
ar
X

iv
:2

0
0
6
.0

1
2
0
9
v
1

[c

s.
C

L
]

 2
3
 M

ay
 2

0
2
0

Learning Constraints for Structured Prediction Using Rectifier Networks

Xingyuan Pan, Maitrey Mehta, Vivek Srikumar

School of Computing, University of Utah

{xpan,maitrey,svivek}@cs.utah.edu

Abstract

Various natural language processing tasks are

structured prediction problems where outputs

are constructed with multiple interdependent

decisions. Past work has shown that domain

knowledge, framed as constraints over the out-

put space, can help improve predictive accu-

racy. However, designing good constraints of-

ten relies on domain expertise. In this pa-

per, we study the problem of learning such

constraints. We frame the problem as that of

training a two-layer rectifier network to iden-

tify valid structures or substructures, and show

a construction for converting a trained net-

work into a system of linear constraints over

the inference variables. Our experiments on

several NLP tasks show that the learned con-

straints can improve the prediction accuracy,

especially when the number of training exam-

ples is small.

1 Introduction

In many natural language processing (NLP) tasks,

the outputs are structures which can take the

form of sequences, trees, or in general, labeled

graphs. Predicting such output structures (e.g.

Smith, 2011) involves assigning values to mul-

tiple interdependent variables. Certain joint as-

signments may be prohibited by constraints de-

signed by domain experts. As a simple exam-

ple, in the problem of extracting entities and re-

lations from text, a constraint could disallow the

relation “married to” between two entities if one

of the entity is not a “person”. It has been shown

that carefully designed constraints can substan-

tially improve model performance in various ap-

plications (e.g., Chang et al., 2012; Anzaroot et al.,

2014), especially when the number of training ex-

amples is limited.

Designing constraints often requires task-

specific manual effort. In this paper, we ask the

question: can we use neural network methods

to automatically discover constraints from data,

and use them to predict structured outputs? We

provide a general framework for discovering con-

straints in the form of a system of linear inequali-

ties over the output variables in a problem. These

constraints can improve an already trained model,

or be integrated into the learning process for global

training.

A system of linear inequalities represents a

bounded or unbounded convex polytope. We ob-

serve that such a system can be expressed as a

two-layer threshold network, i.e., a network with

one hidden layer of linear threshold units and an

output layer with a single threshold unit. This two-

layer threshold network will predict 1 or −1 de-

pending on whether the system of linear inequali-

ties is satisfied or not. In principle, we could try

to train such a threshold network to discover con-

straints. However, the zero-gradient nature of the

threshold activation function prohibits using back-

propagation for gradient-based learning.

Instead, in this paper, we show that a construc-

tion of a specific two-layer rectifier network rep-

resents linear inequality constraints. This network

also contains a single linear threshold output unit,

but in the hidden layer, it contains rectified linear

units (ReLUs). Pan and Srikumar (2016) showed

that a two-layer rectifier network constructed in

such a way is equivalent to a threshold network,

and represents the same set of linear inequalities as

the threshold network with far fewer hidden units.

The linear constraints thus obtained can aug-

ment existing models in multiple ways. For ex-

ample, if a problem is formulated as an inte-

ger program (e.g., Roth and Yih, 2004, 2005;

Riedel and Clarke, 2006; Martins et al., 2009), the

learned constraints will become additional linear

inequalities, which can be used directly. Alterna-

tively, a structure can be constructed using graph

search (e.g., Collins and Roark, 2004; Daumé

et al., 2009; Doppa et al., 2014; Chang et al.,

2015; Wiseman and Rush, 2016), in which case

the learned constraints can filter available actions

during search-node expansions. Other inference

techniques that extend Lagrangian Relaxation (Ko-

modakis et al., 2007; Rush et al., 2010; Martins

et al., 2011) can also employ the learned con-

straints. Essentially, the learned constraints can

be combined with various existing models and in-

ference techniques and the framework proposed in

this paper can be viewed as a general approach to

improve structured prediction.

We report experiments on three NLP tasks to

verify the proposed idea. The first one is an entity

and relation extraction task, in which we aim to la-

bel the entity candidates and identify relations be-

tween them. In this task, we show that the learned

constraints can be used while training the model to

improve prediction. We also show that the learned

constraints in this domain can be interpreted in a

way that is comparable to manually designed con-

straints. The second NLP task is to extract cita-

tion fields like authors, journals and date from a

bibliography entry. We treat it as a sequence la-

beling problem and show that learned constraints

can improve an existing first-order Markov model

trained using a structured SVM method (Tsochan-

taridis et al., 2004). In the final experiment we

consider chunking, i.e., shallow parsing, which is

also a sequence labeling task. We train a BiLSTM-

CRF model (Huang et al., 2015) on the training set

with different sizes, and we show that learned con-

straints are particularly helpful when the number

of training examples is small.

In summary, the contributions of this paper are:

1. We propose that rectifier networks can be

used to represent and learn linear constraints

for structured prediction problems.

2. In tasks such as entity and relation extraction,

the learned constraints can exactly recover

the manually designed constraints, and can

be interpreted in a way similar to manually

designed constraints.

3. When manually designed constraints are not

available, we show via experiments that the

learned constraints can improve the origi-

nal model’s performance, especially when

the original model is trained with a small

dataset.1

1The scripts for replaying the experiments are available at

2 Representing Constraints

In this section, we formally define structured pre-

diction and constraints. In a structured prediction

problem, we are given an input x belonging to the

instance space, such as sentences or images. The

goal is to predict an output y ∈ Yx, where Yx

is the set of possible output structures for the in-

put x. The output y have a predefined structure

(e.g., trees, or labeled graphs), and the number of

candidate structures in Yx is usually large, i.e., ex-

ponential in the input size.

Inference in such problems can be framed as an

optimization problem with a linear objective func-

tion:

y
∗ = argmax

y∈Yx

α · φ(x,y), (1)

where φ(x,y) is a feature vector representation

of the input-output pair (x,y) and α are learned

parameters. The feature representation φ(x,y)
can be designed by hand or learned using neural

networks. The feasible set Yx is predefined and

known for every x at both learning and inference

stages. The goal of learning is to find the best pa-

rameters α (and, also perhaps the features φ if

we are training a neural network) using training

data, and the goal of inference is to solve the above

argmax problem given parameters α.

In this paper, we seek to learn additional con-

straints from training examples {(x,y)}. Suppose

we want to learn K constraints, and the kth one is

some Boolean function2: ck(x,y) = 1 if (x,y)
satisfies the kth constraint, and ck(x,y) = −1 if

it does not. Then, the optimal structure y
∗ is the

solution to the following optimization problem:

max
y∈Yx

α · φ(x,y), (2)

subject to ∀k, ck(x,y) = 1.

We will show that such learned constraints aid pre-

diction performance.

