arXiv:2006.01209v1 [cs.CL] 23 May 2020

Learning Constraints for Structured Prediction Using Rectifier Networks

Xingyuan Pan, Maitrey Mehta, Vivek Srikumar
School of Computing, University of Utah
{xpan,maitrey, svivek}@cs.utah.edu

Abstract

Various natural language processing tasks are
structured prediction problems where outputs
are constructed with multiple interdependent
decisions. Past work has shown that domain
knowledge, framed as constraints over the out-
put space, can help improve predictive accu-
racy. However, designing good constraints of-
ten relies on domain expertise. In this pa-
per, we study the problem of learning such
constraints. We frame the problem as that of
training a two-layer rectifier network to iden-
tify valid structures or substructures, and show
a construction for converting a trained net-
work into a system of linear constraints over
the inference variables. Our experiments on
several NLP tasks show that the learned con-
straints can improve the prediction accuracy,
especially when the number of training exam-
ples is small.

1 Introduction

In many natural language processing (NLP) tasks,
the outputs are structures which can take the
form of sequences, trees, or in general, labeled
graphs. Predicting such output structures (e.g.
Smith, 2011) involves assigning values to mul-
tiple interdependent variables. Certain joint as-
signments may be prohibited by constraints de-
signed by domain experts. As a simple exam-
ple, in the problem of extracting entities and re-
lations from text, a constraint could disallow the
relation “married to” between two entities if one
of the entity is not a “person”. It has been shown
that carefully designed constraints can substan-
tially improve model performance in various ap-
plications (e.g., Chang et al., 2012; Anzaroot et al.,
2014), especially when the number of training ex-
amples is limited.

Designing constraints often requires task-
specific manual effort. In this paper, we ask the

question: can we use neural network methods
to automatically discover constraints from data,
and use them to predict structured outputs? We
provide a general framework for discovering con-
straints in the form of a system of linear inequali-
ties over the output variables in a problem. These
constraints can improve an already trained model,
or be integrated into the learning process for global
training.

A system of linear inequalities represents a
bounded or unbounded convex polytope. We ob-
serve that such a system can be expressed as a
two-layer threshold network, i.e., a network with
one hidden layer of linear threshold units and an
output layer with a single threshold unit. This two-
layer threshold network will predict 1 or —1 de-
pending on whether the system of linear inequali-
ties is satisfied or not. In principle, we could try
to train such a threshold network to discover con-
straints. However, the zero-gradient nature of the
threshold activation function prohibits using back-
propagation for gradient-based learning.

Instead, in this paper, we show that a construc-
tion of a specific two-layer rectifier network rep-
resents linear inequality constraints. This network
also contains a single linear threshold output unit,
but in the hidden layer, it contains rectified linear
units (ReLUs). Pan and Srikumar (2016) showed
that a two-layer rectifier network constructed in
such a way is equivalent to a threshold network,
and represents the same set of linear inequalities as
the threshold network with far fewer hidden units.

The linear constraints thus obtained can aug-
ment existing models in multiple ways. For ex-
ample, if a problem is formulated as an inte-
ger program (e.g., Roth and Yih, 2004, 2005;
Riedel and Clarke, 2006; Martins et al., 2009), the
learned constraints will become additional linear
inequalities, which can be used directly. Alterna-
tively, a structure can be constructed using graph



search (e.g., Collins and Roark, 2004; Daumé
et al.,, 2009; Doppa et al., 2014; Chang et al.,
2015; Wiseman and Rush, 2016), in which case
the learned constraints can filter available actions
during search-node expansions. Other inference
techniques that extend Lagrangian Relaxation (Ko-
modakis et al., 2007; Rush et al., 2010; Martins
et al,, 2011) can also employ the learned con-
straints. Essentially, the learned constraints can
be combined with various existing models and in-
ference techniques and the framework proposed in
this paper can be viewed as a general approach to
improve structured prediction.

We report experiments on three NLP tasks to
verify the proposed idea. The first one is an entity
and relation extraction task, in which we aim to la-
bel the entity candidates and identify relations be-
tween them. In this task, we show that the learned
constraints can be used while training the model to
improve prediction. We also show that the learned
constraints in this domain can be interpreted in a
way that is comparable to manually designed con-
straints. The second NLP task is to extract cita-
tion fields like authors, journals and date from a
bibliography entry. We treat it as a sequence la-
beling problem and show that learned constraints
can improve an existing first-order Markov model
trained using a structured SVM method (Tsochan-
taridis et al., 2004). In the final experiment we
consider chunking, i.e., shallow parsing, which is
also a sequence labeling task. We train a BILSTM-
CRF model (Huang et al., 2015) on the training set
with different sizes, and we show that learned con-
straints are particularly helpful when the number
of training examples is small.

In summary, the contributions of this paper are:

1. We propose that rectifier networks can be
used to represent and learn linear constraints
for structured prediction problems.

2. In tasks such as entity and relation extraction,
the learned constraints can exactly recover
the manually designed constraints, and can
be interpreted in a way similar to manually
designed constraints.

3. When manually designed constraints are not
available, we show via experiments that the
learned constraints can improve the origi-
nal model’s performance, especially when
the original model is trained with a small
dataset.!

"The scripts for replaying the experiments are available at

2 Representing Constraints

In this section, we formally define structured pre-
diction and constraints. In a structured prediction
problem, we are given an input x belonging to the
instance space, such as sentences or images. The
goal is to predict an output y € )y, where Yy
is the set of possible output structures for the in-
put x. The output y have a predefined structure
(e.g., trees, or labeled graphs), and the number of
candidate structures in )y is usually large, i.e., ex-
ponential in the input size.

Inference in such problems can be framed as an
optimization problem with a linear objective func-
tion:

y" =argmax a - ¢(x,y), (1)

YEYVx

where ¢(x,y) is a feature vector representation
of the input-output pair (x,y) and « are learned
parameters. The feature representation ¢(x,y)
can be designed by hand or learned using neural
networks. The feasible set )y is predefined and
known for every x at both learning and inference
stages. The goal of learning is to find the best pa-
rameters « (and, also perhaps the features ¢ if
we are training a neural network) using training
data, and the goal of inference is to solve the above
argmax problem given parameters o.

