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ABSTRACT
Identifying critical decisions is one of the most challeng-
ing decision-making problems in real-world applications. In
this work, we propose a novel Reinforcement Learning (RL)
based Long-Short Term Rewards (LSTR) framework for crit-
ical decisions identification. RL is a machine learning area
concerning with inducing effective decision-making policies,
following which result in the maximum cumulative reward.
Many RL algorithms find the optimal policy via estimating
the optimal Q-values, which specify the maximum cumula-
tive reward the agent can receive. In our LSTR framework,
the long term rewards are defined as Q-values and the short
term rewards are determined by the reward function. Ex-
periments on a synthetic GridWorld game and real-world In-
telligent Tutoring System datasets show that the proposed
LSTR framework indeed identifies the critical decisions in
the sequences. Furthermore, our results show that carry-
ing out the critical decisions alone is as effective as a fully-
executed policy.
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1. INTRODUCTION
People make decisions every day, from minor decisions such
as what to eat for lunch, to major decisions such as which
college to enroll. This is equally true for tutorial interac-
tions. Some decisions, such as what type of example to use
may be minor, while others such as whether to give a new
problem, or provide a solution for an old one, may not. In
many cases the true significance of these decisions will not
be known until well after the fact (much delayed), when stu-
dents’ exam scores come in or beyond. Moreover, for many
such decisions, the significance is often individualized. So
our research question is: Given a long trajectory of de-
cisions, can we automatically identify those which are
critical to the outcome?

Our work is primary concerned with identifying critical deci-
sions in interactive learning environments such as Intelligent
Tutoring Systems (ITSs) and educational games, where the
human-agent interactions can be viewed as a temporal se-
quence of steps [2, 14]. Most ITSs are tutor-driven in that
the tutor decides what to do next. For example, the tutor
can elicit the subsequent step from the student either with
prompting or without (e.g., in a free form entry window
where each equation is a step). When a student enters an
entry on a step, the ITS records its success or failure and
may give feedback (e.g. correct/incorrect markings) and/or
hints (suggestions for what to do next). Alternatively, the
tutor can choose to tell them the next step directly. Each
of such decisions affects the student’s successive actions and
performance and some may be more impactful than others.
Pedagogical policies are used for the agent (tutor) to decide
what action to take next in the face of alternatives.

Reinforcement Learning (RL) offers one of the most promis-
ing approaches to data-driven decision-making for improving
student learning in ITSs. RL algorithms are designed to in-
duce effective policies that determine the best action for an
agent to take in any given situation so as to maximize a cu-
mulative reward. In recent years, RL, especially Deep RL,
has achieved superhuman performance in several complex
games [25, 26, 3]. However, different from the classic game-
play situations where the ultimate goal is to make the agent
effective, in human-centric tasks such as ITSs, the ultimate
goal is for the agent to make the student-system interactions
productive and fruitful. A number of researchers have stud-
ied the application of existing RL algorithms to improve the
effectiveness of ITSs [5, 24, 16, 21, 20, 19, 6, 27, 10, 31, 30,
32]. While promising, relatively little work has been done to
analyze, interpret, explain, or generalize RL-induced poli-
cies. While traditional hypothesis-driven, cause-and-effect
approaches offer clear conceptual and causal insights that
can be evaluated and interpreted, RL-induced policies are
often large, cumbersome, and difficult to understand. The
space of possible policies is exponential in the number of do-
main features. It is therefore difficult to identify the system
decisions that critical to desirable outcomes. This raises a
major open question: How can we identify the critical sys-
tem interactive decisions that are linked to student learning?

In this work, we propose Long-Short Term Rewards (LSTR)
framework to identify critical decisions based on RL-induced
policy. For RL-induced policies, we explore Deep Q-Networks
(DQNs) [18] and also modify Deep Q-Networks based on



critical decisions referred as Critical DQN in the following.
More specifically, we define critical decisions as those op-
timal decisions have to be made for the desired outcomes.
To quantify their impacts, we define critical policy as the
one which will carry out the optimal actions on the critical
decisions while randomly on others. To identify critical deci-
sions, we investigate on using an RL-induced policy’s action-
value functions (long term) alone and using both action-
value functions (long term) and immediate rewards (short-
term). The effectiveness of the proposed LSTR framework
is evaluated on a synthetic GridWorld game and real-world
Intelligent Tutoring System datasets. Our results show that
the proposed LSTR framework indeed identifies critical deci-
sions and moreover, carrying out the critical decisions alone
is as effective as a fully-executed policy.

Our main contributions are summarized as follows: 1) we
proposed the Long Short Term Rewards framework to iden-
tify critical decisions and evaluated on both a synthetic Grid-
World game and real-world ITS dataset. 2) we proposed
Critical DQN to improve the long term rewards in identi-
fying critical decisions and investigated its advantages and
disadvantages.

2. METHOD
We follow the conventional Reinforcement Learning (RL)
notation. An agent interacts with an environment over a se-
ries of decision-making steps. The environment is framed as
a Markov Decision Process (MDP). At each timestep t, the
agent observes the state the environment is in, denoted st;
then the agent chooses an action from a discrete set of possi-
ble actions: A ∈ (a1, a2, ..., an). As a result, the environment
provides a scalar immediate reward r. We assume that the
future rewards are discounted by the factor γ ∈ (0, 1], and
the agent’s goal is to maximize the expected discounted sum
of future rewards, also known as the return. The return at

time-step t is defined as Rt =
∑T
t′=t γ

t′−trt′ , where T is the
last time-step in the episode.

