information bottleneck method for ex-
tracting robust features. Compared with Pensia et al. (2020),
our definition is defined for the worst-case input distribution
perturbation, whereas Fisher information can only capture
feature’s sensitivity near the input distribution. In addition,
our proposed training method for robust representations is
better in the sense that it is unsupervised.

Notation. We use small boldface letters such as x to denote
vectors and capital letters such as X to denote random vari-
ables. Let (X ,∆) be a metric space, where ∆ : X×X → R

is some distance metric. Let P(X ) denote the set of all prob-
ability measures onX and δx be the dirac measure at x ∈ X .
Let B(x, ε,∆) = {x′ ∈ X : ∆(x′,x) ≤ ε} be the ball
around x with radius ε. When ∆ is free of context, we sim-
ply write B(x, ε) = B(x, ε,∆). Denote by sgn(·) the sign
function such that sgn(x) = 1 if x ≥ 0; sgn(x) = −1 other-
wise. Given f : X → Y and g : Y → Z , define g◦f as their
composition such that for any x ∈ X , (g◦f)(x) = g(f(x)).
We use [m] to denote {1, 2, . . . ,m} and |A| to denote the
cardinality of a finite setA. For any x ∈ Rd, the `p-norm of
x is defined as ‖x‖p = (

∑
i∈[d] x

p
i )

1/p for any p ≥ 1. For
any θ ∈ Rd and positive definite matrix Σ ∈ Rd×d, denote
by N (θ,Σ) the d-dimensional Gaussian distribution with
mean vector θ and covariance matrix Σ.

2. Preliminaries
This section introduces the main ideas we build upon: mu-
tual information, Wasserstein distance and adversarial risk.

Mutual information. Mutual information is an entropy-
based measure of the mutual dependence between variables:

Definition 2.1. Let (X,Z) be a pair of random variables
with values over the space X × Z . The mutual information
of (X,Z) is defined as:

I(X;Z) =

∫
Z

∫
X
pXZ(x, z) log

(
pXZ(x, z)

pX(x)pZ(z)

)
dxdz,

where pXZ is the joint probability density function of
(X,Z), and pX , pZ are the marginal probability density
functions of X and Z, respectively.

Intuitively, I(X;Z) tells us how well one can predictZ from
X (and X from Z, since it is symmetrical). By definition,
I(X;Z) = 0 if X and Z are independent; when X and Z
are identical, I(X;X) equals to the entropy H(X).

Wasserstein distance. Wasserstein distance is a distance
function defined between two probability distributions on a
given metric space:

Definition 2.2. Let (X ,∆) be a metric space with bounded
support. Given two probability measures µ and ν on (X ,∆),
the p-th Wasserstein distance, for any p ≥ 1, is defined as:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×X

∆(x,x′)p dγ(x, x′)

)1/p

,

where Γ(µ, ν) is the collection of all probability measures
on X × X with µ and ν being the marginals of the first and
second factor, respectively. The p-th Wasserstein ball with
respect to µ and radius ε ≥ 0 is defined as:

BWp(µ, ε) = {µ′ ∈ P(X ) : Wp(µ
′, µ) ≤ ε}.



The∞-Wasserstein distance is defined as the limit of p-th
Wasserstein distance, W∞(µ, ν) = limp→∞ Wp(µ, ν).

Adversarial risk. Adversarial risk captures the vulnerabil-
ity of a given classification model to input perturbations:

Definition 2.3. Let (X ,∆) be the input metric space and Y
be the set of labels. Let µXY be the underlying distribution
of the input and label pairs. For any classifier f : X → Y ,
the adversarial risk of f with respect to ε ≥ 0 is defined as:

AdvRiskε(f) = Pr
(x,y)∼µXY

[
∃ x′ ∈ B(x, ε) s.t. f(x′) 6= y

]
.

Adversarial risk with ε = 0 is equivalent to standard risk,
namely AdvRisk0(f) = Risk(f) = Pr(x,y)∼µ[f(x) 6= y].
For any classifier f : X → Y , we define the adversarial
gap of f with respect to ε as:

AGε(f) = AdvRiskε(f)− Risk(f).

