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Abstract

Creating or modifying a primary index is a time-
consuming process, as the index typically needs to
be rebuilt from scratch. In this paper, we explore a
more graceful “just-in-time” approach to index reor-
ganization, where small changes are dynamically ap-
plied in the background. To enable this type of reor-
ganization, we formalize a composable organizational
grammar, expressive enough to capture instances of
not only existing index structures, but arbitrary hy-
brids as well. We introduce an algebra of rewrite rules
for such structures, and a framework for defining and
optimizing policies for just-in-time rewriting. Our
experimental analysis shows that the resulting index
structure is flexible enough to adapt to a variety of
performance goals, while also remaining competitive
with existing structures like the C++ standard tem-
plate library map.

1 Introduction

An in-memory index is backed by a data structure
that stores and facilitates access to records. An al-
phabet soup of such data structures have been devel-
oped to date ([10, 6, 7, 20, 30, 19, 22, 26, 21, 12] to list
only a few). Each structure targets a specific trade-
off between a range of performance metrics (e.g., read
cost, write cost), resource constraints (e.g., memory,
cache), and supported functionality (e.g. range scans
or out-of-core storage). As a trivial example, contrast
linked lists with a sorted arrays: The former provides
fast writes and slow lookups, while the latter does ex-
actly the opposite.
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Figure 1: A classical index data structure provides no
benefits until ready, while JITDs provide continuous
incremental performance improvements.

Creating or modifying an in-memory index is a
time-consuming process, since the data structure
backing the index typically needs to be rebuilt from
scratch when its parameters change. During this
time, the index is unusable, penalizing the perfor-
mance of any database relying on it. In this paper, we
propose a more graceful approach to runtime index
adaptation. Just-in-Time Indexes (JITDs) continu-
ously make small, incremental reorganizations in the
background, while client threads continue to access
the structure. Each reorganization brings the JITD

closer to a state that mimicks a specific target data
structure. As illustrated in Figure 1, the performance
of a JITD continuously improves as it transitions from
one state to another, while other data structures im-
prove only after fixed investments of organizational
effort.

Three core challenges must be addressed to realize
JITDs. First, because each individual step is small,
at any given point in time an JITD may need to be in
some intermediate state between two classical data
structures. For example, an JITD transitioning from
a linked list to a binary tree may need to occupy a
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state that is neither linked list, nor binary tree, but
some combination of the two. Second, there may be
multiple pathways to transition from a given source
state to the desired target state. For example, to get
from an unsorted array to a sorted array, we might
sort the array (faster in the long-term) or crack [12]
the array (more short-term benefits). Finally, we
want to avoid blocking client access to the JITD while
it is being reorganized. Client threads should be able
to query the structure while the background thread
works.
We address the first challenge by building on prior

work with JITDs [17], where we defined them as a
form of adaptive index that dynamically assembles
indexes from composable, immutable building blocks.
Mimicking the behavior of a just-in-time compiler, a
just-in-time data structure dynamically reorganizes
building blocks to improve index performance. Our
main contributions in this paper address the remain-
ing challenges.
We first precisely characterize the space of available

state transitions by formalizing the behavior of JITDs
into a composable organizational grammar (cog). A
sentence in cog corresponds directly to a specific
physical layout. Many classical data structures like
binary trees, linked lists, and arrays are simply syn-
tactic restrictions on cog. Lifting these restrictions
allows intermediate hybrid structures that combine
elements of each. Thus, the grammar can precisely
characterize any possible state of a JITD.

Next, we define transforms, syntactic rewrite rules
over cog and show how these rewrite rules can be
combined into a policy that dictate how and where
transforms should be applied. This choice generally
requires runtime decisions, so we identify a specific
family of “local hierarchical” policies in which run-
time decisions can be implemented by an efficiently
maintainable priority heap. As an example, we define
a family of policies for transitioning between unsorted
and sorted arrays (e.g., for interactive analysis on a
data file that has just been loaded [1]).
To automate policy design, we provide a simulator

framework that predictively models the performance
of a JITD under a given policy. The simulator can
generate performance-over-time curves for a set of
potential policies. These curves can then be queried

⊎ Concat

BinTree

Array

Sorted
An Arbitrary

Subtree

Figure 2: Node types in a JITD

to find a policy that best satisfies user desiderata like
“get to 300ms lookups as soon as possible” or “give
me the best scan performance possible within 5s”.

Finally, we address the issue of concurrency by
proposing a new form of “semi-functional” data
structure. Like a functional (immutable) data struc-
ture, elements of a semi-functional data structure are
stable once created. However, using handle-style [11]
pointer indirection, we draw a clear distinction be-
tween code that expects physical stability and code
that merely expects logical stability. In the latter
case correctness is preserved even if the element is
modified, so long as the element’s logical content re-
mains unchanged.

1.1 System Overview

A Self-Adjusting Index (JITD) is a key-value style pri-
mary (clustered) index storing a collection of records,
each (non-uniquely) identified by a key with a well
defined sort order. As illustrated in Figure 3, a JITD

consists of three parts: an index, an optimizer, and
a policy simulator. The JITD’s index is a tree rooted
at a node designated root. Following just-in-time
data structures, JITDs use four types of nodes, sum-
marized in Figure 2: (1) Array: A leaf node stor-
ing an unsorted array of records, (2) Sorted: A
leaf node storing a sorted array of records, (3) Con-
cat: An inner node pointing to two additional nodes,
and (4) BinTree: A binary tree node that segments
records in the two nodes it points to by a separator
value.

The second component of JITD is a just-in-time
optimizer, an asynchronous process that incremen-
tally reorganizes the index, progressively rewriting its
component parts to adapt it to the currently running
workload. These rewrites are guided by a policy, a
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Figure 3: A JITD

set of rules for identifying points in the index to be
rewritten and for determining what rewrites to ap-
ply. To help users to select an appropriate policy,
JITD includes a policy simulator that generates pre-
dicted performance over time curves for specific poli-
cies. This simulator can be used to quickly compare
policies, helping users to select the policy that best
meets the user’s requirements for latency, preparation
time, or throughput.

1.2 Access Paths

A JITD provides lock-free access to its contents
through access paths that recursively traverse the in-
dex: (1) get(key) returns the first record with a tar-
get key, (2) iterator(lower) returns an un-ordered
iterator over records with keys greater than or equal
to lower, and (3) ordered iterator(lower) returns
an iterator over the same records, but in key order.
As an example, Algorithm 1 implements the first of
these access paths by recursively descending through
the index. Semantic constraints on the layout pro-
vided by Sorted and BinTree are exploited where
they are available.

1.3 Updates

Organizational effort in a JITD is entirely offloaded to
the just-in-time optimizer. Client threads performing
updates do the minimum work possible to register
their changes. To insert, the updating thread instan-
tiates a new Array node C and creates a subtree
linking it and the current index root:

Concat(root, C)

This subtree becomes a new version of the root. Al-
though only one thread may update the index at

Algorithm 1 Get(C, k)

Require: C: A JITD node k: A key
Ensure: r: A record with key k or None if none
exist.
if C matches Array(r⃗) then

return linearScan(k, r⃗)
else if C matches Sorted(r⃗) then
return binarySearch(k, r⃗)

else if C matches Concat(C1, C2) then
r = Get(C1, k)

if r ̸= None then return r
else return Get(C2, k)

else if C matches BinTree(k′, C1, C2) then
if k′ ⪯ k then return Get(C2, k)

else return Get(C1, k)

a time, updates can proceed concurrently with the
background worker thread. This is achieved through
a layer of indirection called a handle that we intro-
duce and discuss further in Section 5.

1.4 Organization and Policy

The background worker thread is responsible for iter-
atively rewriting fragments of the index into (hope-
fully) more efficient forms. It needs (1) to identify
fragments of the structure that need to be rewrit-
ten, (2) to decide how to rewrite those fragments,
and (3) to decide how to prioritize these tasks. We
address the first two challenges by defining a fixed
set of transformations for JITD. Like rewrite rules in
an optimizing compiler, transformations replace sub-
trees of the grammar with logically equivalent struc-
tures. Following this line of thought, we first develop
a formalism that treats the state of the index at any
point in time as a sentence in a grammar over the
four node types. We show that transformations can
be expressed as structural rewrites over this gram-
mar, and that for any sentence (i.e., index instance)
we can enumerate the sentence fragments to which a
transformation can be successfully applied. A policy
that balances the trade-offs between different types
of transformations is then defined to prioritize which
transforms should be applied and when.
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1.5 Paper Outline

The remainder of this paper is organized as follows.

