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Approximately Stable Committee Selection
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Abstract

In the committee selection problem, we are given m candidates, and n voters. Candidates

can have different weights. A committee is a subset of candidates, and its weight is the sum of

weights of its candidates. Each voter expresses an ordinal ranking over all possible committees.

The only assumption we make on preferences is monotonicity: If S ⊆ S′ are two committees,

then any voter weakly prefers S′ to S.

We study a general notion of group fairness via stability: A committee of given total weight

K is stable if no coalition of voters can deviate and choose a committee of proportional weight, so

that all these voters strictly prefer the new committee to the existing one. Extending this notion

to approximation, for parameter c ≥ 1, a committee S of weight K is said to be c-approximately

stable if for any other committee S′ of weight K ′, the fraction of voters that strictly prefer S′

to S is strictly less than cK
′

K
. When c = 1, this condition is equivalent to classical core stability.

The question we ask is: Does a c-approximately stable committee of weight at most any given

value K always exist for constant c? It is relatively easy to show that there exist monotone

preferences for which c ≥ 2. However, even for simple and widely studied preference structures,

a non-trivial upper bound on c has been elusive.

In this paper, we show that c = O(1) for all monotone preference structures. Our proof

proceeds via showing an existence result for a randomized notion of stability, and iteratively

rounding the resulting fractional solution.
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1 Introduction

Fair allocation of resources is a widely studied problem in social choice literature. In several
societal decision-making scenarios, the resources are public goods, meaning that they can be enjoyed
by multiple agents simultaneously. For instance, consider the problem of locating a fixed number of
parks or libraries to serve a population [11]. Each such resource provides shared utility to several
members of society. Viewed as a facility location problem, a standard objective involves locating
the facilities to minimize the total distance traveled by the population to its nearest open facility.
However, such a solution need not be fair: In a city with a dense urban core and sprawling suburbs,
it can lead to the algorithm placing many more facilities in the suburbs, causing the locations at
the urban core to become overcrowded. In other words, the globally optimal solution may produce
disparate outcomes for different demographic slices.

Similarly, consider the participatory budgeting problem [6, 15, 17, 20, 21, 29]. Recently, many
cities and wards across the world have a process to put part of their budget to vote. The city
chooses several projects such as repaving streets, installing lights, etc, and each voter indicates
preferences over these projects. The goal of the city is to choose a subset of projects that is feasible
within the budget to fund. Again, simple schemes to aggregate voter preferences may overly bias
the outcome towards majority preferences, and may ignore entirely the preferences of a sizable,
coherent, minority.

1.1 Committee Selection and Fairness Model

In this paper, we consider an abstract resource allocation model – committee selection – that
captures not only the above two settings, but also several other problems studied in social choice
and in network design. We use the term “committee selection” based on similar terminology in social
choice literature; however, as discussed below, our model captures general combinatorial selection
problems. In these settings, we study a classical notion of group fairness, and show that solutions
that approximately satisfy this notion always exist.

Committee Selection. Using social choice parlance, the committee selection problem models
the common scenario of determining a winning subset, i.e. a committee, from a set of candidates.
A set of voters (or agents) N = [n] = {1, . . . , n} and a set of candidates C = [m] are given, and
each candidate i is associated with a weight si ≥ 0. Let w(S) =

∑

i∈S si denote the weight of the
committee S ⊆ 2C . The goal is to find a committee S of weight at most a given value K. We note
that our results extend to the setting where the weight w(S) is a subadditive function of S; we
present the additive model for simplicity of exposition.

Each voter v ∈ N explicitly or implicitly specifies an ordinal ranking �v over all possible
committees (that is, all possible subsets of C). Given voter v ∈ N and two committees S1 and S2,
we use the notation S2 ≻v S1 to indicate the voter strictly prefers S2 to S1. We indicate weak
preference by S2 �v S1. We assume preferences are complete, so that for every voter v and every
two committees S1 and S2, the voter either (weakly or strongly) prefers S1 to S2, or vice versa;
and the preferences are transitive, so that for every voter v, if she prefers committee S1 to S2 and
prefers S2 to S3, then she prefers S1 to S3, where the preference is strict if at least one of the two
preferences is strict. The only additional condition we impose on the preferences is the following:

Monotonicity: If S1 ⊆ S2, then S2 �v S1 for all v ∈ N .

In Section 1.2, we will show that the facility location and participatory budgeting settings
described above, as well as several other problems in social choice and network design, are special
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cases of committee selection.

Fairness via Stability. The notion of group fairness or proportionality is a central objective
in committee selection. The general idea appeared in literature more than a century ago [13] and
various incarnations of this notion have gained significant attention recently [2, 3, 7, 9, 15, 16, 27, 33].
Here, each group of voters should feel that their preferences are sufficiently respected, so that they are
not incentivized to deviate and choose an alternative committee of proportionally smaller weight.
In the common scenario that we do not know beforehand the exact nature of the demographic
coalitions, we adopt the robust solution concept which requires the committee to be agnostic to any
potential subset of voters deviating.

Formally, we study fairness via the notion of core stability from economics literature [18, 23, 28,
32, 34]. This uses the notion of pairwise score defined below.

Definition 1 (Pairwise Score). Given two committees S1, S2 ⊆ C, the pairwise score of S2 over S1

is the number of voters who strictly prefer S2 to S1: V (S1, S2) := |{v ∈ N | S2 ≻v S1}|.
Given the above definition, we are now ready to define fairness via core stability as follows.

Definition 2 (Stable Committees (or the Core)). Given a committee S ⊆ C of weight at most K,
the weight limit, a committee S′ ⊆ C of weight K ′ blocks S iff V (S, S′) ≥ K ′

K · n. A committee S is
stable (or lies in the core) if no committee S′ blocks it.

