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Abstract
In interactive e-learning environments such as In-
telligent Tutoring Systems, there are pedagogical
decisions to make at two main levels of granular-
ity: whole problems and single steps. In recent
years, there is growing interest in applying data-
driven techniques for adaptive decision making that
can dynamically tailor students’ learning experi-
ences. Most existing data-driven approaches, how-
ever, treat these pedagogical decisions equally, or
independently, disregarding the long-term impact
that tutor decisions may have across these two lev-
els of granularity. In this paper, we propose and ap-
ply an offline Gaussian Processes based Hierarchi-
cal Reinforcement Learning (HRL) framework to
induce a hierarchical pedagogical policy that makes
decisions at both problem and step levels. An em-
pirical classroom study shows that the HRL pol-
icy is significantly more effective than a Deep Q-
Network (DQN) induced policy and a random yet
reasonable baseline policy.

1 Introduction
E-learning environments, such as intelligent tutoring systems
(ITSs) has enabled us to provide low-cost and time-flexible
education opportunities. It has been shown that such envi-
ronments can improve students’ learning in real classrooms
[Koedinger et al., 1997]. During training, the tutor makes
decisions on what students should do next based on observa-
tions of students’ learning state. The tutor’s decisions can
be viewed as a temporal sequence, each of which affects
the student’s successive actions and performance. Its im-
pact on student learning cannot often be observed immedi-
ately and the effectiveness of one decision also depends on
subsequent decisions. Most existing e-learning applications
employ Pedagogical policies to decide what action to take
next in the face of alternatives. Ideally, an effective learn-
ing environment should craft and adapt its decisions to users’
needs [Anderson et al., 1995]. In recent years, a number of
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researchers have studied applying Reinforcement Learning
(RL) to induce pedagogical policies directly from student-
tutor interaction logs (e.g. [Shen et al., 2018; Chi et al., 2011;
Mandel et al., 2014]). Despite promising, most prior appli-
cations treat all system actions equally, or independently, and
do not account for the long-term impact that tutor decisions
may have across these two levels of granularity.

In ITSs, there are decisions to make at different levels of
granularity, from whole problems to single steps. At each of
these levels, the system may decide to give a hint, provide
a worked example, or give immediate feedback. These ac-
tions all have the goal of helping students solve a problem, but
some may be more important or impactful than others. Hu-
man decision-makers treat these distinct levels of granularity
differently and are capable of selecting among them [Evens
and Michael, 2006; Lepper et al., 1993]. In this work, we pro-
pose and apply an offline hierarchical reinforcement learning
(HRL) framework to induce a pedagogical policy that makes
decisions at two levels of granularity: problem and step.

More specifically, the tutor first decides whether the next
problem should be a Worked Example (WE), Problem Solv-
ing (PS), or Collaborative Problem Solving (CPS). In WE,
the student observes how the tutor solves a problem; in PS,
the student solves the problem themselves; in CPS, the stu-
dent and the tutor co-construct the solution. Based on the
problem-level decision, the tutor then makes step-level deci-
sions on whether to elicit the next step from the student or
to show it directly. We refer to such decisions as elicit/tell. If
WE is selected, an all-tell step policy will be carried out; if PS
is selected, an all-elicit policy will be executed; finally, if CPS
is selected, the tutor will decide whether to elicit or tell a step
based on the corresponding step-level policy. A great deal
of research has investigated the impacts of the problem-level
WE vs. PS and the step-level elicit vs. tell [Renkl et al., 2002;
Schwonke et al., 2009; Salden et al., 2010]. However, none
of them are well understood, and there is no widespread con-
sensus on how they should be used. Thus, here, we ap-
ply data-driven approaches to induce pedagogical policies di-
rectly from data. Results from an empirical classroom study
showed that the HRL policy was significantly more effective
than a DQN induced step-level policy and a random yet rea-
sonable step-level policy. Since both elicit and tell are always
considered to be reasonable educational interventions in our
learning context, our random policy is random yet reasonable.



2 Background

In recent years, RL, especially Deep RL has been applied to
handle complicated tasks and has achieved superhuman per-
formance in several complex games. However, different from
the classic game-play situations where the ultimate goal is
to make smart system decisions, our ultimate goal for RL is
to make the student-tutor interaction productive and fruitful.
This raises additional challenges due to the high cost to col-
lect and the complexity of human learning data.