In this paper, we seek to learn additional con-
straints from training examples {(x,y)}. Suppose
we want to learn K constraints, and the k™ one is
some Boolean function?: c(x,y) = 1 if (x,y)
satisfies the k*" constraint, and c;(x,y) = —1 if
it does not. Then, the optimal structure y* is the
solution to the following optimization problem:

max « - ¢(x,y), )
YEYVx
subject to  Vk, ck(x,y) = 1.

We will show that such learned constraints aid pre-
diction performance.

2.1 Constraints as Linear Inequalities

Boolean functions over inference variables may be
expressed as linear inequalities over them (Roth
and Yih, 2004). In this paper, we represent con-
straints as linear inequalities over some feature
vector ¥ (x,y) of a given input-output pair. The
k™ constraint ¢y, is equivalent to the linear inequal-
ity

Wi P(x,y) + by >0, 3)

https://github.com/utahnlp/learning-constraints
“We use 1 to indicate t rue and —1 to indicate false.



whose weights wj and bias b, are learned. A
Boolean constraint is, thus, a linear threshold func-
tion,

a(x,y) =sgn (Wi - ¥(x,y) +bp). @)

Here, sgn(-) is the sign function: sgn(x) = 1 if
x > 0, and —1 otherwise.

The feature representations 1(x,y) should not
be confused with the original features ¢(x,y)
used in the structured prediction model in Eq. (1)
or (2). Hereafter, we refer to v (x, y) as constraint
features. Constraint features should be general
properties of inputs and outputs, since we want to
learn domain-specific constraints over them. They
are a design choice, and in our experiments, we
will use common NLP features. In general, they
could even be learned using a neural network.
Given a constraint feature representation ) (-), the
goal is thus to learn the parameters wy’s and b’s
for every constraint.

2.2 Constraints as Threshold Networks

For an input x, we say the output y is feasible if
it satisfies constraints ¢; forall k = 1,..., K. We
can define a Boolean variable z(x,y) indicating
whether y is feasible with respect to the input x:
z(x,y) = ci(x,y) A+ A ex(x,y). Thatis, z
is a conjunction of all the Boolean functions cor-
responding to each constraint. Since conjunctions
are linearly separable, we can rewrite z(x,y) as a
linear threshold function:

z(x,y) = sgn (1 — K+ ic;&x,y)). 5)

k=1

It is easy to see that z(x,y) = 1 if, and only if, all
ci’s are 1—precisely the definition of a conjunc-
tion. Finally, we can plug Eq. (4) into Eq. (5):

= sgn <1 - K+§:sgn (Wi ¥(x,y) +bk))

k=1

(6)

Observe that Eq. (6) is exactly a two-layer
threshold neural network: % (x,y) is the input to
the network; the hidden layer contains K linear
threshold units with parameters wy, and by ; the out-
put layer has a single linear threshold unit. This
neural network will predict 1 if the structure y is
feasible with respect to input x, and —1 if it is
infeasible. In other words, constraints for struc-
tured prediction problems can be written as two-
layer threshold networks. One possible way to

learn constraints is thus to learn the hidden layer
parameters w, and b, with fixed output layer pa-
rameters. However, the neural network specified
in Eq. (6) is not friendly to gradient-based learn-
ing; the sgn(-) function has zero gradients almost
everywhere. To circumvent this, let us explore an
alternative way of learning constraints using recti-
fier networks rather than threshold networks.

2.3 Constraints as Rectifier Networks

We saw in the previous section that a system of lin-
ear inequalities can be represented as a two-layer
threshold network. In this section, we will see a
special rectifier network that is equivalent to a sys-
tem of linear inequalities, and whose parameters
can be learned using backpropagation.

Denote the rectifier (ReLLU) activation function
as R(z) = max(0,z). Consider the following
two-layer rectifier network:

K
z = sgn <1 — ZR(Wk “p(x,y) + bk)> @)

k=1

The input to the network is still ¥ (x,y). There
are K ReLUs in the hidden layer, and one thresh-
old unit in the output layer. The decision boundary
of this rectifier network is specified by a system
of linear inequalities. In particular, we have the
following theorem (Pan and Srikumar, 2016, The-
orem 1):

Theorem 1. Consider a two-layer rectifier net-
work with K hidden ReLUs as in Eq. (7). Define
the set [K] = {1,2,..., K}. The network output
z2(x,y) = 1 if, and only if, for every subset S of
[K|, the following linear inequality holds:

1= (wi-t(xy) +b) >0 (8)

keS

The proof of Theorem 1 is given in the supple-
mentary material.

To illustrate the idea, we show a simple exam-
ple rectifier network, and convert it to a system of
linear inequalities using the theorem. The rectifier
network contains two hidden ReLLUs (K = 2):

z = sgn (1—R(W1-'¢J+b1)—R(wz-1,b+b2))

Our theorem says that z = 1 if and only if the fol-
lowing four inequalities hold simultaneously, one



per subset of [K]:

>0
1— (wa-tp+by) >0
1— (w1 ¥ +b)— (wWa-9p+by) >0

The first inequality, 1 > 0, corresponding to the
empty subset of [K], trivially holds. The rest are
just linear inequalities over ).

In general, [K] has 2% subsets, and when S is
the empty set, inequality (8) is trivially true. The
rectifier network in Eq. (7) thus predicts y is a
valid structure for x, if a system of 2% —1 linear in-
equalities are satisfied. It is worth mentioning that
even though the 2% — 1 linear inequalities are con-
structed from a power set of K elements, it does
not make them dependent on each other. With gen-
eral choice of wy, and by, these 2% — 1 inequalities
are linearly independent.

This establishes the fact that a two-layer recti-
fier network of the form of Eq. (7) can represent a
system of linear inequality constraints for a struc-
tured prediction problem via the constraint feature
function 1.