In other words, for any β ∈ (0, 1] and any βn voters, there should not be another committee of
weight at most βK, so that all these βn voters are strictly better off with the new committee. It is
easy to check that a stable outcome is (weakly) Pareto-optimal among committees of weight at most
K, by considering the deviating coalition of all the voters. Furthermore, for every coalition of voters,
a stable committee is also Pareto-optimal relative to committees with proportionally scaled-down
weight.

In economics, this notion of core stability can be justified with fair taxation [18, 23, 32]: Each
voter has an endowment of K

n , so the society together has a budget of K. Candidate i costs si, and
we select a committee whose weight is at most K. If no subset of voters (blocking committee) with
size βn can deviate and use their endowment (βK) to purchase an alternative committee, then the
committee is said to be stable.

1.2 Motivating Examples: Fair Combinatorial Selection

Our results hold for any monotone purely ordinal preference structure over committees. As such,
it models a wide range of combinatorial selection problems that have a rich history in social choice,
network design, and related domains.

Participatory Budgeting. This models the civic budgeting application described above. Each
candidate is a public project, and its weight si equals its cost. Voter v has utility uiv for
project i ∈ C. The value K is the total budget available to the city. The utility of the voter
for committee S is uv(S) =

∑

i∈S uiv, and the voter prefers committees that provide her higher
utility. This can be generalized to utility functions that capture complements and substitutes.

Approval Set. This is a special case of the setting described above that has been widely studied
in multi-winner election literature. In this model [2, 3, 7, 33], we assume each si = 1. Each
voter v specifies an approval set Av ⊆ C of candidates. Given two committees S1 and S2,
S1 ≻v S2 iff |S1 ∩ Av| > |S2 ∩ Av|, i.e., the voter prefers committees in which she has more
approved candidates.
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Ranking. In this model [14], each candidate has unit weight. Each voter v has a preference ordering
over candidates in C. In this case, S1 ≻v S2 iff v’s favorite candidate in S1 is ranked higher
(in her preference ordering) than her favorite candidate in S2.

Facility Location. This is a special case of ranking that is motivated by the problem of locating
public facilities described above, and was recently considered by [11]. Here, the preferences
over candidates are dictated by distances in an underlying metric space. Formally, there is a
metric space d over C ∪ N . Each location in C is a potential facility. Given a subset S ⊆ C of
K locations, the cost of voter v is the distance to the closest facility in S. A voter prefers S2

to S1 if it incurs smaller cost in the former than in the latter.

Network Design. The committee selection problem also models selection problems in network
design and combinatorial optimization. For instance, consider the non-uniform buy-at-

bulk network design problem [10, 26]. We are given a multigraph G(V,E) with a sink node
s. Each edge e ∈ E as cost ce and length ℓe. The length is typically decreasing with cost,
since a more expensive edge would model a faster road or higher capacity network cable, which
would reduce time it takes to traverse that edge. Between any pair u, v of vertices, we assume
there is an edge e = (u, v) of cost ce = 0; let M denote the subset of edges with cost 0. A
committee is a subset S of edges with non-zero cost that are provisioned, and its weight is the
total cost of its edges. Given committees S and S′, an end-node v prefers S to S′ if the length
of the shortest path (according to the edge lengths ℓ) from v to s in the subgraph G(V, S∪M)
is smaller in the subgraph G(V, S′ ∪M).

1.3 Approximate Stability and Main Result

As shown in [12, 16], there are simple instances with cyclic preferences where stable committees
may not exist; we present such an instance in Appendix A. This motivates us to consider an
approximate notion of stability.

Definition 3 (c-Approximately Stable Committees). Given a parameter c ≥ 1, and a committee
S ⊆ C of weight at most K, the weight limit, we say that a committee S′ ⊆ C of weight K ′ c-blocks
S iff V (S, S′) ≥ c · K ′

K · n. A committee S is c-approximately stable if there are no committees S′

that c-block it.1

In the taxation interpretation, we scale down the endowment of each voter by the approximation
factor c, so that she has an endowment of 1

c · Kn . If a subset of voters with size βn deviates and

uses their endowment to purchase an alternative committee, this committee has weight β
cK. Note

that when c = 1, the solution is exactly stable. A larger c ensures fewer coalitions deviate, and
our goal is to find the minimum c for which a c-approximately stable solution exists. Theorem 4
(Appendix A) shows that c ≥ 2− ε for any constant ε > 0 even in the Ranking setting.

Our main result is the following general and somewhat surprising theorem that we prove in the
main body of the paper.

Theorem 1. For any monotone preference structure with n voters and m candidates, arbitrary
weights and the cost-threshold K, a 32-approximately stable committee of weight at most K always
exists.

1Any c-approximately stable committee can trivially be modified to become Pareto-optimal while preserving the

value of c. To see this, we simply find another committee that Pareto-dominates this committee. Therefore, Pareto-

optimality comes for free in our setting.
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It is worth noting that prior to our work, no non-trivial result was known for the existence of
approximately stable committees even in the very special cases of Approval Set and Facility

Location preferences described above.

1.4 Techniques and Other Results

Our proof of Theorem 1 proceeds by first constructing a lottery (or randomization) over com-
mittees of weight K that is 2-approximately stable, and iteratively rounding this solution. The first
challenge is to define the appropriate notion of randomized stability. As discussed in Section 1.5,
though stability when committee members are chosen fractionally is a classical concept, these no-
tions require convex and continuous preferences over fractional allocations, and it is not clear how
to relate them to deterministic (or integer) solutions that we desire.

Stable Lotteries. We proceed via a different randomized notion of stability that was first defined
in [12]. We define this notion next. Given a weight K, we let ∆ denote a distribution (or lottery)
over committees of weight at most K.

Definition 4 (Stable Lotteries [12]). A distribution (or lottery) ∆ over committees of weight at
most K is said to be c-approximately stable iff for all committees S′ ⊆ C of weight K ′, we have:
ES∼∆ [V (S, S′)] < c · K ′

K · n.