Encoding hybrid index structures. In Sec-
tion 2, we introduce and formalize the cog grammar
and show how it allows us to encode a wide range of
tree-structured physical data layouts. These include
restricted sub-grammars that capture, for example,
singly linked lists or binary trees. The grammar can
express transitional physical layouts that combine el-
ements of multiple classes of data structure.

Data structure transitions as an algebra. We
next outline an algebra over the cog grammar in
Section 3. Specifically we introduce the concept of
transforms, rewrites on the structure of a sentence in
cog that preserve logical equivalence and syntactic
constraints over the structure.

Combining transforms into a policy. Next,
in Section 4, we show how sequences of transforms,
guided by a policy, may be used to incrementally re-
organize an index. In order to remain competitive
with classical index structures, policies need to make
split-second decisions on which transforms to apply.
Accordingly, we identify a specific class of local hier-
archical policies that can be implemented via an in-
crementally maintained priority queue that tracks or-
ganizational goals and efficiently selects transforms.

Implementation and runtime. After providing
a theoretical basis for JITDs, we describe how we ad-
dressed key challenges in implementing them, outline
the primary components of the JITD runtime, and
provide an illustrative example policy: Crack-or-Sort.

Policy optimization. Section 6 introduces a JITD

simulator. This simulator emulates the evolution of
a JITD, allowing us to efficiently determine which
of a range of alternative policies best meets user-
provided performance goals for transitioning between
index structures.

Assessing JITD’s generality. Section 7 uses a
taxonomy of index data structures proposed in [16]
to evaluate JITD’s generality. We propose three ideas
for future work that could fully generalize 19 of the
22 design dimensions identified.

Evaluation. Finally, in Section 8, we assess the
performance overheads JITDs, relative to both com-
monly used and state-of-the art in-memory indexes.

2 A Grammar of Data Struc-
tures

Each record r ∈ R is accessed exclusively by a (poten-
tially non-unique) identifier id (r) ∈ I. We assume
a total order ⪯ is defined over elements of I. We
abuse syntax and use records and keys interchange-
ably with respect to the order, writing r ⪯ k to mean
id (r) ⪯ k. We write [τ ], {τ}, and {| τ |} to denote the
type of arrays, sets, and bags (respectively) with el-
ements of type τ . We write [r1, . . . , rN ] (resp., {. . .},
{| . . . |}) to denote an array (or set or bag) with ele-
ments r1, . . . , rN .

To support incremental index transitions, we need
a way to represent intermediate states of an index,
part way between one physical layout and another.
In this section we propose a compositional organiza-
tional grammar (cog) that will allow us to reason
about the state of a JITD, and the correctness of its
state transitions.

2.1 Notation and Definitions

The atoms of cog are defined by four symbols
Array, Sorted, Concat, BinTree. A cog instance
is a sentence in cog, defined by the grammar C as
follows:

C = Array([R]) | Sorted([R])
| Concat(C, C) | BinTree(I, C, C)

Atoms in cog map directly to physical building
blocks of a data structure, while atom instances cor-
respond to instances of a data structure or one of its
sub-structures. For example an instance of Array
represents an array of records laid out contiguously
in memory, while Concat represents a tuple of point-
ers referencing other instances. We write typeof(C)
to denote the atom symbol at the root of an instance
C ∈ C.
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Example 1 (Linked List). A linked list may be de-
fined as a syntactic restriction over cog as follows

LL = Concat(Array([R]),LL) | Array([R])

A linked list is either a concatenation of an array
(with one element by convention), and a pointer to
the next element, or a terminal array (with no ele-
ments by convention).

Two different instances, corresponding to different
representations may still encode the same data. We
describe the logical contents of an instance C as a
bag, denoted by D (C), and use this term to define
logical equivalence between two instances.

D (C) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{| r1, . . . , rN |} if C = Array([r1, . . . , rN ])

{| r1, . . . , rN |} if C = Sorted([r1, . . . , rN ])

D (C1) ⊎ D (C2) if C = Concat(C1, C2)

D (C1) ⊎ D (C2) if C = BinTree( , C1, C2)

Definition 1 (Logical Equivalence). Two instances
C1 and C2 are logically equivalent if and only if
D (C1) = D (C2). To denote logical equivalence we
write C1 ≈ C2.

We write C∗ to denote the bag consisting of the
instance C and its descendants.

C∗ =

⎧⎪⎨⎪⎩
C∗

1 ⊎ C∗
2 ⊎ {|C |} if C = Concat(C1, C2)

C∗
1 ⊎ C∗

2 ⊎ {|C |} if C = BinTree( , C1, C2)

{|C |} otherwise

Proposition 1. The set C∗ is finite for any C.

2.2 cog Semantics

Array and Concat represent the physical layout of
elements of a data structure. The remaining two
atoms provide provide semantic constraints (using
the identifier order ⪯) over the physical layout that
can be exploited to make the structure more efficient
to query. We say that instances satisfying these con-
straints are structurally correct.

Definition 2 (Structural Correctness). We define
the structural correctness of an instance C ∈ C (de-
noted by the unary relation StrCor (C)) for each
atom individually:

Case 1. Array instance is structurally correct.

Case 2. The instance Concat(C1, C2) is struc-
turally correct if and only if C1 and C2 are
both structurally correct.

Case 3. The instance Sorted([r1, . . . , rN ]) is struc-
turally correct if and only if ∀0 ≤ i < j ≤
N : ri ⪯ rj

Case 4. The instance BinTree(k,C1, C2) is struc-
turally correct if and only if both C1 and C2

are structurally correct, and if ∀r1 ∈ D (C1) :
r1 ≺ k and r2 ∈ D (C2) : k ⪯ r2.

In short, Sorted is structurally correct if it rep-
resents a sorted array. Similarly, BinTree is struc-
turally correct if it corresponds to a binary tree node,
with its children partitioned by its identifier. Both
Concat and BinTree additionally require that their
children be structurally correct.

Example 2 (Binary Tree). A binary tree may be
defined as a syntactic restriction over cog as follows

B = BinTree(I,B,B) | Array([R])

A binary tree is a hierarchy of BinTree inner nodes,
over Array leaf nodes (containing one element by
convention).

3 Transforms over cog

We next formalize state transitions in a JITD through
pattern-matching rewrite rules over cog called trans-
forms.

Definition 3 (Transform). We define a transform
T as any member of the family T of endomorphisms
over cog instances. Equivalently, any transform T ∈
T is a morphism T : C → C from instance to instance.

Figure 4 illustrates a range of common trans-
forms that correspond to common operations on in-
dex structures. For consistency, we define transforms
over all instances and not just instances where the
operation “makes sense.” On other instances, trans-
forms behave as the identity (id(C) = C).
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UnSort(C) =

{︄
Array( r⃗ ) if C = Sorted( r⃗ )

C otherwise

Sort(C) =

{︄
Sorted(sort( r⃗ )) if C = Array( r⃗ )

C otherwise

Divide(C) =

{︄
Concat(Array(

[︂
r1 . . . r⌊N2 ⌋

]︂
),Array(

[︂
r⌊N2 ⌋+1

. . . rN

]︂
)) if C = Array([r1 . . . rN ])

C otherwise

Crack(C) =

{︄
BinTree(id

(︂
r⌊N2 ⌋

)︂
,Array(

[︂
ri

⃓⃓
ri ≺ r⌊N2 ⌋

]︂
),Array(

[︂
ri

⃓⃓
r⌊N2 ⌋

⪯ ri

]︂
) if C = Array([r1 . . . rN ]))

C otherwise

Merge(C) =

⎧⎪⎨⎪⎩
Array([r1 . . . rN , rN+1 . . . rM ]) if C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Array([r1 . . . rN , rN+1 . . . rM ]) if C = BinTree( ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

C otherwise

PivotLeft(C) =

⎧⎪⎨⎪⎩
Concat(Concat(C1, C2), C3) if C = Concat(C1,Concat(C2, C3))

BinTree(k2,BinTree(k1, C1, C2), C3) if C = k1 ≺ k2 and BinTree(k1, C1,BinTree(k2, C2, C3))

C otherwise

Figure 4: Examples of correct transforms. Sort and UnSort convert between Array and Sorted and visa
versa. Crack and Divide both fragment Arrays, and both are reverted by Merge. Crack in particular
uses an arbitrary array element to partition its input value (the N

2 th element in this example), analogous
to the RadixCrack operation of [15]. PivotLeft rotates tree structures counterclockwise and a symmetric
PivotRight may also be defined. The function sort : [R]→ [R] returns a transposition of its input sorted
according to ⪯.