3 Learning Constraints

In the previous section, we saw that both thresh-
old and rectifier networks can represent a system
of linear inequalities. We can either learn a thresh-
old network (Eq. (6)) to obtain constraints as in (3),
or we can learn a rectifier network (Eq. (7)) to ob-
tain constraints as in (8). The latter offers two ad-
vantages. First, a rectifier network has non-trivial
gradients, which facilitates gradient-based learn-
ing®. Second, since K ReLUs can represent 2/ —1
constraints, the rectifier network can express con-
straints more compactly with fewer hidden units.

We will train the parameters wg’s and by’s
of the rectifier network in the supervised setting.
First, we need to obtain positive and negative train-
ing examples. We assume that we have training
data for a structured prediction task.

Positive examples can be directly obtained
from the training data of the structured prediction

3The output threshold unit in the rectifier network will not
cause any trouble in practice, because it can be replaced by
sigmoid function during training. Our theorem still follows,
as long as we interpret z(x,y) = 1 as o(x,y) > 0.5 and
z(x,y) = —las o(x,y) < 0.5. We can still convert the
rectifier network into a system of linear inequalities even if
the output unit is the sigmoid unit.

problem. For each training example (x,y), we can
apply constraint feature extractors to obtain posi-
tive examples of the form (¢ (x,y), +1).

Negative examples can be generated in sev-
eral ways; we use simple but effective approaches.
We can slightly perturb a structure y in a train-
ing example (x,y) to obtain a structure y’ that
we assume to be invalid. Applying the con-
straint feature extractor to it gives a negative ex-
ample (¢(x,y’), —1). We also need to ensure that
¥ (x,y’) is indeed different from any positive ex-
ample. Another approach is to perturb the feature
vector 1(x,y) directly, instead of perturbing the
structure y.

In our experiments in the subsequent sections,
we will use both methods to generate negative ex-
amples, with detailed descriptions in the supple-
mentary material. Despite their simplicity, we
observed performance improvements. Exploring
more sophisticated methods for perturbing struc-
tures or features (e.g., using techniques explored
by Smith and Eisner (2005), or using adversarial
learning (Goodfellow et al., 2014)) is a future re-
search direction.

To verify whether constraints can be learned as
described here, we performed a synthetic experi-
ment where we randomly generate many integer
linear program (ILP) instances with hidden shared
constraints. The experiments show that constraints
can indeed be recovered using only the solutions
of the programs. Due to space constraints, details
of this synthetic experiment are in the supplemen-
tary material. In the remainder of the paper we
focus on three real NLP tasks.

4 Entity and Relation Extraction
Experiments

In the task of entity and relation extraction, we are
given a sentence with entity candidates. We seek
to determine the type of each candidate, as in the
following example (the labels are underlined):

[Organization Google LLC] is
headquartered in [Location Moun-
tain View, California].

We also want to determine directed relations
between the entities. In the above example, the
relation from “Google LLC” to “Mountain View,
California” is OrgBasedIn, and the opposite di-
rection is labeled NoRel, indicating there is no
relation. This task requires predicting a directed



graph and represents a typical structured predic-
tion problem—we cannot make isolated entity and
relation predictions.

Dataset and baseline: We use the dataset from
(Roth and Yih, 2004). It contains 1441 sentences
with labeled entities and relations. There are
three possible entity types: Person, Location
and Organization, and five possible relations:
Kill, LivelIn, WorkFor, LocatedAt and
OrgBasedIn. Additionally, there is a special en-
tity label NoEnt meaning a text span is not an en-
tity, and a special relation label NoRel indicating
that two spans are unrelated.

We used 70% of the data for training and the
remaining 30% for evaluation. We trained our
baseline model using the integer linear program
(ILP) formulation with the same set of features
as in (Roth and Yih, 2004). The baseline system
includes manually designed constraints from the
original paper. An example of such a constraint
is: if a relation label is WorkFor, the source en-
tity must be labeled Person, and the target entity
must be labeled Organization. For reference,
the supplementary material lists the complete set
of manually designed constraints.

We use three kinds of constraint features: (i)
source-relation indicator, which looks at a given
relation label and the label of its source entity; (ii)
relation-target indicator, which looks at a relation
label and the label of its target entity; and (iii)
relation-relation indicator, which looks at a pair of
entities and focuses on the two relation label, one
in each direction. The details of the constraint fea-
tures, negative examples and hyper-parameters are
in the supplementary material.

4.1 Experiments and Results

We compared the performance of two ILP-based
models, both trained in the presence of constraints
with a structured SVM. One model was trained
with manually designed constraints and the other
used learned constraints. These models are com-
pared in Table 1.

We manually inspected the learned constraints
and discovered that they exactly recover the de-
signed constraints, in the sense that the feasible
output space is exactly the same regardless of
whether we use designed or learned constraints.
As an additional confirmation, we observed that
when a model is trained with designed constraints
and tested with learned constraints, we get the

Designed Learned

84.1% 83.1%
41.5% 38.2%

Performance Metric

entity F-1
relation F-1

Table 1: Comparison of performance on the entity and
relation extraction task, between two ILP models, one
trained with designed constraints (Designed) and one
with learned constraints (Learned).

same model performance as when tested with de-
signed constraints. Likewise, a model that is
trained with learned constraints performs identi-
cally when tested with learned and designed con-
straints.

Below, we give one example of a learned con-
straint, and illustrate how to interpret such a con-
straint. (The complete list of learned constraints
is in the supplementary material.) A learned con-
straint using the source-relation indicator features
is

—1.98x1 + 3.53x9 — 1.9023 + 0.11x4
+ 2.66x5 — 2.84x¢ — 2.84x7 — 2.84x5  (9)
+ 2.58z9 + 0.43210 +0.32 > 0

where x; through z;9 are indicators for
labels NoEnt, Person, Location,
Organization, NoRel, Kill, Liveln,
WorkFor, LocatedAt, and OrgBasedIn,
respectively. This constraint disallows a relation
labeled as Ki11 having a source entity labeled as
Location, because —1.90 — 2.84 4+ 0.32 < 0.
Therefore, the constraint “Location cannot
Kil1”is captured in (9). In fact, it is straightfor-
ward to verify that the inequality in (9) captures
many more constraints such as ‘“NoEnt can-
not LiveIn”, “Location cannot LiveIn”,
“Organizationcannot WorkFor”, etc. A gen-
eral method for interpreting learned constraints is
a direction of future research.