In [12], it was shown that an exactly stable lottery under this definition exists for Approval

Set and Ranking settings, via solving the dual formulation. However, it was not clear either how
to extend this technique even to Participatory Budgeting preferences, or what a stable lottery
implied about deterministic stable committees that is our main focus here. In this paper, we resolve
both these questions. As our first contribution, in Section 2, we show the following.

Theorem 2. For any weight K and all monotone preferences, a 2-approximately stable lottery over
committees of weight at most K always exists.

The proof of the above theorem builds on the proof of the exactly stable lottery for Ranking

instances in [12]. The duality proof in [12] constructed a primal lottery by sequentially rounding
candidates based on their marginal probability in the dual solution, while the current proof con-
structs the primal lottery by sequentially rounding the committees in the dual solution directly. This
allows us to develop a simple proof for all monotone preference structures; however, unlike [12], our
lottery is only approximately stable.

Once we construct this lottery, our main contribution (Section 3) is rounding it to show The-
orem 1. The randomized stability condition implies the existence of a committee that satisfies a
certain fraction of voters simultaneously, in the sense that it lies not too far down the preference
ordering of these voters. We iteratively eliminate such voters and re-compute the lottery, with the
non-trivial aspect being to ensure that this process preserves approximate stability.

In Section 4, we show that our results extend to the more general setting where w(S) is a
subadditive set function, and also to the setting where there are multiple weight constraints. We
also discuss some settings in which an approximately stable committee can be efficiently computed.

Exactly Stable Lotteries. When considering lotteries, we haven’t been able to find an instance
of a monotone preference structure where an exactly stable solution does not exist. The loss of
factor of 2 in Theorem 2 seems to be an artifact of our analysis. Indeed, in Appendix B, we show
a different way of constructing the dual solution that leads to the following result. We conjecture
that this results extends to all K, and we discuss this and other open questions in Section 5.
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Theorem 3 (Proved in Appendix B). For unit-weight candidates and any number of voters with
arbitrary monotone preferences, when K ∈ {1, 2, 3}, an exactly stable lottery always exists.

1.5 Related Work

Committee selection is omnipresent in political and economic activities of a society: We see it in
parliamentary elections, in group-hiring processes, and in participatory budgeting. Recent work in
social choice [2, 3, 24, 25, 31, 33] has extensively studied the properties of committee selection rules
and established axiomatization in this field. Furthermore, group fairness in committee selection
arises in areas outside social choice: In a shared-cache system with multiple users, consider the
problem of deciding which parts of the data to keep in the cache that has only limited storage [19, 22].
Users gain utility from their data being cached. We can model this as committee selection where
each atomic piece of data corresponds to a candidate. In this context, a fair caching policy provides
proportional speedup to each user.

We now compare our stability notions with some closely related notions in literature. This will
place our technical work in context.

The Lindahl Equilibrium. The notion of stability is the same as that of the core in cooperative
game theory. Scarf [34] first phrased it in game-theoretic terms, and it has been extensively studied
in public-good settings [15, 18, 23, 28, 32]. Much of this literature considers convex and continuous
preferences, which in our setting implies convex preferences over fractional allocations (that is,
when candidates can be chosen fractionally). The seminal work of Foley [18] considers the Lindahl
market equilibrium. In this equilibrium, each candidate is assigned a per-voter price. If the voters
choose their utility maximizing allocation subject to spending a dollar, then (1) they all choose the
same fractional outcome; and (2) for each chosen candidate, the total money collected pays for that
candidate. It is shown via a fixed point argument that such an equilibrium pricing always exists
when fractional allocations are allowed, and this outcome lies in the core. Though this existence
result is very general, it needs the preferences over fractional outcomes to be convex and continuous.

For instance, in the case of facility location, a fractional allocation ~y satisfies
∑

i∈C yi ≤ K
and y ∈ [0, 1]. One possible convex disutility of voter v for ~y is

Cv(~y) = min

{

∑

i

divxiv

∣

∣

∣

∣

∣

∑

i

xiv = 1; xiv ≤ yi ∀i
}

.

Though Foley’s result shows there exists an allocation ~y that is a core outcome, it is not clear (a)
how to compute this fractional solution efficiently; and (b) more importantly, how to round this
allocation to an approximately stable integer solution. The difficulty in rounding is because we
cannot relax the distances when considering when a voter can deviate; indeed, if we could relax
distances, the problem becomes very different, and there is an approximately stable solution (that
only relaxes distances and not the size of the deviating coalition) via a simple greedy algorithm [11].

This motivates using the new notion of randomized stability, where a deterministic outcome
is first drawn from the lottery, and subsequently the voters who see higher utility deviate. This
notion does not correspond to underlying convex preferences over the space of lotteries; however,
as we show, a stable lottery can now be converted to an approximately stable committee. Further-
more, for facility location and more generally, Ranking, this stable lottery can be efficiently
computed [12], while we do not know how to compute the Lindahl equilibrium efficiently.
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Nash Welfare and its Variants. There is extensive work (see [14]) on voting rules where we
construct a score σv(S) for each voter and committee, and choose the committee that maximizes
∑

v σv(S). For instance, for Approval Set preferences, the classic Proportional Approval Voting
(PAV) method that dates back more than a century [35], assigns σv(S) ≈ log(1 + |Av ∩ S|). More
generally, the Nash Welfare objective [1, 3, 15–17, 35] assigns score σv(S) = log(uv(S)), where uv(S)
is the utility of the voter for committee S. These methods compute a stable solution when the utility
of voters in a deviating coalition is scaled down. This requires either knowing or imputing cardinal
utility functions for voters (and does not work with disutilities), and is otherwise incomparable to the
more widely studied and classical notion of core stability that we consider. where the committee size
on deviation is scaled down and the utilities of voters are unchanged. Further, for Approval set

preferences, the PAV method is no better than an Ω(
√
K)-approximation to a stable outcome [12].