2.1 Constraints as Linear Inequalities

Boolean functions over inference variables may be

expressed as linear inequalities over them (Roth

and Yih, 2004). In this paper, we represent con-

straints as linear inequalities over some feature

vector ψ(x,y) of a given input-output pair. The

kth constraint ck is equivalent to the linear inequal-

ity

wk ·ψ(x,y) + bk ≥ 0, (3)

https://github.com/utahnlp/learning-constraints
2We use 1 to indicate true and −1 to indicate false.

whose weights wk and bias bk are learned. A

Boolean constraint is, thus, a linear threshold func-

tion,

ck(x,y) = sgn
(

wk ·ψ(x,y) + bk
)

. (4)

Here, sgn(·) is the sign function: sgn(x) = 1 if

x ≥ 0, and −1 otherwise.

The feature representations ψ(x,y) should not

be confused with the original features φ(x,y)
used in the structured prediction model in Eq. (1)

or (2). Hereafter, we refer toψ(x,y) as constraint

features. Constraint features should be general

properties of inputs and outputs, since we want to

learn domain-specific constraints over them. They

are a design choice, and in our experiments, we

will use common NLP features. In general, they

could even be learned using a neural network.

Given a constraint feature representation ψ(·), the

goal is thus to learn the parameters wk’s and bk’s

for every constraint.

2.2 Constraints as Threshold Networks

For an input x, we say the output y is feasible if

it satisfies constraints ck for all k = 1, . . . ,K . We

can define a Boolean variable z(x,y) indicating

whether y is feasible with respect to the input x:

z(x,y) = c1(x,y) ∧ · · · ∧ cK(x,y). That is, z

is a conjunction of all the Boolean functions cor-

responding to each constraint. Since conjunctions

are linearly separable, we can rewrite z(x,y) as a

linear threshold function:

z(x,y) = sgn
(

1−K +
K
∑

k=1

ck(x,y)
)

. (5)

It is easy to see that z(x,y) = 1 if, and only if, all

ck’s are 1—precisely the definition of a conjunc-

tion. Finally, we can plug Eq. (4) into Eq. (5):

z = sgn
(

1−K +
K
∑

k=1

sgn
(

wk ·ψ(x,y) + bk
)

)

(6)

Observe that Eq. (6) is exactly a two-layer

threshold neural network: ψ(x,y) is the input to

the network; the hidden layer contains K linear

threshold units with parameters wk and bk; the out-

put layer has a single linear threshold unit. This

neural network will predict 1 if the structure y is

feasible with respect to input x, and −1 if it is

infeasible. In other words, constraints for struc-

tured prediction problems can be written as two-

layer threshold networks. One possible way to

learn constraints is thus to learn the hidden layer

parameters wk and bk, with fixed output layer pa-

rameters. However, the neural network specified

in Eq. (6) is not friendly to gradient-based learn-

ing; the sgn(·) function has zero gradients almost

everywhere. To circumvent this, let us explore an

alternative way of learning constraints using recti-

fier networks rather than threshold networks.

2.3 Constraints as Rectifier Networks

We saw in the previous section that a system of lin-

ear inequalities can be represented as a two-layer

threshold network. In this section, we will see a

special rectifier network that is equivalent to a sys-

tem of linear inequalities, and whose parameters

can be learned using backpropagation.

Denote the rectifier (ReLU) activation function

as R(x) = max(0, x). Consider the following

two-layer rectifier network:

z = sgn
(

1−

K
∑

k=1

R
(

wk · ψ(x,y) + bk
)

)

(7)

The input to the network is still ψ(x,y). There

are K ReLUs in the hidden layer, and one thresh-

old unit in the output layer. The decision boundary

of this rectifier network is specified by a system

of linear inequalities. In particular, we have the

following theorem (Pan and Srikumar, 2016, The-

orem 1):

Theorem 1. Consider a two-layer rectifier net-

work with K hidden ReLUs as in Eq. (7). Define

the set [K] = {1, 2, . . . ,K}. The network output

z(x,y) = 1 if, and only if, for every subset S of

[K], the following linear inequality holds:

1−
∑

k∈S

(

wk ·ψ(x,y) + bk
)

≥ 0 (8)

The proof of Theorem 1 is given in the supple-

mentary material.

To illustrate the idea, we show a simple exam-

ple rectifier network, and convert it to a system of

linear inequalities using the theorem. The rectifier

network contains two hidden ReLUs (K = 2):

z = sgn
(

1−R
(

w1 ·ψ+ b1
)

−R
(

w2 ·ψ+ b2
)

)

Our theorem says that z = 1 if and only if the fol-

lowing four inequalities hold simultaneously, one

per subset of [K]:























1 ≥ 0

1−
(

w1 ·ψ + b1
)

≥ 0

1−
(

w2 ·ψ + b2
)

≥ 0

1−
(

w1 ·ψ + b1
)

−
(

w2 ·ψ + b2
)

≥ 0

The first inequality, 1 ≥ 0, corresponding to the

empty subset of [K], trivially holds. The rest are

just linear inequalities over ψ.

In general, [K] has 2K subsets, and when S is

the empty set, inequality (8) is trivially true. The

rectifier network in Eq. (7) thus predicts y is a

valid structure for x, if a system of 2K−1 linear in-

equalities are satisfied. It is worth mentioning that

even though the 2K − 1 linear inequalities are con-

structed from a power set of K elements, it does

not make them dependent on each other. With gen-

eral choice of wk and bk, these 2K−1 inequalities

are linearly independent.

This establishes the fact that a two-layer recti-

fier network of the form of Eq. (7) can represent a

system of linear inequality constraints for a struc-

tured prediction problem via the constraint feature

function ψ.

3 Learning Constraints

In the previous section, we saw that both thresh-

old and rectifier networks can represent a system

of linear inequalities. We can either learn a thresh-

old network (Eq. (6)) to obtain constraints as in (3),

or we can learn a rectifier network (Eq. (7)) to ob-

tain constraints as in (8). The latter offers two ad-

vantages. First, a rectifier network has non-trivial

gradients, which facilitates gradient-based learn-

ing3. Second, sinceK ReLUs can represent 2K−1
constraints, the rectifier network can express con-

straints more compactly with fewer hidden units.

We will train the parameters wk’s and bk’s

of the rectifier network in the supervised setting.

First, we need to obtain positive and negative train-

ing examples. We assume that we have training

data for a structured prediction task.

Positive examples can be directly obtained

from the training data of the structured prediction

3The output threshold unit in the rectifier network will not
cause any trouble in practice, because it can be replaced by
sigmoid function during training. Our theorem still follows,
as long as we interpret z(x,y) = 1 as σ(x,y) ≥ 0.5 and
z(x,y) = −1 as σ(x,y) < 0.5. We can still convert the
rectifier network into a system of linear inequalities even if
the output unit is the sigmoid unit.

problem. For each training example (x,y), we can

apply constraint feature extractors to obtain posi-

tive examples of the form (ψ(x,y),+1).