Note that the metric numbers in Table 1 based
on learned constraints are lower than those based
on designed constraints. Since the feasible space
is the same for both kinds of constraints, the per-
formance difference is due to the randomness of
the ILP solver picking different solutions with the
same objective value. Therefore, the entity and
relation experiments in this section demonstrate
that our approach can recover the designed con-
straints and provide a way of interpreting these
constraints.



5 Citation Field Extraction Experiments

In the citation field extraction task, the input is a
citation entry. The goal is to identify spans corre-
sponding to fields such as author, title, etc. In the
example below, the labels are underlined:

[ Author A.M . Turing . | [ Title
Computing machinery and intelligence .
] [ Journal Mind , ] [Volume 59, ]
[ Pages 433-460 . ] [ Date October ,
1950 . ]

Chang et al. (2007) showed that hand-crafted con-
straints specific to this domain can vastly help
models to correctly identify citation fields. We
show that constraints learned from the training
data can improve a trained model without the need
for manual effort.

Dataset and baseline. We use the dataset
from Chang et al. (2007, 2012) whose training,
development and test splits have 300, 100 and
100 examples, respectively. We train a first-order
Markov model using structured SVM (Tsochan-
taridis et al., 2004) on the training set with the
same raw text features as in the original work.

Constraint features. We explore multiple sim-
ple constraint features 1 (x,y) in the citation field
extraction experiments as shown in Table 2. De-
tailed descriptions of these features, including how
to develop negative examples for each feature, and
experiment settings are in the supplementary ma-
terial.

Feature Description

Indicates which labels
exist in a citation
Counts the number of
occurrences of a label
Indicators for adjacent
labels

Indicators for 3 adja-
cent labels

Indicator for the part-of-
speech of a token
Indicator for whether a
token is a punctuation

Label existence
Label counts
Bigram labels
Trigram labels
Part-of-speech

Punctuation

Table 2: Constraint feature templates for the citation
field extraction task

5.1 Experiments and Results

For each constraint feature template, we trained
a rectifier network with 10 ReLUs in the hidden
layer. We then use Theorem 1 to convert the re-
sulting network to a system of 2'° — 1, or 1023 lin-
ear inequalities. We used beam search with beam
size 50 to combine the learned inequalities with
the original sequence model to predict on the test
set. States in the search space correspond to par-
tial assignments to a prefix of the sequence. Each
step we predict the label for the next token in the
sequence. The pretrained sequence model (i.e.,
the baseline) ranks search nodes based on transi-
tion and emission scores, and the learned inequal-
ity prunes the search space accordingly*. Table 3
shows the token level accuracies of various meth-
ods.

The results show that all versions of constrained
search outperform the baselines, indicating that
the learned constraints are effective in the citation
field extraction task. Furthermore, different con-
straints learned with different features can be com-
bined. We observe that combining different con-
straint features generally improves accuracy.

It is worth pointing out that the label existence
and label counts features are global in nature and
cannot be directly used to train a sequence model.
Even if some constraint features can be used in
training the original model, it is still beneficial
to learn constraints from them. For example, the
bigram label feature is captured in the original
first order model, but adding constraints learned
from them still improves performance. As an-
other test, we trained a model with POS features,
which also contains punctuation information. This
model achieves 91.8% accuracy. Adding con-
straints learned with POS improves the accuracy
to 92.6%; adding constraints learned with punctu-
ation features further improves it to 93.8%.

We also observed that our method for learning
constraints is robust to the choice of the number
of hidden ReLUs. For example, for punctuation,
learning using 5, 8 and 10 hidden ReL.Us results
an accuracy of 90.1%, 90.3%, and 90.2%, respec-
tively. We observed similar behavior for other con-
straint features as well. Since the number of con-
straints learned is exponential in the number of hid-
den units, these results shows that learning redun-

“4Since the label-existence and label-counts features are
global, pruning by learned inequalities is possible only at the

last step of search. The other four features admit pruning at
each step of the search process.



Baselines

Search with learned constraints

Combine constraints

Exact

86.2 87.3 88.0 87.7

Search L.E. L.C. B.L. TL. POS Punc. C1 C2 C3
87.9 88.1

89.8 90.2 88.6 90.1 90.6

Table 3: Token level accuracies (in percentage) of baseline models and constrained-search models, for the citation
field extraction task. Exact is our trained first-order Markov model. It uses exact inference (dynamic programming)
for prediction. Search is our search baseline, it uses the same model as Exact, but with beam search for inexact
inference. L.E., L.C., B.L., T.L., POS, Punc. use search with different constraint features: label existence, label
counts, bigram labels, trigram labels, part-of-speech, and punctuation features. C1 to C3 are search with combined
constraints. C1 combines L.E. and T.L.. C2 combines L.E., T.L. and POS. Finally C3 combines all constraints.

dant constraints will not hurt performance.

Note that carefully hand-crafted constraints
may achieve higher accuracy than the learned ones.
Chang et al. (2007) report an accuracy of 92.5%
with constraints specifically designed for this do-
main. In contrast, our method for learning con-
straints uses general constraint features, and does
not rely on domain knowledge. Therefore, our
method is suited to tasks where little is known
about the underlying domain.

6 Chunking Experiments

Chunking is the task of clustering text into groups
of syntactically correlated tokens or phrases. In
the instance below, the phrase labels are under-
lined:

[NP An A.P. Green official] [VP de-
clined to comment] [PP on] [NP the fil-

ing] [O.]

We treat the chunking problem as a sequence la-
beling problem by using the popular IOB tagging
scheme. For each phrase label, the first token in
the phrase is labeled with a “B-" prefixed to phrase
label while the other tokens are labeled with an “I-”
prefixed to the phrase label. Hence,

[NP An A.P. Green official]
is represented as

[[B=NP An] [I-NP A.P.] [I-NP Green]|
[I-NP official]]

This is done for all phrase labels except “O”.
Dataset and Baselines. We use the
CoNLL2000 dataset (Tjong Kim Sang and
Buchholz, 2000) which contains 8936 training
sentences and 2012 test sentences. For our
experiments, we consider 8000 sentences out of
8936 training sentences as our training set and the

remaining 936 sentences as our development set.
Chunking is a well-studied problem and show-
ing performance improvements on full training
dataset is difficult. However, we use this task to
illustrate the interplay of learned constraints with
neural network models, and the impact of learned
constraints in the low training data regime.