A recent line of work [2, 3, 33] has considered a special case of stability with Approval set

preferences, when the coalition that deviates is not arbitrary, but is cohesive in terms of preferences.
They term this Justified Representation, with generalizations known both for Approval set and
to other preference structures [4, 5]. For Approval Set, it is shown that the PAV method and its
variants achieve or closely approximate these notions of stability. However, as mentioned above, the
PAV method do not approximate the core outcome, so that stability is very different in structure
from Justified Representation and its variants.

Finally, our approximation notion scales down the endowment of the deviating coalition by a
factor of c. An alternative approach would have been to approximate the utility of the voters in
the deviating coalition by a factor of c. In this model, constant approximations have been obtained
for clustering [11] and for Approval Set [30]; the latter result uses the PAV method. However,
these results require developing a different technique for each problem, while our approach has the
advantage of being oblivious to the choice of cardinal utilities while leading to a unifying result for
all preference structures.

2 Existence of 2-Approximately Stable Lotteries

In this section, we consider choosing a stable lottery over committees of weight at most K.
Recall the definition of stability in this setting from Definition 4.

We take the approach in [12] and consider the dual formulation of selecting stable lotteries. The
existence of a c-approximately stable lottery is equivalent to deciding:

min
∆

max
S′

E
S∼∆

[

V (S, S′)− c · w(S
′)

K
· n
]

< 0, (1)

where ∆ is a distribution (lottery) over committees of weight at most K. Viewing ∆ as a mixed
strategy over the “defending” committees and S′ as the “attacking” strategy, we treat (1) as a
zero-sum game. Duality (or the min-max principle) now allows us to swap the order of actions by
allowing the attacker to use a mixed strategy. (1) is thus equivalent to

max
∆a

min
Sd:w(Sd)≤K

E
Sa∼∆a

[

V (Sd, Sa)− c · w(Sa)

K
· n
]

< 0, (2)

where ∆a is a lottery over committees of weight at most K chosen by the attacker. This dual view
provides a convenient tool for showing the existence of approximately stable lotteries. The rest of
the section is devoted to proving Theorem 2, that we restate here.

Theorem 2. For any value K and all monotone preferences, a 2-approximately stable lottery over
committees of weight at most K always exists.
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2.1 Per-Voter Guarantee

Assume we are given a lottery ∆a. If there is a committee Sa in ∆a with w(Sa) > K
2 , then

2 · w(Sa)
K · n > n ≥ V (Sd, Sa) for any Sd. This implies V (Sd, Sa)− 2 · w(Sa)

K · n < 0. Therefore, the
attacker can remove these strategies from its lottery, and we can assume ∆a only has committees
with weight at most K

2 .
Given any distribution ∆a over committees of weight at most K

2 , we need to show there is a
defending committee Sd with weight at most K, such that

E
Sa∼∆a

[

V (Sd, Sa)− 2 · w(Sa)

K
· n
]

< 0.

Suppose that the strategy ∆a chooses S1 with probability α1, committee S2 with probability
α2, . . . , St with αt, where t = 2|C|. Let

β = E
Sa∼∆a

[

w(Sa)

K

]

=

∑t
i=1 αi · w(Si)

K

be the ratio between the expected total weight of the attacking strategy and K, the allowable weight
for the defending strategy. We need to find an Sd of weight at most K so that:

E
Sa∼∆a

[V (Sd, Sa)] < 2βn. (3)

We will construct a distribution ∆d over committees Sd that satisfies a stronger property:

Pr
Sd∼∆d,Sa∼∆a

[Sa ≻v Sd] < 2β ∀v ∈ [n]. (4)

Summing over all voters v implies the existence of a lottery ∆d satisfying (3), and hence a deter-
ministic committee Sd satisfying the same. This will imply the theorem statement.

2.2 Dependent Rounding

Let pi = min
(

1, αi

2β

)

for i ∈ [t]. We have:

• pi ∈ [0, 1] for all i ∈ [t]; and

•
∑

i∈[t] piw(Si) ≤ 1
2β

∑

i∈[t] αiw(Si) =
βK
2β = K

2 .

We will construct the defending committee by including each attacker committee Si, i ∈ [t] with
probability pi; the details of which are below. We use the random variable Xi to denote whether
we include Si in our defending committee Sd, so that Sd =

⋃

i∈[t]:Xi>0 Si. We therefore obtain a
distribution ∆d over committees Sd.

We use the dependent rounding procedure in [8] to construct {Xi} given the {pi}. This has the
following properties.

• (Almost-Integrality) For any realization of Xi’s, all but at most one of them takes value in
{0, 1} (the remaining one takes value in [0, 1]).

• (Correct Marginals) E[Xi] = pi for all i ∈ [t].

• (Preserved Weight) Pr

[

∑

i∈[t]w(Si) ·Xi ≤ K
2

]

= 1.
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• (Negative Correlation) ∀T ⊆ [t], E
[
∏

i∈T (1−Xi)
]

≤∏i∈T E[1−Xi] =
∏

i∈T (1− pi).

To have full integrality instead of the almost-integrality, in any realization, we include Si in our
Sd as long as Xi > 0 (instead of only fully including it when Xi = 1). Since we assumed w(Si) ≤ K

2
for all i ∈ [t], using the almost-integrality and preserved-weight conditions, for any realization of
{Xi}, the weight of the resulting Sd satisfies

w(Sd) ≤
∑

i∈[t]:Xi=1

w(Si) +
∑

i∈[t]:Xi∈(0,1)

w(Si) ≤
K

2
+

K

2
= K.

2.3 Analysis

Fix a voter v. W.l.o.g. assume her preference over the sets in ∆a are S1 �v S2 �v · · · �v St.