Negative examples can be generated in sev-

eral ways; we use simple but effective approaches.

We can slightly perturb a structure y in a train-

ing example (x,y) to obtain a structure y
′ that

we assume to be invalid. Applying the con-

straint feature extractor to it gives a negative ex-

ample (ψ(x,y′),−1). We also need to ensure that

ψ(x,y′) is indeed different from any positive ex-

ample. Another approach is to perturb the feature

vector ψ(x,y) directly, instead of perturbing the

structure y.

In our experiments in the subsequent sections,

we will use both methods to generate negative ex-

amples, with detailed descriptions in the supple-

mentary material. Despite their simplicity, we

observed performance improvements. Exploring

more sophisticated methods for perturbing struc-

tures or features (e.g., using techniques explored

by Smith and Eisner (2005), or using adversarial

learning (Goodfellow et al., 2014)) is a future re-

search direction.

To verify whether constraints can be learned as

described here, we performed a synthetic experi-

ment where we randomly generate many integer

linear program (ILP) instances with hidden shared

constraints. The experiments show that constraints

can indeed be recovered using only the solutions

of the programs. Due to space constraints, details

of this synthetic experiment are in the supplemen-

tary material. In the remainder of the paper we

focus on three real NLP tasks.

4 Entity and Relation Extraction

Experiments

In the task of entity and relation extraction, we are

given a sentence with entity candidates. We seek

to determine the type of each candidate, as in the

following example (the labels are underlined):

[Organization Google LLC] is

headquartered in [Location Moun-

tain View, California].

We also want to determine directed relations

between the entities. In the above example, the

relation from “Google LLC” to “Mountain View,

California” is OrgBasedIn, and the opposite di-

rection is labeled NoRel, indicating there is no

relation. This task requires predicting a directed

graph and represents a typical structured predic-

tion problem—we cannot make isolated entity and

relation predictions.

Dataset and baseline: We use the dataset from

(Roth and Yih, 2004). It contains 1441 sentences

with labeled entities and relations. There are

three possible entity types: Person, Location

and Organization, and five possible relations:

Kill, LiveIn, WorkFor, LocatedAt and

OrgBasedIn. Additionally, there is a special en-

tity label NoEnt meaning a text span is not an en-

tity, and a special relation label NoRel indicating

that two spans are unrelated.

We used 70% of the data for training and the

remaining 30% for evaluation. We trained our

baseline model using the integer linear program

(ILP) formulation with the same set of features

as in (Roth and Yih, 2004). The baseline system

includes manually designed constraints from the

original paper. An example of such a constraint

is: if a relation label is WorkFor, the source en-

tity must be labeled Person, and the target entity

must be labeled Organization. For reference,

the supplementary material lists the complete set

of manually designed constraints.

We use three kinds of constraint features: (i)

source-relation indicator, which looks at a given

relation label and the label of its source entity; (ii)

relation-target indicator, which looks at a relation

label and the label of its target entity; and (iii)

relation-relation indicator, which looks at a pair of

entities and focuses on the two relation label, one

in each direction. The details of the constraint fea-

tures, negative examples and hyper-parameters are

in the supplementary material.

4.1 Experiments and Results

We compared the performance of two ILP-based

models, both trained in the presence of constraints

with a structured SVM. One model was trained

with manually designed constraints and the other

used learned constraints. These models are com-

pared in Table 1.

We manually inspected the learned constraints

and discovered that they exactly recover the de-

signed constraints, in the sense that the feasible

output space is exactly the same regardless of

whether we use designed or learned constraints.

As an additional confirmation, we observed that

when a model is trained with designed constraints

and tested with learned constraints, we get the

Performance Metric Designed Learned

entity F-1 84.1% 83.1%
relation F-1 41.5% 38.2%

Table 1: Comparison of performance on the entity and

relation extraction task, between two ILP models, one

trained with designed constraints (Designed) and one

with learned constraints (Learned).

same model performance as when tested with de-

signed constraints. Likewise, a model that is

trained with learned constraints performs identi-

cally when tested with learned and designed con-

straints.

Below, we give one example of a learned con-

straint, and illustrate how to interpret such a con-

straint. (The complete list of learned constraints

is in the supplementary material.) A learned con-

straint using the source-relation indicator features

is

− 1.98x1 + 3.53x2 − 1.90x3 + 0.11x4

+ 2.66x5 − 2.84x6 − 2.84x7 − 2.84x8

+ 2.58x9 + 0.43x10 + 0.32 ≥ 0

(9)

where x1 through x10 are indicators for

labels NoEnt, Person, Location,

Organization, NoRel, Kill, LiveIn,

WorkFor, LocatedAt, and OrgBasedIn,

respectively. This constraint disallows a relation

labeled as Kill having a source entity labeled as

Location, because −1.90 − 2.84 + 0.32 < 0.

Therefore, the constraint “Location cannot

Kill” is captured in (9). In fact, it is straightfor-

ward to verify that the inequality in (9) captures

many more constraints such as “NoEnt can-

not LiveIn”, “Location cannot LiveIn”,

“Organization cannot WorkFor”, etc. A gen-

eral method for interpreting learned constraints is

a direction of future research.

Note that the metric numbers in Table 1 based

on learned constraints are lower than those based

on designed constraints. Since the feasible space

is the same for both kinds of constraints, the per-

formance difference is due to the randomness of

the ILP solver picking different solutions with the

same objective value. Therefore, the entity and

relation experiments in this section demonstrate

that our approach can recover the designed con-

straints and provide a way of interpreting these

constraints.

5 Citation Field Extraction Experiments

In the citation field extraction task, the input is a

citation entry. The goal is to identify spans corre-

sponding to fields such as author, title, etc. In the

example below, the labels are underlined:

[Author A . M . Turing .] [Title

Computing machinery and intelligence .

] [Journal Mind ,] [Volume 59 ,]

[Pages 433-460 .] [Date October ,

1950 .]

Chang et al. (2007) showed that hand-crafted con-

straints specific to this domain can vastly help

models to correctly identify citation fields. We

show that constraints learned from the training

data can improve a trained model without the need

for manual effort.

Dataset and baseline. We use the dataset

from Chang et al. (2007, 2012) whose training,

development and test splits have 300, 100 and

100 examples, respectively. We train a first-order

Markov model using structured SVM (Tsochan-

taridis et al., 2004) on the training set with the

same raw text features as in the original work.

Constraint features. We explore multiple sim-

ple constraint features ψ(x,y) in the citation field

extraction experiments as shown in Table 2. De-

tailed descriptions of these features, including how

to develop negative examples for each feature, and

experiment settings are in the supplementary ma-

terial.