The goal of the agent is to find the optimal action-value
function Q∗(s, a), which will result in the agent receiving
the highest possible expected return, starting from state s,
taking action a, and following the optimal policy π∗ there-
after. Formally, we define the optimal action-value func-
tion as Q∗(s, a) = maxπ E[Rt|st = s, at = a, π]. The opti-
mal action-value function must follow the Bellman Equation
shown in Equation 1, which states that the Q-value for a
given state and action should be equal to the immediate re-
ward obtained after taking that action, plus the discounted
Q-value of the optimal action a′ taken from the next state
s′. Note that this is an expectation over the next states
sampled from the environment.

Q∗(s, a) = E
s′∼E

[r + γmax
a′

Q∗(s′, a′)|s, a] (1)

In our case, we follow the batch Reinforcement Learning for-
mulation in that we have a fixed-size dataset D consisting of
all historical sample episodes and each episode is denoted as

s1
a1,r1−−−→ s2

a2,r2−−−→ s3
a3,r3−−−→ · · · sL). To make this task more

general, we assume that the state distribution and behavior
policy that were used to collect this data are both unknown.

In the following, we will describe the two DRL algorithms
explored: DQN and Critical DQN and two ways of defining
critical decisions: long term reward vs. long-short term re-
ward. Based on two types of DRL methods and two ways
of identifying critical decisions, we will compare six different
policies.

2.1 Two Types of Deep RL Policy
2.1.1 Original DQN

Deep Q-Network (DQN) is one of most promising approaches
which is widely used on areas like robotics and video games
[18]. Fundamentally, DQN is a version of Q-learning which
uses neural networks to approximate the Q-values of the
different state-action couples. In order to train the DQN
algorithm, the two neural networks with equal architectures
are employed: one for calculating the Q-value of the current
state and action: Q(s, a) and another neural network to cal-
culate the Q-value of the next state and action: Q(s′, a′).
The former is the main network and its weights are denoted
by θ and the latter is the target network, and its weights are
denoted by θ−. The Bellman Equation for DQN is shown
in Equation 2 and it is trained through running a gradient
descent algorithm to minimize the squared difference of the
two sides of the equality.

Q(s, a;θ) = E
s′∼E

[r + γmax
a′

Q(s′, a′;θ−)] (2)

The main network is trained on every training iteration,
while the target network is frozen for a number of train-
ing iterations. Every k training iterations, the weights of
the main neural network are copied into the target network.
This is one of the techniques used in order to avoid diver-
gence during the training process. In practice, DQN also
uses an experience replay buffer to store the recently col-
lected data and to uniformly sample (s, a, r, s′) steps from
it. By sampling uniformly, it breaks the correlations between
samples of the same episode, making the learning process
more robust and stable. In this work, as we are doing batch
RL, our whole dataset will be the experience replay buffer,
and it will not change during the training process.

Basically, DQN is a Q-leaning method that it finds the opti-
mal action-value function by updating its action-value func-
tion approximator recursively. Its major difference from
the traditional RL is that a deep neural network is used
as action-value function approximator and this allows it to
deal with the tasks with high dimensional state space.

2.1.2 Critical DQN
In the original DQN, the Q functions are estimated based on
the assumption that the optimal policy will be followed to
the end. We define critical policy to be the one that the op-
timal decision will be carried out on critical decision points
while random decisions on the rest. By not taking the op-
timal actions on non-critical decisions, we fundamentally
change the dynamics of Bellman equation which assumed
full-execution of the policy. Therefore we need to modify it
so that it can incorporate our critical decisions into consid-
eration.



For a single (s, a, r, s′) tuple, the original Bellman Equation
can be expressed as:

Q(s, a) = r + γmax
a′

Q(s′, a′) (3)

where r is the immediate reward for taking action a at state
s; γ is the discount factor; and Q(s′, a′) is the action-value
function for taking action a′ at the subsequent state s′.

To induce a critical policy, we will modify the original Bell-
man equation based on whether a decision is critical or not.
The intuition behind the Critical DQN is that if a decision
is important, then the agent should take the best action
otherwise the agent can randomly choose an action to take.
Therefore, we have:

Q(s, a) =

{
r + γmaxQ(s′, a′) s’ is critical

r + γmeanQ(s′, a′) s’ is non-critical
(4)

In equation 4, to update the Q-value for any given s and a,
it will consider whether the next state s′ is critical or not.
If it is critical, the maximum Q-value for s′ will be used
to update Q(s,a); if the decision s′ is non-critical, then the
average Q-value among all the actions on s′ will be used to
update Q(s,a).

Algorithm 1 presents the pseudo-code for critical DQN. First,
it initializes all Q-values using the immediate rewards to
avoid the bias of the neural network. In the main train-
ing loop, for each iteration, the algorithm first calculate the
median threshold of Q-value difference over all the states.
Then, for each (s, a, r, s′) tuple, if the Q-value difference
of s′ is larger than the median threshold, we consider the
decision on that state is critical and its value function is
maxa′Q(s′, a′; θ−); for non-critical decisions, their value func-
tion are defined as meana′Q(s′, a′; θ−). In this work, we as-
sumes that half of the decisions in the training dataset are
critical so that the median threshold is applied to separate
critical and non-critical decisions quantitatively.