Pr
Sd∼∆d,Sa∼∆a

[Sa ≻v Sd] ≤
∑

i∈[t]

Pr
Sa∼∆a

[Sa = Si and X1 = X2 = · · · = Xi = 0]

=
∑

i∈[t]

αi · Pr
Sa∼∆a

[X1 = X2 = · · · = Xi = 0]

≤
∑

i∈[t]

αi ·
i
∏

j=1

(1− pj)

=
∑

i∈[t]

2β · pi ·
i
∏

j=1

(1− pj) < 2β.

Here, the first step follows because when the adversary chooses set Si, it only beats Sd if Sd

included none of S1, S2, . . . , Si. Here, we are using the monotonicity of the preference structure:
Since Sj �v Si for j ≤ i, this implies Sd �v Si when Sj ⊆ Sd. The second step follows since the
realization of the adversary’s lottery is independent of that of the defender, and since αi = Pr[Sa =
Si]. The third step follows by the negative correlation property of {Xj}. To see the fourth step,
note that if αi ≥ 2β, then pi = 1, so that αi ·

∏i
j=1(1− pj) = 0 = 2β · pi ·

∏i
j=1(1− pj). Otherwise,

αi = 2βpi.
To see the final inequality, note that

∑

i∈[t] pi
∏

j<i(1 − pj) is the probability of the following
stopping process picking some set: Pick S1 with probability p1; if not, pick S2 with probability p2,
and so on. Therefore,

∑

i∈[t] pi
∏

j<i(1− pj) ≤ 1. Thus
∑

i∈[t] pi
∏

j≤i(1− pj) < 1. This proves (4),
and hence Theorem 2.

3 Existence of Approximately Stable Committees

In this section, we show that a O(1)-approximately stable committee always exists. We show
this by iteratively rounding the lottery constructed in Section 2. We first restate Theorem 1.

Theorem 1. For any monotone preference structure over any number n of voters, and m of can-
didates with arbitrary weights, and any weight K, a 32-approximately stable committee of weight at
most K always exists.

For the proof, fix a deviating committee Sa of weight w(Sa). Suppose our final committee is T

of weight at most K. Our goal is to show that: V (T, Sa) < 32 · w(Sa)
K · n.
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3.1 Good and Bad Committees

Throughout the proof, we fix two constants 0 < β ≤ α < 1, whose choice will be determined at
the very end. To begin, we define a subroutine that returns a 2-approximately stable lottery (via
Theorem 2) for any subset of voters, and any committee size.

Definition 5. Given candidate set [m], voter set V ′, and committee size K ′, let Lottery(V ′,K ′)
return a lottery ∆ over committees of weight at most K ′ that is 2-approximately stable for the set
of voters V ′. Similarly, let VV ′(S, Sa) = |{v ∈ V ′ | Sa ≻v S}| .

Let xi be the probability that ∆ includes committee Si.

Definition 6. Given a voter v, we define the set of good and bad committees relative to ∆, Gv(∆)
and Bv(∆) respectively, as follows:

Gv(∆) =







S ⊆ C

∣

∣

∣

∣

∣

∣

∑

Si�vS

xi ≤ 1− β







and Bv(∆) =







S ⊆ C

∣

∣

∣

∣

∣

∣

∑

Si�vS

xi ≤ β







.

The idea is that the good committees appear sufficiently high up in v’s ranking, while the bad
committees are lower down in the ranking. The notion of high and low is relative to the probability
mass ∆. The following lemma is immediate.

Claim 1. If S /∈ Bv(∆), then Sa ≻v S only if Sa ∈ Gv(∆).

Proof. If S /∈ Bv(∆), then
∑

Si�vS
xi > β. This implies

∑

Si≻vS
xi < 1−β. Since Sa ≻v S, we have

∑

Si�vSa
xi < 1− β, so that Sa ∈ Gv(∆).

The next lemma implies that (a) Any committee Sa cannot lie in too many good sets relative
to its weight; and (b) There is some committee (with non-zero support in ∆) that does not lie in
more than a constant fraction of the bad sets. The previous claim rules out the possibility where
too many voters prefer Sa to such a committee, relative to the weight of Sa, which will be crucial
for the algorithm we subsequently design.

Lemma 1. Given ∆ = Lottery(V ′,K ′), we have the following upper and lower bounds:

1. For all committees Sa, we have

∣

∣

{

v ∈ V ′
∣

∣ Sa ∈ Gv(∆)
}∣

∣ <
2

β
· w(Sa)

K ′
· |V ′|.

2. There exists S with non-zero support in ∆ such that
∣

∣

{

v ∈ V ′
∣

∣ S /∈ Bv(∆)
}∣

∣ ≥ (1− β) · |V ′|.

Proof. To see the first part, for any committee Sa, we have: 1 −∑Si�vSa
xi = PrSi∼∆[Si ≺v Sa].

Summing over v ∈ V ′,

∑

v∈V ′



1−
∑

Si�vSa

xi



 = E
Si∼∆

[VV ′(Si, Sa)] <
2w(Sa)

K ′
· |V ′|,

where the inequality comes from the fact that ∆ is 2-approximately stable. Thus there are fewer
than 2

β ·
w(Sa)
K ′ · |V ′| voters v ∈ V ′ with

∑

Si�vSa
xi ≤ 1− β, which is necessary for Sa ∈ Gv(∆).

To see the second part, suppose S ∼ ∆. Then for each v ∈ V ′, since
∑

Si /∈Bv(∆) xi ≥ 1 − β, we
have: Pr [S /∈ Bv(∆)] ≥ 1 − β. Therefore, the expected number (over the choice S ∼ ∆) of v such
that S /∈ Bv(∆) is at least (1− β) · |V ′|. Therefore, there exists an S for which the claim holds.
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3.2 Algorithm

Algorithm 1 shows our full procedure. The main idea is the following: If we pick a committee
S that does not lie in Bv(∆) for most voters v, then by Claim 1, Sa is forced to lie in Gv(∆) for
these voters if Sa beats S. But since ∆ is 2-approximately stable, by Lemma 1, there are only
a small number of v where Sa can lie in Gv(∆). We can therefore remove these set of voters for
whom S /∈ Bv(∆), since S makes sure no Sa can capture too many of these voters. This reduces
the number of voters by a constant factor. For the remaining voters, we recursively find another
committee of smaller (but not too much smaller) weight, which reduces the number of voters by
another constant factor; and so on. The key point is that the total weight of all these committees
is a geometric sequence, and the number of voters who can be captured by Sa in each round is also
a geometric sequence, showing a constant-approximately stable solution.