3. Adversarially Robust Representations
In this section, we first propose a definition of representation
vulnerability, and then prove several theorems that bound
achievable model robustness based on representation vul-
nerability. Let X ⊆ Rd be the input space and Z ⊆ Rn be
some feature space. In this work, we define a representation
to be a function g that maps any input x in X to some vector
g(x) ∈ Z . A classifier, f = h ◦ g, maps an input to a label
in a label space Y , and is a composition of a downstream
classifier, h : Z → Y , with a representation, g : X → Z .
As is done in previous works (Garg et al., 2018; Ilyas et al.,
2019), we define a feature as a function from X to R, so can
think of a representation as an array of features.

Inspired by the empirical success of standard representa-
tion learning using the mutual information maximization
principle (Hjelm et al., 2018), we propose the following def-
inition of representation vulnerability, which captures the
robustness of a given representation against input distribu-
tion perturbations in terms of mutual information between
its input and output.

Definition 3.1. Let (X , µX ,∆) be a metric probability
space of inputs and Z be some feature space. Given a
representation g : X → Z and ε ≥ 0, the representation
vulnerability of g with respect to perturbations bounded in
an∞-Wasserstein ball with radius ε is defined as:

RVε(g) = sup
µX′∈BW∞ (µX ,ε)

[
I(X; g(X))− I(X ′; g(X ′))

]
,

where X and X ′ denote random variables that follow µX
and µX′ , respectively.

Representation vulnerability is always non-negative, and
higher values indicate that the representation is less robust to

adversarial input distribution perturbations. More formally,
given parameters ε ≥ 0 and τ ≥ 0, a representation g is
called (ε, τ)-robust if RVε(g) ≤ τ .

Notably, using the∞-Wasserstein distance does not restrict
the choice of the metric function ∆ of the input space. This
metric ∆ corresponds to the perturbation metric for defining
adversarial examples. Thus, based on our definition of repre-
sentation vulnerability, our following theoretical results and
empirical methods work with any adversarial perturbation,
including any `p-norm based attack.

Compared with existing definitions of robust features (Garg
et al., 2018; Ilyas et al., 2019; Eykholt et al., 2019), our
definition is more general and enjoys several desirable prop-
erties. As it does not impose any constraint on the feature
space, it is invariant to scale change1 and it does not require
the knowledge of the labels. The most similar definition
to ours is from Pensia et al. (2020), who propose to use
statistical Fisher information as the evaluation criteria for
feature robustness. However, Fisher information can only
capture the average sensitivity of the log conditional density
to small changes on the input distribution (when ε → 0),
whereas our definition is defined with respect to the worst-
case input distribution perturbations in an∞-Wasserstein
ball, which is more aligned with the adversarial setting. As
will be shown next, our representation robustness notion has
a clear connection with the potential model robustness of
any classifier that can be built upon a representation.

3.1. Gaussian Mixture

We first study the implications of representation vulnerabil-
ity under a simple Gaussian mixture model. We consider
X ⊆ Rd as the input space and Y = {−1, 1} as the space of
binary labels. Assume µXY is the underlying joint probabil-
ity distribution defined over X × Y , where all the examples
(x, y) ∼ µXY are generated according to

y ∼ Unif{−1,+1}, x ∼ N (y · θ∗,Σ∗), (3.1)

where θ∗ ∈ Rd and Σ∗ ∈ Rd×d are given parameters. The
following theorem, proven in Appendix A.1, connects the
vulnerability of a given representation with the adversarial
gap of the best classifier based on the representation.

Theorem 3.2. Let (X , ‖ · ‖p) be the input metric space and
Y = {−1, 1} be the label space. Assume the underlying
data are generated according to (3.1). Consider the feature
space Z = {−1, 1} and the set of representations,

Gbin = {g : x 7→ sgn(w>x), ∀x ∈ X
∣∣ ‖w‖2 = 1}.