Generally speaking, RL approaches can be categorized into
online and offline. Online approaches learn a policy in real-
time by interacting with the environment while offline ap-
proaches learn from pre-collected training data. Online RL
research to induce pedagogical policies has often relied on
simulations or simulated students. As a consequence, the
success of these approaches is heavily dependent on the accu-
racy of the simulations. Offline RL approaches, on the other
hand, “take advantage of previously collected samples, and
generally provide robust convergence guarantees” [Schwab
and Ray, 2017]. The success of offline RL is thus often
heavily dependent on the quality of the training data. One
common convention is to collect an exploratory corpus by
training students on an ITS that makes random yet reason-
able decisions and then apply RL to induce pedagogical poli-
cies from that corpus. Researchers have applied a variety of
online [Beck et al., 2000; Iglesias et al., 2009; Rafferty et
al., 2016] and offline [Shen et al., 2018; Chi et al., 2011;
Mandel et al., 2014] RL approaches for pedagogical policy
induction. All the models described here were evaluated in
classroom studies, yielding improved student learning and/or
behaviors as compared to baseline policies.

Despite these successes, the necessity for accurate simu-
lations (online) or large training corpora (offline) has limited
the wide use of RL for policy induction. Additionally, prior
research on applying both online and offline RL for pedagogi-
cal policy induction has not taken the granularity of decisions
into account. In the remainder of the paper, we will refer
to these approaches as flat RL to differentiate them from our
new HRL approach.

It has been widely shown that HRL can be more effective
and data-efficient than flat RL approaches [Cuayáhuitl et al.,
2010; Peng et al., 2017; Wang et al., 2018; Kulkarni et al.,
2016]. HRL generally breaks down a large decision-making
problem into a hierarchy of small sub-problems and induces
a policy for each of them. Since the sub-problems are small,
they usually require fewer data to find the optimal policies.
For example, Cuayáhuitl et al. induced navigation policies
[Cuayáhuitl et al., 2010] at 3 levels: buildings, floors, and
corridors, showing that HRL converged to an optimal policy
in much fewer iterations. Although promising, the use of hier-
archy requires additional information, such as the transitions
and rewards at different levels of granularity, to induce a pol-
icy. A simple and effective way to collect such information is
to explore the environment during learning. Therefore, most
existing HRL applications have been online. But here, we
propose and apply an offline HRL approach that can induce
policies from pre-collected data.

3 Policy Induction
In RL policy induction, immediate rewards are generally
more effective than delayed rewards. This is because it is
easier to assign appropriate credit or blame when the feed-
back is tied to a single decision. For HRL policy induction,
immediate rewards are needed at different levels, to induce
hierarchical policies. On the other hand, the most appropri-
ate reward to use in ITSs is student learning gains, which are
typically unavailable until the entire training process is com-
plete. This is due to the complex nature of the learning pro-
cess which makes it difficult to assess students’ learning mo-
ment by moment and more importantly, many instructional
interventions that boost short-term performance may not be
effective over the long-term. Therefore, in this work, we first
propose and apply a Gaussian Processes based (GP-based)
approach to infer ”immediate rewards” from the delayed re-
wards and then apply HRL and DQN to induce the corre-
sponding hierarchical or step-level policies based on the in-
ferred immediate rewards. In the following, we will briefly
describe: 1) our proposed GP-based approach to infer imme-
diate rewards, 2) our offline GP-based HRL framework, and
3) DQN. We now present a few critical details of the process,
but many have been omitted to save space.

3.1 GP-Based Approach for Immediate Reward
Inference

Our historical dataset D consists of student-ITS interaction
trajectories with different lengths. Each trajectory d can
be viewed as: s1

a1,r1−−−→ s2
a2,r2−−−→ · · · sn

an,rn−−−→. Here
si

ai,ri−−−→ si+1 indicates that at the ith turn in d, the learn-
ing environment was in state si, the agent executed action
ai and received reward ri, and then the learning environ-
ment transferred into state si+1. Since our primary interest
is to improve students’ final learning gain, we used Normal-
ized Learning Gain (NLG) as the reward because it mea-
sures students’ gain irrespective of their incoming compe-
tence. NLG = posttest−pretest√

1−pretest where pretest and posttest
refer to the students’ test scores before and after the ITS train-
ing respectively and 1 is the maximum score. Given that a
student’s NLG will not be available until the entire training is
complete, only terminal states have non-zero rewards. That
is for a trajectory d, r1 · · · , rn−1 are all equal to 0, only
rn = NLG× 100, which is in the range of (-∞, 100].