Algorithm 1 Iterated Rounding

1: t← 0; V(0) ← [n]; T (0) ← ∅; K(0) ← (1− α)K.
2: while V(t) 6= ∅ do

3: ∆(t) ← Lottery(V(t) ,K(t)).
4: Let S(t) be any committee such that

∣

∣

{

v ∈ V(t)
∣

∣ S(t) /∈ Bv
(

∆(t)
)}∣

∣ ≥ (1− β) · |V(t)|.
5: W(t) ←

{

v ∈ V(t)
∣

∣ S(t) /∈ Bv
(

∆(t)
)}

.

6: V(t+1) ← V (t) \W(t).
7: T (t+1) ← T (t) ∪ S(t).
8: K(t+1) ← αK(t).
9: t← t+ 1.

10: end while

11: return T f ← T (t).

3.3 Analysis

Line 4 in Algorithm 1 is correct by Lemma 1. We next bound the weight of the final set.

Lemma 2. w(T f ) ≤ K.

Proof. w(T f ) ≤∑t≥1w(S
(t)) ≤∑t α

t−1(1− α)K ≤ K.

We finally show that the resulting set is approximately stable, completing the proof of Theorem 1.

Lemma 3. When α = 1
2 and β = 1

4 , then T f is a 32-approximately stable committee of weight at
most K.

Proof. Given Sa, since V = [n] =
⋃

t≥1W(t) and T f =
⋃

t≥1 S
(t), using monotonicity, we have:

V
(

T f , Sa

)

≤
∑

t≥1

VW(t)

(

T f , Sa

)

≤
∑

t≥1

VW(t)

(

S(t), Sa

)

.

Since S(t) /∈ Bv
(

∆(t)
)

for v ∈ W(t), by Claim 1, Sa ≻v S
(t) only if Sa ∈ Gv

(

∆(t)
)

. By Lemma 1,

∣

∣

∣

{

v ∈ V(t)
∣

∣

∣
Sa ∈ Gv

(

∆(t)
)}∣

∣

∣
<

2

β
· w(Sa)

K(t)
· |V(t)|.
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Note now that |V(t)| ≤ β|V(t−1)|, so that |V(t+1)| ≤ βtn. Furthermore, K(t) = αK(t−1), so that
K(t+1) = αt(1− α)K. Therefore,

VW(t)

(

S(t), Sa

)

≤
∣

∣

∣

{

v ∈ V(t)
∣

∣

∣
Sa ∈ Gv

(

∆(t)
)}∣

∣

∣

<
2

β
· w(Sa)

K(t)
· |V(t)| ≤

(

β

α

)t−1

· 2

(1− α)β
· w(Sa)

K
· n.

Summing over all t, we have

V
(

T f , Sa

)

≤
∑

t≥1

VW(t)

(

S(t), Sa

)

<
2α

β(1− α)(α − β)
· w(Sa)

K
· n.

This is minimized when β = α
2 . Setting α = 1

2 , this is at most 32· w(Sa)
K ·n, completing the proof.

4 Extensions

We now present some extensions of the above results to the setting where weights are subadditive,
and there are multiple weight constraints. We also show settings in which the Algorithm 1 has an
efficient implementation.

4.1 General Weight Functions

Subadditive Weights. A careful reader may have observed that the only property we have used
in the proofs of Theorems 1 and 2 is that w(S1 ∪ S2) ≤ w(S1) + w(S2). Therefore, we have:

Corollary 1. There is a 32-approximately stable committee for any subadditive weight function
w(S) over committees, and any monotone preferences of the voters.

Multiple Constraints. We note that Theorems 1 and 2 naturally extend to the following setting
with multiple weight constraints. In the multi-constraint setting, there are Q types of resources,
and the weight limit of the i-th resource is Ki. Given a subadditive weight wj(S) for committee
S and resource j, we select a committee S so that all Q constraints wj(S) ≤ Kj are respected. A

coalition V ′ ⊆ V should only have access to |V ′|
|V| ·Kj amount of resource j.

Definition 7 (Stable Committees with Multiple Constraints). Given a committee S ⊆ C of weight at

most (K1,K2, . . . ,KQ), a committee S′ ⊆ C of weight (K ′
1,K

′
2, . . . ,K

′
Q) blocks S iff V (S, S′) ≥ K ′

j

Kj
·n

for all j ∈ [Q]. A committee S is stable if no committee S′ blocks it.

Notions of c-approximately stable committees and lotteries can be similarly generalized. By
normalizing the weights, we can assume the cost limits are K1 = K2 = · · · = KQ = K. Rede-
fine the weight of a committee S to be the maximum weight across the resources, i.e., w(S) :=
maxj∈[Q]wj(S). This weight function is also subadditive. Further, any (c-approximately) stable
solution in the new single-resource instance would also be c-approximately stable in the original
multi-resource one: It is straightforward to verify all Q constraints are satisfied in the original
setting and the no-deviation requirements are exactly the same in both settings. We therefore have:

Corollary 2. There is a 32-approximately stable committee in the setting with Q ≥ 1 resources.

11



4.2 Running Time

Our main result above is that of existence of approximately stable committees. If preferences
are arbitrary, then we can find this solution by brute-force calculation of V (S, S′) for all pairs of
feasible committees (S, S′), which takes time exponential in K. Our algorithm has comparable
running time, and the bottleneck is constructing a stable lottery efficiently. Indeed, Algorithm 1
runs in poly(m,n) time if we can find an approximately stable lottery with polynomial size support
in polynomial time. Achieving this for Approval Set or Participatory Budget setting is still
an open question. We now present some settings where a more efficient implementation is possible.