LetH = {h : Z → Y} be the set of non-trivial downstream

1Scale-invariance is desirable for representation robustness.
Otherwise, one can always divide the function by some large
constant to improve its robustness, e.g., Garg et al. (2018).



classifiers.2 Given ε ≥ 0, for any g ∈ Gbin, we have∫ 1
2

1
2−AGε(f∗)

H′2(θ)dθ ≤ RVε(g) ≤
∫ 1

2

1
2−

1
2 AGε(f∗)

H′2(θ)dθ,

where f∗ = argminh∈HAdvRiskε(h ◦ g) is the optimal
classifier based on g, H2(θ) = −θ log θ− (1−θ) log(1−θ)
is the binary entropy function and H′2 denotes its derivative.

For this theoretical model for a simple case, Theorem 3.2
reveals the strong connection between representation vul-
nerability and the adversarial gap achieved by the optimal
downstream classifier based on the representation. Note that
the binary entropy function H2(θ) is monotonically increas-
ing over (0, 1/2), thus the first inequality suggests that low
representation vulnerability guarantees a small adversarial
gap if we train the downstream classifier properly. On the
other hand, the second inequality implies that adversarial
robustness cannot be achieved for any downstream classifier,
if the vulnerability of the representation it uses is too high.
As discussed in Section 6.1, the connection between repre-
sentation vulnerability and adversarial gap is also found to
hold empirically for image classification benchmarks.

3.2. General Case

This section presents our main theoretical results regard-
ing robust representations. First, we present the follow-
ing lemma, proven in Appendix A.2, that characterizes the
connection between adversarial risk and input distribution
perturbations bounded in an∞-Wasserstein ball.

Lemma 3.3. Let (X ,∆) be the input metric space and Y
be the set of labels. Assume all the examples are gener-
ated from a joint probability distribution (X,Y ) ∼ µXY .
Let µX be the marginal distribution of X . Then, for any
classifier f : X → Y and ε > 0, we have

AdvRiskε(f) = sup
µX′∈BW∞ (µX ,ε)

Pr
[
f(X ′) 6= Y

]
,

where X ′ denotes the random variable that follows µX′ .

The next theorem, proven in Appendix A.3, gives a lower
bound for the adversarial risk for any downstream classi-
fier, using the worst-case mutual information between the
representation’s input and output distributions.

Theorem 3.4. Let (X ,∆) be the input metric space, Y be
the set of labels and µXY be the underlying joint probability
distribution. Assume the marginal distribution of labels µY
is a uniform distribution over Y . Consider the feature space

2To be more specific, we do not consider the case where h
is a constant function. Under our problem setting, there are two
elements inH, namely h1(z) = z, h2(z) = −z, for any z ∈ Z .

Z and the set of downstream classifiersH = {h : Z → Y}.
Given ε ≥ 0, for any g : X → Z , we have

inf
h∈H

AdvRiskε(h ◦ g) ≥ 1− I(X;Z)− RVε(g) + log 2

log |Y|
,

where X is the random variable that follows the marginal
distribution of inputs µX and Z = g(X).

Theorem 3.4 suggests that adversarial robustness cannot be
achieved if the available representation is highly vulnerable
or the standard mutual information between X and g(X) is
low. Note that I(X; g(X))−RVε(g) = inf{I(X ′; g(X ′)) :
X ′ ∼ µX′ ∈ BW∞(µX , ε)}, which corresponds to the
worst-case mutual information between input and output
of g. Therefore, if we assume robust classification as the
downstream task for representation learning, then the rep-
resentation having high worst-case mutual information is a
necessary condition for achieving adversarial robustness for
the overall classifier.

In addition, we remark that Theorem 3.4 can be extended
to general p-th Wasserstein distances, if the downstream
classifiers are evaluated based on robustness under distribu-
tional shift3, instead of adversarial risk. To be more specific,
if using Wp metric to define representation vulnerability,
we can then establish an upper bound on the maximum dis-
tributional robustness with respect to the considered Wp

metric for any downstream classifier based on similar proof
techniques of Theorem 3.4.