To infer the immediate rewards, we applied a Gaussian
Processes (GP) approach to learn a function that specifies the
reward for each state-action pair in the trajectory [Azizsoltani
et al., 2019]. This approach distributes immediate rewards
inside each trajectory by assuming that they follow Gaus-
sian distributions and that these rewards add up to the de-
layed reward. Different from standard GP which minimizes
the direct output error, this approach minimizes the additive
error of the model output. The process starts with assign-
ing a prior probability to each possible function. Then fol-
lowing the Gaussian Process Regression [Rasmussen, 2004;
Azizsoltani and Sadeghi, 2018] and using the shared mutual
information existed in the feature representation, higher prob-
abilities are given to the functions where the sum of the gen-
erated immediate rewards is close to the observed delayed



reward. Averaging all the possible functions generates the
reward function.

3.2 An Offline GP-based HRL for Policy Induction
Most HRL research is based upon an extension of Markov
Decision Processes (MDPs) called Discrete Semi-Markov
Decision Processes (SMDPs). An MDP describes a stochas-
tic control process that can be described as a 4-tuple: <
S,A, T,R >. In pedagogical policy induction, the states S
are vector representations composed of relevant learning en-
vironment features such as the difficulty level of a problem,
percentage of the correct entries a student has entered so far
and so. In this study, the learning environment is described by
142 features; the actions A are selected from {WE, PS, CPS}
for problem-level decisions and from {elicit, tell} for steps;
the reward function R is calculated from the system’s suc-
cess measures: students’ NLG. Once the {S,A,R} has been
defined, the transition probabilities T are estimated from the
training corpus D.

SMDPs extend the existing MDP framework by adding a
set of complex activities [Barto and Mahadevan, 2003] or op-
tions [Sutton et al., 1999], each of which can invoke other
activities recursively, thus allowing the hierarchical policy to
function. The complex activities are distinct from the prim-
itive actions in that a complex activity may contain multi-
ple primitive actions. In our applications, WE, PS and CPS
are complex activities while elicit and tell are primitive ac-
tions. A complex activity consists of three elements: a pol-
icy π that maps states to each available option, a termination
condition, and an initiation set. A solution to the SMDP men-
tioned above is an optimal policy (π∗), a mapping from state
to complex activities or primitive actions, that maximizes the
expected discounted cumulative reward for each state.

Since complex activities can take a variety of time steps to
execute, it is necessary to extend the state-transition function
to take into account the activity length. The extended tran-
sition probability function can be denoted as: P (s′, t′|s, a),
which specifies the probability of transitioning to state s′ af-
ter t′ time steps if taking action a in state s. Accordingly,
the expected reward function is also extended to accumulate
over the waiting time t′ in s given activity a. Similar to RL,
HRL learns the policy through estimating the Q-value func-
tion Q(s, a), denoted as the expected cumulative rewards the
agent will receive if it takes activity a in state s and follows
the policy to the end. The optimal Q-value function Q∗ de-
notes the expected cumulative rewards the agent can receive
if it follows the optimal policy and Q∗ satisfies the Bellman
equation [Sutton et al., 1999]. In SMDPs, the Bellman equa-
tion can be rewritten as:

Q(s, a)∗ = R(s, a) +
∑
s′,t′

γt
′
P (s′, t′|s, a)max

a′∈A
Q(s′, a′),

(1)
where 0 ≤ γ ≤ 1 is a discount factor. For HRL, learn-

ing occurs at multiple levels. The global learning generates
a policy for the top-level decisions and local learning gener-
ates a policy for each complex activity. This process retains
the fundamental assumption of RL: that goals are defined by

their association with reward, and thus that the objective is to
discover actions that maximize the long-term cumulative re-
ward. Local learning focuses not on learning the best policy
for the overall task but the best policy for the corresponding
complex activity.