2.2 Two Types of Critical Rewards
2.2.1 Long Term Rewards (LongTRs)

In RL, Q(s, a) is an estimation of the cumulative future re-
wards the agent will receive by taking action a at state s and
following the policy to the end. If the Q-values for all the
actions are the same, then it doesn’t matter which action
to take because all the actions will result in the same final
reward. If the Q-value for one action is much larger than the
others, then taking that action will have great impact on the
future reward and this decision should be critical. So, the
Long Term Reward is defined as how much cumulative fu-
ture rewards the best action will obtain compared with the
worst action. For this paper, we therefore define the Long
Term Reward (LongTR) as:

LongTR(s) = max
a

Q(s, a)−min
a
Q(s, a) (5)

which is the difference between the maximum and minimum
Q-values in the state s. In general, the higher the LongTR,
the more important the decision is.

Algorithm 1 Pseudocode of Critical DQN

1: Initialize the training dataset D as (s, a, r, s′) tuples.
2: Initialize the Q function with random parameters θ
3: Initialize the target Q̂ function with parameters θ− = θ
4:
5: // Initialize Q(s, a) as immediate reward
6: for each (si, ai, ri, s

′
i) in D do

7: set yi = ri
8: end for
9: Perform gradient descent on (yi −Q(si, ai; θ))

2

10: Reset Q̂ = Q
11:
12: // Main Training Loop
13: for iteration k = 1, 2, ... till convergence do
14: Initialize empty array Qdiffs
15: for each (si, ai, ri, s

′
i) in D do

16: Qdiffs ← (maxQ(si, a
′; θ−)−minQ(si, a

′; θ−))
17: end for
18: median threshold = median(Qdiffs)
19: for each (si, ai, ri, s

′
i) in D do

20: if terminal s′i then
21: Set yi = ri
22: else
23: Qdiff = maxQ(s′i, a

′; θ−)−minQ(s′i, a
′; θ−)

24: if Qdiff > median threshold then
25: Set yi = ri + γmaxa′Q(s′, a′; θ−)
26: else
27: Set yi = ri + γmeana′Q(s′, a′; θ−)
28: end if
29: end if
30: end for
31: Perform gradient descent on (yi −Q(si, ai; θ))

2

32: Every C steps reset Q̂ = Q
33: end for

2.2.2 Long-Short Term Rewards (LSTRs)
For the LongTR, it only considers the cumulative future
rewards but not immediate rewards. In a deterministic en-
vironment, LongTR is enough to identify critical decisions.
But in a stochastic environment like the real world, some
non-critical decision points would become critical and the
LongTR can’t detect their importance. For example, Figure
1 shows a simple MDP with seven states and one reward in
the central state. Based on the LongTR, the decisions on S2
and S3 are critical because if doesn’t move to the center, the
agent will miss the +10 rewards. S1 is not critical based on
LongTR because either move up or down doesn’t affect col-
lecting the reward as long as the agent takes the right action
on state S2 or S3. However, in a stochastic environment, the
agent should get the reward as soon as possible because the
longer the path, the higher the risk to deorbit the rail. In RL,
the LongTR can’t learn the importance of state S1 but the
immediate reward can. So, immediate rewards are served as
Short Term Rewards (ShortTRs) in LSTR to complement
the weakness of LongTRs that the agent should collect the
rewards immediately without wandering.

2.3 Identifying & Evaluating Critical Decision
The effectiveness of our LSTR framework on identifying crit-
ical decisions is evaluated by the performance of critical
policy. Unlike normal RL policies whose decisions are car-



Figure 1: An MDP Example for LSTR

ried out all the time, our critical policy only follows the
RL policy’s decisions at critical points and takes random
actions otherwise. Ideally, the more accurate the critical
decisions are identified, the better performance the critical
policy should have.

More specifically, for a given training data set, we can induce
RL policies following the original DQN or the Critical DQN,
named as π or πc, respectively. For each of the policy, there
are two ways to identify critical decisions, using LongTR (L)
and using LSTR (LS). Based on the rewards used for critical
decision identification and the policy used for execution, we
have the following six critical policies shown in the table 1.

Table 1: Six Critical Policies

Critical Policy Execution Policy
Rewards for
Identifying Critical Decision

1 π(L) π LongTRs in π
2 π(LS) π LSTRs in π
3 πc(Lc) πc LongTRs in πc
4 πc(LSc) πc LSTRs in πc
5 π(Lc) π LongTRs in πc
6 π(LSc) π LongTRs in πc

The first four critical policies are a simple 2 (π vs. πc) by
2 (L vs. LS) combination that each policy uses its own re-
wards to identify critical decisions. However, the connection
between the critical decisions and the performance of critical
policy is based on the assumption that the policy carried out
at the critical points are optimal. In the Critical DQN, av-
erage Q-value is considered in the updating process and this
may slow down the convergence. As a result, the policy πc
can be non-optimal. So, we include other two critical poli-
cies: π(Lc) and π(LSc) which using the LongTR and LSTR
from πc to identify critical decisions but executing the policy
π to make decisions. In general, the original DQN should
converge faster and generate better policy than the Critical
DQN.

3. SIMULATION ENVIRONMENT
3.1 GridWorld Description
The GridWorld environment is like a maze that the agent
learns an optimal path from the start point to the end point.
Figure 2 shows our GridWorld environment, which consists
of 7 by 14 cells. The agent starts from the start state (right
bottom corner), explores the 2D space and finishes at the
end state (left upper corner). There are several walls in the
GridWorld which are marked as black blocks. The agent
state is simply represented by the X and Y coordinates.