4. Measuring Representation Vulnerability
This section presents an empirical method for estimating the
vulnerability of a given representation using i.i.d. samples.
Recall from Definition 3.1, for any g : X → Z , the repre-
sentation vulnerability of g with respect to the input metric
probability space (X , µX ,∆) and ε ≥ 0 is defined as:

RVε(g) = I(X; g(X))︸ ︷︷ ︸
J1

− inf
µX′∈BW∞ (µX ,ε)

I(X ′; g(X ′))︸ ︷︷ ︸
J2

.

(4.1)
To measure representation vulnerability, we need to compute
both terms J1 and J2. However, the main challenge is that
we do not have the knowledge of the underlying probability
distribution µX for real-world problem tasks. Instead, we
only have access to a finite set of data points sampled from
the distribution. Therefore, it is natural to consider sample-
based estimator for J1 and J2 for practical use.

The first term J1 is essentially the mutual information be-
tween X and Z = g(X). A variety of methods have been
proposed for estimating mutual information (Moon et al.,

3See Sinha et al. (2018) for a rigorous definition of distribu-
tional robustness.



1995; Darbellay & Vajda, 1999; Suzuki et al., 2008; Kan-
dasamy et al., 2015; Moon et al., 2017). The most effective
estimator is the mutual information neural estimator (MINE)
(Belghazi et al., 2018), based on the dual representation of
KL-divergence (Donsker & Varadhan, 1983):

Îm(X;Z) = sup
θ∈Θ

E
µ̂
(m)
XZ

[Tθ]− log
(
E
µ̂
(m)
X ⊗µ̂(m)

Z

[exp(Tθ)]
)
,

where Tθ : X × Z → R is the function parameterized
by a deep neural network with parameters θ ∈ Θ, and
µ̂

(m)
XZ , µ̂(m)

X and µ̂(m)
Z denote the empirical distributions4 of

random variables (X,Z), X and Z respectively, based on
m samples. In addition, Belghazi et al. (2018) empirically
demonstrates the superiority of the proposed estimator in
terms of estimation accuracy and efficiency, and prove that
it is strongly consistent: for all ε > 0, there exists M ∈ Z
such that for any m ≥ M , |̂Im(X;Z) − I(X;Z)| ≤ ε
almost surely. Given the established effectiveness of this
method, we implement MINE to estimate I(X; g(X)) as
the first step.

Compared with J1, the second term J2 is much more diffi-
cult to estimate, as it involves finding the worst-case pertur-
bations on µX in a∞-Wasserstein ball in terms of mutual
information. As with the estimation of J1, we only have
a finite set of instances sampled from µX . On the other
hand, due to the non-linearity and the lack of duality the-
ory with respect to the∞-Wasserstein distance (Champion
et al., 2008), it is inherently difficult to directly solve an
∞-Wasserstein constrained optimization problem, even if
we work with the empirical distribution of µX . To deal
with the first challenge, we replace µX with its empirical
measure µ̂(m)

X based on i.i.d. samples. Then, to avoid the
need to search through the whole∞-Wasserstein ball, we
restrict the search space of µX′ to be the following set of
empirical distributions:

A(S, ε) =

{
1

m

m∑
i=1

δx′i : x′i ∈ B(xi, ε) ∀i ∈ [m]

}
, (4.2)

where S = {xi : i ∈ [m]} denotes the given set of m
data points sampled from µX . Note that the considered set
A(S, ε) ⊆ BW∞(µ̂

(m)
X , ε), since each perturbed point x′i is

at most ε-away from xi. Finally, making use of the dual
formulation of KL-divergence that is used in MINE, we
propose the following empirical optimization problem for
estimating J2:

min
µX′

Îm
(
X ′; g(X ′)

)
s.t. µX′ ∈ A(S, ε), (4.3)

where we simply set the empirical distribution µ̂(m)
X′ to be

the same as µX′ . In addition, we propose a heuristic al-

4Given a set of m samples {xi}i∈[m] from a distribution µ, we
let µ̂(m) = 1

m

∑
i∈[m] δxi be the empirical measure of µ.

ternating minimization algorithm to solve (4.3) (see Ap-
pendix B for the pseudocode and a complexity analysis of
the proposed algorithm). More specifically, our algorithm
alternatively performs gradient ascent on θ for the inner
maximization problem of estimating Îm(X ′; g(X ′)) given
µ′X , and searches for the set of worst-case perturbations on
{x′i : i ∈ [m]} given θ based on projected gradient descent.