Clearly not all possible transforms are useful for
organizing data. For example, the well defined, but
rather unhelpful transform Empty(C) = Array([])
transforms any cog instance into an empty array.
To capture this notion of a “useful” transform, we
define two correctness properties: structure preser-
vation and equivalence preservation.

Definition 4 (Equivalence Preserving Transforms).
A transform T is defined to be equivalence preserving
if and only if ∀C : C ≈ T (C) (Definition 1).

Definition 5 (Structure Preserving Transforms). A
transform T is defined to be structure preserving if
and only if ∀C : StrCor (C) =⇒ StrCor (T (C))
(Definition 2).

A transform is equivalence preserving if it preserves
the logical content of the instance. It is structure pre-
serving if it preserves the structure’s semantic con-
straints (e.g., the record ordering constraint on in-
stances of the Sorted atom). If it is both, we say
that the transform is correct.

Definition 6 (Correct Transform). We define a
transform T to be correct (denoted Correct (T )) if
T is both structure and equivalence preserving.

In Appendix A we give proofs of correctness for
each of the transforms in Figure 4.

3.1 Meta Transforms

Transforms such as those illustrated in Figure 4
form the atomic building blocks of a policy for re-
organizing data structures. For the purposes of this
paper, we refer to these six transforms, together with
PivotRight and the identity transform id, collec-
tively as the atomic transforms, denoted A. We next
introduce a framework for constructing more complex
transforms from these building blocks.

Definition 7 (Composition). For any two trans-
forms T1, T2 ∈ T , we denote by T1 ◦ T2 the com-
position of T1 and T2:

(T1 ◦ T2)(C)
def
= T2(T1(C))
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Transform composition allows us to build more
complex transforms from the set of atomic trans-
forms. We also consider meta transforms that ma-
nipulate transform behavior.

Definition 8 (Meta Transform). A meta transform
M is any correctness-preserving endofunctor over the
set of transforms. That is, any functor M : T →
T is a meta transform if and only if ∀T ∈ T :
Correct (T ) =⇒ Correct (M [T ]) (Definition 6).

We are specifically interested in two meta
transforms that will allow us to apply
transforms not just to the root of an in-
stance, but to any of its descendants as well.

LHS[T ](C) =

⎧⎪⎨⎪⎩
Concat(T (C1), C2) if C = Concat(C1, C2)

BinTree(k, T (C1), C2) if C = BinTree(k,C1, C2)

C otherwise

RHS[T ](C) =

⎧⎪⎨⎪⎩
Concat(C1, T (C2)) if C = Concat(C1, C2)

BinTree(k,C1, T (C2)) if C = BinTree(k,C1, C2)

C otherwise

Theorem 1 (LHS and RHS are meta transforms).
LHS and RHS are correctness-preserving endofunc-
tors over T .

The proof, given in Appendix B, is a simple struc-
tural recursion over cases.
We refer to the closure of LHS and RHS over the

atomic transforms as the set of hierarchical trans-
forms, denoted ∆.

∆ = A ∪ { LHS[T ] | T ∈ ∆ } ∪ { RHS[T ] | T ∈ ∆ }

Corrolary 1. Any hierarchical transform is correct.

4 Policies for Transforms

Transforms give us a means of manipulating in-
stances, but to actually allow an index to transition
from one form to another we need a set of rules,
called a policy, to dictate which transform to apply
and when. We begin by defining policies broadly, be-
fore refining them into an efficiently implementable
family of enumerable score-based policies.

Definition 9 (Policy). A policy P is defined by the 2-
tuple P = ⟨ D,H ⟩, where the policy’s domain D ⊆ T

is a set of transforms and H : C → D is a heuristic
function that selects one of these transforms to apply
to a given instance.

A policy guides the transition of an index from an
instance representing its initial state to a final state
achieved by repeatedly applying transforms selected
by the heuristic H. We call the sequence of instances
reached in this way a trace.

Definition 10 (Trace). The trace of a policy P =
⟨ D,H ⟩ on instance C0, denoted Trace(P, C0), is de-
fined as the infinite sequence of instances [C0, C1, . . .]
starting with C0, and with subsequent instances Ci

obtained as:

Ci
def
= Ti(Ci−1) where Ti = H(Ci−1)

Although traces are infinite, we are specifically in-
terested in policies with traces that reach a steady
(fixed point) state. We say that such a trace (resp.,
any policy guaranteed to produce such a trace) is ter-
minating.

Definition 11 (Terminating Trace, Policy). A trace
[C1, C2, . . .] terminates after N steps if and only if
∀i, j > N : Ci = Cj ,. A policy P is terminating
when

∀C∃N : Trace(P, C) terminates after N steps

A policy’s domain may be large, or even infinite as
in the case of the hierarchical transforms. However,
only a much smaller fragment will typically be useful
for any specific instance. We call this fragment the
active domain.

Definition 12. The active domain of a policy
⟨ D,H ⟩, relative to an instance C (denoted DC) is
the subset of the policy’s domain that does not behave
as the identity on C.

DC
def
= { T | T ∈ D ∧ T (C) ̸= C }

4.1 Bounding the Active Domain

A policy’s heuristic function will be called numer-
ous times in the course of an index transition, mak-
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ing it a prime candidate for performance optimiza-
tion. We next explore one particular family of poli-
cies that admit a stateful, incremental implementa-
tion of their heuristic function. This approach treats
the heuristic function as a ranking query over the
active domain, selecting the most appropriate (high-
est scoring) transform at any given time. However,
rather than recomputing scores at every step, we in-
crementally maintain a priority queue over the active
domain. For this incremental approach to be feasi-
ble, we need to ensure that only a finite (and ideally
small) number of scores change with each step.

Definition 13 (Enumerable Policy). A policy
⟨ D,H ⟩ is enumerable if and only if its active do-
main is finite for every finite instance C, or equiva-
lently when ∀C : |DC | ∈ N

We are particularly interested in policies that use
the hierarchical transforms as their domain. We also
refer to such policies as hierarchical. In order to show
that hierarchical policies are enumerable, we first de-
fine a utility target function that “unrolls” an arbi-
trarily deep stack of LHS andRHSmeta transforms.
The target function returns (1) The atomic transform
at the base of the stack of meta transforms and (2)
the descendant that this atomic transform would be
applied to.

Definition 14. Given a hierarchical policy ⟨ ∆,H ⟩
and an instance C, let the target function f∗

C : DC →
(C∗ ×A) of the policy on C is defined as follows

f∗
C(T )

def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨ C, T ⟩ if typeof(C) ∈ {Array,Sorted}
⟨ C, T ⟩ else if T ∈ A
f∗
C1

(T ′) else if T = LHS[T ′]

f∗
C2

(T ′) else if T = RHS[T ′]

Lemma 1 (Injectivity of f∗
C). The target function f∗

C

of any hierarchical policy ⟨ ∆,H ⟩ for any instance C
is injective.

Proof. By recursion over C. The base case oc-
curs when typeof(C) ∈ {Array,Sorted}. In this
case C∗ = {|C |}. Furthermore, ∀T : LHS[T ] =
RHS[T ] = id and so DC ⊆ A. The target func-
tion always follows its first case and is trivially in-
jective. The first recursive case occurs for C =

Concat(C1, C2). By definition, a hierarchical trans-
form can be (1) An atomic transform, (2) LHS[T ],
or (3) RHS[T ]. Each of the latter three cases
covers one of each of the three parts of the defi-
nition of a hierarchical transform. Assuming that
f∗
C1

and f∗
C2

are injective, f∗
C will also be injective

because each case maps to a disjoint partition of
C∗ = C∗

1 ⊎ C∗
2 ⊎ {|C |}. The proof for the second

recursive case, where typeof(C) = BinTree is iden-
tical. Thus ∀C : f∗

C is injective

Using injectivity of the target function, we can
show that any hierarchical policy is enumerable.

Theorem 2 (Hierarchical policies are enumerable).
Any hierarchical policy ⟨ ∆,H ⟩ is enumerable.

Proof. Recall the definition of hierarchical transforms

∆ = A ∪ { LHS[T ] | T ∈ ∆ } ∪ { RHS[T ] | T ∈ ∆ }

By Lemma 1, |DC | ≤ |C∗ × A| ≤ |C∗| × |A|. By
Proposition 1, C∗ is finite and the set of atomic trans-
forms A is finite by definition Thus, DC must also be
finite.

Intuitively, there is a finite number of atomic trans-
forms (|A), that can be applied at a finite set of po-
sitions within C (|C∗). Any other hierarchical trans-
form must be idempotent, so we can (very loosely)
bound the active domain of a hierarchical policy on
instance C by |C∗| × |A|

4.2 Scoring Heuristics

As previously noted, we are particularly interested
in policies that work by scoring the set of available
transforms with respect to their utility.