We first define the following notion of (c, L)-approximately stable committee, generalizing the
notion defined in [12] to arbitrary weights.

Definition 8 ((c, L)-Approximately Stable Committee). A committee S ⊆ C of weight at most an
integer value K is (c, L)-approximately stable for 1 ≤ L ≤ K if there is no committee S′ with at

most L candidates such that V (S, S′) ≥ c · w(S′)
K · n.

In the Approval set setting, a (1, 1)-stable committee is exactly a committee that satisfies
Justified Representation [2], which in itself is a non-trivial property. If we restrict the attacking
committees Sa to have at most L candidates, the number of such committees is O

(

mL
)

. It is
now easy to show that the (2 + ε, L)-approximately stable lottery in Section 2 can be computed
in time poly

(

mL, n, 1ε
)

via the multiplicative weight update (MWM) method for solving zero-sum
games. The idea is that given a distribution over Sa, the defending strategy involves dependent
rounding over this distribution and hence runs in poly

(

mL
)

time. The number of rounds of MWM
will be polynomial in the number of attacking strategies and 1

ε , and the resulting distribution over
defending strategies will have a support of size poly

(

mL, 1ε
)

. This implies Algorithm 1 is efficient
for constant L.

Corollary 3. For any 1 ≤ L ≤ K, a (32 + ε, L)-approximately stable committee can be computed
in poly

(

mL, n, 1ε
)

time.

In the Ranking setting with additive weights, it is easy to observe that a committee is c-
approximately stable iff it is (c, 1)-approximately stable. This directly implies the following.

Corollary 4. For sufficiently small constant ε > 0, a (32 + ε)-approximately stable committee for
Ranking and Facility Location preferences, even when candidates have arbitrary (additive)
weights, can be computed in poly

(

m,n, 1ε
)

time.

This can be improved to a (16 + ε)-approximation when the candidates are unweighted, since
an exactly stable lottery exists in this setting [12]. We emphasize that prior to this, no such result
was known, even for existence of an approximately stable solution for these preferences.

5 Open Questions

There are several challenging open questions, both for existence and computation.

• Does an exactly stable lottery always exist for all monotone preference structures? We show
its existence for committees of weight K ≤ 3 and unit-weight candidates in Appendix B.
Though there is some intuition that the problem in Section 2 resembles fractional knapsack
and hence must overflow the knapsack while rounding, our proof for K = 3 shows that this
intuition is misleading. Indeed, our proof uses a different rounding procedure than standard
dependent rounding, and it is an open question whether such a procedure always exists.

12



• Does an exactly stable committee exist for the Approval set setting? For this specific
setting, no counterexample to exact stability is known.

• For Approval Set or Participatory budgeting, can an approximately stable lottery (and
hence a deterministic approximation) be efficiently computed? Unlike ranking and Facility

Location settings, it is possible that a solution is not reasonably approximately stable, but
no deviating coalition is small. (See, e.g., the Ω(

√
K) lower bound example for PAV rules

in [12].) On the other hand, though there are exponentially many committees, the preference
structure in these settings is simple and we cannot rule out polynomial time algorithms.

• Does a 2-approximately stable committee always exist for any monotone preference structure?
We conjecture that Theorem 4 in Appendix A is in fact tight, and the factor of 32 in Theorem 1
can possibly be lowered by other approaches.
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A Lower Bound on Approximation

It is relatively easy to construct a Participatory Budgeting preference profile where a (2−ε)-
approximately stable committee does not exist. This instance has cyclic preferences. There are m
candidates {ci}i∈[m] of unit weight, and n = m voters {vi}i∈[n]. Let K = 2− ε

2 . The preference of
vi is:

ci ≻ ci+1 ≻ · · · ≻ cm ≻ c1 ≻ · · · ≻ ci−1.

Any feasible committee is some single candidate ci, but all voters except vi can deviate and choose
ci−1 (or cm if i = 1). Therefore, the approximation ratio is at least m−1

n ·K = m−1
m ·

(

2− ε
2

)

> 2− ε
when m is large enough.

We now strengthen this example to show that even for the Ranking setting with unit-weight
candidates and integral committee weight K, there exist instances where a (2 − ε)-approximately
stable committee does not exist.

Theorem 4. In the unweighted Ranking setting, (2− ε)-approximately stable deterministic com-
mittees of integral size K may not exist for any constant ε > 0.

Proof. For any positive integer r ≥ 2 and ℓ, we construct the following instance with n = r · ℓ voters
and m = r · ℓ candidates. We view the candidates {ci,j}i∈[r],j∈[ℓ] as a matrix with r rows and ℓ
columns. The voters are {vi,j}i∈[r],j∈[ℓ], where vi,j has the following preference:

15



• For candidates not in the same row, her preference is

ci,ji ≻ ci+1,ji+1 ≻ · · · ≻ cr,jr ≻ c1,j1 ≻ · · · ≻ ci−1,ji−1

for any j1, j2, · · · , jr.

• For candidates in the same row i′, her preference is

ci′,j ≻ ci′,j+1 ≻ · · · ≻ ci′,ℓ ≻ ci′,1 ≻ · · · ≻ ci′,j−1.

Let K = r − 1. For any deterministic committee Sd of size K, there must be some i ∈ [r], so that
no candidate from the i-th row is in Sd, and at most one candidate from the (i + 1)-th (or first if
i = r) row is in Sd. Otherwise, every row where no candidate is selected must be followed by a row
where at least 2 candidate is selected. Thus, on average, at least 1 candidate is selected from each
row, contradicting with K = r − 1.

Let the candidate in the (i + 1)-th row in Sd be ci+1,j if there is one. Notice that ci+1,j−1 is
preferred to Sd by at least 2ℓ− 1 voters: those in the i-th row and the (i+ 1)-th row except vi+1,j .