We use the BILSTM-CRF (Huang et al., 2015)
for this sequence tagging task. We use GloVe for
word embeddings. We do not use the BERT (De-
vlin et al.,, 2019) family of models since to-
kens are broken down into sub-words during pre-
processing, which introduces modeling and evalu-
ation choices that are orthogonal to our study of
label dependencies. As with the citation task, all
our constrained models use beam search, and we
compare our results to both exact decoding and
beam search baselines. We use two kinds of con-
straint features: (i) n-gram label existence, and (ii)
n-gram part of speech. Details of the constraint
features and construction of negative samples are
given in the supplementary material.

6.1 Experiments and Results

We train the rectifier network with 10 hidden units.
The beam size of 10 was chosen for our experi-
ments based on preliminary experiments. We re-
port the average results on two different random
seeds for learning each constraint. Note that the n-
gram label existence is a global constraint while
the n-gram POS constraint is a local constraint
which checks for validity of label assignments
at each token. In essence, the latter constraint
reranks the beam at each step by ensuring that
states that satisfy the constraint are preferred over
states that violate the constraint. Since the n-gram
label existence is a global constraint, we check the
validity of the tag assignments only at the last to-
ken. In the case where none of the states in the
beam satisfy the constraint, the original beams are



used.

The results for this set of experiments are pre-
sented in Table 4. We observe that the POS
constraint improves the performance of the base-
line models significantly, outperforming the beam
search baseline on all training ratios. More im-
portantly, the results show sizable improvements
in accuracy for smaller training ratios (e.g, 4.41%
and 5.23% improvements on exact and search
baselines respectively with 1% training data ).
When the training ratios get bigger, we expect the
models to learn these properties and hence the im-
pact of the constraints decreases.

These results (along with the experiments in the
previous sections) indicate that our constraints can
significantly boost performance in the low data
regime. Another way to improve performance in
low resource settings is to use better pretrained in-
put representations. When we replaced GloVe em-
beddings with ELMo, we observed a 87.09% ac-
curacy on 0.01 ratio of training data using exact
decoding. However, this improvement comes at
a cost: the number of parameters increases from
3M (190k trainable) to 94M (561k trainable). In
contrast, our method instead introduces a smaller
rectifier network with ~ 1000 additional param-
eters while still producing similar improvements.
In other words, using trained constraints is compu-
tationally more efficient.

We observe that the label existence constraints,
however, do not help. We conjecture that this may
be due to one of the following three conditions: (i)
The label existence constraint might not exist for
the task; (ii) The constraint exists but the learner
is not able to find it; (iii) The input representa-
tions are expressive enough to represent the con-
straints. Disentangling these three factors is a fu-
ture research challenge.

7 Related Work

Structured prediction is an active field in machine
learning and has numerous applications, includ-
ing various kinds of sequence labeling tasks, pars-
ing (e.g., Martins et al., 2009), image segmenta-
tion (e.g., Lam et al., 2015), and information ex-
traction (e.g., Anzaroot et al., 2014). The work of
Roth and Yih (2004) introduced the idea of using
explicitly stated constraints in an integer program-
ming framework. That constraints and knowledge
can improve models has been highlighted by sev-
eral lines of work (e.g., Ganchev et al., 2010;

Chang et al., 2012; Hu et al., 2016).

The interplay between constraints and repre-
sentations has been sharply highlighted by recent
work on integrating neural networks with struc-
tured outputs (e.g., Rocktischel and Riedel, 2017;
Niculae et al., 2018; Manhaeve et al., 2018; Xu
et al., 2018; Li and Srikumar, 2019; Li et al., 2019,
and others). We expect that constraints learned
as described in this work can be integrated into
these formalisms, presenting an avenue for future
research.

While our paper focuses on learning explicit
constraints directly from examples, it is also pos-
sible to use indirect supervision from these exam-
ples to learn a structural classifier (Chang et al.,
2010), with an objective function penalizing in-
valid structures.

Related to our goal of learning constraints is
rule learning, as studied in various subfields of
artificial intelligence. Quinlan (1986) describes
the ID3 algorithm, which extracts rules as a de-
cision tree. First order logic rules can be learned
from examples using inductive logic programming
(Muggleton and de Raedt, 1994; Lavrac and Dze-
roski, 1994; Page and Srinivasan, 2003). Notable
algorithms for inductive logic programming in-
clude FOIL (Quinlan, 1990) and Progol (Muggle-
ton, 1995).

Statistical relation learning addresses learn-
ing constraints with uncertainty (Friedman et al.,
1999; Getoor and Mihalkova, 2001). Markov logic
networks (Richardson and Domingos, 2006) com-
bines probabilistic models with first order logic
knowledge, whose weighted formulas are soft con-
straints and the weights can be learned from data.
In contrast to these directions, in this paper, we
exploit a novel representational result about recti-
fier networks to learn polytopes that represent con-
straints with off-the-shelf neural network tools.

8 Conclusions

We presented a systematic way for discovering
constraints as linear inequalities for structured pre-
diction problems. The proposed approach is built
upon a novel transformation from two layer recti-
fier networks to linear inequality constraints and
does not rely on domain expertise for any specific
problem. Instead, it only uses general constraint
features as inputs to rectifier networks. Our ap-
proach is particularly suited to tasks where design-
ing constraints manually is hard, and/or the num-



Percentage of training data used

Constraint n
1% 5% 10% 25% 50% 100%
Label existence 2 81.28 88.30 89.73 91.24 9040 92.48
3 80.98 88.20 90.58 91.20 92.37 93.12
Part-of-speech 3 86.52 90.74 91.80 92.41 93.07 93.84
P 4 8421 90.99 92.17 9246 93.08 93.93
Search without constraints 81.29 88.27 90.62 91.33 9251 9344
Exact decoding 82.11 88.70 90.49 92.57 93.94 94.75

Table 4: Token level accuracies (in percentage) for the chunking baseline and constrained model. The results are
shown on n-gram Label Existence and n-gram Part of Speech constraints with n = {2,3} and n = {3, 4} respec-
tively. The results are shown on {1%, 5%, 10%, 25%, 50%, 100%} of training data. Exact decoding with Viterbi
algorithm and Search w/o constraint are baseline models which do not incorporate constraints during inference.

ber of training examples is small. The learned con-
straints can be used for structured prediction prob-
lems in two ways: (1) combining them with an
existing model to improve prediction performance,
or (2) incorporating them into the training process
to train a better model. We demonstrated the effec-
tiveness of our approach on three NLP tasks, each
with different original models.
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A Proof of Theorem 1

In this section we prove Theorem 1. The theorem
and the relevant definitions are repeated here for
convenience.