Figure 2: The Interface of the GridWorld Game

Action At each step, the agent can take three actions: up,
down and left. In Figure 2, the possible actions for each state
are labeled as small purple triangles that some states have
three possible actions while some have two or one possible
actions. The possible actions for each state are predefined
in the environment so that the agent never hit the wall or
the boundary.

Reward When moving in the GridWorld, there is -0.1 re-
ward penalty for each step and the agent can collect -1 and
+1 rewards. In order to simulate the real world, the reward
function is designed in state-action-state way, R(s, a, s′).
The black arrows indicate that only enter the reward state
along with the arrow, the agent can get the reward -1 or +1.
Otherwise, the agent won’t receive rewards. Furthermore,
when the agent hits the reward state, it is forced to move
left. This design aims to avoid the agent from collecting
the same +1 reward repeatedly without forwarding to the
terminal state.

Deterministic vs. Stochastic There are two transition
settings in the GridWorld game: deterministic and stochas-
tic. For deterministic transition setting, the next state is
determined by the current state and action. For stochastic
transition setting, the same state-action pair can result in
different next states. For example, for deterministic setting,
if the agent takes action ‘left’, then it will move to the left
neighbor cell with 100 probability. For the stochastic transi-
tion setting, if the agent takes action ‘left’, then it only has
85% chance moving left, and 15% chance moving to other
possible directions.

Finally, the performance of RL-induced policy in the Grid-
World is evaluated by the final delayed reward which is the
cumulative rewards during a trial. A good RL-induced pol-
icy should collect more +1 rewards, avoid -1 rewards and
spend less steps to reach the goal.

3.2 Experiment Setup
Data Collection Since we focus on applying offline RL ap-
proaches to induce pedagogical policies, we induce all Grid-
World policies offline. Following the data collection pro-
cedure in ITS, we collected the training data using a ran-
dom policy. For the deterministic environment, we collected
500 randomly generated trajectories. Considering that the
stochastic environment is more complicated, we collected



1000 trajectories for it.

Inferring Immediate Rewards Our LSTR framework re-
quires immediate rewards to identify critical decisions, but
our ITS data only have delayed rewards. Thus, we apply
a Neural Network (NN) based approach to infer “immedi-
ate” rewards from delayed rewards. Given a trajectory to
the NN as input, it outputs an “inferred” immediate reward
for each step in the trajectory. The NN is trained using an
additive error (the mean square error between the sum of
inferred immediate rewards and the delayed rewards) as the
loss function.

Critical Threshold Determination A key thing for iden-
tifying critical decisions is to choose an appropriate thresh-
old on the long term and short term rewards that would not
include too many trivial decisions but at the same would not
exclude too many critical decisions. In order to pick a proper
one, we conducted an analysis on the real and inferred im-
mediate rewards and the Q-value difference. For immediate
rewards, we would want to collect the large positive rewards
and avoid the large negative rewards. Thus, rewards with a
large absolute value should be considered as critical. Figure
3 shows the distribution of the real and inferred immedi-
ate rewards on the deterministic training dataset. The X
axis shows the percentage of decisions in the dataset ranked
by the value of the rewards (from large to small), and the
Y axis shows value of the rewards. The threshold was set
by allowing the real and critical rewards to identify similar
numbers of critical decisions, which resulted in the value of
0.5. That is, if the ShortTR of a decision is greater than 0.5
or less than -0.5, it is critical. The same threshold was used
for the stochastic dataset.

Figure 3: Immediate Reward Distribution

With the determined ShortTRs threshold, we explore dif-
ferent thresholds for the LongTRs in the experiment. The
larger the threshold is (on percentage ranking), the more
decisions will be carried out following the policy and the
performance will in turn be better. To find a good bal-
ance between the number of critical decisions and the per-
formance of the policy, we apply the policy with different
thresholds (on percentage) at a 10% interval from 0% to
100% (0%, 10%, 20% ... 100%). Figure 4 shows an example
distribution of the Q-value difference (LongTRs), calculated
using the π policy in the deterministic dataset. For LSTRs,
the critical decisions are the union from two set of critical
decisions identified by LongTRs and ShortTRs separately.

Figure 4: Q-value Difference Distribution

3.3 Results
We evaluate the performance of the six critical policies across
two types of environment (deterministic vs. stochastic) with
two types of immediate rewards (real vs. inferred). Figure
5 to Figure 8 shows the online evaluation results for the
four possible settings. The X axis shows the percentage of
decisions identified as critical ones based on the LongTRs
on the training data. For example, 10% means the decisions
with the top 10 percent LongTRs were considered as critical.
The Y axis shows the cumulative rewards (the average of
100 trials under different random seeds) received by each
critical policy. As expected, across all four figures, there is a
general trend that the more decisions considered as critical,
the better the policy will perform.

Overall, πc(LSc) and π(LSc) outperforms the other four
policies across all four settings. This suggests that when
identifying critical decisions, LSTRs are more effective than
LongTRs and Critical DQN is more effective than original
DQN. This supported our expectation that both long term
and short term rewards should be considered in critical de-
cision identification and Critical DQN provides a better es-
timation of the long term rewards when the policies are par-
tially carried out.

Next, we investigate in detail how the execution policy and
the rewards (long term vs. long-short term) may impact
the performance of the critical policies. More specifically,
we present our results in five parts. First, compare the ef-
fectiveness of the original and Critical DQN on LongTRs.
Second, investigate whether LSTRs can lead to better per-
formance than LongTRs. Third, a mixed comparison be-
tween the critical decision recognition and policy execution.
Fourth, exam the effectiveness of the inferred rewards. Fi-
nally, explore the performance of the Critical DQN with
limited amount of training data.