Definition 15 (Scoring Policy). Let score : (D ×
C) → N0 be a scoring function for every transform,
instance pair (T,C) that satisfies the constraint:
(T (C) = C) ⇒ (score(T,C) = 0) A scoring pol-
icy ⟨ D,Hscore ⟩ is a policy with a heuristic function

defined as Hscore(C)
def
= argmaxT∈D(score(T,C))

In short, a scoring heuristic policy one that selects
the next transform to apply based on a scoring func-
tion score, breaking ties arbitrarily. Additionally, we
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require that transforms not in the active domain (i.e.,
that leave their inputs unchanged) must be assigned
the lowest score (0).

As we have already established, the number of
scores that need to be computed is finite and enu-
merable. However, it is also linear in the number
of atoms in the instance. Ideally, we would like to
avoid recomputing all of the scores at each iteration
by precomputing the scores once and then incremen-
tally maintaining them as the instance is updated.
For this to be feasible, we also need to bound the
number of scores that change with each step of the
policy. We do this by first defining two properties of
policies: independence, which requires that the score
of a (hierarchical) transform be exclusively dependent
on its target atom (Definition 14); and locality, which
further requires that the score of a transform be in-
dependent of the node’s descendants past a bounded
depth. We then show that with any scoring function
that satisfies these properties, only a finite number of
scores change with any transform, and consequently
that the output of the scoring function on every el-
ement of the active domain can be efficiently incre-
mentally maintained.

Definition 16 (Independent Policy). Let C< be the
set of instances with C as a left child.

C< = { Concat(C,C ′) | C ′ ∈ C }
∪ { BinTree(k,C,C ′) | k ∈ I ∧ C ′ ∈ C }

and define C> symmetrically as the set of instances
with C as a right child. We say that a hierarchical
scoring policy ⟨ ∆,Hscore ⟩ is independent if and only
if for any T , C

∀C ′ ∈ C< : score(T,C) = score(LHS[T ], C ′)

∀C ′ ∈ C> : score(T,C) = score(RHS[T ], C ′)

Definition 17 (Local Policy). An independent hi-
erarchical scoring policy ⟨ ∆,Hscore ⟩ is local if and
only if:

∀T∀C1∀C2 s.t. (C∗
1 − {|C1 |}) = (C∗

2 − {|C2 |}) :
score(T,C1) = score(T,C2)

The following definition uses the policy’s target
function (Definition 14) to define a weighted list of
all of the policy’s targets.

Definition 18 (Weighted Targets). Let ⟨ ∆,Hscore ⟩
be a hierarchical scoring policy. The weighted targets
of instance C, denoted WC : {|A × N0 |} is bag of
2-tuples defined as

WC =
{︁ ⟨︁

T ′, score(T,C′)
⟩︁ ⃓⃓

T ∈ DC ∧ (C′, T ′) = f∗
C(T )

⃓⃓}︁
Theorem 3 (Bounded Target Updates). Let
⟨ ∆,Hscore ⟩ be a local hierarchical scoring policy,
C be an instance, T ∈ DC be a transform, and
C ′ = T (C). The weighted targets of C and C ′ differ
by at most 4× |A| elements.⃓⃓

(WC ⊎WC′)− (WC ∩WC′)
⃓⃓
≤ 4× |A|

The proof, given in Appendix C, is based on the
observation that the independence and locality prop-
erties restrict changes to the target function’s outputs
to exactly the set of nodes added, removed, or modi-
fied by the applied transform, excluding ancestors or
descendants. In the worst cases (Divide, Crack, or
Merge) this is 4 nodes.

Theorem 3 shows that we can incrementally main-
tain the weighted target list incrementally, as only
a finite number of its elements change at any pol-
icy step. This allows us to materialize the weighted
target list as a priority queue, who’s first element is
always the policy’s next transform.

5 Implementing The JITD Run-
time

So far, we have introduced cog and shown how poli-
cies can be used to gradually reorganize a cog in-
stance by repeatedly applying incremental transforms
to the structure.

In this section, we discuss the challenges in trans-
lating JITDs from the theory we have defined so far
into practice. As already noted, cog instances de-
scribe the physical layout of a JITD. We implemented
each atom as a C++ class using the reference-counted
shared ptrs for garbage collection. To implement
the Array and Sorted atoms, we used the C++
Standard Template Library vector class.
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Figure 5: Classical immutable data structures (a) vs
with handles (b).

5.1 Concurrency and Handles

Because JITDs rely on background optimization, ef-
ficient concurrency is critical. This motivated our
choice to base the JITD index on functional data
structures. In a functional data structure, objects
are immutable once instantiated. Only the root may
be updated to a new version, typically through an
atomic pointer swap. Explicit versioning makes it
possible for the background worker thread to con-
struct a new version of the structure without taking
out any locks in the process. Only a short lock is
required to swap in the new version.
Immutability does come with a cost: any muta-

tions must also copy un-modified data into a new ob-
ject. However, careful use of pointers can minimize
the impact of such copies.

Example 3. Figure 5.a shows the effects of applying
LHS[Sort] to an immutable cog instance, replac-
ing an unsorted Array X with a Sorted equivalent
X’. Note that in addition to replacing X, each of its
ancestors must also be replaced.

Replacing a logarithmic number of ancestors is bet-
ter than replacing the entire structure. However,
even a logarithmic number of new objects for ev-
ery update can be a substantial expense when in-
dividual transforms can take on the order of micro-
seconds. We avoid this overhead by using indirection
to allow limited mutability under controlled circum-
stances. Inspired by early forms of memory manage-
ment [11], we define a new object called a handle.

Handles store a pointer to a cog atom, and all
cog atoms (i.e., BinTree and Concat), as well as

the root, use handles as indirect references to their
children. Handles provide clear semantics for a pro-
grammer expectations: A pointer to an atom guaran-
tees physical immutability, while a pointer to a han-
dle guarantees only logical immutability. Thus, any
thread can safely replace the pointer stored in a han-
dle with a pointer to any other logically equivalent
atom. Accordingly, we refer to such structures as
semi-functional data structures.

Example 4. Continuing the example, Figure 5.b
shows the same operation performed on a structure
that uses handles. Ancestors of the modified node are
unchanged: Only the handle pointer is modified.

We observe that cog atoms can safely be imple-
mented using handles. The only correctness property
we need to enforce is structural correctness, which de-
pends only on the node itself and the logical contents
(D (·)) of its descendants. Thus only logical consis-
tency is needed and handles suffice.

Similarly, the LHS and RHS and meta transform
creates an exact copy of the root, modulo the af-
fected pointer. Furthermore the only node modified
is the one reached by unrolling the stack of meta
transforms, and by definition correct transforms must
produce a new structure that is logically equivalent.
Thus, any hierarchical transform can be safely, effi-
ciently applied to a JITD by a single modification to
the handle of the target atom (Definition 14).

5.2 Concurrent Access Paths

We have already described the get method in
Section 1.1. The remaining access paths instantiate
iterators that traverse the tree, lazily dereferencing
handles as necessary. Un-ordered iterators provide
two methods:

➤ r ← Get() returns the iterator’s current record
➤ Step() advances the iterator to the next record
Additionally, ordered iterators provide the method:
➤ Seek(k) advances to the first record r where r ⪰ k

For iterators over Sorted and Array atoms, we di-
rectly use the C++ vector class’s iterator. Generat-
ing an ordered iterator over an Array atom forces
a Sort first. Iterators for the remaining atom types
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lazily create a replica of the root instance using only
physical references to ensure consistency. Unordered
iterators traverse trees left to right. Ordered iterators
over Concat atoms are implemented using merge-
sort. We implement a special-case iterator for Bin-
Trees that iterates over contiguous BinTrees, lazily
loading nodes from their handles as needed.

5.3 Handles and Updates

Handles also make possible concurrency between a
JITD’s worker thread and threads updating the JITD.
In keeping with the convention that structures refer-
enced by a handle pointers can only be swapped with
logically equivalent structures, a thread updating a
JITD must replace the root handle with an entirely
new handle. Because the worker thread will only ever
swap pointers referenced by a handle, it will never
undo the effects of an update. Better still, if the old
root handle is re-used as part of the new structure
(as discussed in Section 1.1), optimizations applied
to the old root or any of its descendants will seam-
lessly be applied to the new version of the index as
well.