5. Learning Robust Representations
In this section, we present our method for learning adver-
sarially robust representations. First, we introduce the mu-
tual information maximization principle for representation
learning (Linsker, 1989; Bell & Sejnowski, 1995). Mathe-
matically, given an input probability distribution µX and a
set of representations G = {g : X → Z}, the maximization
principle proposes to solve this optimization problem:

max
g∈G

I
(
X; g(X)

)
. (5.1)

Although this principle has been shown to be successful
for learning good representations under the standard setting
(Hjelm et al., 2018), it becomes ineffective when consid-
ering adversarial perturbations (see Table 1 for an illustra-
tion). Motivated by the theoretical connections between
feature sensitivity and adversarial risk for downstream ro-
bust classification shown in Section 3, we stimulate robust
representations by adding a regularization term based on
representation vulnerability:

max
g∈G

I(X; g(X))− β · RVε(g), (5.2)

where β ≥ 0 is the trade-off parameter between I(X; g(X))
and RVε(g). When β = 0, (5.2) is same as the objective for
learning standard representations (5.1). Increasing the value
of β will produce representations with lower vulnerability,
but may undesirably affect the standard mutual information
I(g(X);X) if β is too large. In particular, we set β = 1 in
the following discussions, which allows us to simplify (5.2)
to obtain the following optimization problem:

max
g∈G

min
µX′∈BW∞ (µX ,ε)

I
(
X ′; g(X ′)

)
. (5.3)

The proposed training principle (5.3) aims to maximize the
mutual information between the representation’s input and
output under the worst-case input distribution perturbation
bounded in a∞-Wasserstein ball. We remark that optimiza-
tion problem (5.3) aligns well with the results of Theorem
3.4, which shows the importance of the learned feature rep-
resentation achieving high worst-case mutual information
for a downstream robust classification task.

As with estimating the feature sensitivity in Section 4, we do
not have access to the underlying µX . However, the inner



minimization problem is exactly the same as estimating
the worst-case mutual information J2 in (4.1), thus we can
simply adapt the proposed empirical estimator (4.3) to solve
(5.3). To be more specific, we reparameterize g using a
neural network with parameter ψ ∈ Ψ and use the following
min-max optimization problem:

max
ψ∈Ψ

min
µX′∈A(S,ε)

Îm
(
X ′; gψ(X ′)

)
. (5.4)

Based on the proposed algorithm for the inner minimization
problem, (5.4) can be efficiently solved using a standard
optimizer, such as stochastic gradient descent.

6. Experiments
This section reports on experiments to study the implica-
tions of robust representations on benchmark image datasets.
Instead of focusing directly improving model robustness,
our experiments focus on understanding the proposed defi-
nition of robust representations as well as its implications.
Based on the proposed estimator in Section 4, Section 6.1
summarizes experiments to empirically test the relationship
between representation vulnerability and model robustness,
by extracting internal representations from the state-of-the-
art pre-trained standard and robust classification models. In
addition, we empirically evaluate the general lower bound
on adversarial risk presented in Theorem 3.4. In Section
6.2, we evaluate the proposed training principle for learning
robust representations on image datasets, and test its per-
formance with comparisons to the state-of-the-art standard
representation learning method in a downstream robust clas-
sification framework. We also visualize saliency maps as an
intuitive criteria for evaluating representation robustness.