Feature Description

Label existence Indicates which labels

exist in a citation

Label counts Counts the number of

occurrences of a label

Bigram labels Indicators for adjacent

labels

Trigram labels Indicators for 3 adja-

cent labels

Part-of-speech Indicator for the part-of-

speech of a token

Punctuation Indicator for whether a

token is a punctuation

Table 2: Constraint feature templates for the citation

field extraction task

5.1 Experiments and Results

For each constraint feature template, we trained

a rectifier network with 10 ReLUs in the hidden

layer. We then use Theorem 1 to convert the re-

sulting network to a system of 210−1, or 1023 lin-

ear inequalities. We used beam search with beam

size 50 to combine the learned inequalities with

the original sequence model to predict on the test

set. States in the search space correspond to par-

tial assignments to a prefix of the sequence. Each

step we predict the label for the next token in the

sequence. The pretrained sequence model (i.e.,

the baseline) ranks search nodes based on transi-

tion and emission scores, and the learned inequal-

ity prunes the search space accordingly4 . Table 3

shows the token level accuracies of various meth-

ods.

The results show that all versions of constrained

search outperform the baselines, indicating that

the learned constraints are effective in the citation

field extraction task. Furthermore, different con-

straints learned with different features can be com-

bined. We observe that combining different con-

straint features generally improves accuracy.

It is worth pointing out that the label existence

and label counts features are global in nature and

cannot be directly used to train a sequence model.

Even if some constraint features can be used in

training the original model, it is still beneficial

to learn constraints from them. For example, the

bigram label feature is captured in the original

first order model, but adding constraints learned

from them still improves performance. As an-

other test, we trained a model with POS features,

which also contains punctuation information. This

model achieves 91.8% accuracy. Adding con-

straints learned with POS improves the accuracy

to 92.6%; adding constraints learned with punctu-

ation features further improves it to 93.8%.

We also observed that our method for learning

constraints is robust to the choice of the number

of hidden ReLUs. For example, for punctuation,

learning using 5, 8 and 10 hidden ReLUs results

an accuracy of 90.1%, 90.3%, and 90.2%, respec-

tively. We observed similar behavior for other con-

straint features as well. Since the number of con-

straints learned is exponential in the number of hid-

den units, these results shows that learning redun-

4Since the label-existence and label-counts features are
global, pruning by learned inequalities is possible only at the
last step of search. The other four features admit pruning at
each step of the search process.

Baselines Search with learned constraints Combine constraints

Exact Search L.E. L.C. B.L. T.L. POS Punc. C1 C2 C3

86.2 87.3 88.0 87.7 87.9 88.1 89.8 90.2 88.6 90.1 90.6

Table 3: Token level accuracies (in percentage) of baseline models and constrained-search models, for the citation

field extraction task. Exact is our trained first-order Markov model. It uses exact inference (dynamic programming)

for prediction. Search is our search baseline, it uses the same model as Exact, but with beam search for inexact

inference. L.E., L.C., B.L., T.L., POS, Punc. use search with different constraint features: label existence, label

counts, bigram labels, trigram labels, part-of-speech, and punctuation features. C1 to C3 are search with combined

constraints. C1 combines L.E. and T.L.. C2 combines L.E., T.L. and POS. Finally C3 combines all constraints.

dant constraints will not hurt performance.

Note that carefully hand-crafted constraints

may achieve higher accuracy than the learned ones.

Chang et al. (2007) report an accuracy of 92.5%

with constraints specifically designed for this do-

main. In contrast, our method for learning con-

straints uses general constraint features, and does

not rely on domain knowledge. Therefore, our

method is suited to tasks where little is known

about the underlying domain.

6 Chunking Experiments

Chunking is the task of clustering text into groups

of syntactically correlated tokens or phrases. In

the instance below, the phrase labels are under-

lined:

[NP An A.P. Green official] [VP de-

clined to comment] [PP on] [NP the fil-

ing] [O.]

We treat the chunking problem as a sequence la-

beling problem by using the popular IOB tagging

scheme. For each phrase label, the first token in

the phrase is labeled with a “B-” prefixed to phrase

label while the other tokens are labeled with an “I-”

prefixed to the phrase label. Hence,

[NP An A.P. Green official]

is represented as

[[B-NP An] [I-NP A.P.] [I-NP Green]

[I-NP official]]

This is done for all phrase labels except “O”.

Dataset and Baselines. We use the

CoNLL2000 dataset (Tjong Kim Sang and

Buchholz, 2000) which contains 8936 training

sentences and 2012 test sentences. For our

experiments, we consider 8000 sentences out of

8936 training sentences as our training set and the

remaining 936 sentences as our development set.

Chunking is a well-studied problem and show-

ing performance improvements on full training

dataset is difficult. However, we use this task to

illustrate the interplay of learned constraints with

neural network models, and the impact of learned

constraints in the low training data regime.

We use the BiLSTM-CRF (Huang et al., 2015)

for this sequence tagging task. We use GloVe for

word embeddings. We do not use the BERT (De-

vlin et al., 2019) family of models since to-

kens are broken down into sub-words during pre-

processing, which introduces modeling and evalu-

ation choices that are orthogonal to our study of

label dependencies. As with the citation task, all

our constrained models use beam search, and we

compare our results to both exact decoding and

beam search baselines. We use two kinds of con-

straint features: (i) n-gram label existence, and (ii)

n-gram part of speech. Details of the constraint

features and construction of negative samples are

given in the supplementary material.

6.1 Experiments and Results

We train the rectifier network with 10 hidden units.

The beam size of 10 was chosen for our experi-

ments based on preliminary experiments. We re-

port the average results on two different random

seeds for learning each constraint. Note that the n-

gram label existence is a global constraint while

the n-gram POS constraint is a local constraint

which checks for validity of label assignments

at each token. In essence, the latter constraint

reranks the beam at each step by ensuring that

states that satisfy the constraint are preferred over

states that violate the constraint. Since the n-gram

label existence is a global constraint, we check the

validity of the tag assignments only at the last to-

ken. In the case where none of the states in the

beam satisfy the constraint, the original beams are

used.

The results for this set of experiments are pre-

sented in Table 4. We observe that the POS

constraint improves the performance of the base-

line models significantly, outperforming the beam

search baseline on all training ratios. More im-

portantly, the results show sizable improvements

in accuracy for smaller training ratios (e.g, 4.41%
and 5.23% improvements on exact and search

baselines respectively with 1% training data).

When the training ratios get bigger, we expect the

models to learn these properties and hence the im-

pact of the constraints decreases.

These results (along with the experiments in the

previous sections) indicate that our constraints can

significantly boost performance in the low data

regime. Another way to improve performance in

low resource settings is to use better pretrained in-

put representations. When we replaced GloVe em-

beddings with ELMo, we observed a 87.09% ac-

curacy on 0.01 ratio of training data using exact

decoding. However, this improvement comes at

a cost: the number of parameters increases from

3M (190k trainable) to 94M (561k trainable). In

contrast, our method instead introduces a smaller

rectifier network with ≈ 1000 additional param-

eters while still producing similar improvements.