5.4 Transforms and the Policy Sched-
uler

Our policy scheduler is optimized for local hierarchi-
cal policies. Policies are implemented by defining a
scoring function

N0 ← score(T, C) where T ∈ A

Based on this function, the policy scheduler builds a
priority queue of 3-tuples ⟨ handle,A,N0 ⟩, includ-
ing a handle to a descendant of the root, an atomic
transform to apply to the descendant instance, and
the policy’s score for the transform applied to the in-
stance referenced by the handle. As an optimization,
only the highest-scoring transform for each handle is
maintained in the queue. The scheduler iteratively
selects the highest scoring transform and applies it
to the structure. Handles destroyed (resp., created)
by applied transforms are removed from (resp., added
to) the priority queue. The iterator continues until
no transforms remain in the queue or all remaining

transforms have a score of zero, at which point we
say the policy has converged.

5.5 Example Policy: Crack-Sort-
Merge

As an example of policies being used to manage
cost/benefit tradeoffs in index structures, we com-
pare two approaches to data loading: database
cracking [12] and upfront organization. In a study
comparing cracking to upfront indexing, Schuhknecht
et. al. [25] observe that for workloads consisting
of more than a few scans, it is faster to build an
index upfront. Here, we take a more subtle approach
to the same problem. The Crack transform has
lower upfront cost than the Sort transform (scaling
as O(N) vs O(N logN)), but provides a smaller
benefit. Given a fixed time budget or fixed latency
goal, is it better to repeatedly crack, sort, or mix
the two approaches together. We address this
question with a family of scoring functions scoreθ,
parameterized by a threshold value θ as follows:

scoreθ(T,Array([r1 . . . rN ])) =

⎧⎪⎨⎪⎩
N if T = Sort and N < θ

N if T = Crack and N < θ

0 otherwise

Arrays smaller than the threshold are sorted, while
those larger are cracked. Larger instances are pre-
ferred over smaller. All other instances are ignored.
Once all Arrays are sorted, the resulting Sorteds
are iteratively Mergeed, ultimately leaving behind
a single Sorted.

This is one example of a parameterized policy, a re-
organizational strategy that uses thresholds to guide
its behavior. Once such a policy is defined, the next
challenge is to select appropriate values for its pa-
rameters.

6 Policy Optimization

A JITD’s performance curve depends on its policy. As
we may have a range of policies to choose from — for
example by varying policy parameters as mentioned
above — we want a way to evaluate the utility of a
policy for a given workload. Naively, we might do this
by repeatedly evaluating the structure under each
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policy, but doing so can be expensive. Instead, we
next propose a performance model for JITDs, policies,
and a lightweight simulator that approximates the
performance of a policy over time. Our approach is
to see each transformation as an overhead performed
in exchange for improved query performance. Hence,
our model is based on two measured characteristics
of the JITD: The costs of accessing an instance, and
the cost of applying a transform. A separate driver
program measures (1) the cost of each access path
on each instance atom type, varying every parame-
ter available, and (2) the cost of each case of every
transform.

Example 5. As an illustrative example, we will use
the Crack-or-Sort policy described above. This pol-
icy makes use of the Array, Sorted, and BinTree
atoms, as well as the Crack and Sort transforms.
For this policy we need to measure 5 factors.

Operation Symbol Scaling

Get(Array([r1 . . . rN ])) α(N) O(N)
Get(Sorted([r1 . . . rN ]))) β(N) O(log2(N))
Get(BinTree(k, C1, C2))) γ O(1)
Crack(Array([r1 . . . rN ])) δ(N) O(N)
Crack(Array([r1 . . . rN ])) ν(N) O(n log2(n))

The driver program fits each of the five functions
by conducting multiple timing experiments, varying
the size of N where applicable.

The simulator mirrors the behavior of the full JITD,
but uses a lighter-weight version of the cog grammar
that does not store actual data:

Cℓ = Array(N0) | Sorted(N0)

| Concat(Cℓ, Cℓ) | BinTree(Cℓ, Cℓ)

The simulator iteratively simulates applying trans-
forms to instances expressed in Cℓ according to the
policy being simulated. After each transform, the
simulator uses the measured cost of the transform to
estimate the cumulative time spent reorganizing the
index. The simulator captures multiple performance
metrics metric : C → R.

Example 6. Continuing the example, one useful
metric is the read latency for a uniformly distributed

read workload on a Crack-or-Sort index.

latency(C) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α(N) if C = Array(N)

β(N) if C = Array(N)

γ +
|C1|
|C| latency(C1)

+
|C2|
|C| latency(C2) if C = BinTree(C1, C2)

where |C| is the sum of sizes of Arrays and Sorteds
in C∗.

The simulator produces a sequence of status in-
tervals: periods during which index performance is
fixed, prior to the pointer swap after the next trans-
form is computed. A user-provided utility function
aggregates these intervals to provide a final utility
score for the entire policy. Given a finite set of poli-
cies, the optimizer tries each in turn and selects the
one that best optimizes the utility function. Given a
parameterized policy, the optimizer instead uses gra-
dient descent.

Example 7. Examples of utility functions for Crack-
or-Sort include: (1) Minimize time spent with more
than θ Get() latency, (2) Maximize throughput for
N seconds, (3) Minimize runtime of N queries.

7 On the Generality of JITDs

Ideally, we would like cog to be expressive enough to
encode the instantaneous state of any data structure.
Infinite generality is obviously out of scope for this
paper. However we now take a moment to assess
exactly what index data structure design patterns are
supported in a JITD.

As a point of reference we use a taxonomy of data
structures proposed as part of the Data Calcula-
tor [16]. The data calculator taxonomy identifies 22
design primitives, each with a domain of between 2
and 7 possible values. Each of the roughly 1018 valid
points in this 22-dimensional space describes one pos-
sible index structure. To the best of our knowledge,
this represents the most comprehensive a survey of
the space of possible index structures developed to
date.

The data calculator taxonomy views index struc-
tures through the general abstraction of a tree with
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inner nodes and leaf nodes. This abstraction is some-
times used loosely: A hash table of size N, for exam-
ple, is realized as as a tree with precisely one inner-
node and N leaf nodes. Each of the taxonomy’s de-
sign primitives captures one set of mutually exclusive
characteristics of the nodes of this tree and how they
are translated to a physical layout.

Figure 6 classifies each of the design primitives as
(1) Fully supported by JITD if it generalizes the entire
domain, (2) Partially supported by JITD if it sup-
ports more than one element of the domain, or (3)
Not supported otherwise. We further subdivide this
latter category in terms of whether support is fea-
sible or not. In general, the only design primitives
that JITD can not generalize are related to muta-
bility, since JITD’s (semi-)immutability is crucial for
concurrency, which is in turn required for optimiza-
tion in the background.

JITD completely generalizes 7 of the remaining 22
primitives. We first explain these primitives and how
JITDs generalize them. Then, we propose three ex-
tensions that, although beyond the scope of this pa-
per, would fully generalize the final 14 primitives. For
each, we briefly discuss the extension and summarize
the challenges of realizing it.

Key retention (1). This primitive expresses
whether inner nodes store keys (in whole or in part),
mirroring the choice between Concat and BinTree.

Intra-node access (5). This primitive expresses
whether nodes (inner or child) allow direct access to
specific children or whether they require a full scan,
mirroring the distinction between cog nodes with
and without semantic constraints.

Key partitioning (9). This primitive expresses
how newly added values are partitioned. Examples
include by key range (as in a B+Tree) or temporally
(as in a log structured merge tree [22]). Although a
JITD only allows one form of insertion, policies can
converge to the full range of states permitted for this
primitive.

Sub-block homogeneous (18). This primitive
expresses whether all inner nodes are homogeneous
or not.

Sub-block consolidation/instantiation
(19/20). These primitives express how and
when organization happens, as would be determined
by a JITD’s policy.

Recursion allowed (22). This primitive expresses
whether inner nodes form a bounded depth tree, a
general tree, or a “tree” with a single node at the
root. JITDs support all three.

7.1 Supporting New cog Atoms

Five of the remaining primitives can be generalized
by the addition of three new atoms to cog. First,
we would need a generalization of BinTree atoms
capable of using partial keys as in a Trie (primitive 1),
or hash values (primitive 3) Second, a unary Filter
atom that imposes a constraint on the records below
it could implement both boom filters (primitives 7,9)
and zone maps (primitives 8,9). These two atoms
are conceptually straightforward, but introduce new
transforms and increase the complexity of the search
for effective policies.

The remaining challenge is support for colum-
nar/hybrid layouts (primitive 4). Columnar layouts
increase the complexity of the formalism by requiring
multiple record types and support for joining records.
Accordingly, we posit that a binary Join atom, rep-
resenting the collection of records obtained by joining
its two children could efficiently capture the seman-
tics of columnar (and hybrid) layouts.