Therefore, the approximation ratio c is at least (2ℓ−1)K
n = (2ℓ−1)(r−1)

ℓr , which is close to 2 when ℓ
and r are large.

B Existence of Exactly Stable Lottery for K ∈ {1, 2, 3}
In this section, we strengthen the result in Section 2 in the following special case: Each candidate

has unit weight, and K ∈ {1, 2, 3}. There are m candidates and n voters with arbitrary monotone
preferences over committees. In this setting, we show that there is a different way of constructing
a dual solution that yields an exactly stable lottery. This opens up the possibility that the analysis
in Section 2 is not tight even for larger values of K. Indeed, we conjecture that there is an exactly
stable lottery for any K and any monotone preference structure.

Theorem 3. For unit-weight candidates and any number of voters with arbitrary monotone prefer-
ences, when K ∈ {1, 2, 3}, an exactly stable lottery always exists.

The K = 1 case is trivial. In the K = 2 case, w.l.o.g. we can assume the attacking strategy ∆a

only comprises committees of size 1. This is because having a size-K committee Sa in ∆a does not
help the attacker even if all voters prefer Sa to Sd. Then the K = 2 case is covered by Lemma 4
below. Therefore we focus on the K = 3 case. We adopt the duality view introduced in Section 2.
Given any attacking strategy ∆a, w.l.o.g. assume it only comprises committees of size 1 and size 2
for the same reason that having a size-K committee in ∆a does not help.

Let p = PrSa∼∆a[|Sa| = 1], so that PrSa∼∆a [|Sa| = 2] = 1 − p. Note that the expected weight
of ∆a is p+ 2(1 − p).

Case 1. Suppose p ∈ {0, 1}. In that case, all committees in the support of ∆a have the same
weight. The following lemma now shows the existence of an exactly stable lottery.

Lemma 4. For any K ′ ≤ K, if every committee in the support of ∆a has exactly the same weight
K ′, then an exactly stable lottery over committees of size at most K always exists.

Proof. Given ∆a, we draw S1, S2, . . . , St independently from ∆a where t =
⌊

K
K ′

⌋

. Let Sd =
⋃

i∈[t] Si

so |Sd| = tK ′ ≤ K. Now we need to show

E
Sa∼∆a

[

V (Sd, Sa)−
K ′

K
· n
]

< 0.
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For any voter v ∈ [n], PrSa∼∆a[Sa ≻v Sd] is the probability that Sa is strictly most preferred
among Sa, S1, S2, . . . , St, each of which is independently drawn from ∆a. Thus

Pr
Sa∼∆a

[Sa ≻v Sd] ≤
1

t+ 1
<

K ′

K
.

Summing over v ∈ N gives the desired result.

Case 2. From now on, we will assume p ∈ (0, 1). For convenience, we use ∆1 and ∆2 to denote
the conditional distributions of ∆a when Sa is of weight 1 and 2, respectively. That is, for any
S ⊆ C,

Pr
S1∼∆1

[S1 = S] = Pr
Sa∼∆a

[Sa = S | |Sa| = 1],

Pr
S2∼∆2

[S2 = S] = Pr
Sa∼∆a

[Sa = S | |Sa| = 2].

We construct a defending committee using the following procedure:

• With probability p2, independently draw two committees from ∆1 and let Sd be their union.

• Otherwise (with probability 1−p2), independently draw one committee from ∆1 and one from
∆2 and let Sd be their union.

Denote the distribution of Sd as ∆d, which is the defending strategy. To prove Theorem 3, we need
to show

E
Sa∼∆a,Sd∼∆d

[V (Sd, Sa)] <
p+ 2(1− p)

3
· n. (5)

Fix voter v. Consider the committees in decreasing order of voter preference. We say that
a committee Sa appears at position x ∈ [0, 1] if the total probability mass in ∆a of committees
S ≺v Sa is x. For convenience, we assume x is continuous; this will only help the attacking strategy
in the proof below. Similarly, let f(x) denote the total probability mass in ∆a of S ≺v Sa with
|S| = 1, and g(x) denote the total probability mass in ∆a of S ≺v Sa with |S| = 2. Clearly,
0 ≤ f(x) ≤ p, 0 ≤ g(x) ≤ 1− p, and f(x) + g(x) ≤ x.

Now, if the attacker chooses Sa at position x (where x is uniformly at random in [0, 1]), the

probability that the defender chooses one S ≺v Sa conditioned on |S| = 1 is f(x)
p . Similarly, the

probability that the defender chooses one S ≺v Sa conditioned on |S| = 2 is g(x)
1−p . Since the defender

chooses two committees of unit weight with probability p2, and one committee of weight one and
the other of weight 2 with probability 1− p2, we have:

Pr
Sa∼∆a,Sd∼∆d

[Sa ≻v Sd] ≤p2
∫ 1

0

(

f(x)

p

)2

dx+ (1− p2)

∫ 1

0

f(x)

p
· g(x)
1− p

dx

≤1

p
·
∫ 1

0

(

(1 + p) · x · f(x)− f2(x)
)

dx, (6)

where the first inequality enumerates the quantile of Sa in ∆a.
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To maximize (6), an integral over a quadratic function of f(x) if we fix p and x, we should have

f(x) = min
(

p, (1+p)x
2

)

. Thus,

Pr
Sa∼∆a,Sd∼∆d

[Sa ≻v Sd] ≤
1

p
·
(

∫ 2p
1+p

0

(1 + p)2 · x2
4

dx+

∫ 1

2p
1+p

(

(1 + p) · x · p− p2
)

dx

)

=
1

p
·
(

p2

3
+

p(1− p)

2

)

=
1

2
− p

6
<

2− p

3
,

where the final inequality follows since p < 1. Summing over the voters gives (5), and hence proves
Theorem 3.
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