3.3.1 Original DQN vs. Critical DQN on LongTRs
We first focus on comparing the original DQN policy π(L)
and the Critical DQN policy πc(Lc) with LongTRs, where
the same policy was used for both execution and critical de-
cisions identification. As we can see in all four figures, πc(Lc)
outperformed π(L) when no more than 50% decisions were
considered as critical. More importantly, the fewer the criti-
cal decisions, the larger the gap is (except 0% which is totally
random). This suggests that the Q-value difference in πc is



Figure 5: Deterministic GridWorld with Imm Figure 6: Deterministic GridWorld with Infer

Figure 7: Stochastic GridWorld with Imm Figure 8: Stochastic GridWorld with Infer

more accurate and sensitive than that in π in identifying crit-
ical decisions. This result is not surprising because the Crit-
ical DQN already took the random execution of non-critical
decisions into account in policy induction. Additionally, as
expected, as the percentage of critical decisions increasing,
both policies reached optimal. This suggests that our pro-
posed Critical DQN could generate optimal policies as the
DQN can do.

3.3.2 LSTRs vs. LongTRs
Second, we investigate how different rewards (LSTRs vs.
LongTRs) may impact the performance of the policies. LSTR
policies are shown in solid lines while LongTR policies are
shown in dashed lines across Figure 5 to Figure 8. Here we
focus on comparing the pair of policies with the same ex-
ecution and critical decision identification policies such as
π(L) vs. π(LS) and π(Lc) vs. π(LSc). Overall, results
showed that the LSTR policies outperformed the LongTR
policies when no more than 50% decisions were considered
as critical (with few exceptions where the two policies have
equal performance). More importantly, the performance of
the LSTR policies had a sharp increase in the interval of 0%
to 50% while the increase of the LongTR policies was rel-
atively smooth. This resulted in a large gap between them
when few decisions were considered as critical. This gap

gradually diminished as more decisions were included and
disappeared eventually. This suggests that considering both
the long term and short term rewards is more effective than
considering the long term rewards only, especially when few
decisions were considered as critical.

3.3.3 Mixed Comparison
There are two factors in the critical policy: execution policy
and Rewards for critical decision identification. In this com-
parison, we fixed one factor and examined the impact of the
other one on the critical policy. First, through fixing the ex-
ecution policy as π, a comparison between Lc vs. L showed
that the π(Lc) outperformed the π(L) across all the four
Figures 5 to 8. Similar to this setting, we can get the same
results that π(LSc) is better than π(LS). It means that the
LSTRs in Critical DQN policy is more accurate to identify
critical decisions than the original DQN. When fixing the
Rewards for critical decision identification as Lc, a compar-
ison between π vs. πc showed that π(Lc) and πc(Lc) have
similar performance. This result also applies to π(LSc) and
πc(LSc). It indicates that the policy π and πc could make
similar decisions on critical points and the Critical DQN
could induce optimal policy as the original DQN.

3.3.4 Inferred Rewards vs. Immediate Rewards



We also examined the effectiveness of the inferred immediate
rewards by comparing them with real rewards. Figure 5
and 7 show the policies (immediate critical policy) induced
using real immediate rewards; while Figure 6 and 8 show
the policies (inferred critical policy) induced using inferred
rewards. Through comparing the performance at 100%, all
the inferred critical policies could reach the same optimal
with the immediate critical policies in both deterministic
and stochastic environments. This suggests that the inferred
rewards could generate the optimal policy as real rewards.
Then, the lines of inferred critical policies in Figure 6 and 8
have similar trend patterns with the lines in Figure 5 and 7,
respectively. It means that the LSTRs calculated by inferred
critical policies have similar distribution with the ones from
immediate critical policies. In sum, the result indicates that
inferred rewards could not only generate the optimal policy
but also produce reliable LSTRs.

3.3.5 Data-Efficiency for Critical DQN
From the previous results, we could get a conclusion that
when the policies π and πc are both optimal, πc(Lc) is better
than π(L) regarding the identification of critical decisions.
But what if we don’t have enough data to train an optimal
policy, how’s the critical DQN performing?

Figure 9: Original DQN vs. Critical DQN

Figure 9 shows the online performance of πc(Lc) vs. π(Lc)
and πc(LSc) vs. π(LSc) as the number of training trajecto-
ries increasing. The X axis is the number of trajectories used
to train the critical policies. The Y axis is the cumulative
rewards (the average of 100 trails under different random
seed) received by each critical policy. In this experiment,
we applied the same rule to identify critical decisions for all
the four policies and the only difference is which RL policy
makes decision on the critical decision points. For π(Lc), it
means the critical decisions are identified by the LongTRs
in πc but execute π to make decisions in the online evalua-
tion. It is the same for π(LSc) that the LSTRs come from πc
while π decides what action to take. More specifically, the
threshold for critical decisions is fixed by applying the same
0.5 threshold on short term rewards and 50% threshold on
long term rewards.

The result shows that when the training datset is less than
600 trajectories, the Critical DQN policies are worse than
the original DQN policies. When the training dataset is

larger than 600 trajectories, they have similar performance.
This suggests that the Critical DQN needs more data to
converge to the optimal policy. But the LSTRs in Critical
DQN is always good as the red lines π(Lc) and π(LSc) keep
staying in the upper area from 100 to 1000 training trajecto-
ries. In summary, the Critical DQN could provide the best
LSTRs to identify critical decisions but it needs more data
to make good decision.