We conduct experiments on MNIST (LeCun & Cortes,
2010), Fashion-MNIST (Xiao et al., 2017), SVHN (Net-
zer et al., 2011), and CIFAR-10 (Krizhevsky et al., 2009),
considering typical `∞-norm bounded adversarial perturba-
tions for each dataset (ε = 0.3 for MNIST, 0.1 for Fashion-
MNIST, 4/255 for SVHN, and 8/255 for CIFAR-10). We
use the PGD attack (Mądry et al., 2018) for both gener-
ating adversarial distributions in the estimation of worst-
case mutual information and evaluating model robustness.
To implement our proposed estimator (4.3), we adopt the
encode-and-dot-product model architecture in Hjelm et al.
(2018) and adjust it to adapt to different forms of represen-
tations. We leverage implementations from Engstrom et al.
(2019a) and Hjelm et al. (2018) in our implementation5.
Implementation details are provided in Appendix D.1.

6.1. Representation Robustness

To evaluate our proposed definition on representation vul-
nerability and its implications for downstream classification

5 https://github.com/schzhu/learning-adversarially-robust-representations

Figure 1. Correlations between the representation vulnerability and
the CIFAR-10 model’s natural-adversarial accuracy gap. Filled
points indicate robust models (trained with ε = 8/255), half-filled
are models adversarially trained with ε = 2/255, and unfilled
points are standard models.

models, we conduct experiments on image benchmarks us-
ing various classifiers, including VGG (Simonyan & Zis-
serman, 2015), ResNet (He et al., 2016), DenseNet (Huang
et al., 2017) and the simple convolutional neural network in
Hjelm et al. (2018) denoted as Baseline-H.

Correlation with model robustness. Theorem 3.2 estab-
lishes a direct correlation between our representation vul-
nerability definition and achievable model robustness for
the synthetic Gaussian-mixture case, but we are not able
to theoretically establish that correlation for arbitrary dis-
tributions. Here, we empirically test this correlation on
image benchmark datasets. Figure 1 summarizes the results
of these experiments for CIFAR-10, where we set the logit
layer as the considered representation space. The adversarial
gap decreases with decreasing representation vulnerability
in an approximately consistent relationship. Models with
low logit layer representation vulnerability tend to have low
natural-adversarial accuracy gap, which is consistent with
the intuition behind our definition and with the theoretical
result on the synthetic Gaussian-mixture case. This sug-
gests the correlation between representation vulnerability
and model robustness may hold for general case.

Adversarial risk lower bound. Theorem 3.4 provides a
lower bound on the adversarial risk that can be achieved by
any downstream classifier as a function of representation
vulnerability. To evaluate the tightness of this bound, we
estimate the normal-case and worst-case mutual information
I(X; g(X)) of layer representation g for different models,
and empirically evaluate the adversarial risk of the models.
Figure 2 shows the results, where we again set the logit
layer as the feature space for a more direct comparison. The
lower bound of adversarial risk is calculated according to
Theorem 3.4 and is converted to the upper bound of ad-



Figure 2. Normal and worst case mutual information for logit-layer
representations. Each pair of points shows the result of a specific
model—the left point indicates the worst case mutual information
and the right for the normal mutual information. Filled points are
robust models; hollow points are standard models.

versarial accuracy for reference. In particular, for standard
models, both the estimated worst-case mutual information
and the adversarial accuracy are close to zero, whereas the
computed upper bounds on adversarial accuracy are around
30%. We empirically observed around 50% adversarial ac-
curacy for robust models, whereas the bounds computed
using the estimated worst-case mutual information and The-
orem 3.4 are about 75%. This shows that Theorem 3.4 gives
a reasonably tight bound for a model’s adversarial accuracy
with respect to the logit-layer representation robustness.

Figure 2 also indicates that even the robust models produced
by adversarial training have representations that are not suf-
ficiently robust to enable robust downstream classifications.
For example, robust DenseNet121 in our evaluations has
the highest logit layer worst-case mutual information of
1.08, yet the corresponding adversarial accuracy is upper
bounded by 77.0% which is unsatisfactory for CIFAR-10.
Such information theoretic limitation also justifies our train-
ing principle of worst-case mutual information maximiza-
tion, since on the other hand the adversarial accuracy upper
bound calculated by normal-case mutual information does
not constitute a limitation for most robust models in our
experiments (as in Figure 1, most robust models achieve
adversarial accuracy close to 100%).