Define the rectifier (ReLU) activation function
as R(z) = max(0,z). Consider the following
two-layer rectifier network:

K
z(x,y) = sgn <1 — ZR (Wk “p(x,y) + bk)>

k=1
(10)
The input to the network is still ¢ (x,y). There are
K ReLUs in the hidden layer, and one threshold
unit in the output layer.
The decision boundary of this rectifier network
is specified by a system of linear inequalities. In
particular, we have the following theorem:

Theorem 2. Consider a two-layer rectifier net-
work with K hidden ReLUs as in Eq. (10). Define
the set [K] = {1,2,..., K}. The network outputs
z2(x,y) = 1if, and only if, for every subset S of
[K], the following linear inequality holds:

1—Z(wk-¢(x,y)+bk) >0

keS

Proof. Define a = wy, - ¥(x,y) + bx. We first
prove the “if” part of the theorem. Suppose that

forany S C [K], 1 — >, csar > 0. Thus for
a specific subset S* = {k € [K] : ap > 0},
we have 1 — >, _s.ar > 0. By the defini-
tion of S*, Zle R(ar) = D iecs. ak» therefore
1 - Zszl R(ax) = 0.

Next we prove the “only if” part of the theorem.
Suppose that 1 — Zle R(ar) > 0. Forany S C
K], we have 3747 R(ar) = YpesRiar) =
> kes @k Therefore, for any S C [K], 1 —

> kes k= 0. O

B Synthetic Integer Linear
Programming Experiments

We first check if constraints are learnable, and
whether learned constraints help a downstream
task with a synthetic experiment. Consider fram-
ing structure prediction as an integer linear pro-
gram (ILP):

min

C; -z
ze{0,1}n - ’

(11)
subject to ZAkizi > b, kem]

The objective coefficient ¢; denotes the cost of
setting the variable 2; to 1 and the goal of predic-
tion is to find a cost minimizing variable assign-
ment subject to m linear constraints in (11). We
randomly generate a hundred 50-dimensional ILP
instances, all of which share a fixed set of random
constraints. Each instance is thus defined by its ob-
jective coefficients. We reserve 30% of instances
as test data. The goal is to learn the shared linear
constraints in Eq. (11) from the training set.

We use the Gurobi Optimizer (Gurobi Optimiza-
tion LLC, 2019) to solve all the ILP instances to
obtain pairs {(c,z)}, where c is the vector of ob-
jective coefficients and z is the optimal solution.
Each z in this set is feasible, giving us positive ex-
amples (z,+1) for the constraint learning task.

Negative examples are generated as follows:
Given a positive pair (c,z) described above, if the
i coefficient ¢; > 0 and the corresponding deci-
sion z; = 1, construct z’ from z by flipping the
i bit in z from 1 to 0. Such a z’ is a negative ex-
ample for the constraint learning task because z’
has a lower objective value than z. Therefore, it
violates at least one of the constraints in Eq. (11).
Similarly, if ¢; < 0 and z; = 0, we can flip the i
bit from 0 to 1. We perform the above steps for ev-



ery coefficient of every example in the training set
to generate a set of negative examples {(z’, —1)}.

We trained a rectifier network on these exam-
ples and converted the resulting parameters into
a system of linear inequalities using Theorem 2.
The hyper-parameters and design choices are sum-
marized in the supplementary material. We used
the learned inequalities to replace the original con-
straints to obtain predicted solutions. We evalu-
ated these predicted solutions against the oracle so-
lutions (i.e., based on the original constraints). We
also computed a baseline solution for each test ex-
ample by minimizing an unconstrained objective.

Table 5 lists four measures of the effectiveness
of learned constraints. First, we want to know
whether the learned rectifier network can correctly
predict the synthetically generated positive and
negative examples. The binary classification ac-
curacies are listed in the first row. The second row
lists the bitwise accuracies of the predicted solu-
tions based on learned constraints, compared with
the gold solutions. We see that the accuracy val-
ues of the solutions based on learned constraints
are in the range from 80.2-83.5%. As a compari-
son, without using any constraints, the accuracy of
the baseline is 56.8%. Therefore the learned con-
straints can substantially improve the prediction
accuracy in the down stream inference tasks. The
third row lists the percentage of the predicted solu-
tions satisfying the original constraints. Solutions
based on learned constraints satisfy 69.8-74.4%
of the original constraints. In contrast, the baseline
solutions satisfy 55.3% of the original constraints.
The last row lists the percentage of the gold so-
lutions satisfying the learned constraints. We see
that the gold solutions almost always satisfy the
learned constraints.

The hyper-parameter and other design choices
for the synthetic ILP experiments are listed in Ta-
ble 6.

C Entity and relation extraction
experiments

C.1 Designed constraints

Table 7 lists the designed constraints used in the
entity and relation extraction experiments. There
are fifteen constraints, three for each relation
type. For example, the last row in Table 7
means that the relation OrgBasedIn must have
an Organization as its source entity and a
Location as its target entity, and the relation in

the opposite direction must be NoRel.

C.2 Constraint features

We use the same example as in the main paper to
illustrate the constraint features used in the entity
and relation extraction experiments:

[Organization Google LLC] is
headquartered in [Location Moun-
tain View, California, USA].