In our offline HRL framework, both problem- and step-
level policies were learned by recursively using the Gaussian
Processes (GP) to estimate the Q-value function [Rasmussen,
2004] following Equation 1 until the Q-value function and
the policy converged. In each iteration, a Q-value was gener-
ated for each state-action pair in the training trajectories fol-
lowing Equation 1 based on the inferred immediate rewards
and the latest GP model. Then the GP model was updated
based on the new Q-value assigned to each state-action pair.
Our training corpus contains 1,118 students’ interaction logs.
To induce the hierarchical policy, we defined a problem-level
semi-MDP for determining whether the next problem should
be WE, PS or CPS and for each of the training problems, we
defined a step-level semi-MDP for inducing a step-level pol-
icy to determine elicit vs. tell if a complex activity CPS is
selected for that training problem.

3.3 DQN for Policy Induction
A Double DQN approach [Van Hasselt et al., 2016] with the
prioritized experience replay technique [Schaul et al., 2015]
was applied to induce the DQN step-level policy. A multi-
layer perceptron neural network was used to approximate the
Q-function. The inputs to the neural network were the last
3 step observations of a student and the outputs were the Q-
values for each possible step level action (in our case, elicit
and tell). The network consists of two 64-unit layers with
the rectified linear unit (ReLU) activation function (except
that the output layer has no activation function). As a con-
vention for this algorithm, an experience replay buffer and a
target network were used to stabilize the training. The data
and immediate rewards used for DQN policy induction were
identical to those used for HRL.

4 Empirical Experiment
Participants. This study was conducted in an undergrad-
uate Discrete Mathematics course in Fall 2018 as a regu-
lar homework assignment. Students had one week to com-
plete it and were graded based upon their demonstrated effort
rather than performance. Students (N=180) were randomly
assigned into three conditions (60 in each of HRL, DQN,
and Random). Due to final exam preparations, 140 students
completed the study. 3 students who scored perfectly in the
pre-test and 9 students who completed the study in groups
were excluded from our subsequent analysis. The remain-
ing 128 students were distributed as follows: N = 44 for
HRL, N = 45 for DQN, and N = 39 for Random. A χ2

test shows that the participants’ completion rate did not differ
significantly by condition: χ2 (2) = 1.03, p = 0.598.

Pyrenees. Pyrenees is a web-based ITS that teaches stu-
dents a general problem solving strategy and 10 major prob-
ability principles, such as the Complement Theorem and
Bayes’ Rule. It provides students with step-by-step instruc-
tion, immediate feedback, and on-demand help. Except for



Condition Pre Iso Post Adj Post NLG
HRL(44) 66.4(18.8) 85.8(14.6) 77.7(10.3) 14.3(19.2)
DQN(45) 73.9(13.6) 85.2(13.1) 71.2(12.0) -2.2(29.4)

Random(39) 66.3(18.9) 80.5(19.5) 71.4(13.8) -0.1(35.0)

Table 1: Learning Performance

the pedagogical policy, the remaining components of the tu-
tor, including the GUI interface, the training problems, and
the tutorial support were identical for all students.

Procedure. All three conditions went through four phases:
1) textbook, 2) pre-test, 3) training on the ITS, and 4) post-
test. The only difference between them was the policy em-
ployed by the ITS. During textbook, all students read a
general description of each principle, reviewed some exam-
ples, and solved some practice problems. Then they took a
14-problem pre-test where no feedback was given. During
training on the ITS, all students received the same 12 prob-
lems in the same order. Finally, they took a 20-problem post-
test. 14 of the problems were isomorphic to the pre-test and
the remainders were non-isomorphic complicated problems.

Grading. The pre- and post-tests were graded using a par-
tial credit rubric, where each problem score was determined
by the percentage of principles correctly applied. For exam-
ple, a student who correctly applied 4 of 5 possible principles
would get a score of 0.8. Experienced graders conducted the
grading in a double-blind manner. For comparison purposes,
all test scores were normalized to the range of [0, 100].