Internal feature robustness. We further investigate the
implications of our proposed definition from the level of in-
dividual features. Specifically for neural networks, we con-
sider the function from the input to each individual neuron
within a layer as a feature. The motivations for considering
feature robustness comes from the fact that mutual informa-
tion in terms of the whole representation is controlled by the
sum of all the features’ mutual information (see Appendix C
for a rigorous argument) and robust features are potentially
easier to train (Garg et al., 2018). As an illustration, we

Figure 3. Distribution of mutual information I(X; g(X)) and fea-
ture vulnerability in the second convolutional layer of Baseline-H.
The upper plots are for standard models, and the lower plots are
for robust models. The total number of neurons is 128.

evaluate the robustness of all the convolutional kernels in
the second layer of the Baseline-H model. Each neuron eval-
uated here is a composite convolutional kernel (all kernels
in the first layer connected to a second layer kernel) with
image input size 10×10. Figure 3 shows the results that are
averaged over two independently trained models for each
type. This result reveals the apparent difference in feature
robustness between a standard model and the adversarially-
trained robust model, even in lower layers. Although in this
case the result does not prohibit a robust downstream model
for lower layers neurons, for neurons in higher layers the
difference becomes more distinct and the vulnerability of
neurons can thus be the bottleneck of achieving high model
robustness. The different feature robustness according to
our definition also coincide with the saliency maps of fea-
tures (see Figure 5 in Appendix D.2), where the saliency
maps of robust features are apparently more interpretable
compared to those of standard features.

6.2. Learning Robust Representations

Our worst-case mutual information maximization training
principle provides an unsupervised way to learn adversari-
ally robust representations. Since there are no established
ways to measure the robustness of a representation, em-
pirically testing the robustness of representations learned
by our training principle poses a dilemma. To avoid circu-
lar reasoning, we evaluate the learned representations by
running a series of downstream adversarial classification
tasks and comparing the performance of the best models we
are able to find for each representation. In addition, recent
work shows that the interpretability of saliency map has
certain connections with robustness (Etmann et al., 2019;
Ilyas et al., 2019), thus we study the saliency map as an
alternative criteria for evaluating robust representations.

The unsupervised representation learning approach based
on mutual information maximization principle in Hjelm



MLP h Linear h
Representation (g) Classifier (h) Natural Adversarial Natural Adversarial

Hjelm et al. (2018) Standard 58.77± 0.22 0.22± 0.08 47.01± 0.53 0.15± 0.03
Hjelm et al. (2018) Robust 29.75± 1.49 15.08± 0.63 22.79± 1.42 10.28± 0.52

Ours Standard 62.54 ± 0.12 14.06± 0.69 50.29 ± 0.58 10.98± 0.49
Ours Standard (E.S.) 51.59± 3.34 27.53± 0.81 48.55± 0.63 13.52± 0.16
Ours Robust 52.34± 0.17 31.52 ± 0.31 43.55± 0.10 25.15 ± 0.10

Fully-Supervised Standard 86.33± 0.17 0.07± 0.02 86.36± 0.13 0.02± 0.01
Fully-Supervised Robust 70.71± 0.58 40.50± 0.27 72.44± 0.59 39.98± 0.16

Table 1. Comparisons of different representation learning methods on CIFAR-10 in downstream classification settings. E.S. denotes early
stopping under the criterion of the best adversarial accuracy. We present mean accuracy and the standard deviation over 4 repeated trials.

et al. (2018) achieves the state-of-the-art results in many
downstream tasks, including standard classification. We
further adopt their encoder architecture in our implemen-
tation, and extend their evaluation settings to adversarially
robust classification. Specifically, we truncate the front part
of Baseline-H with a 64-dimensional latent layer output as
the representation g and train it by the worst-case mutual
information maximization principle using only unlabeled
data (removing the labels from the normal training data).
We test two architectures (two-layer multilayer perceptron
and linear classifier) for implementing the downstream clas-
sifier h and train it using labeled data after the encoder g has
been trained using unlabeled data. Appendix D.1 provides
additional details on the experimental setup.