4. REAL-WORLD APPLICATION
4.1 Pyrenees Tutor Description
Pyrenees tutor is a web-based ITS for probability. It cov-
ers 10 major principles of probability, such as the Addition
Theorem and Bayes’ Rule. Pyrenees tutor provides step-
by-step instruction and immediate feedback. Pyrenees tu-
tor can also provide on-demand hits prompting the student
with what they should do next. As with other systems, help
in Pyrenees tutor is provided via a sequence of increasingly
specific hints. The last hint in the sequence, the bottom-out
hint, tells the student exactly what to do.

Figure 10: The Interface of the Pyrenees Tutor

Figure 10 shows the interface of Pyrenees, which consists of
four windows. The top window shows the problem state-
ment and doesn’t change throughout the problem. In the
dialog window, the upper part shows the instructions the
tutor gives to the students such as an explanation of the
current step or a prompt for the next step. At the same
time, student enters an answer in the lower part of the dia-
log window such as selecting a choice or writing an equation.
Any variables or equations generated through this process
are shown on the left side of the screen for reference.

During tutoring, students are required to complete 4 phases:
1) pre-training, 2) pre-test, 3) training, and 4) post-test. In
the pre-training phase, all students study the domain prin-
ciples through a probability textbook by reviewing some ex-
amples and solving certain training problems. In the second
phase, students take a pre-test which contains 14 problems.
More specifically, the textbook is not available at this phase
and students are not given feedback on their answers, nor
are they allowed to go back to earlier questions. This is also
true for the post-test. In phase 3, all students receive the
same 12 rather complicated problems in the same order on
Pyrenees tutor. Each of the 10 major principles needs to
be applied at least twice in the training problems. For each
problem, the average solving steps range from 20 to 50. Dif-
ferent from the pre- and post- test, students can access the



corresponding pre-training textbook and tutor help is avail-
able during this phase. Most importantly, the pedagogical
policy works in this phase by deciding what action to take
for each problem. In the training phase, each problem could
have been provided as problem solving or worked example.
Also, each step in the problem could have been provided as
either a tell or elicit. Finally, all of the students complete a
post-test with 20 problems. 14 of the problems are isomor-
phic to the pre-test given in phase 2. The remaining six are
non-isomorphic complicated problems.

The performance of student learning is measured by the nor-
malized learning gain (NLG) which is defined as NLG =
posttest−pretest

1−pretest where 1 is the maximum score for both pre-
and post- test. When grading the pre- and post- test, we
use partial credit that each problem score is defined by the
proportion of correct principle applications evident in the
solution. For example, a student who correctly applied 4
of 5 possible principles would get a score of 0.8. All of the
tests are graded in a double-blind manner by a single expe-
rienced grader. For comparison purposes, all test scores are
normalized to the range of [0, 1].

4.2 Experiment Setup
Training Dataset Our training dataset contains a total of
1148 students’ interaction log collected over six semesters’
classroom studies (16 Fall to 19 Spring). The studies were
assigned as a regular homework to students. During the
studies, all students used the same tutor, followed the same
general procedure, studied the same training materials, and
worked through the same training problems.

From the student-system interaction logs, 142 features were
extracted which describes the student learning state. All
the 142 features can be categorized into five groups that
Autonomy features describe the amount of work done by
the student; Temporal features are the time related infor-
mation during tutoring; Problem Solving features indi-
cate the context of the problem itself; Performance fea-
tures denote student’s performance; and Student Action
features record the student behavior information. For each
problem, there are three possible actions: worked example
(WE), problem solving (PS) and step decisions (SD). In WE,
the student observes how the tutor solves a problem; in PS,
the student solves the problem; in SD, student solves a por-
tion of steps in a problem while the tutor shows how to solve
the others. For reward, there’s no immediate reward during
tutoring and the delayed reward is the student’s NLG.

Offline Learning and Evaluation The offline learning
process follows the same process with the GridWorld in sec-
tion 3.2. First, NN was applied to infer the immediate re-
wards for the training dataset. Then, critical policy π and
πc were induced based on the original DQN and the Criti-
cal DQN. Finally, we fixed the threshold of ShortTRs based
on the elbows in the distribution and explored the relation-
ship between different thresholds of LongTRs and the per-
formance of the critical policies.

Different from the online evaluation in GridWorld game, we
applied off-policy policy evaluation (OPE) metrics to evalu-
ate the performance of the critical policies. In general, there
are two types of OPE: model based and Importance Sam-

pling (IS) based. Song’s work [12] showed that Per Decision
Importance Sampling (PDIS) is the best metrics to evalu-
ate the performance of RL-induced policies in the context of
ITSs. So, PDIS was applied to evaluate the critical policies
on the training dataset. More specifically, if a decision is
identified as critical, the probability of taking that action is
calculated by the softmax of Q-values among all the possi-
ble actions. On the contrary, if the decision is identified as
non-critical, then the probability of taking that action is the
random probability 1/3 as there are three possible actions
for each problem.

4.3 Results
For Pyrenees tutor, we first present the offline evaluation
results for all six critical policies. Then, we explore the
identified critical decisions in the historical dataset.

4.3.1 Offline Evaluation Results
Figure 11 shows the offline evaluation results on Pyrenees
tutor dataset. The X axis is the percentage of decisions
identified as critical decisions in the historical dataset. The
Y axis is the PDIS value. In general, the higher the PDIS,
the better the policy.