In other words, using trained constraints is compu-

tationally more efficient.

We observe that the label existence constraints,

however, do not help. We conjecture that this may

be due to one of the following three conditions: (i)

The label existence constraint might not exist for

the task; (ii) The constraint exists but the learner

is not able to find it; (iii) The input representa-

tions are expressive enough to represent the con-

straints. Disentangling these three factors is a fu-

ture research challenge.

7 Related Work

Structured prediction is an active field in machine

learning and has numerous applications, includ-

ing various kinds of sequence labeling tasks, pars-

ing (e.g., Martins et al., 2009), image segmenta-

tion (e.g., Lam et al., 2015), and information ex-

traction (e.g., Anzaroot et al., 2014). The work of

Roth and Yih (2004) introduced the idea of using

explicitly stated constraints in an integer program-

ming framework. That constraints and knowledge

can improve models has been highlighted by sev-

eral lines of work (e.g., Ganchev et al., 2010;

Chang et al., 2012; Hu et al., 2016).

The interplay between constraints and repre-

sentations has been sharply highlighted by recent

work on integrating neural networks with struc-

tured outputs (e.g., Rocktäschel and Riedel, 2017;

Niculae et al., 2018; Manhaeve et al., 2018; Xu

et al., 2018; Li and Srikumar, 2019; Li et al., 2019,

and others). We expect that constraints learned

as described in this work can be integrated into

these formalisms, presenting an avenue for future

research.

While our paper focuses on learning explicit

constraints directly from examples, it is also pos-

sible to use indirect supervision from these exam-

ples to learn a structural classifier (Chang et al.,

2010), with an objective function penalizing in-

valid structures.

Related to our goal of learning constraints is

rule learning, as studied in various subfields of

artificial intelligence. Quinlan (1986) describes

the ID3 algorithm, which extracts rules as a de-

cision tree. First order logic rules can be learned

from examples using inductive logic programming

(Muggleton and de Raedt, 1994; Lavrac and Dze-

roski, 1994; Page and Srinivasan, 2003). Notable

algorithms for inductive logic programming in-

clude FOIL (Quinlan, 1990) and Progol (Muggle-

ton, 1995).

Statistical relation learning addresses learn-

ing constraints with uncertainty (Friedman et al.,

1999; Getoor and Mihalkova, 2001). Markov logic

networks (Richardson and Domingos, 2006) com-

bines probabilistic models with first order logic

knowledge, whose weighted formulas are soft con-

straints and the weights can be learned from data.

In contrast to these directions, in this paper, we

exploit a novel representational result about recti-

fier networks to learn polytopes that represent con-

straints with off-the-shelf neural network tools.

8 Conclusions

We presented a systematic way for discovering

constraints as linear inequalities for structured pre-

diction problems. The proposed approach is built

upon a novel transformation from two layer recti-

fier networks to linear inequality constraints and

does not rely on domain expertise for any specific

problem. Instead, it only uses general constraint

features as inputs to rectifier networks. Our ap-

proach is particularly suited to tasks where design-

ing constraints manually is hard, and/or the num-

Constraint n
Percentage of training data used

1% 5% 10% 25% 50% 100%

Label existence
2 81.28 88.30 89.73 91.24 90.40 92.48

3 80.98 88.20 90.58 91.20 92.37 93.12

Part-of-speech
3 86.52 90.74 91.80 92.41 93.07 93.84

4 84.21 90.99 92.17 92.46 93.08 93.93

Search without constraints 81.29 88.27 90.62 91.33 92.51 93.44

Exact decoding 82.11 88.70 90.49 92.57 93.94 94.75

Table 4: Token level accuracies (in percentage) for the chunking baseline and constrained model. The results are

shown on n-gram Label Existence and n-gram Part of Speech constraints with n = {2, 3} and n = {3, 4} respec-

tively. The results are shown on {1%, 5%, 10%, 25%, 50%, 100%} of training data. Exact decoding with Viterbi

algorithm and Search w/o constraint are baseline models which do not incorporate constraints during inference.

ber of training examples is small. The learned con-

straints can be used for structured prediction prob-

lems in two ways: (1) combining them with an

existing model to improve prediction performance,

or (2) incorporating them into the training process

to train a better model. We demonstrated the effec-

tiveness of our approach on three NLP tasks, each

with different original models.

Acknowledgments

We thank members of the NLP group at the Univer-

sity of Utah, especially Jie Cao, for their valuable

insights and suggestions; and reviewers for point-

ers to related works, corrections, and helpful com-

ments. We also acknowledge the support of NSF

Cyberlearning-1822877, SaTC-1801446 and gifts

from Google and NVIDIA.

References

Sam Anzaroot, Alexandre Passos, David Belanger, and
Andrew McCallum. 2014. Learning Soft Linear
Constraints with Application to Citation Field Ex-
traction. Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daume, and John Langford. 2015. Learn-
ing to Search Better than Your Teacher. In Proceed-
ings of The 32nd International Conference on Ma-
chine Learning.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007.
Guiding semi-supervision with constraint-driven
learning. In Proceedings of the 45th annual meet-
ing of the association of computational linguistics.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured Learning with Constrained Conditional
Models. Machine Learning.

Ming-wei Chang, Vivek Srikumar, Dan Goldwasser,
and Dan Roth. 2010. Structured Output Learn-
ing with Indirect Supervision. Proceedings of the
27th International Conference on Machine Learning
(ICML-10).

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics.

Hal Daumé, John Langford, and Daniel Marcu.
2009. Search-based Structured Prediction. Machine
Learning Journal (MLJ).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Janardhan Rao Doppa, Alan Fern, and Prasad Tade-
palli. 2014. Structured Prediction via Output Space
Search. The Journal of Machine Learning Research.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pf-
effer. 1999. Learning Probabilistic Relational Mod-
els. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior Regularization for
Structured Latent Variable Models. The Journal of
Machine Learning Research.

Lise Getoor and Lilyana Mihalkova. 2001. Learning
Statistical Models from Relational Data. Proceed-
ings of the 2011 ACM SIGMOD International Con-
ference on Management of Data.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Informa-
tion Processing Systems 27.

Gurobi Optimization LLC. 2019. Gurobi optimizer ref-
erence manual.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing Deep Neu-
ral Networks with Logic Rules. In ”Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers)”.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
arXiv preprint arXiv:1508.01991.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. MRF Optimization via Dual Decompo-
sition: Message-passing Revisited. Proceedings of
the IEEE International Conference on Computer Vi-
sion.

Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic,
and Thomas G Dietterich. 2015. HC-Search for
Structured Prediction in Computer Vision. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Nada Lavrac and Saso Dzeroski. 1994. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A Logic-Driven Framework for Con-
sistency of Neural Models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Tao Li and Vivek Srikumar. 2019. Augmenting Neu-
ral Networks with First-order Logic. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Process-
ing Systems.