Downstream classification tasks. Comparison results on
CIFAR-10 are demonstrated in Table 1 (see Appendix
D.2 for a similar results for MNIST, Fashion-MNIST, and
SVHN). The fully-supervised models are trained for refer-
ence, from which we can see the simple model architec-
ture we use achieves a decent natural accuracy of 86.3%;
the adversarially-trained robust model reduces accuracy to
around 70% with adversarial accuracy of 40.5%. The base-
line, with g and h both trained normally, resembles the
setting in Hjelm et al. (2018) and achieves a natural accu-
racy of 58.8%. For representations learned using worst-case
mutual information maximization, the composition with
standard two-layer multilayer perceptron (MLP) h achieves
a non-trivial (compared to the 0.2% for the standard repre-
sentation) adversarial accuracy of 14.1%. When h is further
trained using adversarial training, the robust accuracy in-
creases to 31.5% which is comparable to the result of the
robust fully-supervised model. As an ablation, the robust
h based on standard g achieves an adversarial accuracy of
15.1%, yet the natural accuracy severely drops below 30%,
indicating that a robust classifier cannot be found using the
vulnerable representation. The case where h is a simple
linear classifier shows similar results. These comparisons
show that the representation learned using worst-case mu-

tual information maximization can make the downstream
classification more robust over the baseline and approaches
the robustness of fully-supervised adversarial training. This
provides evidence that our training principle produces ad-
versarially robust representations.

Another interesting implication given by results in Table 1
is that robustly learned representations may also have better
natural accuracy (62.5%) over the standard representation
(58.8%) in downstream classification tasks on CIFAR-10.
This matches our experiments in Figure 2 where logit layer
representations in robust models conveys more normal-case
mutual information (up to 1.75) than those in standard mod-
els (up to 1.25). However, this is not the case on MNIST
dataset as in Table 3. We conjecture that this is because the
information conveyed by robust representations has better
generalizations, and the generalization is more of a problem
on CIFAR-10 than on MNIST (Schmidt et al., 2018).

Saliency maps. A saliency map is commonly defined as
the gradient of a model’s loss with respect to the model’s
input (Etmann et al., 2019). For a classification model, it
intuitively illustrates what the model looks for in changing
its classification decision for a given sample. Recent work
(Etmann et al., 2019; Ilyas et al., 2019) indicates, at least in
some synthetic settings, that the more alignment the saliency
map has with the input image, the more adversarially ro-
bust the model is. As an additional test of representation
robustness, we calculate the saliency maps of standard and
robust representations g by the mutual information maxi-
mization loss with respect to the input. Figure 4 shows that
the saliency maps of the robust representation appear to be
much less noisy and more interpretable in terms of the align-
ment with original images. Intuitively, this shows that robust
representations capture relatively higher level visual con-
cepts instead of pixel-level statistical clues (Engstrom et al.,
2019b). The more interpretable saliency maps of represen-
tation learned by our training principle further support its
effectiveness in learning adversarially robust representation.



Figure 4. Visualization of saliency maps of different models on
CIFAR-10: (a) original images (b) representations learned using
Hjelm et al. (2018) (c) representations learned using our method.

7. Conclusion
We proposed a novel definition of representation robustness
based on the worst-case mutual information, and showed
both theoretical and empirical connections between our defi-
nition and model robustness for a downstream classification
task. In addition, by developing estimation and training
methods for representation robustness, we demonstrated the
connection and the usefulness of the proposed method on
benchmark datasets. Our results are not enough to produce
strongly robust models, but they provide a new approach for
understanding and measuring achievable adversarial robust-
ness at the level of representations.
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