Figure 11: Offline Evaluation Results

First of all, the trend still holds that the more critical deci-
sions, the better the policy would perform. When compar-
ing within the dashed lines, there’s no clear pattern before
40% threshold. However, π(Lc) significantly outperformed
the other two critical policies after 40%. The same trend
occurs on the solid lines with LSTRs. The reason is that
the Pyrenees dataset is not large enough for the Critical
DQN to find an optimal policy, but the Lc and LSc are still
accurate to identify critical decisions. Furthermore, the per-
formance jump around 50% demonstrates the reliability of
the Critical DQN algorithm because in the pseudo-code 1,
we already decide half of the decisions are critical decisions
and the Figure 11 reflects this setting. As expected, the
LSTR still outperforms LongTR that all the solid lines are
above the corresponding dashed lines. In summary, the re-
sult reflects the effectiveness of LSTR in identifying critical
decisions.

4.3.2 Exploring Critical Decisions



Table 2: Distribution of Critical Decisions in each Problem
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Long-Term Rewards 3% 16% 16% 13% 15% 11% 7% 7% 6% 6%
Short-Term Rewards 0% 1% 6% 6% 6% 10% 13% 19% 19% 20%
Long-Short Term Rewards 3% 14% 15% 12% 14% 11% 8% 8% 8% 8%

In order to further investigate the critical decisions identified
by LSTRs in the tutor dataset, we analyzed where did they
occur. 50% threshold for the LSc in Figure 11 was applied
to identify critical decisions in the tutor dataset and Table 2
shows the distribution of critical decisions in each problem.
The first row represents the 10 problems in chronological
order. The second row indicates the percentage of critical
decisions identified by LongTRs in different problems. For
example, 3% of critical decisions happens in P1 while 16%
happens in P2. It indicates that the LongTRs focus on the
critical decisions in the early to mid stage. In the meantime,
the third row shows that the ShortTRs focus on the critical
decisions in the late stage. The fourth row shows the criti-
cal decisions identified by LSTRs, which is the union set of
the critical decisions from LongTRs and ShortTRs. Overall,
critical decisions are evenly distributed among all the prob-
lems except the first one. It is not surprising that the first
one is not so important because in the first problem, stu-
dents are not familiar with the system and the policy needs
more data to know the student status better. Furthermore,
it reflects that the LongTRs and ShortTRs complement each
other. If we only focus on LongTRs, we will miss the impor-
tant decisions in the late stage, otherwise we will miss the
important decisions in the early to mid stage.

5. RELATED WORK
5.1 RL For Pedagogical Policy Induction
Prior Research in Applying RL to Pedagogical Policy In-
duction can be roughly divided into classic RL vs. Deep
RL approaches. The latter is highly motivated by the fact
that the combination of deep learning (neural networks) and
novel reinforcement learning algorithms has made solving
complex problems possible in the last decade. For instance,
the Deep Q-Network (DQN) algorithm [18] takes advantage
of convolutional neural networks to learn to play Atari games
observing the pixels directly. Since then, DRL has achieved
success in various complex tasks such as the games of Go
[25], Chess/Shogi [26], and robotic control [3]. One major
challenge of these methods is sample inefficiency where RL
policies need large sample sizes to learn optimal, generaliz-
able policies. Batch RL, a sub-field of RL, aims to fix this
problem by learning the optimal policy from a fixed set of a
priori-known transition samples [15], thus efficiently learn-
ing from a potentially small amount of data and being able
to generalize to unseen scenarios.

Prior research using classic RL approaches has applied both
online and batch/offline approaches to induce pedagogical
policies for ITSs. Beck et al. [4] applied temporal difference
learning to induce pedagogical policies that would minimize
the students’ time on task. Similarly, Iglesias et al. applied
Q-learning to induce policies for efficient learning [10]. More
recently, Rafferty et al. applied an online partially observ-
able Markov decision process (POMDP) to induce policies
for faster learning [19]. All of the models described above

were evaluated via simulations or classroom studies, yielding
improved student learning and/or behaviors as compared to
some baseline policies. Offline or batch RL approaches, on
the other hand, “take advantage of previous collected sam-
ples, and generally provide robust convergence guarantees”
[22]. Thus, the success of these approaches depends heavily
on the quality of the training data. One common conven-
tion for collecting an exploratory corpus is to train students
on ITSs using random yet reasonable policies. Shen et al.
applied value iteration and least square policy iteration on a
pre-collected exploratory corpus to induce a pedagogical pol-
icy that improved students’ learning performance [24, 23].
Chi et al. applied policy iteration to induce a pedagogi-
cal policy aimed at improving students’ learning gain [5].
Mandel et al. [16] applied an offline POMDP to induce a
policy which aims to improve student performance in an ed-
ucational game. All the models described above were eval-
uated in classroom studies and were found to yield certain
improved student learning or performance relative to a base-
line policy. Wang et al. applied an online DRL approach
to induce a policy for adaptive narrative generation in ed-
ucational game using simulations [29]; the resulting DRL-
induced policies were evaluated via simulations only. In this
work, based on the characteristics of our task domain, we fo-
cus on batch RL with neural networks, also known as batch
Deep Reinforcement Learning (batch DRL) [11, 9].

5.2 Critical Decisions in Simulation
Student-Teacher framework is the most closely related work
to our problem. In this framework, a “student” agent learns
from the interaction with environment, while a “teacher”
agent provides action suggestions to accelerate the learning
process. Their research question is not what to advise but
when to advise, especially with a limited budget of advice.