André FT Martins, Mário AT Figueiredo, Pedro MQ
Aguiar, Noah A Smith, and Eric P Xing. 2011. An
Augmented Lagrangian Approach to Constrained
MAP Inference. In Proceedings of the 28th Inter-
national Conference on International Conference on
Machine Learning.

André FT Martins, Noah A Smith, and Eric P Xing.
2009. Concise Integer Linear Programming Formu-
lations for Dependency Parsing. In Proceedings of
the Joint Conference of the 47th Annual Meeting of

the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1-Volume 1.

Stephen Muggleton. 1995. Inverse Entailment and Pro-
gol. New Generation Computing.

Stephen Muggleton and Luc de Raedt. 1994. Induc-
tive Logic Programming: Theory and Methods. The
Journal of Logic Programming.

Vlad Niculae, Andre Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
Sparse Structured Inference. In International Con-
ference on Machine Learning.

David Page and Ashwin Srinivasan. 2003. ILP: A
Short Look Back and a Longer Look Forward. Jour-
nal of Machine Learning Research.

Xingyuan Pan and Vivek Srikumar. 2016. Expressive-
ness of Rectifier Networks. In Proceedings of the
33rd International Conference on Machine Learn-
ing.

J. R. Quinlan. 1986. Induction of Decision Trees. Ma-
chine Learning.

J. R. Quinlan. 1990. Learning Logical Definitions from
Relations. Machine Learning.

Matthew Richardson and Pedro Domingos. 2006.
Markov Logic Networks. Machine Learning.

Sebastian Riedel and James Clarke. 2006. Incremental
Integer Linear Programming for Non-projective De-
pendency Parsing. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing.

Tim Rocktäschel and Sebastian Riedel. 2017. End–
to-end differentiable proving. In Advances in Neural
Information Processing Systems.

Dan Roth and Wen-tau Yih. 2004. A Linear Program-
ming Formulation for Global Inference in Natural
Language Tasks. Proceedings of the Eighth Confer-
ence on Computational Natural Language Learning
(CoNLL-2004) at HLT-NAACL 2004.

Dan Roth and Wen-tau Yih. 2005. Integer Linear Pro-
gramming Inference for Conditional Random Fields.
Proceedings of the 22nd International Conference
on Machine Learning.

Alexander M Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing.

Noah A. Smith. 2011. Linguistic Structure Prediction.
Morgan & Claypool Publishers.

Noah A Smith and Jason Eisner. 2005. Contrastive Es-
timation: Training Log-Linear Models on Unlabeled
Data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Nat-
ural Language Learning and the Second Learning
Language in Logic Workshop.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vector
machine learning for interdependent and structured
output spaces. Proceedings of the Twenty-First In-
ternational Conference on Machine Learning.

Sam Wiseman and Alexander M Rush. 2016. Se-
quence-to-Sequence Learning as Beam-Search Opti-
mization. Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. 2018. A Semantic Loss Func-
tion for Deep Learning with Symbolic Knowledge.
In Proceedings of the 35th International Conference
on Machine Learning.

A Proof of Theorem 1

In this section we prove Theorem 1. The theorem

and the relevant definitions are repeated here for

convenience.

Define the rectifier (ReLU) activation function

as R(x) = max(0, x). Consider the following

two-layer rectifier network:

z(x,y) = sgn
(

1−

K
∑

k=1

R
(

wk · ψ(x,y) + bk
)

)

(10)

The input to the network is stillψ(x,y). There are

K ReLUs in the hidden layer, and one threshold

unit in the output layer.

The decision boundary of this rectifier network

is specified by a system of linear inequalities. In

particular, we have the following theorem:

Theorem 2. Consider a two-layer rectifier net-

work with K hidden ReLUs as in Eq. (10). Define

the set [K] = {1, 2, . . . ,K}. The network outputs

z(x,y) = 1 if, and only if, for every subset S of

[K], the following linear inequality holds:

1−
∑

k∈S

(

wk ·ψ(x,y) + bk
)

≥ 0

Proof. Define ak = wk · ψ(x,y) + bk. We first

prove the “if” part of the theorem. Suppose that

for any S ⊆ [K], 1 −
∑

k∈S ak ≥ 0. Thus for

a specific subset S∗ = {k ∈ [K] : ak ≥ 0},

we have 1 −
∑

k∈S∗ ak ≥ 0. By the defini-

tion of S∗,
∑K

k=1
R(ak) =

∑

k∈S∗ ak, therefore

1−
∑K

k=1
R(ak) ≥ 0.

Next we prove the “only if” part of the theorem.

Suppose that 1 −
∑K

k=1
R(ak) ≥ 0. For any S ⊆

[K], we have
∑K

k=1
R(ak) ≥

∑

k∈S R(ak) ≥
∑

k∈S ak. Therefore, for any S ⊆ [K], 1 −
∑

k∈S ak ≥ 0.

B Synthetic Integer Linear

Programming Experiments

We first check if constraints are learnable, and

whether learned constraints help a downstream

task with a synthetic experiment. Consider fram-

ing structure prediction as an integer linear pro-

gram (ILP):

min
z∈{0,1}n

∑

i

ci · zi,

subject to
∑

i

Akizi ≥ bk, k ∈ [m]

(11)

The objective coefficient ci denotes the cost of

setting the variable zi to 1 and the goal of predic-

tion is to find a cost minimizing variable assign-

ment subject to m linear constraints in (11). We

randomly generate a hundred 50-dimensional ILP

instances, all of which share a fixed set of random

constraints. Each instance is thus defined by its ob-

jective coefficients. We reserve 30% of instances

as test data. The goal is to learn the shared linear

constraints in Eq. (11) from the training set.

We use the Gurobi Optimizer (Gurobi Optimiza-

tion LLC, 2019) to solve all the ILP instances to

obtain pairs {(c, z)}, where c is the vector of ob-

jective coefficients and z is the optimal solution.

Each z in this set is feasible, giving us positive ex-

amples (z,+1) for the constraint learning task.

Negative examples are generated as follows:

Given a positive pair (c, z) described above, if the

ith coefficient ci > 0 and the corresponding deci-

sion zi = 1, construct z′ from z by flipping the

ith bit in z from 1 to 0. Such a z
′ is a negative ex-

ample for the constraint learning task because z
′

has a lower objective value than z. Therefore, it

violates at least one of the constraints in Eq. (11).

Similarly, if ci < 0 and zi = 0, we can flip the ith

bit from 0 to 1. We perform the above steps for ev-

ery coefficient of every example in the training set

to generate a set of negative examples {(z′,−1)}.

We trained a rectifier network on these exam-

ples and converted the resulting parameters into

a system of linear inequalities using Theorem 2.