In the above example, the relation from “Google
LLC” to “Mountain View, California, USA” is
OrgBasedIn,and the relation in the opposite di-
rection is labeled NoRe1, indicating there is no re-
lation from “Mountain View, California, USA” to
“Google LLC”.

We used three constraint features for this task,
explained as follows.

Source-relation indicator This feature looks at
a given relation label and the label of its source en-
tity. It is an indicator pair (source label, relation
label). Our example sentence will contribute the
following two feature vectors, (Organization,
OrgBasedIn) and (Location, NoRel), both
corresponding to postive examples. The negative
examples contains all possible pairs of (source la-
bel, relation label), which do not appear in the pos-
itive example set.

Relation-target indicator This feature looks
at a given relation label the label of its tar-
get entity. It is an indicator pair (rela-
tion label, target label).  Our example sen-
tence will contribute the following two fea-
ture vectors, (OrgBasedIn, Location) and
(NoRel,0Organization), both corresponding
to positive examples. The negative examples con-
tains all possible pairs of (relation label, target la-
bel), which do not appear in the positive example
set.

Relation-relation indicator This feature looks
at a pair of entities and focuses on the two relation
labels between them, one in each direction. There-
fore our running example will give us two positive
examples with features (OrgBasedIn, NoRel)
and (NoRel,0rgBasedIn). The negative exam-
ples contain any pair of relation labels that is not
seen in the positive example set.



Number of ReLLUs
2 3 4 5 6 7 8 9 10

binary classification acc. (%) 85.1 87.3 92.1 90.3 95.0 943 94.1 97.7 98.0
bitwise solution acc. (%) 81.1 809 81.9 80.2 81.0 823 81.1 832 835
original constr. satisfied (%) 70.3 69.8 727 704 70.1 71.1 714 744 743
learned constr. satisfied (%)  95.6 98.6 98.7 99.1 974 989 999 99.1 994

Table 5: Effectiveness of learned constraints for the synthetic ILP experiments.

Description Value
Total number of examples 100
Number of training examples 70
Number of test examples 30
Dimensionality 50
Range of hidden ReLLU units considered for experiments 2-10
Learning rates for cross-validation while learning rectifier networks {0.001,0.01,0.1}
Learning rate decay for cross-validation {0.0,1077,107%}
Optimizer parameters for learning B =0.9,5 =0.999, ¢ = 1077
Number of training epochs 1000

Table 6: Parameters used in the synthetic ILP experiments

Antecedents Consequents
If the relation is  Source must be Target must be Reversed relation must be
Kill Person Person NoRel
Liveln Person Location NoRel
WorkFor Person Organization NoRel
LocatedAt Location Location NoRel
OrgBasedIn Organization Location NoRel

Table 7: Designed constraints used in the entity and relation extraction experiments



C.3 Hyper-parameters and design choices

The hyper-parameter and design choices for the
experiments are in Table 8. Note that different
runs of the SVM learner with the learned or de-
signed constraints may give different results from
those on Table 1. This is due to non-determinism
introduced by hardware and different versions of
the Gurobi solver picking different solutions that
have the same objective value. In the results in
Table 1, we show the results where the training
with learned constraints seem to underperform the
model that is trained with designed constraints. In
other runs on different hardware, we found the op-
posite ordering of the results.

C.4 Learned Constraints

We see in the main paper that 25 —1 linear inequal-
ity constraints are learned using a rectifier network
with K hidden units. In the entity and relation
extraction experiments, we use two hidden units
to learn three constraints from the source-relation
indicator features. The three learned constraints
are listed in Table 9. A given pair of source la-
bel and relation label satisfies the constraint if the
sum of the corresponding coefficients and the bias
term is greater than or equal to zero. For exam-
ple, the constraint from the first row in Table 9
disallows the pair (Location, Kill), because
—1.90 — 2.84 + 0.32 < 0. Therefore, the learned
constraint would not allow the source entity of a
Kill relation to be a Location, which agrees
with the designed constraints.

We enumerated all possible pairs of source la-
bel and relation label and found that the learned
constraints always agree with the designed con-
straints in the following sense: whenever a pair
of source label and relation label satisfies the de-
signed constraints, it also satisfies all three learned
constraints, and whenever a pair of source label
and relation label is disallowed by the designed
constraints, it violates at least one of the learned
constraints. Therefore, our method of constraint
learning exactly recovers the designed constraints.

We also use two hidden units to learn three
constraints from the relation-target indicator fea-
tures, and one hidden unit to learn one constraint
from the relation-relation indicator features. The
learned constraints are listed in Table 11 and Ta-
ble 10. Again we verify that the learned con-
straints exactly recover the designed constraints in

all cases.

D Citation field extraction experiments

D.1 Constraint Features

We use the same example as in the main paper to
illustrate the constraint features used in the citation
field extraction experiments:

[ Author A. M. Turing. | [ Title
Computing machinery and intelligence .
] [ Journal Mind , ] [Volume 59, ]
[ Pages 433-460 . | [ Date October ,
1950 . ]

We explore multiple simple constraint features
1(x,y) as described below.

Label existence This features indicates which
labels exist in a citation entry. In our above ex-
ample, there are six labels. Suppose there are
n; possible labels. The above example is a posi-
tive example, the feature vector of which is an n;-
dimensional binary vector. Exactly six elements,
corresponding to the six labels in the example,
have the value 1 and all others have the value 0. To
obtain the negative examples, we iterate through
every positive example and flip one bit of its fea-
ture vector. If the resulting vector is not seen in
the positive set it will be a negative example.

Label counts Label-count features are similar
to Label-existence features. Instead of indicating
whether a label exists using 1 or 0, label-count fea-
tures records the number of times each label ap-
pears in the citation entry. The positive examples
can be generated naturally from the training set.
To generate negative examples, we perturb the ac-
tual labels of a positive example, as opposed to its
feature vector. We then extract the label counts
feature from the perturbed example, and treat it as
negative if it has not seen before in the positive set.