7.2 Atom Synthesis

Five of the remaining primitives express various tac-
tics for removing pointers by inlining groups of nodes
into contiguous regions of memory. These primitives
can be generalized by the addition of a form of atom
synthesis, where new atoms are formed by merging
existing atoms. Consider the Linked List of Exam-
ple 1. Despite the syntactic restriction over cog, a
single linked list element must consist of two nodes
(a Concat and a (single-record) Array), and an un-
necessary pointer de-reference is incurred on every
lookup. Assume that we could define a new node
type: A linked list element (Link(R, C)) consisting
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# Data Calculator Primitive JITD Note
1 Key retention ◗ No partial keys
2 Value retention ❍
3 Key order ◗ K-ary orders unsupported
4 Key-Value layout ❍ No columnar layouts
5 Intra-node access ●
6 Utilization ✗
7 Bloom filters ❍
8 Zone map filters ◗ Implicit via BinTree
9 Filter memory layout ❍ Requires filters (7,8)

10 Fanout/Radix ❍ Limited to 2-way fanout
11 Key Partitioning ●
12 Sub-block capacity ✗
13 Immediate node links ❍ Simulated by iterator impl.
14 Skip-node links ❍
15 Area links ❍ Simulated by iterator impl.
16 Sub-block physical location. ❍ Only pointed supported
17 Sub-block physical layout. ◗/ ✗ Realized by merge rewrite
18 Sub-block homogeneous ●
19 Sub-block consolidation ● Depends on policy
20 Sub-block instantiation ● Depends on policy
21 Sub-block link layout ❍ Requires links (13,14,15)
22 Recursion allowed ●

●: Full Support ◗: Partial Support ❍: Support Possible
✗: Not applicable to immutable data structures

Figure 6: JITD support for the DC Taxonomy [16]
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of a record and a forward pointer. Because this node
type is defined in terms of existing node types, it
would be possible to automatically synthesize new
transformations for it from existing transformations,
and existing performance models could likewise be
adapted.
Atom synthesis could be used to create inner nodes

that store values (primitive 2), increase the fanout of
Concat and BinTree nodes (primitive 10), inline
nodes (primitive 16), and provide finer-grained con-
trol over physical layout of data (primitive 17).

7.3 Links / DAG support

The final four remaining properties (13, 14, 15, and
20) express a variety of forms of link between inner
and leaf nodes. Including such links turns the result-
ing structure into a directed acyclic graph (DAG).
In principle, it should be possible to generalize trans-
forms for arbitrary DAGs rather than just trees as we
discuss in this paper. Such a generalization would re-
quire additional transforms that create/maintain the
non-local links and more robust garbage collection.

8 Evaluation

We next evaluate the performance of JITDs in com-
parison to other commonly used data structures. Our
results show that: (1) In the longer term, JITDs have
minimal overheads relative to standard in-memory
data structures; (2) The JITD policy simulator reli-
ably models the behavior of a JITD; (3) In the short
term, JITDs can out-perform standard in-memory
data structures; (4) Concurrency introduces minimal
overheads; and (5) JITDs scale well with data, both
in their access costs and their organizational costs.

8.1 Experimental setup

All experiments were run on a 2×6-core 2.5 GHz In-
tel Xeon server with 198 GB of RAM and running
Ubuntu 16.04 LTS. Experimental code was written
in C++ and compiled with GNU C++ 5.4.0. Each
element in the data set is a pair of key and value,
each an 8-Byte integer. Unless otherwise noted, we

use a data size of up to a maximum of 109 records
(16GB) with keys generated uniformly at random.
To mitigate experimental noise, we use srand() with
an arbitrary but consistent value for all data gener-
ation. To put our performance numbers into con-
text, we compare against (1) R/B Tree: the C++
standard-template library (STL) map implementation
(a classical red-black tree), (2) HashTable the C++
standard-template library (STL) unordered-map im-
plementation (a hash table), and (3) BTree a pub-
licly available implementation of b-trees1. For all
three, we used the find() method for point lookups
and lower bound()/++ (where available) for range-
scans. For point lookups, we selected the target key
uniformly at random2. For range scans, we selected
a start value uniformly at random and the end value
to visit approximately 1000 records. Except where
noted, access times are the average of 1000 point
lookups or 50 range scans.

We specifically evaluated JITDs using the Crack-
Sort-Merge family of policies described in Section 5.5,
varying the crack threshold over 106, 107, 108, and
109 records. When there are exactly 109 records,
this last policy simply sorts the entire input in one
step. For point lookups we use the get() access path,
and for range scans we use the ordered iterator()

access path. By default, we measure JITD read
performance through a synchronous (i.e., with the
worker thread paused) microbenchmark. We con-
trast synchronous and asynchronous performance in
Section 8.4.

Synchronous read performance was measured
through a sequence of trials, each with a progres-
sively larger number of transforms (i.e., a progres-
sively larger fragment of the policy’s trace) applied
to the JITD. We measured total time to apply the
trace fragment (including the cost of selecting which
transforms to apply) before measuring access laten-
cies. For concurrent read performance a client thread
measured access latency approximately once per sec-
ond.

1https://github.com/JGRennison/cpp-btree
2We also tested a heavy-hitter workload that queried for

30% of the keyspace 80% of the time, but found no significant
differences between the workloads.
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Figure 7: Performance improvement over time as each JITD is organized

8.2 Cost vs Benefit Over Time

Our first set of experiments mirrors Figure 1, track-
ing the synchronous performance of point lookups
and range scans over time. The results are shown
in Figure 7a and Figure 7b The x-axis shows time
elapsed, while the y-axis shows index access latency
at that point in time. In both sets of experiments,
we include access latencies and setup time for the
R/B-Tree (yellow star), the HashTable (black trian-
gle), and the BTree (pink circles) We treat the cost
of accessing an incomplete data structure as infinite,
stepping down to the structure’s normal access costs
once it is complete.

In general, lower crack thresholds achieve faster
upfront performance by sacrificing long-term perfor-
mance. A crack threshold of 106 (approximately 1

105

cracked partitions) takes approximately twice as long
to reach convergence as a threshold of 109 (sort ev-
erything upfront)

Unsurprisingly, for point lookups the Hash Table
has the best overall performance curve. However,
even it needs upwards of 6 minutes worth of data
loading before it is ready. By comparison, a JITD

starts off with a 10 second response time, and has
dropped to under 3 seconds by the 3 minute mark.
The BTree significantly outperforms the R/B-Tree
on both loading and point lookup cost, but still takes
nearly 25 minutes to fully load. By that point the
Threshold108 policy JITD has already been serving

point lookups with a comparable latency (after its
sort phase) for nearly 5 minutes. Note that lower
crack thresholds have a slightly slower peak perfor-
mance than higher ones before their merge phase This
is a consequence of deeper tree structures and the in-
direction resulting from handles.The performance at
convergence of the 108 threshold point scan trial is
surprising, as it suggests binary search is as fast as
a hash lookup. We suspect this due to lucky cache
hits, but have not yet been able to confirm it.

8.3 Simulated vs Actual Performance

Figure 8 shows the result of using our simulator to
predict the performance curves of Figure 7a. As can
be seen, performance is comparable. Policy runtimes
are replicated reliably, features like time to conver-
gence and crossover are replicated virtually identi-
cally.

8.4 Synchronous vs Concurrent

Figures 9a, 9b, and 9c contrast the synchronous per-
formance of the JITD with a more realistic concur-
rent workload. Performance during the crack phase
is comparable, though admittedly with a higher vari-
ance. As expected, during the sort phase perfor-
mance begins to bifurcate into fast-path accesses to
already sorted arrays and slow-path scans over array
nodes at the leaves.
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Figure 8: Predicted performance using the simulator.

The time it takes the worker to converge is largely
unaffected by the introduction of concurrency. How-
ever, as the structure begins to converge, we see a
constant 100µs overhead compared to synchronous
access. We also note periodic 100ms bursts of latency
during the sort phases of all trials. We believe these
are caused when the worker thread pointer-swaps in
a new array during the merge phase, as the entire
newly created array is cold for the client thread.

8.5 Short-Term Benefits for interac-
tive workloads

One of the primary benefits of JITDs is that they can
provide significantly better performance during the
transition period. This is particularly useful in inter-
active settings where users pose tasks comparatively
slowly. We next consider such a hypothetical scenario
where a data file is loaded and each data structure is
given a short period of time (5 seconds) to prepare.
In these experiments, we use a cracking threshold of
105 (our worst case), and vary the size of the data set
from 106 records (16MB) to 109 records (16GB). The
lookup time is the time until an answer is produced:
the cost of a point lookup for the JITD. The baseline
data structures are accessible only once fully loaded,
so we model the user waiting until the structure is
ready before doing a point lookup. Up through 107

records, the unordered map completes loading within
5 seconds. In every other case, the JITD is able to

produce a response orders of magnitude faster.