The hyper-parameters and design choices are sum-

marized in the supplementary material. We used

the learned inequalities to replace the original con-

straints to obtain predicted solutions. We evalu-

ated these predicted solutions against the oracle so-

lutions (i.e., based on the original constraints). We

also computed a baseline solution for each test ex-

ample by minimizing an unconstrained objective.

Table 5 lists four measures of the effectiveness

of learned constraints. First, we want to know

whether the learned rectifier network can correctly

predict the synthetically generated positive and

negative examples. The binary classification ac-

curacies are listed in the first row. The second row

lists the bitwise accuracies of the predicted solu-

tions based on learned constraints, compared with

the gold solutions. We see that the accuracy val-

ues of the solutions based on learned constraints

are in the range from 80.2–83.5%. As a compari-

son, without using any constraints, the accuracy of

the baseline is 56.8%. Therefore the learned con-

straints can substantially improve the prediction

accuracy in the down stream inference tasks. The

third row lists the percentage of the predicted solu-

tions satisfying the original constraints. Solutions

based on learned constraints satisfy 69.8–74.4%
of the original constraints. In contrast, the baseline

solutions satisfy 55.3% of the original constraints.

The last row lists the percentage of the gold so-

lutions satisfying the learned constraints. We see

that the gold solutions almost always satisfy the

learned constraints.

The hyper-parameter and other design choices

for the synthetic ILP experiments are listed in Ta-

ble 6.

C Entity and relation extraction

experiments

C.1 Designed constraints

Table 7 lists the designed constraints used in the

entity and relation extraction experiments. There

are fifteen constraints, three for each relation

type. For example, the last row in Table 7

means that the relation OrgBasedIn must have

an Organization as its source entity and a

Location as its target entity, and the relation in

the opposite direction must be NoRel.

C.2 Constraint features

We use the same example as in the main paper to

illustrate the constraint features used in the entity

and relation extraction experiments:

[Organization Google LLC] is

headquartered in [Location Moun-

tain View, California, USA].

In the above example, the relation from “Google

LLC” to “Mountain View, California, USA” is

OrgBasedIn, and the relation in the opposite di-

rection is labeled NoRel, indicating there is no re-

lation from “Mountain View, California, USA” to

“Google LLC”.

We used three constraint features for this task,

explained as follows.

Source-relation indicator This feature looks at

a given relation label and the label of its source en-

tity. It is an indicator pair (source label, relation

label). Our example sentence will contribute the

following two feature vectors, (Organization,

OrgBasedIn) and (Location, NoRel), both

corresponding to postive examples. The negative

examples contains all possible pairs of (source la-

bel, relation label), which do not appear in the pos-

itive example set.

Relation-target indicator This feature looks

at a given relation label the label of its tar-

get entity. It is an indicator pair (rela-

tion label, target label). Our example sen-

tence will contribute the following two fea-

ture vectors, (OrgBasedIn, Location) and

(NoRel,Organization), both corresponding

to positive examples. The negative examples con-

tains all possible pairs of (relation label, target la-

bel), which do not appear in the positive example

set.

Relation-relation indicator This feature looks

at a pair of entities and focuses on the two relation

labels between them, one in each direction. There-

fore our running example will give us two positive

examples with features (OrgBasedIn, NoRel)

and (NoRel,OrgBasedIn). The negative exam-

ples contain any pair of relation labels that is not

seen in the positive example set.

Number of ReLUs

2 3 4 5 6 7 8 9 10

binary classification acc. (%) 85.1 87.3 92.1 90.3 95.0 94.3 94.1 97.7 98.0

bitwise solution acc. (%) 81.1 80.9 81.9 80.2 81.0 82.3 81.1 83.2 83.5

original constr. satisfied (%) 70.3 69.8 72.7 70.4 70.1 71.1 71.4 74.4 74.3

learned constr. satisfied (%) 95.6 98.6 98.7 99.1 97.4 98.9 99.9 99.1 99.4

Table 5: Effectiveness of learned constraints for the synthetic ILP experiments.

Description Value

Total number of examples 100

Number of training examples 70

Number of test examples 30

Dimensionality 50

Range of hidden ReLU units considered for experiments 2-10

Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ǫ = 10−7

Number of training epochs 1000

Table 6: Parameters used in the synthetic ILP experiments

Antecedents Consequents

If the relation is Source must be Target must be Reversed relation must be

Kill Person Person NoRel

LiveIn Person Location NoRel

WorkFor Person Organization NoRel

LocatedAt Location Location NoRel

OrgBasedIn Organization Location NoRel

Table 7: Designed constraints used in the entity and relation extraction experiments

C.3 Hyper-parameters and design choices

The hyper-parameter and design choices for the

experiments are in Table 8. Note that different

runs of the SVM learner with the learned or de-

signed constraints may give different results from

those on Table 1. This is due to non-determinism

introduced by hardware and different versions of

the Gurobi solver picking different solutions that

have the same objective value. In the results in

Table 1, we show the results where the training

with learned constraints seem to underperform the

model that is trained with designed constraints. In

other runs on different hardware, we found the op-

posite ordering of the results.

C.4 Learned Constraints

We see in the main paper that 2K−1 linear inequal-

ity constraints are learned using a rectifier network

with K hidden units. In the entity and relation

extraction experiments, we use two hidden units

to learn three constraints from the source-relation

indicator features. The three learned constraints

are listed in Table 9. A given pair of source la-

bel and relation label satisfies the constraint if the

sum of the corresponding coefficients and the bias

term is greater than or equal to zero. For exam-

ple, the constraint from the first row in Table 9

disallows the pair (Location, Kill), because

−1.90 − 2.84 + 0.32 < 0. Therefore, the learned

constraint would not allow the source entity of a

Kill relation to be a Location, which agrees

with the designed constraints.

We enumerated all possible pairs of source la-

bel and relation label and found that the learned

constraints always agree with the designed con-

straints in the following sense: whenever a pair

of source label and relation label satisfies the de-

signed constraints, it also satisfies all three learned

constraints, and whenever a pair of source label

and relation label is disallowed by the designed

constraints, it violates at least one of the learned

constraints. Therefore, our method of constraint

learning exactly recovers the designed constraints.

We also use two hidden units to learn three

constraints from the relation-target indicator fea-

tures, and one hidden unit to learn one constraint

from the relation-relation indicator features. The

learned constraints are listed in Table 11 and Ta-

ble 10. Again we verify that the learned con-

straints exactly recover the designed constraints in

all cases.

D Citation field extraction experiments

D.1 Constraint Features

We use the same example as in the main paper to

illustrate the constraint features used in the citation

field extraction experiments:

[Author A . M . Turing .] [Title

Computing machinery and intelligence .

] [Journal Mind ,] [Volume 59 ,]

[Pages 433-460 .] [Date October ,

1950 .]

We explore multiple simple constraint features

ψ(x,y) as described below.