5 Results
Despite of random assignment, a one-way ANOVA analy-
sis on the pre-test score showed a marginally significant dif-
ference among the three conditions: F (2, 125) = 2.805,
p = 0.064, η = 0.043. Subsequent contrast analysis showed
that DQN scored significantly higher than HRL: t(125) =
2.06, p = 0.042, d = 0.46 and Random: t(125) = 2.01,
p = 0.046, d = 0.46; but there was no significant differ-
ence between HRL and Random: t(125) = 0.02, p = 0.986,
d = 0.00. Since students were not perfectly balanced in in-
coming competence, we took students’ pre-test score into ac-
count in all following analyses. Table 1 shows the mean and
standard deviation (SD) of students’ learning performance re-
sults, showing (from left to right) the Condition with the num-
ber of students in parentheses, pre-test (Pre), isomorphic post-
test (Iso Post), adjusted post-test (Adj Post) and Normalized
Learning Gain (NLG).

To measure students’ learning improvement, we compared
their isomorphic post-test scores with their pre-test scores. A
repeated measures analysis showed that all students scored
significantly higher in the isomorphic post-test than in the
pre-test: F (1, 127) = 158.63, p < 0.0001, η = 0.555.
This is also true for each individual condition including the
random baseline. This suggests that the basic practice and
problems, domain exposure, and interactivity of our ITS ef-
fectively help students acquire knowledge, even when the de-
cisions are made randomly yet reasonably.

Adjusted Post-test. To comprehensively evaluate how the
HRL and DQN policies impacted students learning perfor-
mance, we conducted analysis based on the full post-test
score. Comparing to the pre-test, the full post-test contains
six additional complicated problems. An ANCOVA analy-
sis on the full post-test using the pre-test score as a covariate
showed a significant difference among the three conditions:
F (2, 124) = 3.86, p = 0.024, η = 0.030. Then, based on
the linear model generated in the ANCOVA analysis and the
pre-test score, we calculated the adjusted post-test score (Adj
Post). Contrast analysis on the adjusted post-test showed that
the HRL condition scored significantly higher than the DQN
condition: t(125) = 2.53, p = 0.013, d = 0.57 and the Ran-
dom condition: t(125) = 2.36, p = 0.020, d = 0.52. No
significant difference was found between DQN and Random.
The results suggest that the HRL policy is significantly more
effective than the DQN policy and the Random policy.

NLG. Similarly, a one-way ANOVA analysis on the NLG
(calculated based on pre- and full post-test) showed that
there was a significant difference among the three conditions:
F (2, 125) = 4.39, p = 0.014, η = 0.066. Subsequent con-
trast analysis showed that HRL scored significantly higher
than DQN: t(125) = 2.75, p = 0.007, d = 0.66 and Ran-
dom: t(125) = 2.30, p = 0.023, d = 0.52. Again, no signif-
icant difference was found between DQN and Random. Note
that NLG is the reward we used for policy induction and thus,
the results suggest that our HRL policy indeed can improve
the desired outcome measure.

6 Conclusion and Discussion
In this study, we proposed and applied an offline GP-based
HRL framework to induce a hierarchical pedagogical policy,
which makes decisions first at the problem level and then the
step level. Results from an empirical classroom study showed
that the HRL policy was significantly more effective than a
DQN induced step-level policy and a Random step-level pol-
icy. The results suggest that HRL can be more effective than
flat RL in pedagogical policy induction. One possible expla-
nation is that HRL has an explicit problem-level vision. At
the problem level, HRL views a problem as an atomic ac-
tion, and this abstraction has two potential advantages: 1) it
aggregates the effects of all steps in a problem and 2) it con-
verts a long step-level sequence into a short problem-level
sequence. The aggregation of steps across a problem may
provide HRL with a better estimation of the effect of taking a
series of steps; while the problem sequence may give HRL a
better view of the long-term effects of each problem. Theoret-
ically, flat RL could learn the impact of a problem by aggre-
gating step-level information, but there is no guarantee that
it would. Our results confirm the intuition that HRL should
outperform flat RL on pedagogical policy induction because
it can simultaneously learn at two levels of granularity - the
problem level outer loop and the step level inner loop.
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[Cuayáhuitl et al., 2010] Heriberto Cuayáhuitl, Nina Deth-
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