8.6 DataSize Vs TransformTime

Figure 11 illustrates the scalability of JITD from the
perspective of data loading. As before, we vary the
size of the data set and use the time taken to load a
comparable amount of data into the base data struc-
tures. Note that data is accessible virtually imme-
diately after being loaded into a JITD. We measure
the cost for the JITD to reach convergence. The per-
formance of the JITD and the other data structures
both scale linearly with the data size (note the log
scale).

8.7 CrackThreshold Vs ScanTime

Figure 12 explores the effects of the crack threshold
on performance at convergence of the Crack-Sort pol-
icy. The Merge Policy was excluded from testing as at
convergence it would lead to one huge sorted array of
size 109 irrespective of the crack threshold. In these
set of experiments the crack threshold for cracking
an array in the JITD structure was varied from 106

to 109. For each, we performed one thousand point
scans, measuring the total time and computing the
average cost per scan. This figure shows the over-
head from handles — at a crack threshold of 109, the
entire array is sorted in a single step. As the crack
threshold grows by a factor of 10, the depth of the
tree increases by roughly a factor of three, necessitat-
ing approximately 3 additional random accesses via
handles rather than directly on a sorted array, and as
shown in the graph, increasing access time by roughly
1 µs.

9 Related Work

JITDs specifically extend work by Kennedy and
Ziarek on Just-in-Time Data Structures [17] with a
framework for defining policies, tools for optimizing
across families of policies, and a runtime that sup-
ports optimization in the background rather than as
part of queries. Most notably, this enables efficient
dynamic data reorganization as an ongoing process
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(c) Crack Threshold = 108

Figure 9: Synchronous vs Concurrent performance of the JITD on point lookups.
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Figure 10: Point lookup latency relative to data size.
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Figure 11: The time required to load and fully orga-
nize a data set relative to data size
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Figure 12: For the Uniform workload each point on
the graph indicates the change in scan time for dif-
ferent crack thresholds.

rather than as an inline, blocking part of query exe-
cution.
Our goal is also spiritually similar to The Data Cal-

culator [16]. Like our policy optimizer, it searches
through a large space of index design choices for one
suitable for a target workload. However, in con-
trast to JITDs, this search happens once at compile
time and explores mostly homogeneous structures. In
principle, the two approaches could be combined, us-
ing the Data Calculator to identify optimal struc-
tures for each workload and using JITDs to migrate
between structures as the workload changes.
Also related is a recently proposed form of “Re-

sumable” Index Construction [2]. The primary chal-
lenge addressed by this work is ensuring that updates
arriving after index construction begins are properly
reflected in the index. While we solve this problem
(semi-)functional data structures, the authors pro-
pose the use of temporary buffers.

Adaptive Indexing. JITDs are a form of adaptive
indexing [14, 8], an approach to indexing that re-
uses work done to answer queries to improve index
organization. Examples of adaptive indexes include
Cracker Indexes [12, 13], Adaptive Merge Trees [9],
SMIX [28], and assorted hybrids thereof [15, 17]. No-
tably, a study by Schuhknecht et. al. [25] compares
(among other things) the overheads of cracking to
the costs of upfront indexing. Aiming to optimize

overall runtime, upfront indexing begins to outper-
form cracker indexes after thousands to tens of thou-
sands of queries. By optimizing the index in the back-
ground, JITDs avoid the overheads of data reorgani-
zation as part of the query itself.

Organization in the Background. Unlike adap-
tive indexes, which inline organizational effort into
normal database operations, several index structures
are designed with background performance optimiza-
tion in mind. These begin with work in active
databases [29], where reactions to database updates
may be deferred until CPU cycles are available. More
recently, bLSM trees [26] were proposed as a form
of log-structured merge tree that coalesces partial
indexes together in the background. A wide range
of systems including COLT [24], OnlinePT [3], and
Peloton [23] use workload modeling to dynamically
select, create, and destroy indexes, also in the back-
ground.

Self-Tuning Databases. Database tuning advi-
sors have existed for over two decades [4, 5], auto-
matically selecting indexes to match specific work-
loads. However, with recent advances in machine
learning technology, the area has seen significant re-
cent activity, particularly in the context of index se-
lection and design. OtterTune [27] uses fine-grained
workload modeling to predict opportunities for set-
ting database tuning parameters, an approach com-
plimentary to our own.

Generic Data Structure Models. More spiritu-
ally similar to our work is The Data Calculator [16],
which designs custom tree structures by searching
through a space of dozens of parameters describing
both tree and leaf nodes. A similarly related effort
uses small neural networks [18] as a form of universal
index structure by fitting a regression on the CDF of
record keys in a sorted array.

10 Conclusions and Future
Work

In this paper, we introduced JITDs a type of in-
memory index that can incrementally morph its per-
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formance characteristics to adapt to changing work-
loads. To accomplish this, we formalized a compos-
able organizational grammar (cog) and a simple al-
gebra over it. We introduced a range of equivalence-
and structure-preserving rewrite rules called trans-
forms that serve as the basis of organizational policies
that guide the transition from one performance en-
velope to another. We described a simulation frame-
work that enables efficient optimization of policy pa-
rameters. Finally, we demonstrated that a JITD can
be implemented with minimal overhead relative to
classical in-memory index structures.

Our work leaves open several challenges. We have
already identified three specific challenges in Sec-
tion 7: New atoms, Atom synthesis, and DAG sup-
port. Addressing each of these challenges would allow
cog to capture a wide range of data structure seman-
tics. There are also several key areas where perfor-
mance tuning is possible: First, our use of reference-
counted pointers also presents a performance bottle-
neck for high-contention workloads — we plan to ex-
plore more active garbage-collection strategies. Sec-
ond, Handles are an extremely conservative realiza-
tion of semi-functional data structures. As a result,
JITDs are a factor of 2 slower at convergence than
other tree-based indexes. We expect that this perfor-
mance gap can be reduced or eliminated by identi-
fying situations where Handles are unnecessary (e.g.,
at convergence). A final open challenge is the use of
statistics to guide rewrite rules, both detecting work-
load shifts to trigger policy shifts (e.g., as in Peloton),
as well as identifying statistics-driven policies that
naturally converge to optimal behaviors for dynamic
workloads.
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A Correctness of Example
Transforms

As a warm-up and an example of transform correct-
ness, we next review each of the transforms given in
Figure 4 and prove the correctness of each.

Proposition 2 (Identity is correct). Let id denote
the identity transform id(C) = C. id is both equiva-
lence preserving and structure preserving.

Lemma 2 (Sort is correct). Sort is both equivalence
preserving and structure preserving.

Proof. For any instance C where typeof(C) ̸=
Array, correctness follows from Proposition 2.
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Otherwise C = Array([r1, . . . , rN ]), and conse-
quently Sort(C) = Sorted(sort([r1, . . . , rN ])). To
show correctness we first need to prove that

D (Array([r1, . . . , rN ])) = D (Sorted(sort([r1, . . . , rN ])))

Let the one-to-one (hence invertable) function f :
[1, N ] → [1, N ] denote the transposition applied by
sort.

D (Sorted(sort([r1, . . . , rN ])))

= D
(︁
Sorted(

[︁
rf−1(1), . . . , rf−1(N)

]︁
))
)︁

=
{︁
rf−1(1), . . . , rf−1(N)

⃓⃓}︁
= {| r1, . . . , rN |}
= D (Array([r1, . . . , rN ]))

giving us equivalence preservation. Structure
preservation requires that

[︁
rf−1(1), . . . , rf−1(N)

]︁
be in

sorted order, which it is by construction. Thus, Sort
is a correct transform.

Lemma 3 (UnSort is correct). UnSort is both
equivalence preserving and structure preserving.

Proof. For any instance C where typeof(C) ̸=
Sorted, correctness follows from Proposition 2.
Otherwise C = Sorted([r1 . . . rN ]) and we

need to show first that D (Sorted([r1 . . . rN ])) =
D (Array([r1 . . . rN ])). The logical contents of both
are {| r1 . . . rN |}, so we have equivalence. Structure
preservation is a given since any Array instance is
structurally correct.

Lemma 4 (Divide is correct). Divide is both equiv-
alence preserving and structure preserving.

Proof. For any instance C where typeof(C) ̸=
Array, correctness follows from Proposition 2.