Bigram labels This feature considers each pair
of adjacent labels in the text. From left to right,
the above example will give us feature vectors
like (Author, Author), (Author, Title),
(Title, Title), ..., (Date, Date). We then
use one-hot encoding to represent these features,
which is the input vector to the rectifier network.
All these feature vectors are labeled as positve (+1)
by the rectifier network, since they are generated
from the training set. To generate negative exam-
ples for bigram-label features, we generate all pos-



Description Value

Structured SVM trade-off parameter for the base model 276
Number of hidden ReL.U units
—for source-relation 2
—for relation-target 2
—for relation-relation 1
Learning rates for cross-validation while learning rectifier networks {0.001,0.01,0.1}
Learning rate decay for cross-validation {0.0,1077,107%}
Optimizer parameters for learning B =0.9,5 =0.999, ¢ = 1077

Table 8: Parameters used in the entity and relation extraction experiments

Source Labels Relation Labels

NoEnt Per. Loc. Org. NoRel Kill Live Work Located Based Bias

-1.98 353 -190 0.11 266 -2.84 -2.84 -2.84 2.58 043 0.32
-1.61  -1.48 350 092 1.15 1.02 1.02 1.02 -3.96 -1.38 146
359 2.04 1.60 1.03 381 -1.82 -1.82 -1.82 -1.38 -0.95 0.78

Table 9: Linear constraint coefficients learned from the source-relation indicator features

Forward Relation Labels Backward Relation Labels Bias

495 -1.65 -1.65 -165 -1.65 -1.65 5.06 -1.53 -153 -1.53 -1.53 -1.53 -241

Table 10: Linear constraint coefficients learned from the relation-relation indicator features. The order of the
relation labels is: NoRe1l,Kill, LiveIn, WorkFor, LocatedAt, and OrgBasedIn

Relation Labels Target Labels
NoRel Kill Live Work Located Based NoEnt Per. Loc. Org. Bias
2.68 -3.17 -0.55 2.68 -0.55 -0.55 -1.58 3.15 0.53 -2.70 1.02
2.72 242  -1.39  -2.55 -1.39 -1.39 -2.51 227 1.54 231 0.85
540 -0.74 -1.94 0.13 -1.94 -1.94 -4.10 0.88 2.08 -0.39 0.86

Table 11: Linear constraint coefficients learned from the relation-target indicator features



itive examples from the training set, then enumer-
ate all possible pair of labels and select those that
were not seen in the positive examples.

Trigram labels This feature is similar to the bi-
gram labels. From the training set, we gener-
ate positive examples, e.g., (Author, Author,
Author), (Author, Author, Title) etc, and
convert them into one-hot encodings. For nega-
tive examples, we enumerate all possible trigram
labels, and select those trigrams as negative if two
conditions are met: (a) the trigram is not seen in
the positive set; and (b) a bigram contained in it
is seen in the training set. The intuition is that we
want negative examples to be almost feasible.

Part-of-speech For a fixed window size, we ex-
tract part-of-speech tags and the corresponding la-
bels, and use the combination as our constraint fea-
tures. For example, with window size two, we get
indicators for (tag, ;, tag;, label; 1, label;)
for the ™ token in the sentence, where tag and
label refer to part-of-speech tag and citation field
label respectively. For negative examples, we enu-
merate all four-tuples as above, and select it as neg-
ative if the four-tuple is not seen in the positive set,
but both (tag; ;, tag;) and (label;_;, label;)
are seen in the training set.

Punctuation The punctuation feature is similar
to the part-of-speech feature. Instead of the POS
tag, we use an indicator for whether the current
token is a punctuation.

D.2

The hyper-parameter and design choices for the ex-
periments are in the Table 12.

Hyper-parameters and design choices

E Chunking Experiments

E.1 Constraint Features

The two constraints which we discussed in the
main paper for the chunking dataset are described
below.

N-gram label existence This constraint is a gen-
eral form of the label existence constraint men-
tioned in Section D.1. In fact, it is the n-gram
label existence constraint with n=1. The n-gram
label existence constraint represents the labels of
a sequence as a binary vector. Each feature of this
binary vector corresponds to an n-gram label com-
bination. Hence, the length of this constraint fea-
ture will be | | where | [ | is the total number of

distinct labels. This means the vector size of this
constraint grows exponentially with increasing n.
The binary vector indicates a value of 1 for all the
n-gram label features present in the sequence tags.
The positive examples are hence formed from the
training set sequences. For the negative examples,
we iterate through each positive example and flip a
bit. The resulting vector is incorporated as a nega-
tive example if it doesn’t occur in the training set.

N-gram part of speech (POS) This constraint
is a general form of the part of speech constraint
mentioned in Section D.1. POS tags of a token are
converted to a indicator vector. We concatenate
the indicator vectors of each gram in an n-gram in
order and this vector is further concatenated with
indicators of labels of each of these grams. Hence,
for n=2, we get the constraint vector as (tag;_;,
tag;, label;_1, label;) where tag; and label;
are indicators for POS tags and labels respectively
for the 7*" token. The positive examples enumer-
ate vectors for all existing n-grams in the training
sequences. The negative examples are creating by
changing a label indicator in the constraint feature.
The label to be perturbed and the perturbation both
are chosen at random. The constraint vector hence
formed is incorporated as a negative example if it
doesn’t occur in the set of positive examples.

E.2 Hyper-parameters and design choices

The hyper-parameter and design choices are sum-
marized in Table 13.



Description Value
Structured SVM trade-off parameter for the base model unregularized
Beam size 50
Number of hidden ReLLU units for experiments 10

Learning rates for cross-validation while learning rectifier networks
Learning rate decay for cross-validation

{0.001,0.01,0.1}
{0.0,1077,1076}

Optimizer parameters for learning B1=0.9,8 =0.999, ¢ =107

Table 12: Parameters used in the citation field extraction experiments

Description Value
Constraint Rectifier Network
Range of hidden ReL U units considered for experiments {5,10}

Learning rates for development while learning rectifier networks  {0.001,0.005,0.01,1074}

Number of training epochs
Random Seeds

1000
{1,2}

BiLSTM CRF Model

Learning rate for development while learning baseline model {0.01,0.05,0.001,0.005}
Learning Rate Decay {1075,1076}
Beam Size 10
Number of training epochs 300

Table 13: Parameters used in the chunking experiments