Label existence This features indicates which

labels exist in a citation entry. In our above ex-

ample, there are six labels. Suppose there are

nl possible labels. The above example is a posi-

tive example, the feature vector of which is an nl-

dimensional binary vector. Exactly six elements,

corresponding to the six labels in the example,

have the value 1 and all others have the value 0. To

obtain the negative examples, we iterate through

every positive example and flip one bit of its fea-

ture vector. If the resulting vector is not seen in

the positive set it will be a negative example.

Label counts Label-count features are similar

to Label-existence features. Instead of indicating

whether a label exists using 1 or 0, label-count fea-

tures records the number of times each label ap-

pears in the citation entry. The positive examples

can be generated naturally from the training set.

To generate negative examples, we perturb the ac-

tual labels of a positive example, as opposed to its

feature vector. We then extract the label counts

feature from the perturbed example, and treat it as

negative if it has not seen before in the positive set.

Bigram labels This feature considers each pair

of adjacent labels in the text. From left to right,

the above example will give us feature vectors

like (Author, Author), (Author, Title),

(Title, Title), . . . , (Date, Date). We then

use one-hot encoding to represent these features,

which is the input vector to the rectifier network.

All these feature vectors are labeled as positve (+1)

by the rectifier network, since they are generated

from the training set. To generate negative exam-

ples for bigram-label features, we generate all pos-

Description Value

Structured SVM trade-off parameter for the base model 2−6

Number of hidden ReLU units

–for source-relation 2

–for relation-target 2

–for relation-relation 1

Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ǫ = 10−7

Table 8: Parameters used in the entity and relation extraction experiments

Source Labels Relation Labels

NoEnt Per. Loc. Org. NoRel Kill Live Work Located Based Bias

-1.98 3.53 -1.90 0.11 2.66 -2.84 -2.84 -2.84 2.58 0.43 0.32

-1.61 -1.48 3.50 0.92 1.15 1.02 1.02 1.02 -3.96 -1.38 1.46

-3.59 2.04 1.60 1.03 3.81 -1.82 -1.82 -1.82 -1.38 -0.95 0.78

Table 9: Linear constraint coefficients learned from the source-relation indicator features

Forward Relation Labels Backward Relation Labels Bias

4.95 -1.65 -1.65 -1.65 -1.65 -1.65 5.06 -1.53 -1.53 -1.53 -1.53 -1.53 -2.41

Table 10: Linear constraint coefficients learned from the relation-relation indicator features. The order of the

relation labels is: NoRel, Kill, LiveIn, WorkFor, LocatedAt, and OrgBasedIn

Relation Labels Target Labels

NoRel Kill Live Work Located Based NoEnt Per. Loc. Org. Bias

2.68 -3.17 -0.55 2.68 -0.55 -0.55 -1.58 3.15 0.53 -2.70 1.02

2.72 2.42 -1.39 -2.55 -1.39 -1.39 -2.51 -2.27 1.54 2.31 0.85

5.40 -0.74 -1.94 0.13 -1.94 -1.94 -4.10 0.88 2.08 -0.39 0.86

Table 11: Linear constraint coefficients learned from the relation-target indicator features

itive examples from the training set, then enumer-

ate all possible pair of labels and select those that

were not seen in the positive examples.

Trigram labels This feature is similar to the bi-

gram labels. From the training set, we gener-

ate positive examples, e.g., (Author, Author,

Author), (Author, Author, Title) etc, and

convert them into one-hot encodings. For nega-

tive examples, we enumerate all possible trigram

labels, and select those trigrams as negative if two

conditions are met: (a) the trigram is not seen in

the positive set; and (b) a bigram contained in it

is seen in the training set. The intuition is that we

want negative examples to be almost feasible.

Part-of-speech For a fixed window size, we ex-

tract part-of-speech tags and the corresponding la-

bels, and use the combination as our constraint fea-

tures. For example, with window size two, we get

indicators for (tagi−1
, tagi, labeli−1, labeli)

for the ith token in the sentence, where tag and

label refer to part-of-speech tag and citation field

label respectively. For negative examples, we enu-

merate all four-tuples as above, and select it as neg-

ative if the four-tuple is not seen in the positive set,

but both (tagi−1
, tagi) and (labeli−1, labeli)

are seen in the training set.

Punctuation The punctuation feature is similar

to the part-of-speech feature. Instead of the POS

tag, we use an indicator for whether the current

token is a punctuation.

D.2 Hyper-parameters and design choices

The hyper-parameter and design choices for the ex-

periments are in the Table 12.

E Chunking Experiments

E.1 Constraint Features

The two constraints which we discussed in the

main paper for the chunking dataset are described

below.

N-gram label existence This constraint is a gen-

eral form of the label existence constraint men-

tioned in Section D.1. In fact, it is the n-gram

label existence constraint with n=1. The n-gram

label existence constraint represents the labels of

a sequence as a binary vector. Each feature of this

binary vector corresponds to an n-gram label com-

bination. Hence, the length of this constraint fea-

ture will be | l |n where | l | is the total number of

distinct labels. This means the vector size of this

constraint grows exponentially with increasing n.

The binary vector indicates a value of 1 for all the

n-gram label features present in the sequence tags.

The positive examples are hence formed from the

training set sequences. For the negative examples,

we iterate through each positive example and flip a

bit. The resulting vector is incorporated as a nega-

tive example if it doesn’t occur in the training set.

N-gram part of speech (POS) This constraint

is a general form of the part of speech constraint

mentioned in Section D.1. POS tags of a token are

converted to a indicator vector. We concatenate

the indicator vectors of each gram in an n-gram in

order and this vector is further concatenated with

indicators of labels of each of these grams. Hence,

for n=2, we get the constraint vector as (tagi−1
,

tagi, labeli−1, labeli) where tagi and labeli

are indicators for POS tags and labels respectively

for the ith token. The positive examples enumer-

ate vectors for all existing n-grams in the training

sequences. The negative examples are creating by

changing a label indicator in the constraint feature.

The label to be perturbed and the perturbation both

are chosen at random. The constraint vector hence

formed is incorporated as a negative example if it

doesn’t occur in the set of positive examples.

E.2 Hyper-parameters and design choices

The hyper-parameter and design choices are sum-

marized in Table 13.

Description Value

Structured SVM trade-off parameter for the base model unregularized

Beam size 50

Number of hidden ReLU units for experiments 10

Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ǫ = 10−7

Table 12: Parameters used in the citation field extraction experiments

Description Value

Constraint Rectifier Network

Range of hidden ReLU units considered for experiments {5, 10}
Learning rates for development while learning rectifier networks {0.001, 0.005, 0.01, 10−4}
Number of training epochs 1000

Random Seeds {1, 2}

BiLSTM CRF Model

Learning rate for development while learning baseline model {0.01, 0.05, 0.001, 0.005}
Learning Rate Decay {10−5, 10−6}
Beam Size 10

Number of training epochs 300

Table 13: Parameters used in the chunking experiments