Otherwise C = Array([r1 . . . rN ]) and we need to
show first that

D (Array([r1 . . . rN ])) =

D
(︂
Concat

(︂
Array(

[︂
r1 . . . r⌊N2 ⌋

]︂
),Array(

[︂
r⌊N2 ⌋+1

. . . rN

]︂
)
)︂)︂

Evaluating the right hand side of the equation re-
cursively and simplifying, we have

=
{︂
r1 . . . r⌊N

2 ⌋
⃓⃓⃓}︂
⊎
{︂
r⌊N

2 ⌋+1 . . . rN

⃓⃓⃓}︂
=

{︂
r1 . . . r⌊N

2 ⌋, r⌊N
2 ⌋+1 . . . rN

⃓⃓⃓}︂
= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Hence we have equivalence preservation. The Array
instances are always structurally correct and Concat
instances are structurally correct if their children are,
so we have structural preservation as well. Hence,
Divide is correct.

Lemma 5 (Crack is correct). Crack is both equiv-
alence preserving and structure preserving.

Proof. For any instance C where typeof(C) ̸=
Array, correctness follows from Proposition 2.

Otherwise C = Array([r1 . . . rN ]) and we need to
show first that

D (Array([r1 . . . rN ])) =

D
(︁
BinTree

(︁
k,Array(

[︁
ri

⃓⃓
ri ≺ k

]︁
),Array(

[︁
ri

⃓⃓
k ⪯ ri

]︁
)
)︁)︁

Here k = id (ri) for an arbitrary i. Evaluating the
right hand side of the equation recursively and sim-
plifying, we have

=
{︁

ri
⃓⃓
ri ≺ k

⃓⃓}︁
⊎
{︁

ri
⃓⃓
k ⪯ ri

⃓⃓}︁
=

{︁
ri

⃓⃓
(ri ≺ k) ∨ (k ⪯ ri)

⃓⃓}︁
= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Instances of Array are always structurally correct.
The newly created BinTree instance is structurally
correct by construction. Thus Crack is correct.

Lemma 6 (Merge is correct). Merge is both equiv-
alence preserving and structure preserving.

Proof. For any instance C that matches neither of
Merge’s cases, correctness follows from Proposi-
tion 2. Of the remaining two cases, we first consider

C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

The proof of equivalence preservation is identical to
that of Theorem 4 applied in reverse. In the second
case

C = BinTree( ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Noting that BinTree( , C1, C2) ≈ Concat(C1, C2)
by the definition of logical contents, the proof of
equivalence preservation is again identical to that of
Theorem 4 applied in reverse. For both cases, struc-
tural preservation is given by the fact that Array
is always structurally correct. Thus Merge is cor-
rect.
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Lemma 7 (PivotLeft is correct). PivotLeft is both
equivalence preserving and structure preserving.

Proof. For any instance C that matches neither of
PivotLeft’s cases, correctness follows from Proposi-
tion 2. Of the remaining two cases, we first consider

C = Concat(C1,Concat(C2, C3))

Equivalence follows from from associativity of bag
union.

D (Concat(C1,Concat(C2, C3)))

= D (C1) ⊎ D (C2) ⊎ D (C3)

= D (Concat(Concat(C1, C2), C3))

Concat instances are structurally correct if their
children are, so the transformed instance is struc-
turally correct if α(C1), α(C2), and α(C3). Hence,
if the input is structurally correct, then so is the out-
put and the transform is structurally preserving in
this case. The proof of equivalence preservation is
identical for the case where

C = BinTree(k1, C1,BinTree(k2, C2, C3)) and k1 ≺ k2

For structural preservation, we additionally need to
show: (1) ∀r ∈ D (C1) : r ≺ k1, (2) ∀r ∈ D (C2) :
k1 ⪯ r, (3) ∀r ∈ D (BinTree(k1, C1, C2)) : r ≺ k2,
and (4) ∀r ∈ D (C3) : k2 ⪯ r given that C is struc-
turally correct.
Properties (1) and (4) follow trivially from the

structural correctness of C. Property (2) follows
from structural correctness of C requiring that ∀r ∈
(D (C2) ⊎ D (C3)) : k1 ⪯ r To show property (3), we
first use transitivity to show that ∀r ∈ D (C1) : r ≺
k1 ≺ k2. For the remaining records, ∀r ∈ D (C2) : r ≺
k2 follows trivially from the structural correctness of
C. Thus PivotLeft is correct 3

Corrolary 2. PivotRight is correct.

B LHS / RHS are meta trans-
forms

Proof. We show only the proof for LHS; The proof
for RHS is symmetric. We first show that LHS

3Note the limit on k1 ≺ k2, which could be violated with
an empty C2.

is an endofunctor. The kind of LHS is appropri-
ate, so we only need to show that it satisfies the
properties of a functor. First, we show that LHS
commutes the identity (id). In other words, for any
instance C, LHS[id](C) = C. In the case where
C = Concat(C1, C2), then

LHS[id](C) = Concat(id(C1), C2) = Concat(C1, C2)

The case where typeof(C) = BinTree is identi-
cal, and LHS[T ] is already the identity in all other
cases. Next, we need to show that LHS distributes
over composition. That is, for any instance C and
transforms T1 and T2 we need that

LHS[T1 ◦ T2](C) = (LHS[T1] ◦ LHS[T2]) (C)

If C = Concat(C1, C2), LHS[T1 ◦ T2](C) =
Concat(C ′

1, C2), where C ′
1 = T2(T1(C1)). For the

other side of the equation:

(LHS[T1] ◦ LHS[T2]) (C) = LHS[T2](LHS[T1](C))

= LHS[T2](Concat(T1(C1), C2)

= Concat(T2(T1(C1)), C2)

The case where typeof(C) = BinTree is similar,
and the remaining cases follow from LHS[T ] = id for
all other cases. Thus LHS is an functor. For LHS to
be a meta transform, it remains to show that for any
correct transform T , LHS[T ] is also correct. We first
consider the case where C = Concat(C1, C2) and
assume that T (C1) is both equivalence and structure
preserving, or equivalently that D (C1) = D (T (C1))
and StrCor (C1) =⇒ StrCor (T (C1)).

D (LHS[T ](C)) = D (Concat(T (C1), C2))

= D (Concat(C1, C2)) = D (C)

Thus, LHS[T ] is equivalence preserving for this case.
The proof of structure preservation follows a similar
pattern

StrCor (LHS[T ](C)) = StrCor (Concat(T (C1), C2))

= StrCor (T (C1)) ∧ StrCor (C2)

Given StrCor (C) = StrCor (C1)∧StrCor (C2)
and the assumption of StrCor (C1) =⇒
StrCor (T (C1)), it follows that LHS[T ] is structure
preserving for this C. The proof for the case where
C = BinTree(k,C1, C2) is similar, but also requires
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showing that ∀r ∈ D (T (C1)) : r ≺ k under the as-
sumption that ∀r ∈ D (C1) : r ≺ k. This follows
from our assumption that D (T (C1)) = D (C1). The
remaining cases of LHS are covered under Proposi-
tion 2. Thus, LHS is a meta transform.

C Target Updates are Bounded

Proof. By recursion over T . The atomic transforms
are the base case. By definition id is not in the
active domain, so we only need to consider seven
possible atomic transforms. For Sort or UnSort to
be in the active domain, typeof(C) must be Array
or Sorted respectively. By the definition of each
transform, typeof(C ′) will be Sorted or Array
respectively By Theorem 2, the active domain of any
Array or Sorted instance is bounded by |A| and by
construction, |WC | = |DC | ≤ |A|. Hence, the total
change in the weighted targets for this case is at most
2 × |A|. Following a similar line of reasoning, the
weighted targets change by at most 4× |A| elements
as a result of any Divide, Crack, or Merge. Next
consider C = Concat(Concat(C1, C2), C3),
and consequently C ′ = PivotLeft(C) =
Concat(C1,Concat(C2, C3)). For each trans-
form of the form LHS[LHS[T ]] in the active domain
of C, there will be a corresponding LHS[T ], as C1

is identical in both paths. Similar reasoning holds
for C2 and C3. Because the policy is local, the
weighted targets are independent of any LHS or
RHS meta transforms modifying them. Thus, at
most, the active domain will lose T and LHS[T ] for
T ∈ A, and gain T and RHS[T ] for T ∈ A, and
the weighted targets will change by no more than
4 × |A| elements. Similar lines of reasoning hold for
the other case of PivotLeft and for both cases of
PivotRight. The recursive cases are trivial, since
the weighted targets are independent of prefixes in a
local policy.
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