Clouse [7] was the first one studied the student-teacher frame-
work in a student-initiated advising mode. They applied
Q-value difference to measure the student’s confidence in
a state and used it to decide when should the student ask
for help. The results showed that compared with random
asking, their approach could improve the learning speed sig-
nificantly. Furthermore, the experiment demonstrated that
not all the teacher’s advice are equally helpful. The same
amount of advice can cause the student agent to take widely
varying amounts of steps to find the optimal policy.

Torrey et al. [28] considered the student-teacher framework
in teacher-initiated advising way. They considered an envi-
ronment with a limited budget of advice and teacher decided
when to give advice. They proposed several heuristic meth-
ods to determine when to give advice such as early advising,
importance advising, mistake correcting and predictive ad-
vising. The results showed that mistake correcting has the
best performance which indicates that advice can have the
greatest impact when students make mistakes on important



states.

Zimmer et al. [33] modeled the when to advise problem as
an RL problem. They learned a teaching policy with two
actions: A = advice, noadvice to decide when to give advice
to the student. Compared with heuristic methods, the result
showed that the teacher policy is effective because it can
learn not only when to give advice, but also distinguish good
and bad student agent that good agent chooses a lot of good
actions and doesn’t need advice while bad agent needs more.

Amir et al. [1] studied the jointly-initiated strategies for
student-teacher learning framework. In their model, both
student and teacher can initiate advising based on heuris-
tic functions. The motivation of their work is to reduce the
pressure of the teacher agent on monitoring the student con-
stantly and make the framework more close to the real-life
student-agent scenario. The result showed that the joint
decision-making approach could reduce the attentions re-
quired from the teacher but still keep the student learning
effectively.

Fachantidis et al. [8] explored the impact of advice quality in
the student-teacher framework. They distinguished teacher
agents to be an expert or a good teacher who provide opti-
mal or sub-optimal advice. Also, a Q-teaching method was
proposed to learn a teaching policy to decide when to give
advice. Their results showed that the best performers are
not always the best teachers and the Q-teaching approach
is significantly more efficient than others.

In summary, prior works investigated the problem of when
to give advice in simulated environments. They showed that
Q-value difference is a robust and accurate heuristic func-
tion to estimate the importance of decision in interactive
environments. However, prior works only considered RL-
based student agent but not human students. In this work,
we expand to a dataset of real-world ITS involving human
students.

5.3 Exploiting Q-value Difference in ITSs
Some prior work exploited the Q-value difference between
actions to simplify the decision-making process/problem in
the context of ITS. For example Mitchell et al. relied on the
Q-value difference to reduce the feature space [17]. More
specifically, they proposed a policy evaluation metric, sepa-
ration ratio for feature selection, which is defined as
2∗|Q(s,a1)−Q(s,a2)|
(Q(s,a1)+Q(s,a2))

where Q(s, ai) is the Q value for the state-

action pair (s, ai). The feature selection approach was then
combined with RL to induce pedagogical policies for a dialog
system, the Java tutor.

Zhou et al. [31] relied on Q-value difference to reduce the
policy space. More specifically, they applied weighted deci-
sion tree with post-pruning to extract a compact set of 529
rules from a full set of 3706 rules. During the extraction,
each rule was weighted by the Q-value difference between
two alternative actions and thus increased the carry-out like-
lihood of more important decisions. The policies were empir-
ically evaluated in a classroom study. Results showed that
the full RL policy and the compact DT policy together were
significantly more effective than a random policy and there
is no significantly difference between the full RL policy and

the compact DT policy.

Song et al. [13] proposed an ADRL framework to identify
critical decisions and conducted an empirical study to test
the effectiveness of the ADRL. In ADRL, two policies were
induced that a positive policy aims to help student while a
bad policy tries to hinder student learning. For a given state,
if the two policies have different decisions and the Q-value
difference is large enough, then this is a critical state and
the decision is important. The results showed that critical
phase exists in student learning that critical decisions always
occur in groups and the more critical phase students have
experienced, the better performance they have.

In sum, prior studies have considered the Q-value difference
between actions as a heuristic function of action importance.
The larger the difference, the more important the decision
is. However, prior work didn’t quantitatively study how
large Q-value difference is a critical decision. In this work,
we explored the Q-value difference thresholds by classifying
decisions into two categories: critical and non-critical and
evaluating the quality of the critical decisions.

6. CONCLUSIONS
In this study, we explored Long-Short Term Rewards to
identify critical decisions in both synthetic Gridworld game
and real-world ITS. Based on the LSTRs, we proposed Crit-
ical DQN to induce critical policy whose Q-value difference
is more heuristic and sensitive to the decision importance.
In order to investigate the effectiveness of LSTRs, we evalu-
ated the performance of critical policies with different criti-
cal thresholds by online evaluation on GridWorld and offline
evaluation on Pyrenees tutor’s dataset. The results showed
that the LongTRs from Critical DQN are significantly better
than the original DQN. Through considering the ShortTRs,
the LSTRs are significantly better than the LongTRs. How-
ever, the Critical DQN needs more data to converge to an
optimal policy. In summary, through identifying critical de-
cisions by the LSTRs, half of the decisions are trivial and
carry out the optimal policy on the 50% decisions (critical
ones) could achieve the similar effect of carrying out on all
decisions.

In the future, we plan to generalize the LSTR framework to
other domains in terms of interactive environments. Also,
we hope to deploy a critical DQN policy on Pyrenees tutor
and only carry out 50% decisions in a classroom study to
test the critical decisions empirically.
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